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We construct an infinite system of non-linear duality equations, including fermions,
that are invariant under global Fy; and gauge invariant under generalised diffeo-
morphisms upon the imposition of a suitable section constraint. We use finite-
dimensional fermionic representations of the R-symmetry K (F11) to describe the
fermionic contributions to the duality equations. These duality equations reduce to
the known equations of Eg exceptional field theory or eleven-dimensional supergrav-
ity for appropriate (partial) solutions of the section constraint. Of key importance
in the construction is an indecomposable representation of F1; that entails extra
non-dynamical fields beyond those predicted by FE7; alone, generalising the known
constrained p-forms of exceptional field theories. The construction hinges on the
tensor hierarchy algebra extension of e;1, both for the bosonic theory and its super-
symmetric extension.
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1 Introduction

Exceptional field theories [1-4]| are based on generalised exceptional geometries in which diffeo-
morphisms are unified with tensor gauge transformations in such a way that the closure of the
local transformations require constraints on the fields, known as section constraints [1,5,6]. These
theories live on a space which is locally a direct product of D-dimensional ‘external’ space-time
with an ‘internal’ space whose coordinates are in a representation of a split real form of the
exceptional group E, and are subject to the FE, covariant section constraint. Here, F, is the
usual hidden Cremmer—Julia symmetry group of ungauged maximal supergravity in D = 11 —n
space-time dimensions [7], which also governs gauged maximal supergravity through the embed-
ding tensor formalism [8,9] and the associated tensor hierarchy [10,11]. The tensor hierarchy
fields play a central role in constructing exceptional field theory. Solving the section constraint
amounts to restricting the dependence on the extra coordinates so that the dynamics of an
appropriate supergravity theory emerges.

The study of exceptional field theories is interesting for several reasons. Besides providing
a unified description of supergravity theories that are related by duality transformations (like
D = 11 and type IIB supergravity [2]), they allow for the derivation of uplift formulee for solutions
of gauged supergravity [12-15] and the construction of gauged supergravities via a generalised
Scherk—Schwarz mechanism [16-21]. They are also instrumental in studying non-geometric string
theory solutions [22-28]. Further aspects of exceptional field theory have been discussed in the
recent overview [29].

It is a remarkable fact that the bosonic sector of exceptional field theory is completely deter-
mined by generalised diffeomorphisms without the use of supersymmetry. Another key property
is that these theories typically require extra p-forms of rank p > D —2 beyond those present in the
usual tensor hierarchy of D-dimensional maximal gauged supergravity. These obey constraints
that are similar to the section constraints. They are related to the physical fields by first-order
equations and do not themselves describe new physical degrees of freedom.

So far, E,, exceptional field theories have been constructed explicitly for n = 6,7,8 in [2—4]
and in [1,30-33] for smaller n. The cases beyond n = 8 involve infinite dimensional groups and
bring in formidable new challenges. A dent has been made recently in the case of Eg [34]. The
present paper studies the case of Fq;.



It has been proposed by West long ago and prior to the development of exceptional field theory
that the D = 11 supergravity equations of motion should emerge from an F4; invariant theory
formulated in the framework of a non-linear realisation of F17 in the ‘vector’ representation, such
that the dynamics would follow from an Ej; invariant set of duality equations [35-37]. It has been
realised recently that these first order duality equations can only hold modulo certain equivalence
relations [38,39]. These ambiguities are argued to be liftable by passing to equations of motion
that are eventually of arbitrarily high order in derivatives. These equivalence relations may
potentially be interpreted as arising from additional gauge symmetries, although their precise
form has not been determined. The section constraint was not investigated in those references
in connection with the gauge invariance of the equations of motion, but only in connection with
the description of 1/2-BPS states [40]. Ej; does capture the supergravity tensor hierarchy field
content in D dimensions [41,42], but not the extra constrained p-forms of the exceptional field
theories mentioned above.

In [43], it was explained that constructing linearised gauge invariant first order field equations
with Fq; symmetry requires the fields to satisfy the section constraint as well as the introduction
of additional fields that do not appear in the E7; coset space. This construction is based on
an infinite-dimensional super-algebra 7 (e11), that includes ej; as a subalgebra and that gener-
alises the tensor hierarchy algebra 7 (e,) introduced in [44] for n < 8 to the Kac-Moody case.
The tensor hierarchy algebra then includes a non-semi-simple extension 7g(e11) of the algebra
e11 that entails the introduction of extra fields already in the linearised theory. A gauge in-
variant linearised duality equation can be written in this formulation for a field strength that
transforms covariantly under Fq; provided one introduces these extra fields in the corresponding
indecomposable representation.

The primary goal of this paper is to construct the Fy; and gauge invariant non-linear duality
equation that captures all the duality equations of all F,, exceptional fields theories. We will show
that one can generalise the duality equation constructed in [43] to a non-linear equation invariant
under generalised diffeomorphism. The key observation that facilitates this construction is that
the derivative of the extra fields found in [43] at the linearised level are the cohomologically trivial
part of extra fields that turn out to underlie the extra constrained p-forms fields mentioned above
in the GL(11 —n,R) x E,, decomposition and subsequent truncation of the F1; invariant theory.
In analogy with what happens in lower-dimensional exceptional field theories, and as mentioned
above, these extra p-forms are related to the propagating fields by first order equations but they
do not themselves describe new physical degrees of freedom. These first order equations for the
constrained fields are sourced by bilinear terms in the derivatives of the fields parametrizing F1.
Therefore they cannot follow from the E7; variations of the duality equation we construct in this
paper, and they must be derived separately by requiring gauge invariance and integrability of
the equations. We shall not attempt to determine these first order equations in this paper, and
will only make some comments on their expected structure.

Besides the investigation of a non-linear bosonic theory based on the tensor hierarchy al-
gebra, an important part of the present paper is the study of its supersymmetric extension.
Fermions are introduced here — as for maximal supergravity and other exceptional field theo-
ries — as representations of (the double cover of) the involution invariant subgroup K (FE7;) that



plays the role of a generalised R-symmetry group. As noticed in [45-49|, this subgroup admits
finite-dimensional (a.k.a. unfaithful) spinor representations in the case of Kac-Moody groups
K(E,) with n > 9. In particular, these representations were constructed for the gravitino and
supersymmetry parameter of K (FEj;) in [50] with beginnings of the supersymmetry parameter
representation already given in [51]. The compatibility of local K (E,,) symmetry with supersym-
metry, i.e., whether the supersymmetry generator transforms correctly as a spinor under K (E,,)
was investigated in [49, 52| for n = 10 where it was found that there was an inconsistency in
the transformation arising for the bosonic fields starting from the so-called dual graviton. This
problem was not visible in the lower level truncation considered in [53| for K (Eqy).

In the present paper, we resolve this issue by considering not only e;; but its non-semi-simple
extension Tp(e11) that appears in the tensor hierarchy algebra. As already emphasised above,
one important consequence of the tensor hierarchy algebra is that it introduces additional fields
into the theory beyond those of the standard Ej1/K(FE71) symmetric space. These fields will
resolve the inconsistencies with the supersymmetry transformations, because the supersymmetry
transformation of fields in 7g(e11) © K(e11) can be written consistently with K (E71). We shall
use this construction to write linearised supersymmetry transformation rules and equations of
motion for the (unfaithful) gravitino field. We also show that one obtains a closed supersymmetry
algebra at linearised order. These results will be derived explicitly at low levels, including the
dual graviton. At present, we do not have a complete algebraic proof to all levels.

After establishing the linearised supersymmetry and the equations of motion for the Fermi
fields, we investigate their non-linear extension and their compatibility with the non-linear duality
equation proposed in Section 3. We present some first steps in this direction by introducing the
non-linear K (FE7;) connection and a Pauli coupling to the E1; field strength. Although we do not
have the complete expression of the non-linear equations, the first few levels exhibit promising
cancellations that lead to the desired couplings of eleven-dimensional supergravity.

Structure of the paper and summary of main results

Given the length of the paper we here give a telegraphic summary of our main results for the
reader’s convenience.

e Inspired by the structure of the tensor hierarchy algebra given in Section 2, we propose
non-linear bosonic field strengths that transform covariantly under E7; in an infinite-
dimensional representation that generalises the embedding tensor representation of gauged
supergravity for finite-dimensional F, and that is neither highest nor lowest weight. La-
belling its component by I we show in (3.12) that the following definition is Ej; covariant:

Fl=c™ J8 + C™axm®™+ ... . (1.1)

Here, J§; is the non-linear e;; Lie-algebra valued current constructed out of the E11 /K (F11)
representative M using M ™19y, M with 9y denoting the derivative with respect to the
infinitely many coordinates of the R(A;) representation of Fj; subject to a section con-
straint. The fields x ;% are constrained fields, i.e. they are (section) constrained in the M



index in the same way as the partial derivative dys, and & labels the representation R(As2)
of Ey11. However, the indecomposability of Tg(e11) is importantly such that they form an
indecomposable representation together with the adjoint current components in such a way
that the structure constants C'M, and CT™ 5 appearing in the expressions above ensure
E11 covariance of the field strengths F!, whereas C'M .J o alone would not be covariant.

The dots indicate additional constrained fields discussed in Sections 2 and 3.

The representation-theoretic content of the tensor hierarchy algebra permits writing a non-
linear duality equation (3.22) for the non-linear field strengths:

FIL— MIEQu ) =0. (1.2)

The tensor hierarchy algebra ensures the existence of a symplectic form €277 that acts on
the field strengths F'7. The above first-order equation is a vast generalisation of (twisted)
duality equations that have appeared elsewhere in the literature [35,54| and covers both
the matter and the gravitational sector. As we analyse in Section 3.6, the duality equation
is not sufficient to determine the dynamics of the constrained fields x /%, just as e.g. for
E7 exceptional field theory [3]. Assuming integrability conditions at linearised order, we
relate the constrained fields and their dynamics to our previously studied model in [43].

We propose non-linear gauge transformations of all fields in (3.19) and (3.20) and show
that the duality equation (1.2) is gauge invariant under these gauge transformations if a
certain group-theoretic identity (3.26) holds. This identity is then verified at low levels in
decompositions of Fi; under its GL(11) and GL(3) x Eg subgroups in Sections 4 and 5,
respectively. We also write explicitly the duality equation (1.2) in components in the
corresponding parametrisations, and exhibit that it reproduces the known duality equations
of eleven-dimensional supergravity and of Fg exceptional field theory.

Starting from Section 6, we study the fermionic extension of the model. Given the unfaithful
spinors ¥ and € of K (E11), we show how their bilinears relate to the tensor hierarchy algebra
and how this can be used to define supersymmetry transformation rules and a consistent
supersymmetry algebra. We show that this consistency also connects to the reducible gauge
structure of the F; generalised Lie derivative and introduces yet more additional bosonic
fields into the theory in order to make all symmetries manifest.

We establish a linearised, K (E11) covariant equation of motion for the gravitino field in
Section 7 that reads (see (8.1))

GUM Py, =0, (1.3)

where 1), are the components of W in a Spin(1,10) basis and G%*M are K(E;) invariant
tensors that are constructed out of Spin(1,10) gamma matrices and Kronecker symbols.
We show how this gravitino equation of motion is consistent with the bosonic dynamics
under supersymmetry. This requires also introducing gravitino bilinears in the non-linear
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Figure 1: Dynkin diagram of E11 with labelling of nodes used in the text.

duality equation (1.2) in the form (see (7.17))
FI— MIEQy ;7 =y=1,0L, (1.4)

where OL ~ (W)L denotes fermion bilinears transforming in the K (Fj;) representation
of the field strength equation of motion. The underlined index I here indicates a ‘local’
K (F47) index that is converted into a ‘global’ F1; index I by means of the inverse gener-
alised vielbein V™! in Ey;/K(E11). The possibility of making this fermionic modification
of the first-order duality equation rests on a non-trivial relation between the unfaithful
spinors and the tensor hierarchy algebra that we demonstrate at low levels. In this way we
obtain a supersymmetric non-linear duality equation for the bosons including the non-linear
fermionic terms.

e When studying the supersymmetry algebra and gauge algebra it is important to also study
the generalised diffeomophisms on the fermions. We provide a general expression for this
in (7.18) that involves the compensating K (¢11) transformation arising due to the gauge-
fixed generalised vielbein. We verify in Appendix E that our formula, when restricted to
FE; exceptional field theory, agrees with previous results in the literature.

e In Section 8, we study also the extension of the linearised fermionic equation of motion (1.3)
and supersymmetry variations to the non-linear level.

2 FE4; and tensor hierarchy algebra

In this section, we shall review elements of the group F1; with the underlying Lie algebra e11, and
the tensor hierarchy algebra 7 (e1;) that will be needed in the construction of the Fp; invariant
duality equations.

2.1 Fj; and its Lie algebra

The Lie algebra e;; is an infinite-dimensional Lorentzian Kac-Moody algebra with Dynkin di-
agram shown in Figure 1. For a detailed description of the algebra see for example [35,55, 56].
We will denote a representation with highest weight A by R(A) where A = Y, p'A;, with A;
denoting the fundamental weights and p’ are the Dynkin labels. For example, R(A;) refers to
representation with Dynkin labels (1,0, ...,0). We will use the notation R(A) to also refer to the
module associated with the corresponding representation. The dual representation of R(A) will

be denoted by R(A) and it is a lowest weight representation.



A convenient way of organising the generators of ¢11 is by decomposing the adjoint representa-
tion of e1; under its gl(11) subalgebra obtained by removing node 11 from the diagram. Defining
the gl(11) level ¢ as the eigenvalue of the generator %Kmm, where K™, for m,n = 0,...,10
denotes the generators of the gl(11), levels 0 < £ < 4 of the gl(11) decomposition of the adjoint
¢11 are given in Table 4 in Appendix A. The appendix also contains more details on the gl(11)
algebra in (A.1) and similar decompositions of some other representations of ¢1; that play a role
in this work. At levels 0 and 1, the generators have the same index structure as the graviton and
the 3-form field of 11D supergravity, respectively, and their dual 6-form and the dual graviton
appear at levels 2 and 3.

The highest weight representation R(A;) plays an important role in the dynamical description
of the E11 exceptional field theory as it gives the representation structure of the Fq; space-time

coordinates [51]. Its dual lowest weight representation R(A;) is the representation denoted by ¢;
in [51] that can be used to contract the coordinates when forming a generalised translation group
element. The level decomposition of R(A;) under gl(11) is displayed in Table 5 in Appendix A.
The names of the generators there already anticipate their roles as central charge type coordinates
in a D = 11 interpretation and associated translation generators and gauge parameters.

We shall also need to make use of tensor products of ¢;1 representations. The tensor product of
highest weight (respectively lowest weight) representations is completely reducible into infinitely
many highest (respectively lowest) weight representations. By contrast tensor products of highest
with lowest representations fall outside what is called category O and there are no complete
reducibility results [55]. It is known nonetheless that the tensor product of a representation and
its dual contains the adjoint representation. The following decompositions of tensor products
will prove to be useful

(R(A1) @ R(A1)) gy = R(2M1) © [R(A10) @ .. ],

sym
(R(A1) @ R(A1))antisym = B(A2) @ [R(A1) @ .. ],
R(A1) @ R(A2) = R(A1 +A2) @ R(A3) & ... (2.1)
The representation [R(A19) .. .| encodes the weak section constraint in the Eq; exceptional field

theory which will be described in the next section and the low levels of its gl(11) decomposition is
given in Table 6. The representation [R(A4)@...] completes this to the strong section constraint.
The Kac-Moody group E7; should be properly defined either as the minimal (or small) group
generated by products of real root generators [57] or as the completed group that is obtained
from the minimal definition by completion with respect to the building topology [58]. For the
purposes of this paper, we will consider the completed group E7; as formal exponentials of ey
Lie algebra elements completed in the positive Borel direction. A more detailed discussion of the
Kac-Moody symmetric space and possible coordinates on it will be given in Section 3.5.

2.2 Tensor hierarchy algebra

For any e, algebra, the tensor hierarchy algebra 7 (e,) is a super-algebra extension of ¢, [43,
44]. It admits generally a Z-grading 7 (en) = €D, Tp(en) consistent with the Grassmann Zs

8



grading (i.e.such that €, Tor(e,) is the bosonic subalgebra). For n < 8, T,(e,) for 0 < p <
11 — n corresponds to the ¢, representation of the p-forms in (11 — n)-dimensional maximal
supergravity. In particular one has Ty(e,) = ¢, corresponding to the Cremmer—Julia hidden
symmetry of the scalar sector that extends to the p-form sector. The tensor hierarchy algebra
is not symmetric under p «» —p, meaning 7, 2 T_,. The component 7_i(e,) is the so-called
embedding tensor representation [44] which is used for describing gaugings of supergravity [8,9].
The tensor hierarchy algebra was constructed in [43] for n > 9 as the quotient of the superalgebra
generated by a local superalgebra by its maximal ideal, using the construction of [59|. This
construction is very similar to the one of a Kac—Moody algebra, for which the local algebra is
defined by the Chevalley generators associated to each simple root, and the maximal ideal is
defined by the Serre relations. For the tensor hierarchy algebra, the local superalgebra can be
described explicitly but the maximal ideal does not admit a closed-form definition generalising
the Serre relations. In the following we shall simply use 7 = @©,ez7T, when we refer to the tensor
hierarchy algebra extension of eq;.

The important difference between 7 and the tensor hierarchy algebras associated to e, for
n < 8 is that Ty 2 e1; and is a non-simple extension of e that decomposes as an e;; module as
follows

To X e11 D R(AQ) D R(Am) D--- (2.2)
where the notation e @ R(A2) indicates that it is not the direct sum of two modules, but rather
that e7 is a submodule and [e17 @ R(A2)]/e11 is the highest weight module R(As) as a quotient
only. Thus e1; @ R(Ag) forms an indecomposable representation. It was shown in [43] that the
next term R(Ajg) forms a direct sum with this space but the full module structure contained in
the dots is presently not known. The other degrees 7, have a similar structure.

The tensor hierarchy algebra admits an antisymmetric bilinear form such that 7, & T_o_,,.
The components 7, for p > 1 are highest weight modules of ¢11, and therefore lowest weight for
p < —3. T_1 is a symplectic representation of e, but very little is known about its reducibility,
since it is neither a highest/lowest weight representation of ¢;; nor an extension of the adjoint
itself. We will therefore refer to this representation as 7_1, both as an ¢1; module and as the
component of the tensor hierarchy algebra. The known structure of 7, for =3 < p < 2 is
summarised in Table 1 where also notation for the corresponding generators is introduced.

The indecomposability of Ty is reflected in the commutation relations of the level p = 0
generators t& = (t*, % N, ..)) as

[t“,tﬁ} = foPAT [to‘,fﬁ] — T K [N = T (23)
The presence of the non-trivial structure constant K O‘B,Y in the middle equation is due to the

indecomposability, showing that there is commutator of e;; with R(A;) going back to e1;. The
action of the group E1; on e11 @ R(A1) is defined by

g g =g%st", g% = g%5t" + wi(9)t”, (2.4)
such that ¢f" ng ~ = (9192)%~ and where wg‘(g) is a group 1-cocycle satisfying

w(9192) = WS (91)93 5 + 97 5w} (92) (2.5)



level Fqq rep index notation

p=2 R(Ajp) & -+ Pr= (P

p=1 | R(A)® R(A1 +Awo) ® R(Ap) @ - | PM = (PM PMA_ )

p=0 11 D R(A2) & R(A1g) & - = (¢, 10 N

p=-—1 T 1 tr

p=-2 e11 ® R(A3) ® R(Ayo) @ - - - ta = (fu, ta, 1, .. .),
p=-3| R(A) ®R(A, + Aw) ®R(An) @ | Py = (Par, Puas .-

Table 1: Eyq representations arising at level —3 < p < 2 elements of the tensor hierarchy algebra.
In particular, P and Py denote the representations R(A1) and R(Ay), respectively.

and that linearises to wg‘(eAwﬂ) = A, K7%; + O(A?) consistently with the commutation rela-
tion (2.3). Finding an explicit form of the cocycle wg‘(g) for the tensor hierarchy algebra T (e11)
seems a formidable task, although one can write wg‘ e™) as a formal power series in X, see [34]
for formulas in the case of eg.
The action of e11 on the other levels 7, is given by
[t*, PM] = —T*M NPV [, PN = =T%=P= [t 4] =T 1t , (26)
(6, 85] = 75Ty + KgT5, [1%,85] = T 55 [t%,2a] = Tl . '

Since p = —2 is the dual representation to p = 0, the indecomposability is now in ¢j; ® R(Aq),
such that K75 now appears in the commutator of & with the element Zg of the co-adjoint ¢}, .
The convention for the ej; representation matrices is such that

TaMpTBPN — TBMPTOCPN = faB,YT'yMN, etc. (2.

BN
~—

We shall also use the notation fagq for the complete Ty structure coefficients, such that fagq =
—Taﬁq, faﬁy = —Ko‘ﬁy for example.
Further (anti)commutators that will be needed later are given by

[PM. 2] = C™tp [PM,l?a} =C™Mtr [PMEA] =C™Mtp,
{PM Py} = TM Nt + TM yig + TM Nty . {(PM, PV} =MV PA
[PM 4] = —Qr CM 1™ — QpCTM 5t® — Qp07M th (2.8)

where the coefficients are Fq; invariant tensors, except for K 0‘57, C™ and TOM 5 that mix

with the indecomposable structure, although the complete tensors CTM 5 and T¢M y are invariant

10



tensors in the indecomposable representation 7. In particular for Eq1 group elements one has
gIJgMN g—lﬁa CJNB _ CIMa . gIJgMN wg(g—l) CJNB ) (29)

If, as in [43], we take the fields of the theory to be in 7_5 such that they are of the form ¢® =
(¢*, X% YA ..)) and defining their ej; variation by x¢%ts = An[t*, %3], the commutation
relations (2.3) yield

SAp™ = =N, [0 (2.10)
OAXT = AT X7 + A K507 (2.11)
which gives after exponentiation

¢ — exp(—Ay f7) 59" (2.12)

a o =1 ¢ ;
X% = exp(AT7)%5XP + A, Y — D [ATVRT(—As f2)" %507 . (2.13)
n=0 """ k=0

The above transformations satisfy the E1; algebra.

3 Non-linear field strengths and duality equations

In this section, we shall construct non-linear field strengths for the bosonic fields and propose
a duality equation invariant under rigid F17 and non-linear local gauge transformations in the
spirit of the generalised diffeomorphisms that are encountered in the F,, exceptional field theory
formulation of maximal supergravity theories in D = 11 —n ‘external’ space-time dimensions |1
4,13]. This section constitutes the first central result of the paper and some of the general

formulee given here will be tested in various examples in the following sections.

3.1 Preliminaries for general exceptional field theories

Exceptional field theories for F,, are formulated in an extended space-time in which the extra
(internal) coordinates transform in a representation of the duality group FE, [1-4,13]. Further-
more, there exists a generalised diffeomorphism symmetry which closes on the fields satisfying
the section constraint for n < 7. This section constraint restricts the dependence of all fields
and parameters on the extra coordinates such that they can depend at most on n independent
coordinates on the neighbourhood of each point. For n > 8, the algebra of generalised diffeo-
morphism needs to be extended to include not only diffeomorphism preserving the F,, structure,
but also additional gauge transformations that involve constrained parameters [4,60,61].

The formulation of E,, exceptional field theory extends that of gauged maximal supergravity.
In particular, the various fields in F,, representations appearing in the tensor hierarchy of gauged
supergravity [10,11] are also involved in exceptional field theory. For instance, the external scalar
fields parametrizing the coset F,, /K (E,) play a significant role in the construction of the field
equations in the form of a generalised metric.

11



A key feature of the E,, exceptional field theories is that they typically require extra p-forms
of rank p > D — 2 (in some specific representations of E,,) beyond the ones present in the tensor
hierarchies of maximal supergravity theories, and these extra fields obey extra constraints related
to the section constraint mentioned above. These extra constrained fields do not represent new
dynamical degrees of freedom. Their first order field strengths are determined algebraically by
source terms quadratic in the original fields. Finally, the FE, exceptional field theory possesses
an R-symmetry group which is the maximal compact subgroup of E,, and that we denote by
K(E,).!

In view of the picture outline above for the F, exceptional field theories, it is natural to
consider 11 as the duality group and take the extended space-time to be parametrized by a vector
in the fundamental representation 2ty € R(A;) [51], such that the coordinates themselves
zM transform in R(A;). In the following we will mostly refer to the representations of the
coordinates, rather than the representations of the vectors. It is also natural to introduce the
coset F11/K(FE11) where K(F11) is a maximal subgroup of Ej; defined by being invariant under
the (temporal) Cartan involution, as was considered long ago by West [35,62]. Indeed, it is known
that the GL(11 —n,R) x E,, decomposition of the fields that parametrize the coset Ey1/K (E11)
does contain all the supergravity fields [41, 42|, see also Appendix A for the cases n = 0 and
n = 8. This remarkable fact is encouraging but the extra constrained p-forms discussed above,
which play a key role in the description of the exceptional field theories, are absent in this picture.
As such, an Fq; exceptional field theory similar to the F, theories cannot be formulated only
in terms of fields valued in E11/K(FE11), which depend on coordinates 2M . However, the tensor
hierarchy algebra introduced in Section 2 provides the required additional building blocks to
tackle this problem. FEp; invariant consistent field equations were obtained at the linearised level
in [43] by employing building blocks provided by the tensor hierarchy algebra [44]. Here we are
going to reconsider these equations and to show that they are in fact invariant under non-linear
generalised diffeomorphisms provided one defines appropriately the gauge transformations of the
constrained fields.

3.2 Differential complex from 7 (¢;;) and the section constraint

As observed in [43], the tensor hierarchy algebra 7 = @,7, defines a differential complex of
functions depending on coordinates z™ that transform as PM € R(A;) C T;. The differential is
defined through the adjoint action of the basis elements PM in 7; and thus shift the degree p by
1 in the complex. Acting on any function in the complex we let?

d=(ad PM)dyy . (3.1)

1For fermions one has to consider the double cover K (Er) that we shall also encounter for F1; when we discuss
coupling to fermions starting from Section 6.

2Here7 we assume that 71 as an F1; module admits R(A1) as an irreducible submodule. We have checked that
the components R(A; + A1) and R(A11) can consistently be set to zero [43], but we do not have complete proof
that R(A1) is indeed an irreducible submodule in 77.
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For this differential to square to zero one needs
d? = (ad PM) (ad PN) Ops0n = TIAMN (ad PA) 008 = 0 , (3.2)
which is equivalent to the condition that any field ®(z) in the complex satisfies
IAMN 9308 ®(2) =0 . (3.3)

This is nothing but the weak section constraint and P* is the 7 generator introduced in Table 1.
Its strong version (acting on arbitrary products of fields) can be written as [61]

1
maﬁT"PMTBQNE?p (= 8Q = —§8M QR ON + Oy ® I (3.4)

using the Ey; generators in the R(A) representation and the inverse Eq; Killing metric ko5 in
the adjoint of e11. Kqp is Eq1 invariant and non-degenerate [55].

The differential complex defined in this way serves as a basis for the construction of the field
equations, such that the degree p = —3 supports the gauge parameters, p = —2 the potentials,
p = —1 the field strengths, and p = 0 the Bianchi identities, as can be anticipated from Table 1.
Note that the potentials belong to a module in the co-adjoint representation of 7y residing at
level p = —2 rather than level p = 0. Because 7y is not reductive, the co-adjoint 7;° = 7_5 is not
an algebra. Therefore one cannot define a non-linear theory from a putative Maurer—Cartan form
in 7, alone. Moreover, within the tensor hierarchy algebra, 7_, generates arbitrarily negative
levels. This problem will be resolved by treating the fields in e = ¢]; differently from the fields
in the complement.

At the linearised level, the differential complex introduced above provides the following ex-
plicit expression for the field strengths at p = —1 given by the exterior differential of the potentials
&% at p = —2 via®

Ot; = d(¢°ts) = C™Mz00¢%tr = (O™ 001 d” + CTM 500 X& + CTM \ O YA + .. ) tr . (3.5)

We recall that the well-definedness of the eqi-representation 7_1 of the field strengths follows
from the tensor hierachy algebra although 7_; is not a highest or lowest weight representation.

By virtue of the (weak) section condition (3.3) this field strength is gauge invariant under
the linearised gauge transformation

55¢aza = d(fMI:’M) = TaMNaMth_a . (3.6)

Here, the fields ¢® in T_o are valued in the full representation as indicated by the index @. One
can divide 7_ into the co-adjoint of ¢1; and the dual of the extending representations. The fields
¢ associated with the dual e]; can be thought of as the usual fields also arising in the coset
F11 /K (Ey;) while the remaining fields (X, ¢4, ...) will be those related to the extra constrained
fields needed in the formulation of E1; exceptional field theory. As we can see in (3.5), the object

3In analogy with the role played by ©! for E,, exceptional field theories, we could also call this the ‘embedding
tensor representation’. For example, for E7 this is the (912 + 56)-dimensional representation of Ex.
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©t; has an explicit derivative Oj; and therefore satisfies constraints due to the section condition.
Now, it turns out that ©7 = ©7(¢*, X, YA, ...) can be used to construct a field strength F' at
the linearised level which will provide a building block for the linearised duality equations. We
define the linearised field strength on the coset fields by imposing the projection on ¢* to be in
the coset e1q © K(e11) [43]

F({in.) = ®I <¢ + 77¢T777 Xv K . > ) (37)

where ¢ + 17(;5“7 is short for T, M + gbanMQanTaPQ, where nysn is the K(FEj;) invariant
metric on the R(A;) module and n™" its inverse. This projection ensures at the linearised
level that ¢® can be shifted by an arbitrary K (eq1) element without modifying the field strength
F({m). Note that the field strengths F({m) in (3.7) are only K (E1;) covariant while the ©f are Ey;
covariant. Moreover, this additional term violates gauge invariance [43]. We shall see nonetheless
that one can accommodate the gauge transformation of the fields X and Y such that the duality
equations described below are gauge invariant.

With that understood, and due to the symplectic structure of p = —1 one can write down
the duality equation

F({in.) = UIJQJKF({i(n.) ) (3.8)

where 77[ Jis a symmetric non-degenerate K (FE1;) invariant bi-linear form on 71 and Q;x the
FE4q invariant symplectic form on T .4

In what follows we propose a non-linear extension of this duality equation. One important
step will be to replace the partial derivative of the extra fields (X%, AL .) by constrained fields
that are familiar from exceptional field theory, in particular for FEg [34], in which case the tensor
hierarchy algebra gives rise to the non-semi-simple Virasoro extension eg @ (L_1) of eg.

3.3 Proposal for the non-linear duality equations

In this section we shall argue that the construction of a non-linear Fy; exceptional field theory
can be achieved by defining the non-linear duality equation

FL = MY Q FE (3.9)

where M is the exceptional metric, a function of the fields in Ey1/K(E11), in the field strength
representation, and F! is a non-linear field strength whose definition needs to incorporate the
extra constrained fields that are expected to arise from what we already know from the structure
of the F, exceptional field theories for lower n. In constructing this field strength, we shall use
the tensor hierarchy algebra extension of e¢1; introduced in Section 2.2.

Before defining the non-linear F! we shall give more details on the definition of the ex-
ceptional metric Myy . Let V(z) be a coset representative of Ej;/K(Ej;1) transforming as

4As we do not know whether 7_; is completely reducible, it is possible that nI 7 is only well-defined and non-
degenerate on some (maximal) completely reducible submodule. For simplicity, we shall only refer to 71 as this
(maximal) completely reducible submodule.
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V(z) = k(2)V(gz)g with g € Ej; a global element and k(z) a local K(Eq;) element. ‘Local’
here refers to the dependence on the extended space-time with coordinates z™ where M la-
bels the R(A1) representation of Ej; occurring at level p = +1 in the tensor hierarchy algebra.
The subgroup K (E;;) is defined as the subgroup of elements k that preserve a non-Euclidean
metric 7 such that kTnk = 7 in a suitable highest (or lowest) weight representation where the
Hermitian conjugate can be defined [55]. The non-Euclidean nature means for example that
K(Ey11) NGL(11) = SO(1,10) where GL(11) denotes the regular GL(11) subgroup of Ej; that
appears in the level decomposition relevant for describing D = 11 supergravity. In other words,
n is the standard Minkowski metric of eleven-dimensional space-time extended to the whole
extended space-time.?

As usual in exceptional field theory, it is convenient to work with the exceptional metric in
order to avoid the introduction of the K (F11) gauge invariance and its gauge-fixing,

M(2) =V(2)IV(z) = g"M(gz)g . (3.10)

This definition is in complete analogy with non-linear realisations of finite-dimensional groups
but requires some care in the case of infinite-dimensional Kac-Moody groups. We shall make
more comments on this subtlety when we discuss the vielbein and its gauge transformation in
section 3.5.

A key building block for the duality equations is the current defined as

Inr®kapt? = M1y M € e11 ® R(Aq) . (3.11)
This expression makes sense for the so-called small group in any integrable module [65]. Since

M only involves Ey1/K(F11), the combination M ™19y, M can be expanded in the adjoint of
Eq; and transforms covariantly in the tensor product of the adjoint with R(A1), where the latter

factor is due to the partial derivative.
We use the current (3.11) to define the non-linear field strength F' by

FI:CIMQJMOC-I-CIMdXM&-I-CIMACMA—I-... (3.12)

where the structure coefficients are the same as in (3.5), but d7¢* has been promoted to the non-
linear current Jy;%, while the partial derivative 9y, X%, 9y, Y™, ... are promoted to constrained
fields x /%, Car®, ... that are not total derivatives, but satisfy the section constraint (3.4) on
their index M. It is important to stress that the structure coefficients are defined such that
the the potential ¢, is in T_o and not in 7, such that one cannot simply extend Jyot® to a
current in the extended algebra 7y. Nonetheless, because e is simple one can raise the index
of the F11/K(Ey1) current to get Jy*t,. The indecomposable structure of the module 7_o
implies that the field strength must necessarily involve an additional field in R(A;) ® R(Asy), and
because Jy/%t, is not a total derivative, this additional field x3/® cannot be a total derivative
either. It is nevertheless consistent with the indecomposable representation to require that

it satisfies the strong section constraint. We shall therefore introduce the constrained fields

®As shown in [63], there are other D = 11 signatures embedded in K (FE11) that relate to so-called exotic forms
of supergravity [64] that have more than one time-like direction.
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xm®, Car, ... so that they transform under Ey; according to the indecomposable representation
and the field strength F! is indeed an Ej; tensor in 7_;. Even though the additional field ¢ u
in R(A1) ® R(A1o) is not required by Ej; covariance, we shall see that both x3;/% and Curt
are necessary to write down a twisted selfduality equation (3.9) covariant under generalised
diffeomorphisms. In the current paper we assume implicitly that we can consistently truncate
to this known part of 7_5 but in principle an extension to additional modules in 7_o can be
envisaged as indicated by the ellipsis, which will be dropped for short in the following.%

We now describe in more detail why (3.12) defines an Fj; covariant object due to the inde-
composable structure of the module 7_5. Under rigid Eq; transformations one has as in (2.4)

In® = g Vg% N7, (3.13a)
xu® = g_lNM(gdBXNB +wi(9)In") (3.13b)

Recalling (2.9), it follows that
C™M LI + C™axn® = g" s (CTM T + CTM axn®) (3.14)

transforms covariantly. The cocycle appearing in the indecomposable representation is crucial in
this calculation. The infinitesimal transformations under g = exp(A,t®) corresponding to (3.13)
are

Ay (=10 = TN pdn®) (3.15a)
oaxar® = Ay (T7%5x0r” — TV arn®) + A K 1% 00 (3.15b)

3.4 Gauge invariance of the non-linear field equations

Having introduced an Ej; covariant tensor field strength F, the next step is to compute how it
transforms under Fj; generalised diffeomorphism. The gauge parameter éM of the generalised
Lie derivative transforms also in R(A;) just as the coordinates z*. Note that additional gauge
transformations with constrained gauge parameters are required for the closure of the algebra
of generalised Lie derivatives for ¢, with n > 8 [4,60,61,66]. We shall not check the closure
of the algebra of generalised Lie derivatives for e, but we will comment on these additional
transformations in Section 3.6.

The dynamical degrees of freedom of the theory appear through the representative M. There-
fore we start by defining the generalised Lie derivative with parameter ¢ acting on M. The
formula, as for all exceptional field theories, can be defined as (see e.g. [34])

SeM = EMOM + kg TM NOnEN (Mtﬁ + tﬁTM> . (3.16)

This formula reproduces the unique linearised gauge transformation studied in [37,43| in the
linearised approximation and provides a non-linear extension of it.

5The field ¢ MA associated with R(A10) was not considered in the linearised analysis in [43]. Including it here
has the benefit of making the first order duality equation gauge invariant while [43] only had gauge invariant
second order equations.
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Combining the definition of Jp,“ in (3.11) and the transformation (3.16) it follows that

SeJu® = ENON T ® — TPN pone” fa, " Y, + 0N In™
+ TN p (00 ONET + MnoMP ROy 0REC) | (3.17)

where the third term in the first line originates from the derivative in the current acting on the
generalised diffeomorphism parameter in the variation of M. Using the section constraint (3.4)
on this term, one can recognise the first line as the expected generalised Lie derivative, including
the transport term, an infinitesimal ¢1; transformation plus a weight term, i.e. introducing the
notation T,y = /{OCBTBMN

1
e = ENONTn® + T3 pone” f7% I + Tt QopeQT N ™ + §5N§NJMO‘
+ TN p (00 ONE" + MygMPE0ORED) . (3.18)

The inhomogeneous terms in the second line are non-covariant variations that resemble the
linearised gauge transformation of the linearised current. At this level the variation of the
current is identical in structure to the one one would obtain for any E,, exceptional field theory.

In order to obtain a consistent transformation of the field strength F!, it is necessary that
all the components in 7_5 transform according to the indecomposable representation of 1. To
this end, it is useful to introduce the notation Jy;& = (Jar®, xar®, Car, .. .) that includes the
additional constrained fields in a single object transforming as an element Jy;%; of 7_o. In this
way one can define the following ansatz for the gauge transformation of Jy;® that is manifestly
consistent with the indecomposable representation

~ ~ ~ ~ ~ 1 ~
eI = ENON T + T pone” 1705007 + Ts" Qop€QT N ppdn® + §3N5NJM°‘
+ TaNp (aMang + MNQMPRaMﬁRﬁQ) + HaQPMNQaMaN£P . (3'19)

This formula extends (3.18) to all components & with structure coefficients invariant under Ej;
for the indecomposable module, and we have added one extra term at the very end of the equation
with the understanding that I1%gp = 0, while H&Q p and HAQ p are the highest weight projectors
from R(A1)®R(A1) to R(A2) and R(A1p), respectively. These exist due to (2.1). We again restrict
only to R(Ag) and R(A1); additional F1; representations in 7_s could be accommodated in the
same way, as long as they would appear in the tensor product R(A1) ® R(A1).

Assuming the uniform gauge transformation (3.19) we can read off the gauge transformations
of the constrained fields to be

6§XM& — fNaNXMd o aNpaNSPTa&BXMB + 8M§NXNd + TaNPaNSPKoc&ﬁJMB

+ T p (O ONE" + MygMPEONORER) + T p MO 0nET (3.20a)
SeCu™ = ENONCu™ — TN pONEP T 2™ + O™ (vt
+ T p (0mONET + MMy 0R€9) + T gp MV Q00N ET (3.20b)

17



As explained above, this form is by construction in agreement with the indecomposable structure
of the module: The gauge transformation of y ;% must include the same gauge transformation
as Jy® with the index @& instead, so that the gauge transformation of J3;® is written in terms
of invariant tensors. The indecomposable structure is such that one has the freedom to add any
transformation of y /% in the R(A2) module, which gives the freedom to add the term involving
the projector HdQ p. It will turn out that this additional transformation is indeed necessary for
the duality equations to be gauge invariant under generalised diffeomorphisms.

Equipped with the formulas above, we can now compute the variation of the non-linear field
strength (3.12) under gauge transformations and find

6 Fl = Moy FT — TN yon €M1 j 77 + %aMgM F!
yolM, (TaNp (OrONER + MuoMPROY0RER) + HanMNQ8M8N£P>
= Moy FT — TN proneMTel 77+ %aMgMFf
i ((CIMaTaRQ I CIMdT&RQ n CIMATARQ)MQNMRP

+ C'IMaHdQPMQN + CJMAHAQPMQN> OnonEL . (3.21)

Here, we have recombined the terms into the generalised Lie derivative of F in the first lines of
the two equations. The transport term and the ey transformation term recombine by invariance
of the structure coefficients C'™ 5. The last term of the first lines determines the weight of F.
The inhomogeneous terms that do not involve conjugation, CTM ;TN 9,05 ¢F | combine into
the section constraint by the Jacobi identity and have been removed when going to the second
step. The remaining inhomogeneous terms at the end show that the field strength F is thus not
gauge covariant.

The non-covariance of F! is not a problem since we are only interested in constructing a
gauge invariant dynamics. More specifically, we only demand that the duality equation

El=Fl - MEQu,F =0 (3.22)

transforms into itself under generalised diffeomorphism.
Performing its gauge transformation, we find

1
6T = aNenEl — TN oM T ;67 + §aM§M51 + (65 = M Qe y) Opong” (3.23)
X (CJM&HdeMQN + CJMAHAQPMQN — MJLQLK/CKIMQT(S‘RQMQNMRP> ,

where we used (M)? = 1. Because one derivative comes contracted with MMN9y and the
other derivative does not, one cannot use the section constraint to cancel the inhomogeneous
term. For gauge covariance of the duality equation we must therefore require that

CIM Mo p MY 4+ CTM T o p MON — MIEQ L CEM TR MON Mpp =0 (3.24)
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By construction, the conjugation by M in various representations allows us to define various
7

conjugate invariant tensors
"N = MMPMNQMdBHﬁPQ = nMPﬁNQU&BHﬁPQ )
MY = MMP MVC Mp=TT=pg = nM PN Onp=TT=pg | (3.25)

and similarly for Cf e assuming the existence of the matrix 7y defining a symmetric K (F1;)
non-degenerate bilinear form on 7_;. Multiplying (3.24) by Mg to remove the explicit scalar
matrix dependence and using (3.25), one obtains the following necessary and sufficient algebraic
condition for gauge invariance in terms of E7; structure constants:

C[dedMN + CIPAHAMN ; Q[JCJMdeNp . (3.26)

If this condition is satisfied, the first order duality equation (3.22) is gauge invariant. We do not
have a general proof of this central condition. In the next sections, we will verify condition (3.26)
in the GL(11) and the GL(3) x Eg level decompositions at low levels. This will provide non-trivial
support that this condition is satisfied.

Let us now try to give some heuristic argument why (3.26) is plausible. Taking the sym-
metric part in M and N of the equation, the right-hand-side becomes the Jacobi identity
2[PM {PN) Pp}] = [{PM, PN}, Pp|in the tensor hierarchy algebra. Therefore the symmetrized
condition reduces to

[PA, Py] = —2017Cyphty (3.27)

That the coefficient C;p® occurring through the condition (3.26) is the same as this correspond-
ing structure coefficient in the tensor hierarchy algebra is not guaranteed a priori. But since both
are F1 invariant tensors, they must be proportional to each other such that up to a conventional
factor this identity must be true. Since we do not assume that the modules in 7 (e;;) must nec-
essarily be irreducible, meaning that R(As2) would be extended to the complete anti-symmetric
tensor product and R(A1g) to the complete symmetric product minus the highest weight module
R(2A1), the identity (3.26) requires that one can choose the coefficients defining 115" and
oMM such that the identity holds, which is simply the statement that there is no component
in R(2A1) by the Jacobi identity in the tensor hierarchy algebra.

3.5 Gauge transformation of the vielbein and compensators

In the discussion above, we have relied on the ‘generalised metric’ element M defined in (3.10)
from the ‘generalised vielbein’ V € Ey1/K(E11). These objects have to be treated with care since
the Lie algebra eq; is infinite-dimensional and one first has to define what group one associates
with it. A standard building block is to consider the one-parameter subgroups of the form et

(t € R) for generators E,, associated to real roots. The group built from taking finite products of

"We note that n is not E1: invariant, only K(FE11) invariant. The construction above is similar to tensor
representations of sl(n): even though d,p is not an invariant tensor of sl(n) but only of so(n), it can be used to
relate a tensor representation to its dual. Abstractly, 7 is also an automorphism of the F7; algebra relating the
highest weight module to the lowest weight module. In particular n“‘snﬁsnw f5 = —faB,y.
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such real one-parameter subgroups generates what is called the small Kac—Moody group [57,67].
The action of this small Kac—-Moody group is completely under control for so-called integrable
representations of the algebra e1; where all real root generators are locally nilpotent, meaning
that the repeated action of F, on any element of the representation space terminates after a

finite number of repetitions. Thus etFe

is effectively represented by a polynomial and multiplying
finitely many polynomials gives a well-defined polynomial again without having to worry about
convergence or similar matters. All highest and lowest weight representations of e¢1; are integrable
and so is the adjoint representation [55], and so 7_; although it is neither highest nor lowest
weight. One can also associate the matrices M and M~! with the small Kac-Moody group in
the so-called ‘group model’ (generalising the Cartan embedding) of the Kac-Moody symmetric
space [68]. However, the current J = M~'dM is not evidently meaningful since the continuous
map from the small Kac-Moody group to the algebra and back cannot be defined.

An alternative model of the symmetric space can be obtained by using the Iwasawa de-
composition, leading to what is sometimes called the ‘Kostant model’. Elements of the (small)
Kac-Moody group have an Iwasawa decomposition F1; = K (E11)B, where B is the (upper) Borel
subgroup [65]. This setting also allows for considering the so-called completed Kac—Moody group
where one completes the Borel subgroup with respect to the topology of an associated build-
ing [58,67]. A representative of the thus completed Kac-Moody symmetric space® E11/K(E11)
can then be chosen in standard form by products of exponentials of all generators of B [67], in-
cluding the positive imaginary ones. In this construction, it is only the positive Borel subgroup
that is completed; the group K (F71) is not changed.

Generalising this approach slightly, we can also consider a parabolic gauge with

Y =U, (3.28)

where v belongs to a finite-dimensional Levi subgroup of Eq; (such as GL(11)) and U belongs
to the unipotent subgroup associated with this parabolic subalgebra of e1;. U lies in a unipotent
subgroup of the Borel subgroup B. If the parabolic subalgebra is associated with a level ¢,
the generators appearing in U correspond to level £ > 0 while the generators appearing in v
correspond to ¢ = 0. Explicitly, we can write

U=]]exp(Ac-Ep) , (3.29)
£>0

in the completed group and the factors are ordered with smaller levels appearing to the left.
Here, Ey denotes all (finitely many) generators on level ¢ > 0 and Ay are the coefficient of a
general Lie algebra element on that level. The A, correspond to the fields and depend on the
extended space-time coordinates 2.

With a parabolic parametrisation (3.28) of V one can work out the Maurer—Cartan derivative

dVV~! € ¢1; in a meaningful manner since every generator F, is multiplied by a polynomial in

8We do not distinguish the completed Kac-Moody group from the uncompleted one in terms of notation since
we shall always be using the completed group implicitly.
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Ay, and dA,, for 1 < m < £ (and dressed by the Levi vielbein v).” Writing dVV™1 = P — Q
in the usual symmetric space decomposition, the current 7 in this Kostant model becomes
J = 2V7'PVY and is defined by the adjoint action of the completed Kac-Moody group on the
Lie algebra. Formally, this results again in infinite series expressions for the components Jy;¢.
If we are interested in only obtaining polynomial expressions in the fields, we are therefore led
to working with the components of P. In lowest/highest weight representations one can also
make sense of the matrix components of ¥V and V™!, whether this remains true in unbounded
representations like the field strength representation is not clear to us.

As is clear from the above discussion, it is typically better to consider the completed group
and write the vielbein in a gauge-fixed form using a (maximal) parabolic gauge. Examples of
such maximal parabolic gauges use the Levi groups are GL(11—n) x F,, C Ej; with an associated
level decomposition.!’ Since we have fixed a gauge the action of a generalised diffeomorphism
on the vielbein V will be accompanied by a compensating K (E1;) rotation that ensures that the
gauge is maintained:

5eV = ENONY + KapTM o NV + XV, (3.30)

where the compensating transformation X is an element of the Lie algebra of K (F1;) that acts
on V in the chosen representation. The same mechanism has been discussed also in [37,43].
The compensator X can be written more explicitly in a level decomposition associated with
a maximal parabolic subgroup. Since the original V is made out of generators at levels £ > 0 by
definition of the maximal parabolic gauge, only those ¢? that are associated with negative levels
violate the gauge in the middle rotation term. By the Killing form they are paired with positive

TM  contracting the rotation parameter 9y, where it is important that the

level generators
derivative Oy is subject to the section constraint (3.4).
Associated with a parabolic decomposition (3.28) is also a decomposition of the representation

R(Aq) of the derivatives dps. In the case GL(11 —n) x E,,, the derivatives decompose into
Om — (Op, 04, .. .). (3.31)

The index A here labels the coordinate representation of FE, exceptional field theory. We can
choose a partial solution to the F4; section condition by keeping only these two lowest levels
of derivatives, i.e.setting to zero the ellipses in this decomposition. This solution to the section
condition is only partial as the derivatives d4 still have to satisfy the E, section condition. In
connection to usual exceptional field theory the 0, are called external derivatives and the 04
internal derivatives.

In such a partial solution to the section constraint there is only one generator that can arise
in (3.30) and that needs to be compensated. It is the one mapping 0, to 04. All other positive

9We note, however, that if one wanted to use this parametrisation to define a metric on the symmetric space
from the invariant bilinear form on ¢11, every dA, would be multiplied by a infinite series of other fields and the
convergence of this expression is doubtful and would at least required a completion of the Lie algebra as well.

“Note that only GL(11 — n) x E, C E11, with GL(11 — n) the linear group with positive determinant, so
we always understand that GL(11 — n,R) is the connected component of the linear group, and does not include
negative determinant elements.
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level generators map to zero on this choice of section. The corresponding compensator then can
be written explicitly as

X = Vatel o (B — nap6*PFp) (3.32)

where V44 is the E,,/K(E,) coset representative and e, the GL(11 —n) vielbein; together they
form the ¢ = 0 part v in (3.28). The generators EaA and F g are the first level generators that
are conjugates of each other. B

In particular, we see that formula (3.30) provides a completely well-defined expression for
the generalised diffeomorphism action on the vielbein V. The compensating transformation will
also be crucial when we consider fermions starting from Section 6.

A final comment on the relation between the vielbein and metric formalism here concerns
the issue of connection. It is well-known that in exceptional field theory it is not possible to fix
the affine or spin connection completely by the requirement of metric compatibility and torsion-
freeness [13,69-73], even though this arbitrariness drops out in the supergravity equations derived
in generalised geometry [69,70]. The definition of a (spin-)connection for E11, as would be needed
in the formulation [37] is a complicated open problem that we shall not address in this paper.
The formulation we are using here avoids the problem of defining a (spin-)connection as we have
defined the generalised Lie derivative acting on all objects in the theory.

3.6 Comments on the extended dynamics and linearised field equations

Under the assumption (3.26), the duality equation (3.22) is non-linear and invariant under gen-
eralised diffeomorphisms. However, it is not sufficient to describe the whole dynamics. In the
following sections where we consider specific solutions to the section constraint, we shall see in
detail that most of the duality equation components only fix the constrained fields ya/%, Car
etc. in terms of the current Jy;, and do not give any dynamical equation. The additional
constrained fields ya;%, (3" indeed appear algebraically in the duality equation (3.22), so for a
given solution to the section constraint, one can simply solve a large part of the duality equa-
tions in components by expressing the non-vanishing xu/%, i as functions of the current.
We shall see that among the infinitely many components of the duality equations, only a finite
number remains non-trivial and gives rise to dynamical constraints on the fields parametrizing
the Eq1/K(F1) coset. In particular, for a decomposition of the type GL(11 —n) x E,, C Eq,
it seems that the only remaining dynamical duality equations are the ones involving GL(11 —n)
p-forms, while the dual graviton equation and the higher rank mixed symmetry equivalents in-
volve the constrained fields in a way that trivialises the dynamics. This should not be so much
a surprise since the necessity to introduce extra auxiliary fields trivialising the dynamics seems
unavoidable in defining dual gravity at the non-linear level [74]. The non-vanishing constrained
fields with the M index along GL(11 — n) seem then to play the role of the Stiickelberg fields
introduced in [74], and their generalisation to all duality equations.

What is lacking in order to recover the full dynamics of the theory, are additional first
order equations for the constrained fields x3;% and (™. To re-obtain the dynamics of [43] in
the linearised approximation, we expect that all the constrained fields are enforced to be total
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derivatives by a curl-free condition

Ixm™ =0 = Yt = o XY, (3.33a)
8[MCN]A =0 = CMA = 8MYA , (3.33b)

where the solutions are defined up to gauge transformations of the type (3.40). The fields X
are the fields belonging to 7_, that appeared in the linearised analysis of [43]. The field Y did
not appear there but this did not effect the conclusion that while the duality equations are no
longer gauge invariant, the second order integrability equations that are derived from them are
indeed gauge invariant on section.

Considering the non-linear system proposed here and parametrizing formally the fundamental
M = exp(¢), where ¢, TM N = pon™nnpTF o due to MT = M, one obtains with (3.33) the
linearised field strength

FI=C™ 0y¢® + C™ 300 X% + CT™M \ 00 YA + O(¢?) = C™ L000% + O(6%) ,  (3.34)
with the linearised gauge transformations
5e¢™ = TN p (OnE” + nngn"RORgQ) + % opn™oNer (3.35)
with II* pg = 0. The linearised duality equation
FI -5 Qu F7 =0 (3.36)

is gauge invariant under these linearised gauge transformations. This agrees with the proposal
of [43], up to the presence of the additional field YA that does not affect the analysis of the
linearised duality equation in [43] at the level it was considered, and up to the additional term
in the linearised gauge transformation

5 X =T p (OnE” + nvgn"ToRe?) + W opn"@one” (3.37)

which permits to make the duality equation gauge invariant.

Thus, the question at hand is how to find the full field equation for the constrained fields x*
and ¢* such that upon linearisation it yields (3.33). To this end, we shall offer some speculations
on how these equations could be obtained. Analogy with exceptional field theories for finite
dimensional exceptional group F,, suggests that there should be a pseudo-Lagrangian £ invariant
under generalised diffeormorphisms (up to a total derivative) whose equations of motion are
obtained by the variation

0L = (Eut® MOIM™Y) + EMoxp® + EMoCu™ +om(...) (3.38)

with (t¢, 8 ) = k. The general structure of exceptional field theory shows that the equations
of motion of the constrained fields gives the first-order duality equations of the supergravity
fields [3,4]. Assuming the same structure and invariance of the pseudo-Lagrangian under Ejq,
one concludes that the equations of motion are of the schematic form

Eoa=C™M 00 (MpE )+ &y EM =C™M M7, EM =C™M M E7. (3.39)
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The (second order) equation &, for the adjoint scalars does not only involve the integrability of
the duality equation &' of (3.22) but also an additional piece &, in the adjoint representation of
Eq1. Tt is this piece that should imply the first order equations for the constrained fields ys*
and (/" if the duality equations are satisfied. Equations (3.33) should follow from &, in the
linearised approximation. However, without this peudo-Lagrangian at hand, we cannot currently
propose the general form of ga.

As mentioned above, we also know that the algebra of generalised diffeomorphism of param-
eter ¢M will not close and that one must introduce additional gauge transformations to obtain
a closed algebra of gauge transformations. The Lagrangian must also be gauge invariant un-
der these transformations. These transformations will at least include the additional parameter
YV in R(Ay)® R(A3), with a tracelessness condition ¥3,M% = 0.'! The gauge transformation
of the first constrained scalar under this parameter is

5XMd = ONEMN‘S‘ —+ ... (3.40)

Turning to (3.33), we note that while the Bianchi identity for the non-linear field strength
contains the curl of x3% and (3, it does not provide the desired non-linear field equation for

these fields. The T (e11) algebra Jacobi identity 2{ P [PN) t4]} = [{PM, PN}, t4] implies
QryC™MCN 500 AN B = 0 (3.41)
on section. Using this we can find the Bianchi identity
Qs o0 FT = Qs €M (CTY g I + O™ gonn” + C7V aour ™) (3.42)
— Q0™ (CJNﬁa[MJN]f3 + N 0w + CJNAa[MgN}A)
= Qp;0™, (—%C'JNﬁfmsBJMUN‘S + CJNga[MXN]B + CJNAa[MCN}A) :

In the first step one uses the definition of the field strength and the section constraint, and in the
second the Maurer—Cartan equation for the current. The corresponding integrability condition
on the duality equation (3.22) relates then the second-order supergravity fields equations to the
curl of the constrained fields, but it does not determine them. A similar situation arises already
in I, exceptional field theory in which the equations for the constrained fields follow from the
Lagrangian, but cannot be obtained from the duality equations of the supergravity fields by £,
symmetry. This is discussed for instance for F7 in [3, Eq. (3.17)].

4 (GL(11) decomposition

In this section, we analyse the proposed duality equation (3.22) in a GL(11) level decomposition
of the tensor hierarchy algebra at low levels. We begin with an analysis of the tensor hierarchy
algebra decomposition under gl(11) to derive the transformations of the fields under E;; and the

11t is conceivable that there are more constrained parameters. We note that for the case of I, with n <9 a
single new parameter suffices [61].
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_ _2 Y Y
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p=-3 Py P? P> pTlps

Table 2: Part of the tensor hierarchy algebra T in gl(11) level decomposition. p denotes the
general Zi-grading of the tensor hierarchy algebra and the additional grading q is related to the
gl(11) level £ by £ = q — %p. The usefulness of q is that the involution of T acts on (p,q) by
sending it to (=2 — p,—3 — q) and can be represented in this table by a point reflection about
the place marked with a cross. The involution includes mapping gl(11) representations to their
duals and for p < 0 we have explicitly dualised all representations. For p = 0 we have explicitly
separated To into e11 and the additional generators from the tensor hierarchy algebra extension.
The additional generators are given in the second line. Since T_o = 7Ty, we have performed
the same line split for p = —2. The fields appear at p = —2 and we see explicitly the first
additional generator E° at (—2,0) that is related to the first extra field Xy, . ny. For (=2,1) there
are several extra fields arising, with degeneracies in their gl(11) tensor structure. The general
notation for gl(11) tensors here is such that comma separated indices indicate Young-irreducible
blocks of antisymmetric indices. If a tensor has both upper and lower indices, it has by definition

non-vanishing traces and is thus reducible.

expression of the field strength and the gauge transformations. Then we study the non-linear
duality equation and its gauge invariance. We shall concentrate in particular on the crucial
condition (3.26) in GL(11) level decomposition.

4.1 The field strength representation and rigid F; transformations

The tensor hierarchy algebra decomposes under GL(11) as indicated in Table 2. Besides the
general Z-grading T = Zp Tp, the subalgebra gl(11) C ey introduces another Z-grading that is
denoted ¢ in the table. The adjoint of e1; at level p = 0 contains the gl(11) generators K™, at
level ¢ = 0 and eq; is generated by commutators of the elements

1 1
fn1n2n3Fn1n2n3 + gerungn:;Enanng , (41)

3!
where E"1"2"3 and F}, p,n, are the generators of ey sitting at ¢ = 1 and ¢ = —1, respectively,
while €y,,n,n, and f"1"2"3 are the corresponding constant parameters. The transformations of
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the tensor fields under rigid F7q is determined by their transformations under these generators,
and so we shall only display these transformations. The level ¢ that is determined by the action
of the trace K™, that counts the number of upper minus the number of lower indices. The
relation between ¢ and (p,q) is ¢ = ¢ + %p.

In order to display the field strength representation at level p = —1, we introduce components
F! dual to the generators ¢; that decompose under GL(11) as indicated in Table 2, e.g., for
K7 = K™=m at (p,q) = (—1,—1) we introduce at field strength F},, ... etc. The tensor
hierarchy algebra fixes these components to transform under the rigid Ej; generator (4.1) as

follows [43, Eq. (4.37)]:

s = Lty ) L, () (4.22)
SF, mnans — _3fp[n1n2Fmpn3} + zfmm[nl o2 Fp1p2”3] _ éempnganansplmpS
— empgFM P 4 gémlemqu”?”S}plm’q , (4.2b)
S Fins™ = €pipaim Fra] 7172 — %emmgag;l Fp P23 ey P
_ %fmmpzpmmplpz _ %fmmm(s% Frslpipeps > (4.2¢)
8 Finangng = —6€pimins Fagna)? — % FPPSE e apipaps 5 (4.2d)
5Py = ~35¢{usnans Fag ) — 5777 (Fo i — Fov-onspuoans) (4.20)
OF 0. ngm = _42 5X ’ (e[n1n2n3Fn4mn9}m + em[”lansmns)]) - 1_8fp1p2p3Fp1<n1~~~n97m>p2p3 J
(4.2f)
0F . o = 4e(ninanstng..mio] + 1—18fp“”2p31:’p1 [n1...n9,m]p2ps - (4.2g)

Here, we have added the (9, 3)-form terms in (4.2f) and (4.2g) compare to [43].
This is the transformation of the field strength in (3.12) that we recall is composed out of the
current .Jy;* and the constrained fields ;% and (3 that transform respectively as components

of R(A1) ® R(A2), embedded in the indecomposable representation, and R(A;) ® R(A1p). This
fixes their rigid Fq; transformation that, for the first components in the GL(11) decomposition,
takes the form

_ 1 rpipaps
o —2f

— p1p2
5Xm;n1--.n9 - 2emp1p2X ni...n Xm;n1--.ngp17pzp3

+ PP N ming  nopipaps e e s (4.3a)
5qun1~~~n10,7‘8 = qutxt;mmnlo,?s + 667“8[711 qunz-..mo} - 9€T’[n1n2 qum---nlo]s
+ ges[nan qung...nlo]r + A (43b)
5qun1...n11,m = quTXr;n1...n11,m + 1lem[n1n2qun3...n11] +..., (43C)
OCP o paps = 10f[p1p2p3Cp4p5]n1...n7p1---p4,ps +e (4.3d)
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where we have not displayed the terms involving the Fq; current, that would appear because of
the indecomposable representation. The transformations (4.3) will be sufficient for the checks
we shall perform. The transformations above can be deduced by combining (A.4) with the rigid
E4; transformation of the derivative index that follows from Jj in [43]

1
80y, = §emp1p28p1p2 ,
60™M™ = f"mzpap + leplpzpaamnzmpng
6 )
5an1n2n3n4n5 — 10f[n1n2n36”4”5] 4. (4.4)

We shall next derive an explicit form of the non-linear field strength by choosing an ex-
plicit parametrisation of the Fy;/K(FE1;) fields appearing in the current Jy/®. The matrix M
appearing in the definition (3.11) is formal and involved intricate infinite sums. To write a
meaningful equation in the parabolic decomposition one must resort to the coset representative
V of E11/K(F11) in a maximal parabolic gauge. Such a maximal parabolic gauge decomposes
V into the Levi factor v € GL(11)/SO(1,10) and the unipotent component ¢ in the unipotent
subgroup of positive GL(11) levels as (cf. (3.28))

V=vlU. (4.5)
We take the unipotent element concretely of the form
U =exp (%AmmnaE”l”W:”) exp (éAmmnGE”l“‘"ﬁ) exp (éhmn_n&mE”l'“”S’m) cee (4.6)
With the GL(11) metric
m = vinv = j=mtdm, (4.7)
one has M = VinY = UTmU and
Iu = Moy M =U (G + O U™ + mH (OntU U= Tm)U (4.8)

Although Jj; is a formal expression in this representation involving infinite sums, it is conjugate
under the unipotent element U to

Ivr = UTU ™" = jar + O U™ +m~HopU U™ Tm (4.9)

that does admit a well-defined expansion in fields. It satisfies j M = m_lj ]L,m We shall refer
to such a Jas as a ‘semi-flattened’ current as the conjugation by U makes all indices associated
with positive levels flat while keeping curved indices on level 0. We can therefore still use the
metric formalism associated with the Levi subgroup and its ‘metric’ m. We similarly define a
semi-flattened version of the constrained fields according to

XM& :Z/[_1&B>2MB +wg(u_1)jMB 5 (MA :U_lAEQ:ME ) (410)
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where we see again the indecomposable structure of the representation structure in 7. The
associated semi-flattened field strength is then F1 = U’ ;F7 with

FI _ CJMau]\_JleNa + CIM&“]\}INXN& + CJMAUJ\_JINCNNA . (4.11)

Written in terms of F7, the first order non-linear duality equation (3.22) only involves the matrix
m rather than M,

FI = mI&Qu 17 . (4.12)

The purpose of this construction is that m acts diagonally in the level decomposition and just
expresses the raising/lowering of the indices by the metric g, with a multiplication by the
density term \/— det gmn. Moreover, the current J written in this way is a well-defined finite
expression in the fields of the theory, level by level, whereas the current J itself would involve
formal entangled infinite sums.

Writing out the non-linear field strengths (4.11) in the parametrisation (4.6) one finds when
restricting to the D = 11 solution of the section constraint

nlnzm = 2gmp8[nlgn2}p7 (413&)
Fn1-..n4 = 48[711 An2n3n4] s (4.13b)
Frymg = 78[”1 A”2n3n7] + 70A[n1n2n38n4An5n6n7] > (4'13C)
= ~ 280
Fnl...ng,m - Fnl...ngm - 98[n1 hn2n3n9]7m + TAm[nlngAn3n4n5an5An7nsng} (4~13d)
56 -
+ ? (A[n1n2n38”4An5...n9}m + Am[nmzansAm...ng}) + Xmini..ng -

The restriction to the D = 11 solution of the section constraint means that we are here only
retaining the derivatives d,,. Note that choosing a solution to the section condition breaks the
global F1; symmetry to a (finite-dimensional) subgroup.

The non-linear duality equations (3.22) take the following form

~ 1

Frona = _7'7\/—_96"1~-~n4ml~~~Tflj71":‘m1mm7 ) (4.14a)
~ 1 ~ 1 -
B+ 300, B = Gt s g (10D
. 1 .
= mgnqeqplmprplmplo : (4.14c)

Equation (4.14b) is tracefree while (4.14c) is the pure trace part. We see that (4.14a) represents
the standard type of duality of the four-form field strength and the seven-form field strength in
D = 11 supergravity and, moreover, Fy and Fr are free of the extra constrained field y,,*. We
stress that the equations (4.14) do not depend on the explicit parametrisation of U.

Unlike (4.14a), equations (4.14b) and (4.14c) do contain the field y,,% algebraically and can
be seen as just determining it in terms of the values of the other fields. Put differently, (4.14b)
and (4.14c) are not strong enough to determine the dynamics of the graviton and the dual graviton
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unless one has further extra equations that determine y,,%. This is exactly the phenomenon
discussed in Section 3.6 where these extra equations were called E,. In the absence of these
additional equations, the self-duality equation — though consistent and gauge invariant — is
not sufficient to fully determine the non-linear dynamics. The equation of motion of X..n,...ng
in particular should reproduce the same mechanism as depicted in [74] for the Stiickelberg field

to restore Einstein equation.

4.2 Gauge invariance

We now discuss in more detail the non-linear gauge invariance of the duality equation (3.22) in
the GL(11) decomposition. For doing this, we begin with the linearised analysis.
The non-linear field strengths defined in (4.13) linearise to

(?)F(Tllhlj)w — g4(m hqnz) + i'ampzmmpsps(mmz)AppopSmpE)pﬁ +..., (4.15a)
(?)Fmﬁ}ffm = — 9 Amn2ns y 3glmnzp sl | %an1n2n3p1p2Amp1p2
+ 41, QRPN A popspag — é8nm2n3p1p2p3p4p5Amp1p2p3p4ps
+ _5121 (3”2\qhqm} _ %3”27&3}P1P2P3Ap1p2p3 _ ziyanzndpl PRAL,
n 618"2"3}P1~~p6Ap1___p6) T (4.15b)
GIEI™ = 20, hg)™ + 0™ Apynagp + 5[71161’1?214”2},,11,2 +o, (4.15¢)
DB 1 = iy Appymgme) ~ %aAmm -
T 3 S (4.154)
DFG) e = Ty Ay i) 0" oy oy — 50" Xy moing
— 1—128"1“‘"5Xm1___m7mn2n37n4n5 - 2143"1 " Xy mrna . nams
- ia""YmmnM T (4.15¢)
%FT(LII‘“ )ngm = 99, Prny...mglm + OmXny..ng — OmXn,..ng] + %aplpzAm...ng,mmpz
9
10 (aqupm...ng,mq + aqupm[m---nsmg}q)
_7 (aqupqmmng,m + " X pgminy..ng mo))
20 (a Yoaqni..nom + Y pgming . nsmo]) -+ (4.15f)
BFG) = Oy Xong. o] — Bapqul___qu - %apqul,,,mmp,q

7
- %8pqym1---m1op7q teo
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®Fdin) = 100, A

mi...Mmio,n1N2N3

(4.15g)

m2...M10},n1N2N3 +..

For later reference, we have explicitly given the gl(11) levels for the various components of the
field strengths, but we shall often suppress them for simplicity of notation when there is no risk of
confusion. In the expressions above we also have implemented several things. First, we removed
the tildes on F since the semi-flattening has no effect in the linearised approximation. Moreover,
we have reinstated the terms with partial derivatives beyond 9,,, thus not enforcing the D = 11
solution to the section constraint as this would break K (F7;) covariance and gauge invariance.
And finally, the extra constrained fields at linearised order are expressed as

XM& = 8MX& and CMA = E?MYA, (4.16)

where we have also used explicitly that the first few extra fields are the additional potentials
X1 niorss Xnyoomy,r and Yy 0, coming from gl(11) level £ = 4 in 7_5 with X% in m and
YA in R(Ayg), see Table 2. The additional potentials X1 niorss Xngoom,r and Yy, o, are
dual to generators for (p,q) = (—2,1) in that table, where ¢ = ¢ + %p in relation to the gl(11)

level ¢.

We will now write the decomposition of the gauge transformation (3.19). under gl(11). For
many of the fields this was already carried out in [43], but not for the crucial inhomogeneous
terms involving the invariant tensor HaQ p in the gauge transformation of the constrained fields
in (3.20a) and (3.20b). Here we concentrate on the central condition (3.26), which would imply
the gauge invariance of the duality equations. An important observation is that, as the condi-
tion (3.26) is a condition on invariant tensors, it suffices to verify it at linear order in order to
deduce gauge invariance of the non-linear duality equation.

One obtains for the first level fields in the GL(11) decomposition that the gauge transforma-
tions (3.19) give in the linearised approximation

1 1
Ochn™ = (On€™ = 0" Ay + G072 Ny o) + 06 — DupA™ + L0 Opg N

(4.17a)
e Anynans = (301, Apang) + %apm)\nmngmz) +30m1n96ng) T s (4.17b)
O¢ Anyng = (600, Ang-ong] = 02801 ngprpe + PP Ay ongprps) + 70 (4.17¢)
Oehny-ngm = (80[n, Engeomg)m + 24000, Ang-omg,my ) + -7+ (4.17d)
SeXMiny..mo = 2400101, Any-oong] — Eni.nopgOnrOPEL + ..., (4.17¢)

SeX My omigning = Emy.migpOM (07 Aning + 500, 0 Nnslg — Onyna€? — 567, Ontg€?) + -
(4.17f)
OeXM;my..myyn = %sml...mH@M(a”Anp —Onp€P) + ..., (4.17g)
0¢CM;my ..y n = —%sml,,,mné)M(apAnp + 0npP) + ... (4.17h)

30



The terms corresponding to the non-trivial tensors H&Q p are the terms containing €11 in the
gauge variations (4.17¢), (4.17f), (4.17g) and (4.17h) of the constrained fields. The corresponding
coefficients are determined by Fy; invariance up to an overall coefficient that is fixed by the terms
n (4.17e) and (4.17h). These overall coefficients will be determined below by requiring gauge
invariance of the duality equation (4.14b) at linear order.

Using the gauge transformations above one can derive the intermediate result that the lin-
earised field strengths transform as

Se i s = 1200, Onans&na] + 200, Onananalprpe NP2 + 307720, i ol
— égmmnsnwl...p78p1p2p3p4p58p6£p7 , (4.18a)
) Fé‘l‘“ >n7 = —420),,0ny..n66ns) + %Enl...n7p1p2p3p4ap1p28p3§p4 (4.18b)
+ %Enl---nwwzmm (zapl grapepadne )\QI‘D + 30 [P1p2pspaa: 8q1q2§q2]) >
S (Flm)m 4 553;11?;'2'}" P) = 20},,0™ &) + 5}” (0y)OPEp — 0p0PEry)) (4.18c¢)
— 20), Oy p A — gé[m (O pOg APT + By, Opg APY)

m m 1 m
+0 pammgp + 20 pap[nlgnﬂ + 35[n18pq(8pqgn2] + 28“2]1054) ’

. 2
5§FT(LI;)n<)p = 0,0¢, — 0,0°¢, + ganapqw + OpOng NPT — 2010),&,) (4.18d)

1 . 1 .

Se P = —§anl,,,n9p1p255 (Fmoppz oy 355’,; Flinopa ) (4.18¢)
in 1 in.

55F7(111..A.)n10 - _Egm ------ n10p55 (F(l )pqq) : (4-18f)

This shows again that the (linearised) field strengths are not gauge invariant, however, one
checks that all the terms cancel in the duality equation (3.22), proving gauge invariance of the
self-duality equation at this level. One finds that it fixes all coefficients in the transformation
of the constrained fields consistently with Ej; covariance. For instance the term in (4.17¢) is
needed to cancel the gauge variation of the form 9;0'¢; in the dual graviton equation (4.14b) as
well as the gauge variation of the form 0102 in the 7-form duality equation (4.14a). Note that
the field Car.my...mq1,n 1s necessary here to ensure gauge invariance.

To end this section, we come back to the additional gauge transformations mentioned at the
end of Section 3.6. These additional gauge transformations are needed in order to closed the
algebra of generalised diffeomorphisms and the first such parameter is one with parameter 3,V
where the M index obeys the same section constraint as a partial derivative dy;. We do not
know the full sequence of additional gauge transformations, but demanding actual invariance of
the linearised field strengths under ¥3;V% one can derive that

— p1--
62An1n2n3 - gz nmznapl -p5
1

— __ _N\p1p2
52An1...n6 — 22 ni..nepip2 o
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q=—2 q=—1 q=20 qg=1 q=72

p=2 FAB

p=1| F!5 Gt FA pr

p=0| FiB G}, F, G, Kh, t4 | Era Erap2AB - purA
p=—1| BB GA | Fi . Gup X Py, ti | BEY BAB | povedl gt
p=—2 Gy | F§', G | Pls, thh, | Bb,, EAP | ELU2AP BE
p=-3 Gy tg | By, BAD | ppueAl g
p=—4 E§B

Table 3: Part of the tensor hierarchy algebra T decomposed under gl(3) @ es. The subalgebra at
p = 0 is the extension of e11. The components of fized p (the rows) are in e11 representations.
The cross marks the fized point of a reflection symmetry explained in the text. The notation and

structure here is similar to that of Table 2.

5Ehn1...ng;m = Em;nl...ng )

52XM§"1---”9 = _98[7112M;|n2...n9] . (419&)

These transformations will play a role when we discuss the closure of the supersymmetry algebra.

5 FEg decomposition

In this section, we consider the decomposition of the tensor hierarchy algebra 7 under the
subgroup GL(3) x Eg and study the duality equation (3.22) in this decomposition. More details
on this decomposition and the construction of the tensor hierarchy algebra in the Eg basis are
given in Appendix A.2. In Table 3, we present a part of the tensor hierarchy algebra in this
decomposition for reference in this section.

5.1 Fields, field strengths and rigid transformations

We begin with the fields parametrising Eq;/K (E11) before proceeding to the tensor hierarchy
algebra. Under GL(3) x Egiy C E11 the coset Ey1/K(F11) can be parametrized by [41,42]

(G V3 A B iy i) (5.1)

where the semi-colon in this list separates different levels given by the central GL(1) C GL(3),
see Appendix A.2. These first four fields can be identified with the supergravity fields as follows.
At level zero g, is the metric, V' € Eg/(Spin(16)/Zs3) is parametrised by the D = 3 scalar
fields. At level one A;‘ in the 248 of Ey are the vector fields dual to the scalars. At level two the
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2-form B;‘VB is symmetric in AB and belongs to the reducible representation 1@ 3875, so that a

potential 27000 component in Sym?(248) is understood to vanish. It is dual to the embedding

A
24

the supergravity tensor hierarchy [11] nor in Eg exceptional field theory and is the gradient dual

tensor constants. The symmetric tensor h?, in the 248 of Eg at level two does not appear in
to Aﬁ similar to the construction in [75] as will be discussed later. It extends to an infinite
sequence of rank n symmetric tensors in the adjoint representation at level n, that provide all
the fields related by duality to the propagating scalars. This infinite sequence is associated to
the affine subgroup Fg9 C Ej;. The two-forms Bﬁ‘VB do not carry any propagating degrees of
freedom and we note also that there is no analogue of the usual dual graviton in D = 3 since

gravity is non-propagating.

When needed we will decompose the reducible tensor B;f,/B = B;‘VB + kBB, in terms of
B;ff = PAB(;DBEVD in the 3875 and the Eg singlet B, = ﬁ/ﬁ:ABB;?VB, kap being the Killing—

Cartan metric on eg. We use the conventions of [76], in which the projector PAB . to the 3875
is

14PABCD = 5éég + 5655 + fAE(CfD)EB — %K/ABK/CD . (52)

We shall also need the fields in the first components of x4 in the R(A;) ® R(As) module
of FE1; under GL(3) x Eg

(XM;V;XM;fU;"') 5 (53)

such that the (1,1)-form xaz,, is at level 1 and the (1, 2)-form XM;;?J in the 248 is at level 2. The
first component of (3 € R(A1) ® R(A1g) only appears at level 3 and will not be considered in
this section. The linearised field X% in R(Az) are obtained by removing the derivative M index

as before.

The derivatives in R(A;) decompose as

(03 045 04 s Oy ) s (5.4)

where at level —%, Oy is the external space-time derivative, at level —%, 04 is the internal

derivative of exceptional field theory [4]. The additional derivative at level —%, 85&B = 8{’; BT
kAgO* and 8{’; are respectively in the 3875 @ 1 and the 248. The components of the section
constraints that will be relevant in this section are

TPYP apdcdp = 84,0, , kP00 =80"9, (5.5)
or equivalently
2040 + fea® P 0cOp = 204 50, . (5.6)

The derivatives (5.4) transform under the generator (A.3) of e; as

80, = €104, (5.7a)
004 = fh0u + e g + fap“e, O, (5.7b)
804 = 14P“P 4 fE0D + jraps®” fE0D (5.7¢)
604 = S B9 A fhoc . (5.7d)
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The field strengths in the representation 7_1 decompose in components that transform as

5Fua = e Fap+ el fap Fut — fag“ fEF L + faFuy, (5.8a)
0Fu" = —2ei,Fy)% + 2e,67, Fyily — faF, — 2f467,Fy), (5.8b)
0F), = —e5Fu” +2 fABce[C;F,,] s+ f2(..), (5.8¢)
0F,, = o Fua+ f3(...), (5.8d)
0Fap = (14P°P ap + $raBr“P) fAFp + €5 (.. ), (5.8¢)
SF,") = f3Fus” + PO u(fhFuc — 30013 Fsc) + €5 (...) , (5.8f)

where we have left out some components that are irrelevant for the discussion in this section.
The representations that appear with their levels are recorded in Table 3 in the appendix.

Explicit expressions for the field strength components can be obtained from (3.12) by following
the same procedure as in Section 4.1, but now using instead the parabolic gauge

V=olU, (5.9)
in which v € GL(3) x Eg(g), and U is in the unipotent subgroup

U = exp(ALEY) exp(k BaP By, + 2B, B + hit JERY) - (5.10)

with in particular
(B4, E%] = —ER 4 fapCESY = —BRY — kap B + fagCESY . (5.11)

One uses as in Section 4.1 the definition (4.7) with m = vinv and similarly the ‘semi-flattened’ ob-
jects (4.8), (4.10), (4.11) and (4.12). The element m corresponds to the metric g,,, of Minkowski
signature and the symmetric Fg matrix Mapg.

5.2 Linearised field strengths and gauge transformations

Unlike in Section 4, we begin with the linearised field strengths and the gauge invariance of the
duality equations to exhibit that (3.26) holds also in the Eg decomposition to the level checked.
We define the linearised theory around Minkowski space and around the origin of Fg moduli
space

G = M+, Map :5AB+5C(AfCDB)(I>D. (5.12)
The linearised field strengths are

GOFEm7 = 20),h,)7 + 0% 5 Bis? + 40° By + 205X 15, + 267, (8AAf}} + %égBB’gf +80"B,,),
G = 0P+ fa“0c AL + 04X,
+ 2 faB 06 pBLY — 04p(h), + X0) — fapC04(hE, — XD)+ ... (5.13)
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at level —1/2 and
Lp(tin) A A A A
CEGA =20, Al — 05 BT — [P 0B X, |
1) pr(iin. A A
WFY = 0,X), + 04X, — Oahly, (5.14)

at level 1/2, where the second is the analogue of the dual graviton field strength that only involves
the extra field x,., ~ 0,X, in that case. At level —3/2, one gets

GRS = (14PP ap + 15V kaB) 00®p = 204 Py + ¥ afeB"0(c®p) ,
IR = 0,A% — 0ahy” — 04p AR — fapCOp AL — 104 fPC 40500 + 6405548 . (5.15)

The linearised gauge transformations can be derived using the structure constants given
in (A.12) as

el = 0, — LF4pALT — 40" N+ 20400 + 51 (0aX + 13 A07 + 807, )
+ ue”? (ap o L39pAAB 407, + 2835;3) T (5.16a)
5e®a = (65 + RAFaEF)(—fEBCacAB — Lol NP + 2fppCopel + . ) . (5.16b)

SeAut = 9N + 0pNE — fAPCOBES + 16t (aBgV + %\ + chDa;)AC) +...,

(5.16¢)
3¢ B =20y, f}B — ZnMUnypéAcéBDangp] +..., (5.16d)
Sehit, = 200,60 + 20 POT E) + . (5.16¢)

The linearised gauge transformation of the fields in R(Az) includes similarly the three contribu-
tions from (3.37) as

0 Xy = 2048, + 20 OGN — €0 P0,E7 (5.17a)
0e X1k, = —200, 60 + 2oy POGE — €10 (PO — 64 0pe7) . (5.17b)

The terms involving the Levi-Civita € symbol correspond to the contributions from H&Q p in the
general formula (3.37). One straightforwardly checks that the linearised duality equations

gl(Llli/nA)A _ F;S,lzi/n')A - €HV0770P5ABFP(EL) =0 ’ (518&)
i i 1 in in
51(11;111/]') = inl,l;) + 577/105@)\}7;)\ "t nuanupEJpAFA(lﬁ =0 (5.18b)

are gauge invariant modulo the section constraint within this level truncation. This provides an
additional check of equation (3.26).

5.3 Non-linear field strengths

We also provide a formula for the field strengths at the non-linear level and compare with the
known FEg exceptional field theory [4]. To obtain the formula for the field strength at the non-
linear level, one needs to replace the derivative of the field in e;; by the components of the

35



semi-flattened current

Jat® = g"7dgue K", + Jat™ + dAj (B + g" MapF))

+ 55 (dBg — 14A{dAD) (B + 9" 9" Mac Mpp FE,))

+2(dByuy, + 1raBALdAL) (B* + g*7 g"" F,,)
+ (dhiy, + chAAngAS))(EZV + 9" g MapFL) + ... (5.19)
where Jy is the Egg) current
JafA8o = —MBPdMep . (5.20)
It satisfies

KAB Jg = MAB Jp . (5.21)

For simplicity we shall consider the solution to the section constraint for which only the
derivatives 0, and 04 are non-zero, and 04 satisfies the Eg section constraint [6]

PP poc@dp =0, wBo00p=0, fYPci1205=0. (5.22)
One obtains then that the only non-trivial components of the derivative Z/[A_/IIN On are
Op=U,"Mop =0, — Ajoa,  UMOy =04 . (5.23)

The formulae for the semi-flattened field strengths £ can be obtained directly from the linear
expressions by substituting these currents to the linear derivatives, with the derivative modified
according to the formula above. One obtains in this way

Flu” =297 (0, — A(p04)gu)p + 207,044

V]

Fua = Jua+ fac?0pAS + xau (5.24)
where ju 4 includes the transport term in the derivative,
Juaf*Pe = —MPP(9, — Alog)Mcp | (5.25)
and

Fyy, = 20,,A) — 2A00pA) — 0pB” + (14P*Pop + 15" Pkep) Af 0B AL — [P cxsly

Fuo = —0ah}, — 530 AL0aAS) + Rpsw — Al X aw) + Xaijh - (5.26)

The structure of these field strengths and their dependence in the constrained field x4 can
be compared to [4] with the identification X 4., = B4 and

- 1
XB;Z‘,, =Cup”+ %fAKLAﬁaBA,ﬁ + \/—_—gguagupgap)\aBAA : (5.27)
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such that the E71 duality equation gives

. 1 . .
Fﬁ = \/—_—gguogupe p/\MABFAB ) (5'28)
which coincides with [4] up to moving the last term in (5.27) to the right-hand-side such as to
reproduce the covariant current of the Eg exceptional field theory

Jut = MAPE,p + k2P (fac”0p AT + xB.y)
= kB Jup + (4P + MAP)(fpcP0pAS + xBy) (5.29)

up to the term in /{ABXBW that does not appear in (5.28). Note however that this equation in [4]
is only satisfied up to a trivial parameter since it is the equation of motion of B4 = xa;,. This
additional term can be produced by adding to the action in [4] a term in \/—_gg“”nABBHAB,,B
that vanishes on section.

The other equation at this order is the dual graviton equation

- 1 -
P EpN — ——=0uoGupe” Fax" . (5.30)

1
5 —9uc9
2\/_—gu VK \/—g

Similar to the GL(11) decomposition, this equation is not dynamical by itself and only determines

wy =

the field X, algebraically. The integrability condition for the Einstein equation [4] to be satisfied
determines the first order equation for x,., .

6 Supersymmetry transformations and algebra

In the remainder of the paper we study aspects of the supersymmetric extension of the model we
have developed in the preceding sections that is achieved through the inclusion of an unfaithful
(vector-)spinor ¥ that transform under K(E1;), the double cover of K(E1;).'2 We note that
these results do not depend on the speculative full dynamics discussed in Section 3.6. One of
the key results we establish here is that certain bilinears in ¥ take values in the anti-selfdual
subspace of the 7_1 part of the tensor hierarchy algebra and therefore terms of the form WW
can be added to the first order self-duality equation (3.22). We shall also see how to define
supersymmetry transformation rules for all the fields, including the constrained fields and how
to write down a K (E11) covariant equation of motion for the vector-spinor W.

6.1 Spinors of I?(EH)

We begin with the description of the spinors for K (E11). The existence of an unfaithful vector-
spinor W for K (E11) was deduced in [50], relying heavily on previous results for vector-spinors for
K(E1g) [47,48]. In this section we write K (Ey1) for the double cover of the maximal subgroup
of Fqp defined by the Cartan involution. Unlike Fyq, the subgroup K (FE11) is not a Kac-Moody
group and its general representation theory is unknown. However, one can demonstrate the

121t was shown recently that this double cover of the group K(En) is the universal cover [77].
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existence of an unfaithful Dirac-spinor € [46,47,50,51] and of an unfaithful vector-spinor ¥ [47,
48,50|. This is possible because K (E11) is not a reductive group, and contains ideals. Finite
dimensional unfaithful representations of K (E11) exist for which the ideal Z acting trivially on the
finite-dimensional vector space are such that K (E11)/Z is a finite-dimensional group. In the case
of the Dirac-spinor, K (E1)/Z. = SL(32). The dimension of the vector-spinor representation is
352.

The representations can be succinctly described in terms of the Spin(1,10) Lorentz subgroup
of K (E11). Under this subgroup the 32-component Dirac-spinor e is irreducible and becomes
the standard Majorana spinor in D = 11 dimensions up to a rescaling. The vector-spinor
¥ is reducible under this subgroup and decomposes into a gamma-traceless vector-spinor of
Spin(1,10) and a simple spinor that can be viewed as the gamma trace. We shall combine the
two and write the K (E);) vector-spinor ¥ as 1, when we think of it as a (reducible) Spin(1,10)
representation. Here, a = 0,...,10 is a Lorentz tangent index. The use of Spin(1,10) here
parallels the GL(11) decomposition studied in Section 4.

The K (E11) transformations of the spinors are completely determined by giving the trans-
formation under Spin(1,10) and under the combination

1
g araza (Ealam - n“lbln“262?7a3b3Fb1b2b3> € K(en). (6.1)
This combination is invariant under the involution defining K (F4;) and the occurrence of the
Minkowski metric n? is due to the signature of the involution. When we write SO(1, 10) tensors
we shall use 7 freely to raise and lower indices.

The Spin(1,10) transformations of € and v, are implicit in their index structure and the

result of [50] is that the transformations

1 2 1
571Z)a = _EAdeFde¢a - gAachb¢c + éAbchabcwd ) (62&)
1 abc
de = _EAabcP €, (62b)

define consistent unfaithful spinors of K (E11). The overall signs in these transformations were
chosen to match the commutators of the generators under K(e1;) C e¢11. Here, the conjugate
Majorana spinor is defined as ¢, = {C with C = iI'% and we use gamma matrices satisfying
[ar-en = g1 The rules (6.2) are sufficient to study the transformation of any polynomial
in these fermions.

6.2 Coset scalar fields supersymmetry transformations

In D = 11 supergravity one has the (linearised) supersymmetry transformation rules for the
bosonic fields given by

5susyhab = _Er(awb) ) (63&)

s 3_
0 yAa1a2a3 = §€F[a1a2¢a3] 5 (63b)
6susyAa1...a6 = 3€F[a1...a5wa6} ) (6.3(})
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where we have extended the transformations of [78| to also include the dual six-form potential [49]
and written the expression in tangent space. In order to define the supersymmetry variation of
the scalar fields parametrising F11/K(F11), one needs a priori to show that the bilinear e¥
includes a representation of K(FEj;) that can be consistently embeded in ej; © K(e11). Starting
from (6.3), we shall therefore study the representation e¥. With the definitions

Hab = €Ly (6.4a)
Eayazas = gEF[alag%g] ; (6.4b)
Ear..as = 3L a1 .a5Vag] » (6.4c)

Eay..as,b = € (ay. a5, Py + Eﬁal...agclczc3€F010203bd¢d , (6.4d)

Ear...ag, P = 1512601 672602 0, axtag)

(a1 “a2~a3

- 95%211 52360,3...(19]01...04(EFCIMCLLTZ)‘bS] + %ﬁbsh EFCQ.“CALdTpd) ) (646)

one computes using the formulae (A.4) that they transform into each other under the K(e;1)
transformations (6.2) according to

0Zab = A" Eyercy — %ﬂabACICmEclcm : (6.5a)
02410205 = —3Nayas Eaglp + %A3E , (6.5b)
0Za1...a5 = 20M (10305 Zasasas] + %Ablb20<5a1...%blb2,c + T agbibac) - (6-5c)
0Za...a8,b = 96 (a0 apa5Zas...as,b) T %AClCQCSEcl(m...ag,b>0203 + ... (6.5d)

up to the introduction of an additional new bilinear T3 appearing in the transformation of =, 4,

_ 1
Tzl...ag = Er[al...as¢ag} = 1_85a1...agb1b2Tb1b2 . (66)

A similar calculation was done for K (e1g) in [49] where also the extra nine-form was found. Such a
nine-form is not present in the coset ¢11 © K (e11) but is consistent with the K (e11) representation
of a field parametrising the degree zero component of the tensor hierarchy algebra 7o © K(e11).

The indecomposable E1; module ¢11 D R(A2) C 7o induces the dual indecomposable structure
on its components (2, T) € (e11 © K (e11)) B R(A3), such that Z transforms into Z and T, whereas
T transforms into itself under K (e11). To further check this property one computes that the
element Y192 generates a K (e11) module that is indeed consistent with the structure of R(As).

For this purpose one defines
Tblbz — Erb1b20¢c, (67&)
Yaazb — _gpaazbey, 4€I‘b[a1r¢}a2] — an[al @/}a?] , (6.7b)
Ta1a2a3a4a5;b _ gra1a2a3a4a5wb + 4€F[a1a2a3a4a5wb} + 10nb[a1 gra2a3a4wa5} ,

ajazazasasbeycaczeqcs =
£102a304050C1C2C3€C4C5 2

18 crescsesPes s (6.7¢)
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Talagag,b _ Era1a2a3¢b o Er[a1a2a3¢b] + 6,'7b[a1 EF“ZQ,Z)“?’] ] (67d)

and one checks that they transform into each other according to

sYaaz — pbibzla Tble;az} 7 (6.8a)

. 1
5TC(a,b) — _gAdef'rdefc(avb) + 2Ade(aTb)Cd’e , (68b)
I 3Ab[a1a2 Tag]b o %Abﬂmbs erazasbibaibs 2Abc[a1 Ta2a3}b’c . (680)

These transformations are consistent with the structure of the tensor hierarchy algebra that is
described in (A.4). In particular, the transformation (6.8a) shows that the new nine-form that

appears for the extra fields in R(As) C 7o does not transform back into the Z components in e1; ©
K(e11). Moreover, demanding that the K (E1;) transformation commute with the supersymmetry
transformation, one can determine the linearised supersymmetry variation of fields belonging to

the R(A2) module as

SULS; 1 =
0° yhal...ag = 1_85a1...a9b1b2Tb1b2 = Er[al...as¢ag]7 (69&)
SULS; 1
0" Agy . aroibibs = g Car-ae Y60, (6.9b)
1 1
5susyAa1---a1o;b1---b5 - E‘Sal~~~alocﬁrb1---bs;C > 5susyBa1---a11,b1b2b3,c = 1_8€a1~~~a11Tb1b2b3’ca (6~9C)

consistently with the decomposition of the module R(Ag) under GL(11).

Defining G(7p) as the group associated to Ty, we conclude that one can define the linearised
supersymmetry transformation of an extended field V € G(7y)/K(FE11) consistently with the
K (Eq) representation of Ty as an indecomposable module. Defining T'(Z, ) as the 7y element
of parameter (Z,7) defined above, one can write the supersymmetry transformation of V €
G(%)/K(EH) as

Y =T(E,T)V, (6.10)

such that supersymmetry commutes with the action of K (E11) in the standard way, at the price
of introducing additional fields into the theory. We stress here that the additional fields, that we
denote by h%, parametrising G(7y) must not be confused with the constrained fields x,® that
transform instead as components of the co-adjoint module 7_5. In order to have well defined
expression, one will chose in practice a given parametrization of the coset G(7y)/K(E11), so
one will define the non-linear supersymmetry transformation from (6.10) with the compensating
local K(E1;) transformation on the left.

Let us compare the situation to that in Fg exceptional field theory [34]. In this case, To(eg) is
the extension of eg by a single Virasoro generator L_;. The indecomposable representation of the
co-adjoint 7p(e9)* encompasses a single constraint field x ;. There is a single additional field p on
top of the Ey/K (Ey) coset fields that is dual the dilaton such that all fields together parametrise
G(To(e9))/K(Eg). In order to have manifestly K (F9) covariant supersymmetry rules one has
to introduce p with a non-trivial supersymmetry transformation [79]. This is also what we see
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above for K(F11) where we have to extend e1; to Tg. Moreover, the dual dilaton p is associated
with an additional gauge symmetry shifting p whose parameter is called ¥ in [34] and which is
generally needed for the closure of the algebra of generalised Lie derivatives. In the present case,
there is a similar additional gauge parameter ¥,/V% in R(A;) ® R(A3) as discussed in Section
3.6:

1
_ - ¥yWp1..p5
0An nyng = 5,2 ni1nNaN3pP1...Ps 1

1
— ___N\p1p2
5An1...n6 = 22 ni..nepPip2 >

5hn1...ng;m = Em;nl...ng ’

5XM;n1...n9 - _98[n12M;|n2...n9] ; (611)

where, compared to (4.19), we have relaxed the condition that X,,.,, ., = 0. This condition
is the vanishing of the first component of the trace of 3,V The gauge symmetry of the
traced parameter XV fits precisely with the representation of the additional fields in m,
and should allow to gauge-fix them at the price of making the supersymmetry realised non-
linearly with a compensating ¥ xV® transformation breaking K (E41) invariance in the linearised
approximation.

In the GL(11) decomposition, we would like to think of these additional gauge symmetries

as being related to local Lorentz transformations, such that

hal---a8§b = hal...ag,b + hal...agb ) (6123)
Aay...agibibobs = Aay...ag,bibobs T Aa1...ag[b1;b2b3] ) (6.12b)

could be thought of as the dual graviton and the 3-form gradient dual in the vielbein formulation.
Recall that the semi-colon indicates the general tensor product, whereas the comma implies
instead that this is an irreducible GL(11) tensor. This justifies the notation for these additional
fields, which should not be confused with the fields X € R(A2) with the transformation rules
(A.4).

Later on in Section 7.2 we shall introduce extended field strengths including the additional
fields (6.12) in (7.24). As shown there, the extended field strengths are indeed invariant under
the transformations (6.11).

We conclude this section by giving a few consequences of the above supersymmetry transfor-
mations for further reference. Combining the linearised supersymmetry transformations of the
irreducible fields, one concludes that the reducible field hg,; transforms as

SUS;| = 1 3 =
0" yhal...ag;b = Eral...ag,wb + Egal...a80102036P0102036dwd . (613)
The coset field component Ag 3 transforms as

5susyAa1...a9,bleb3 = Efll--~097b1b2b3 : (614)

We also do similar checks for the GL(4) x E7 decomposition in Appendix E, and find prefect
agreement with the supersymmetry transformations of F7 exceptional field theory [80].
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6.3 Vector-spinor field transformations and supersymmetry algebra

The supersymmetry variation of the gravitino in D = 11 supergravity in the linearised ap-
proximation is §**%, = Jd,e. We shall now extend this transformation to a K (E11) covariant
supersymmetry variation. This can be done by making an ansatz involving the higher level
derivatives and fixing the free coefficients by K (E11) covariance, such that §*¥4), transforms as
g under K (e11). The result is

0% 1)y = Oge + gaabrbﬁ — Erabcabce — —3 T [b1b2b3ba
2 - 2 ]
+ gL 50" 6+ S 0010l e = a1 g0 e
2 2

+ 3 A 7!Faa1...a88a1ma86 - 3 . 7'

Oabrbobsbs

Oaay.ar L e+ (6.15)

We have verified this expression for §***¥1),, to be covariant under K (1) transformations includ-
ing all terms varying into 01, d» and 05 derivatives.

We can now verify that the linearised supersymmetry transformations are consistent with the
closure of the supersymmetry algebra on the bosonic fields. As usual in supergravity, one expects
the algebra of local supersymmetry to only close modulo the equations of motion and gauge
transformations with parameters that are bilinear in the supersymmetry spinor parameters e.
In the linearised approximation, the closure of the supersymmetry algebra on the bosonic fields
does not depend on the fields, and therefore cannot involve the equations of motion. In this
approximation one expects to simply get a bosonic gauge transformation of parameter bilinear
in the spinor e. We recall that the bosonic theory, without fermions W, is not only invariant under
generalised diffeomorphism of parameter ¢ in R(A1), but also under gauge transformation of
constrained parameters ¥,VY in R(A;) ® R(A3) as discussed in Section 3.6 and at the end
of the preceding section. As the closure of two supersymmetries generally produces all gauge

symmetries, we therefore expect both of them to appear in the supersymmetry algebra. For
simplicity we consider a supersymmetry transformation of commuting parameter €, such that
the algebra is obtained by applying twice the same variation. One computes straightforwardly
(neglecting derivatives Oy, ayagasas a0d those of higher level)

(57 Phy = 6 (€T ) =~ 50(Ee) — 506 () + 1570 (T eae) ,  (6.16)
(57 Ansasas = 6" (3T a1039)) = 300 (T ) — 30105 (T ) — 50" (T i)
(6™)? Aay..ag = 0™ (3T (a, .y Vag]) = —ga[al(gfag...%}ﬁ) + iabc(%nc[algag...agb}dl...dsErdlmdse)

— %Efal.“aﬁbl@ablb% .

Apart from the last line in the variation of A, 4, all these terms are total derivatives and can
be rewritten as generalised Lie derivative gauge transformations (4.17) of parameter —%SM , with
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the components of ¢M given by

£4 =€l
Aap = —€Llgpe
>\a1a2a3a4a5 = Era1a2a3a4a5€ )
7
_ — nC1cac3CaCs
Sal...a7,b - _gnb[alEag...a7]010203C4056P °€ . (617&)

The last line in (6.16), however, is not a total derivative and must be the component of the
parameter ¥,V in the gauge transformation (6.11). One can indeed cast it in the form

EM;al...ag = Eral...agaMe 5 (618)

which is not a total derivative, but satisfies the strong section constraint as necessary for the
parameter ¥V,

Up to this level truncation in the higher level derivatives, and obtains therefore that the su-
persymmetry algebra closes up to the expected gauge transformations of the theory. This relies
on the fact that the symmetric bilinear ee can be consistently embedded in the representation
R(A1). The antisymmetric bilinear €; A €2 can in turn be embedded consistently in the repre-
sentation R(A3). This is necessary for (6.18) to extend to a well-defined ,N® parameter in

R(A1) ® R(A3). One checks that the low level truncation exhibits that this is indeed possible,
in particular we discuss the case of the symmetric bilinear in more detail in Appendix D.?

6.4 Constrained scalar fields

The definition of the Fq1 exceptional field theory also requires the introduction of the additional
field x /% that transforms instead in the representation associated to 7_s, so in order to construct
a supersymmetric theory we also need to extend the module (2, T) € (e1; © K(e11)) ® R(A2) to
include the component R(A3). We shall argue first that there is an indecomposable module with

the structure

(X,2,7) € R(A2) ® (e11 © K(e11)) B R(A2) . (6.19)
This module seems to exist as a restriction of an FEq; module (which is not a submodule of T)

M_5 = R(A2) Benn ® R(Ag) (6.20)

13For the antisymmetric product, one finds that the 3-form, the 4-form and the scalar bilinear form the anti-
symmetric rank 2 irreducible representation of SL(32) = K(E11)/Z.. Indeed R(As) first gives a 3-form, then a
4-form, a (3,1)-form and a (2,2)-form. The 4-form and the double trace of the (2,2)-form are represented by the
four-form and the scalar bilinears, while the other components vanish. All these three bilinear representations
appear repeatedly then at each level.
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extending the module of components of 7_5 such that M_Q/IR(A2) > T, M
We consider the representative of the nine-form in R(A2)

1
Xal...ag - _igal...agblbggrblwbz . (621)

Its K (eq11) variation gives according to Appendix B

1 1 2 1
0 (Er[a¢b}) = _§Acd[a€FCd¢b} + gAcd[aEFb}cwd + gAabcETZJC + EAcdeEFade¢e ’ (622)
consistently with the assumption that

- 1 -
5Xa1...a9 = —28/\[&1&2&3:&4.“&9} + EAb1b2b3:a1..-a97b1b253 +... (6.23)

according to (A.4), where the dots stand for terms in él'97), and €, that would appear in the
other fields (i.e. 11,1, Xi0,2, X11,1) that we disregard here.

We conjecture therefore that the set of bilinear e¥ can be identified as a K (e;;) module with
successive quotients defined from F17 modules:

(X,Z,7) € [R(A2) ® (e11 © K(e11)) ® R(A2)]/Lix z7) » (6.24)
(E,7) € [(e11 © K(e11)) ® R(A2)]/ L= ) (6.25)
T e R(AQ)/IT . (6.26)

By construction of the module, the supersymmetry transformation of the field /¢ must
include 03, X at linearised order. But because Y9 is in a submodule R(As), it can also appear
in the supersymmetry variation of x/® with the derivative dy; acting either on € or ¢ while
preserving the strong section constraint. We shall now find that there is a unique definition of
the supersymmetry variation of y,% that is consistent with the supersymmetry algebra in the
linearised approximation.

MThe existence of the module M_s can be checked at low level in the GL(3) x Es decomposition, with the

additional component A, B%, ... in R(A2) with respect to T2,

Shu” = ep! Ay — fir AL — 8. (es" A — [T AS)
0bn = fMNPQ;]XA!;D - fMNsz‘;A;]X + farAu s

v v v 1 v
04" = —el by + fPM e @p — fRBY — [N e SR, + 5 MY P IR B

5B£,{N = 28PMNPQ6[I;A§] + %nManQe[I;AQ

v]

Shp, = —fnp el AL +e(n Ay
and
v 1 v v
Xy = fM(X;% + h%) + 6ﬁI‘I)M - §fMB,% ) 0A, = fMB,% )
5X£/ZI, = —26f\:{XV] — fNINpefZAS + ef\:{Ay] s 535{, = —26f\:{Au] .

The important feature is that one cannot avoid that §X% transforms back into ®® parametrised here by
Au7 B]W

T2
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According to the discussion above, K(Ej71) imposes that the linearised supersymmetry vari-
ation of the constrained field is of the form
s 1 _ _ _
o™ yXM;al...ag = §Ea1...a9blbg (aaMerblbch/}c - Berblbzcan/}c - 8M(€Pb1wb2)) ’
(6.27)

with free coefficients a and ( that are not determined by K (E11) covariance, but will be fixed
by closure of the supersymmetry algebra momentarily. We have indeed seen that the third
term in (6.21) is fixed by K (E11) through the indecomposable structure of the representation,
while the only other possible terms must be obtained from the bilinear Y% € R(As) with a
derivative on either € or ¥,. Note that the section constraint implies that the index M of y/®
must be attached to a derivative, but not necessarily to a total derivative. The closure of the
supersymmetry algebra implies that

1
(5susy)2XM;a1...ag = Zgal...agblbzaMabl (grb2 6) - 98[(11 (graz...ag}aMe) ) (628)

where the first term is the gauge transformation of parameter £* in (6.17) and the second the
gauge transformation of parameter Xj/.q,. .45 With (6.18). One computes that this is the case if
and only if @« = 8 = 1. We conclude that

1
5sustM;a1...a9 - §€a1...a9b1b2 (8M€Pb1bzcwc - grblbgcach - aM(grblwb2)> ;
_ _ 1 _
= QaMEF[almasl/Jag} — 96F[a1ma8(9]\/[¢a9] — §sa1,,,agb1b28M(erb1¢bz) . (6.29)

Note that this transformation is in agreement with the supersymmetry transformation of the
constrained 2-form found in E7 exceptional field theory |80, Eq. (3.33)] with the identification of
X M:a1a245678910 = Ba,ao M- From this ansatz, one extrapolates that IN((EH) will fix the linearised
supersymmetry transformation of x3/¢ to be in general of the form

5 % = TE(Opre, U) — TE(e, Dy W) + Iy X%(e, V) (6.30)

where T%(e, W) and X%(e, ¥) are the fermion bilinears in R(Az) introduced in this section.

7 Supersymmetry of the field equations

Having established the linearised supersymmetry rules for all fields such that the supersymmetry
algebra closes, we now turn to studying the supersymmetry of the field equations. In a first
step, we determine the linearised Rarita—Schwinger equation for the vector-spinor W through

K (FE71) covariance. Next, we turn our attention to the duality equations, and show that suitably
constructed bilinears in fermions can be utilised to supercovariantise them.

7.1 Linearised Rarita—Schwinger equation and its supersymmetry

If the vector-spinor equation follows from the variation of a Lagrangian, the equation of motion
for 1), should transform in the K (FE7;) representation conjugate to that of 1,. For K(FE11), the
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conjugate representation is given by p® with
1
12
such that §(p®,) = 0 under K (eq1). It is important here that the index contraction in the last
term differs from that in (6.2a). Note that because of the non-existence of an invariant bilinear

2 1
5pa Abchdepa + gAabcrbpc _ 6Aabcrbcdpd , (71)

form on the K (E11) vector-spinor, the conjugate representation cannot be obtained by applying
such a bilinear form. This is different from the situation for K (FEjg) where '3y, is conjugate to
Y 119 i

The starting point for a K (E7;) invariant Rarita-Schwinger equation is the usual Spin(1,10)
covariant linearised Rarita-Schwinger equation of eleven-dimensional supergravity: T'®¢gyi),. = 0.

As the partial derivative 9, transforms into the other derivatives in R(A;) according to (4.4),
one needs to extend this equation by the other derivatives in order to ensure K (FEq1) covariance.
Making an ansatz for the extended derivatives and requiring the Rarita—Schwinger equation to
transform as in (7.1) leads to
1 5
p* =T ytpe + 50y + 200t + 200"y + §Fabcdabc¢d + G bibabs gP2tscy,
1

1 1 ;
+ ﬁrab1b2b3b4ab1b2b3b4c¢c + ﬁrb1b2b3b4caab1b2b3b4¢c t mra01m%bacl~~c5¢b t. (72)

up to the higher level derivatives in 97! etc. We have verified that this expression is K (E11)
covariant in all terms varying into d; and 0% and expect that this structure can be extended
recursively to all orders in the derivatives. This will produce a formally infinite set of terms but
on section only a finite number of these will be non-zero, so equation (7.2) only involves finitely
many terms for any given specific solution to the section constraint.

In the linearised approximation, supersymmetry of the Rarita—Schwinger equation (7.2)
amounts to its gauge invariance under (6.15) for a spinor e satisfying the section constraint.
Up to terms involving 0205, 9505 and higher level derivatives, we find

5 p = 80 Dhe 4 APy 0% — é (D%, babsbs + 80 Tiopgpy) (307102090301 — ghrbebsbacg ye
(7.3)

which vanishes by virtue of the section constraints
O%he =0,  3olnaguale — guazasaiby, o (7.4)

Therefore we see that the section constraint is crucial for obtaining equations of motion that are
invariant under local supersymmetry.

7.2 Gauge invariant and supercovariant self-duality equation

We now study the fermionic modification of the duality equation (3.22). We shall first argue that
there is a remarkable representation-theoretic property of the K (E11) spinor V in relation to the
field strengths, allowing the addition of fermion bilinears. Then we show that one can define the
generalised diffeomorphisms on W such that the modification maintains gauge invariance. Finally
we show that the modified duality equation is supercovariant under linearised supersymmetry
transformations.
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7.2.1 Embedding of fermion bilinears in field strength representation

We want to argue now that the representation of K (E;;) defined by the duality equation &7
in (3.22), includes an unfaithful representation constructed out of bilinears in the vector-spinor
U. More precisely, under K(FE11), the representation of the field strength splits into self-dual
and anti-selfdual components 7_; = S, @ S_, and the field equation (3.9) is the statement
that FL = VL;F7 belongs to S,. We shall argue that the vector-spinor bilinears UW define
an unfaithful representation of K (F;) homomorphic to S_ /Zyy, where Zyy denotes a certain
K (E1;) invariant subspace in S_.

As shown in Table 2 and equation (4.14a), the central terms of the duality equation of GL(11)
weight % involve a four-form field strength and the dual of a seven-form field strength. These

can be constructed out of fermion bilinears as

_ 1 _
w[al Fa2a3¢a4} and §€a1a2a3a4b1"'b7¢b1 sz...b6¢b7 . (75)
Using the transformations (6.2a) one finds that!®

_ _ - 7 ,
o (w[alfa2a3¢a4]) = Ab[alag (wagrbwmd + 2¢bfa3¢a4}> + ﬁAblbzwa[blrbgbzalagagwa4]

1
- EAb1b2b3¢b1 Fa1a2a3a4b2¢b3 (76&)

and

1 - - 1 -
J <§5a1a2a3a4b1mb7¢blrb2...b67pb7> = — 24000, VT agag) ¥ — ﬁ€a1a2a3a4bl"'b7/\b1b2b3¢b4rb5b6¢b7

7b1 b b b1,7.b b
+ Ablebsl/} 'r 2a1a2a3a41/} ° + 6A[a1a2 11/} 2Pa3a4]b1b2b31/} 5.

(7.6b)
Therefore the variation of the combination
_ 1 ) . _
Oa1a2a3a4 — 3¢[alra2a3¢a4} + @6a1a2a3a4b1b2b3b4b0b6b7wblrb2b3b4b5b6¢b7
_ 1_
= 3Y[a; LazasVay) + Zﬁbl Loy asbibs (7.7)
does not contain the term zﬁ[blfb%lawgmwbﬂ and satisfies
b 1 b1babs c1C2C3¢C4
6Oa1a2a3a4 = _6Ab[a1a20a3a4} - MA Eb1babsaazazay 001026304 5 (78)
where
1- - 1- -
Oalazb = _51/}[@ waag] - wbr[alq/}az} - Z¢C1Fa1a2b6162wcz + ¢bfa1a2c¢c : (79)

The transformation (7.8) is in complete agreement with the K(E;;) transformation of the
combination Fy, ayaz0, +3€a1azagas 7 Foy by in (4.14a) as given in [43, Eq. (5.58)]. This exhibits

5 A collection of fermion bilinear transformations can be found in Appendix B.

47



that the bilinear YW indeed transforms in the representation S_. At the next level one obtains
1

000" = Acday Oaa) "™ = G AcdeOy Oaa] ™ + Nayasc0™

+%Ab€d0a1a20d — %ACdeéfaloaz}Cde : (7.10)

where

O, bibabs ;ﬂ—)[blrbgbg]% _ 1_251[}[b1rab2¢b3] 3L clbgbal 4 iTZJCIFablbzbgclcwc2
_g(g([lblq;bzrbs}cwc , (7.11)
0" = 3P — FOTI oy — T (7.12)
consistently with [43, Eq. (5.59)|. Further variation under K (F1;) according to [43, Eq. (4.37)]
500b — _%A6162630clcQC3(a,b) B %Aclcg(aOCICQb) 7 (7.13)
50,bbebs — gpclbiba g bl %Aclcz[bl 20,7 — éA61C2CSOab1b2b301cQ03
Aoy, OV1B2b3C1IC2 gAclcQCSCSLbl Obzbslerczes (7.14)
gives

O%162a3a1,b _ _&braﬂlzaslucqbc + &[bral‘ma?’a‘l]cwc — 12&br[a1a2a3¢a4}
+ nb[al 7,501 [2a3aslcics ey — 12,’7b[a1 &aQFasmﬂc?ﬁc _ 30775[&1 &GQ I‘a3¢a4] , (7.15)

On10 = i«ﬂarabl---bﬁcw% + 60T P2 ol - 1265100 boley),

+ 3&ar[b1...b5¢b6} + g'l)[_)[blrab2mb5'l)[)b6] ) (716)

This consistency check includes all field strengths from level —% to %, and therefore takes into
account not only the standard field strength for the fields that appear already in F,, exceptional
field theory for n < 8, but also the gradient dual 10-form field strengths (through O,"1*2% and
O,%) that are reminiscent of the affine structure of Fy, and even the non-dynamical 11-form
field strengths (through O%® and O®192934:b) that only appear in F;.

We also check in Appendix E that the fermion bilinear decomposed under Spin(1,3) x SU(8)
gives consistently the supercovariantisation of the field strengths in E7 exceptional field theory
[80, 81].

The proposal, checked here at lowest levels, is therefore that the duality equation (3.22) can
be extended by fermion bilinears in the form

El=F — MBQp,F7 —y-10l=0. (7.17)

Here, V_Hl is the F11 /K (E11) vielbein in the field strength representation 7_; with I denoting a
local K (E1;) index in that representation. The bilinears OL are the embedding of the unfaithful
representation of the WW bilinear into S_, mentioned at the beginning of the section. Equa-
tion (7.17) is an Fy; invariant extension of the bosonic duality equation £ by fermion bilinears.
We will use the symbol hat to denote the supercovariantisation as usual.
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7.2.2 Gauge invariance of modified duality equation

For discussing gauge invariance below we also need to establish the action of generalised diffeo-
morphisms on the spinor ¥. As we discussed in Section 3.5 and as is usual for fermions one has to
consider the vielbein formalism. Moreover, we consider the vielbein in a maximal parabolic gauge
and this entails a compensating transformation X € K(e;1) in its gauge transformation (3.30).
The compensating transformation that appears in the gauge transformation of the spinor is

1
50 = Moy U+ gaMfM‘I’ + X0, (7.18)

Thus, ¥ is a scalar density from the point of view of diffeomorphisms but there is a non-trivial
induced K (e11) action due to the compensator. In general, the compensating transformation
X involves infinitely many generators of K (FE1;1). However, if one chooses a partial solution to
the section constraint associated with the maximal parabolic gauge as explained around (3.31),
the compensating transformation X takes the simple form (3.32). For the case of Levi GL(11),
the solution to the section constraint amounts to keeping only the external derivatives 0,, and
there is no compensating transformation. For general GL(11 — n) x E,, there is a non-trivial
compensating transformation. In Appendix E, we demonstrate that the resulting generalised
diffeomorphism on the fermions is consistent with formulas that have appeared in the case of Er
exceptional field theory [81].

The weight given in (7.18) above is fixed by gauge invariance of (7.17) as follows. As the
contribution OZ is bilinear in fermions the weight of a single fermion should be half the weight
of F! to match the weight of the left-hand side of the equation, recalling that V has no weight.
As we derived in (3.21) that F! has weight 1/2, this fixes the weight of ¥ to 1/4. All these
weights can be ultimately traced back to the non-trivial weight of the derivative dy; as the
vielbein V has no weight. We shall see later that the weight 1/4 is also consistent with a formal
Rarita—Schwinger Lagrangian being gauge invariant.

Under a gauge transformation d¢ we now find that the bosonic and fermionic terms of the
modified duality equation (7.17) transform in the same way with respect to the transport and
weight terms. The compensating X transformation on the fermion bilinear OL gets converted
into an Fq; rotation in the field strength representation by the inverse vielbein V=11 1 such that
& transforms covariantly under generalised diffeomorphisms and the modified duality equation
is gauge invariant.

7.2.3 Supercovariance of modified duality equation

According to the discussion in Section 6.2, the manifestly K (F11) invariant representation of
supersymmetry requires to extend the field content such that V € G(7y)/K (E11). In this formu-
lation one should take the element V™ 1 of the group G(7p) accordingly in the representation
7_1. Note that 7_1 is by construction a representation of G(7j). Nevertheless, we expect that
there is a partially gauged fixed version of the theory in which V € E1;/K(F11), and that these
formulae are not modified; see the discussion below (6.10).

Note that there is no notion of superconvariant field strength in Fq1, and only the super-
covariant equation (7.17) defined above transforms under K (Ej7;) into itself in the module S_.
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Nonetheless, it will be convenient for comparison with eleven-dimensional supergravity to write
the supercovariant duality equation (7.17) as EL = 0 with &L = FL — nEQ&ﬁK for some
FL = FL 4 9TL¥ whose components are reminiscent of the supercovariant supergravity field
strengths. However, it is important to keep in mind that these FI do not transform into them-
selves under K (FE7;) and that they are not supercovariant, only the anti-selfdual component &L
belongs to S_ and is supercovariant.

In D = 11 supergravity the corresponding supercovariant expressions are in our conventions

~

Fa1a2a3a4 - Fa1a2a3a4 - 3&[alra2a3¢a4} 9 (719&)
. 21
Fa1a2a3a4a5a6a7 - Fa1a2a3a4a5a6a7 - ?w[alra2a3a4a5a5r¢)a7] . (719b>

That & F is independent of de when keeping only d, can be checked easily using the trans-
formation laws (6.3) and (6.15). Moreover, this combination is exactly the one that is produced
by the extended duality equation (7.17) when taking the terms in Og,aya54, Of (7.7) without the
Levi—Civita symbol 17 into ﬁ4 and those with into ﬁ7. Similarly, one checks that the superco-
variant spin connection Wy, = €°We qp is in agreement with the first three terms in Oalazb given
in (7.9). The field strength F, 4, is related at the non-linear level to the spin connection as

1
Fa1a2b = —2wb,a1a2 + erm(e[m"@menm]) , Wap = —§€cFabc + e[and€n|b] R (7.20)

where the second term is a component of the Maurer—Cartan form in K (e1;) that does not require

a supercovariantisation with the supersymmetry realisation in which
susy a 1 — ([l b)
0" Ve,t = —§EF v emp (7.21)

which is natural in a coset construction. Therefore the supercovariantisation of F ;¢ must be

minus the one of the spin connection
o b b 1- b 7b 1- beico
Fa1a2 = Falaz + §¢[alr ¢a2] + ¢ F[a1¢a2} - Z¢C1Fala2 ¢62 . (7'22)

The remaining term ¢*T'4, 4,c¢¢ in (7.9) is traceless, and will only contribute to the supercovari-
antisation of Fy , as

ﬁal...ag,b = Fal...ag,b - gi[alrag...ag}wb ’ (723)
which is indeed consistent with the expected supercovariantisation of the dual graviton.

The discussion above was based on the field strengths of usual D = 11 supergravity. In the
Fq1 model built using the tensor hierarchy the field strengths receive additional contributions
from the constrained fields x ;% and ¢y in (3.12). Moreover, the manifestly K (E1;) covariant
formulation of supersymmetry requires the additional fields parametrising G(7g)/ K (E11), so one
needs to complete the expressions given in (4.15) for the explicit field strengths in the GL(11)
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decomposition. They are given by

1
Fayas” = 200, hipy)® + 0" Agyase + géf’alc‘)clcQAbQ]cm +..., (7.24a)
1
Fa1a2a3a4 = 48[n1Aa2a3a41 — 580102Aa1a2a3a40102 + ..., (7.24b)
b1b2 1 b1b2
Foyoar = 78[Q1Aa2...a7] + 0 halma7b1;b2 — §X car--arbiby T oo (7.24C)
Fal»»»ag,b — Fal,,,agb = 98[a1ha2...a9];b + Xbiaq..ag T+ 5 (7.24d)

where hg, . ag:b = hay...ag,b + Nay...agp according to the discussion in Section 6.2. In this section we
shall ignore derivatives at levels higher than 0,, and 9™"™2. We checked at first order that these
field strengths still transform under K (e11) according to

5Fa1...a7 = 78[[11 5Aa2...a7} + 5abcha1_..a7b;c + e

9
- §Ab1bzca[a1 haz..-a7b1b2]§c RIEEE
L bibse
= §A (Fa1a2...a7b1b2;c - Fa1a2...a7blbzc) +e (7.25)

when including the nine-form component hy,, .. qq:3-
The supersymmetry transformation of the field x ¢ was determined in (6.29). Let us now
show that this is consistent with the supercovariance of the duality equation

~ ~

1 ~
ga1a2a3a4 = Fa1a2a3a4 + ﬁ5a1a2a3a4b1mb7Fb1...b7 =0. (726)

The constrained field y2g appears in the field strength ﬁ7 since Fy contains yp® as written
in (7.24). The supersymmetry variation is

~ B ~ 9 B
6susyFa1...a7 - _216F[a1...a5aa67/}a7 - 216Pb[a1...a58¢16bwa7} + §8b1bzer[a1...a7b1wb2}

= 7 = 1 sus;
+ Eral...a7blab1b2r¢)b2 - 58[)[(11 (EFag...(w]wb) - 55 yXblbzal...(Wblbz ) (727)

while that of F} is given by

~ By 1 ~ B B
5susyFa1...a4 = 66P[a1a2 5a31/1a4} - §ab1b2 (eral...m}blq/}bg) - Erblbg[a1a2a38b1b2wa4] + 6a[a1a2 EI‘a3¢a4] .
(7.28)

The supercovariance of §a1a2a3a4 determines all the terms in §*"x*1%2, 5+ in (6.29) with a
derivative on €, and the ones with a derivative on 1, are exactly such that

= 1 4
o <c:abcd = _agrabcde pe + §€F [abe Pd] - (7'29)

The above shows that the duality equation for the bosons is related by supersymmetry to the

Rarita—Schwinger equation as in supergravity. We have checked this relation for all terms con-

b1b2

taining 0; and Jy derivatives. The supersymmetry variation of the field x"*2,, 4, given in (6.29)
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also plays a key role for the cancellation of the unwanted terms involving dy derivatives of the
supersymmetry parameter and the gravitino, in order to achieve supercovariance and supersym-
metry.

A similar calculation can be done for the dual graviton equation using

5V E, 0,0 = — &4y V] + oy (Dug) ¥ — 8"gy)) + O (€ [0y V)

1
+ 5801 gralaz quchz 5 (7.30&)
5susy(ﬁa1~~a9,b - ﬁa1~~~a9b) = 9el'q; ..ag (8a9]¢b - abT/)ag}) - %a[a1 (5a2...agclcQCSEFbclczc3d¢d) s
— 2ar.apercy O (T ) . (7.30b)

Putting these together one obtains that
oy (Fawzb - &anzclmcg (Fq---cza,b - FC1~~~09b)>

1
= _grba[aﬂ/}az} + gI‘[al (&zz]wb - abwm]) + 2€Pa1azca[cwb] - §€Fa1a2b6162801¢02
1_ B 2 ~ .
= 5T ay0; Pt — ey, gy + §5fa1 el Tpe - (7.31)

We see again that the supersymmetry of the bosonic equations of motion gives the fermionic
Rarita—Schwinger equation. Note that in this case the component Xp.q,. 4, is involved, so this
additional field is already necessary to understand the supersymmetry of the linearised dual
graviton equation in eleven dimensions.

The complete equation will take the form

s EL —eq Lpe (7.32)

where G,L defines a K (E11) invariant tensor, implying that the multiplet of bilinears in e and
p® is in the S_ module as ¥YW. One computes in particular that

~ 4 1_
0" Eayazazas = ger[alazaspm] - Eeralazagmbpb ) (7.33a)
~ 1_ _ 2 _
5 E 0 = 5 ara; PP — &, pay) + 55311 el pe (7.33b)
~ 1 2 1
5susygab1b2b3 _ Egrab1b2b3cpc _ Era[blbz pba} _ ggrblbszPa + 55([1171 (Erb2b3]cpc _ EFprM) 7
(7.330)
~ 1
Frvgmb — epleph) Enabéfcpc , (7.33d)
5susyga1a2a3a4,b _ gra1a2a3a4pb - Er[a1a2a3a4pb} + gnb[al gra2a3a4]cpc - 2nb[a1 Era2a3pa4] 7
(7.33e)
ey & 1 _ 1_
o ygablmbs = _1_85ab1mb601626364 (Erc1c2c3pc4 - gercwzcsmdpd)
+ El—\bl...bapa + 25[[5)1 (El—\bz...bﬁ]cpc _ EFbQ...b5pb5}) (733f)

transform in the representation of the self-duality equation as they should.
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8 Non-linear theory with fermions

In this section, we shall investigate how much of the structure of Sections 6 and 7 can be made
non-linear. We propose that the non-linear self-duality equations including fermions in (7.17)
and the non-linear supersymmetry transformations for the bosonic fields (6.10), are the actual
equations and fields transformations of the 1 exceptional field theory. With this assumption,
we shall now attempt to define also the non-linear generalisations of the field equations and
supersymmetry transformations of the fermionic fields.

We consider the generalisation of the Rarita—Schwinger equation (7.2) in Section 8.1 and in
Section 8.2, we investigate the non-linear generalisation of the fermionic supersymmetry transfor-
mation (6.15). As we shall see by comparison to D = 11 supergravity, our non-linear proposals
reproduce correctly the structure of the non-linear terms of D = 11 supergravity, due to remark-
able cancellations yielding only gauge invariant combinations of the low level field strengths.
However, we also get undesired additional contributions involving higher level fields. While
we do not know how to remove these contributions at present, we provide evidence that the
structures we write must be part of the complete answer.

8.1 Non-linear Rarita—Schwinger equation

In order to study possible non-linear equations of motion for the fermions, we first introduce
appropriate covariant derivatives and covariant tensors. We propose a Lagrangian in (8.12) to
describe the gravitino kinetic term, its Pauli couplings to generalised field strengths and quartic
fermion terms. Finally, we investigate the relation of our proposal to D = 11 supergravity.

8.1.1 Ingredients of the non-linear fermionic terms

Equation (7.2) defines a K (Ey;) covariant linearised equation for the vector-spinor ¥ through
p? = G My, =0 (8.1)

where G#PM is a K (E11) invariant tensor that also acts on the not explicitly shown spinor
indices. This equation is moreover consistent with linearised supersymmetry as defined in (6.15).
We expect the non-linear equation to be defined in a similar way but with the partial derivative
being replaced by a covariant derivative, plus additional terms depending on the field strength
FT as well as appropriate cubic terms in the fermions. The natural candidate for a covariant
derivative is the one obtained from the K (e11) component of the Maurer—Cartan form valued in
the K (e11) representation of ¢,. One defines the covariant derivative from the Maurer—Cartan
derivative

OuVV =Py —Qn, QueK(enr), PueToo K(en), (8.2)

where here V is an element of G(7p). For the terms in the level decomposition we shall consider
in this section, there is not yet a distinction between G(7) and Fj1, so the reader may consider
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as well that V is the standard E1;/K(FE11) coset representative for simplicity. The covariant
derivative in tangent frame is defined as

Dy =V "Ny (0n + Qn) , (8.3)

where we denote by M the tangent frame indices that transform under K (FEi;). We shall also
use the notation that

Jarot® =V 4 Ina VIOV = 2Py ot (8.4)

for the current components in tangent frame.

The K (E11) Rarita—Schwinger equation must reduce to the standard eleven-dimensional su-
pergravity equation upon choosing the solution to the section constraint in which the fields only
depend on the eleven coordinates z™. In this case the covariant derivative reduces to

VN (On + On) L= e2e,™ (O + Q) | (8.5)

where the notation |17 indicates that fields only dependent on the eleven coordinates z™ so
that all the higher level derivatives can be disregarded, and the additional factor of the vielbein
determinant comes from the GL(11) weight of the R(A;) module. Note, however, that Q,, still
involves an infinity of fields as the section constraint only affects the derivative index.

The spin connection can be rewritten in terms of the coset space connection Qly; in so(1,10)
and the field strength component Fn1n2m‘11 = 29" 0, Gny)p a8

1
Wah = e[a"den‘b} — §€cFabc 1 . (86)
The vielbein determinant is part of the Ey1/K(FEq1) coset representative, and as such can-

not appear separately without violating Fq1 symmetry. The way it is resolved for the eleven-

11D

dimensional gravitino field v,

, is that it is related to the vector-spinor through
1
¢a = eZeamqﬁ%D . (87)

Note that similar redefinitions were also necessary for K (Eqg), see [49].

8.1.2 Non-linear fermionic Lagrangian and Rarita—Schwinger equation

We shall now investigate the construction of the Lagrangian for the non-linear Rarita—Schwinger
equation. We are guided first by K (FE7;) invariance using the ingredients introduced above. In
principle, one would like to also check gauge invariance of the Lagrangian using (3.21) and (7.18).
Doing so requires new identities of K (F11) tensors that remain to be investigated. We shall only
study gauge invariance indirectly below in Section 8.1.3 when we analyse the Lagrangian in the
D = 11 decomposition. As we shall see our proposal is incomplete as it requires additional terms
in order to reproduce D = 11 supergravity and these additional terms are also expected to be
necessary for gauge invariance.

o4



Using the K (FE71) invariant tensors we have introduced we can write the following Lagrangian
quadratic in fermionic fields

_ . 1
LES ~ hg GUPMDy oy, + ZwFl()l , (8.8)

where G%*M s defined as in (8.1) and where OL is the UV bilinear in the 7_; representation
defined in Section 7.2. By construction the covariant derivative Dy is K (E11) covariant, so the
first term is manifestly K (E11) invariant. The second term is also manifestly K (E11) invariant,
and is non-zero according to the property that on-shell

FL=yEQp,Fr+0L, Ol = —ng,07 . (8.9)
The bilinear form 77 is given in [43, Eq. (5.39)] as

L 1 1
g(Z)FalmagJ)Oal a97b__(2)Fa1 a100a1 a1o+7'

8!
: 4
=3 =3 =
+ —_GF, a1a2b0a1a2 -G )Fabeacc + 6( e [a1a2as Oa4]ala2a3 +( a yO™” + . 4|
7 ) 1,5

9,5
+ ol (F)par oy a60a7]a1 ag 4 3 T)F[a1a2mag7b0a1042~~~a9}:b _ 8'(2 )Fbal___a&bocay..as,c +... (8.10)

@ 1
2)F’m a70a1 a7_|_4_ ')F’a1---a40alma4

=7
& )Fal...a4,b0a1 aa,b

N PO+ =

However, this Lagrangian involves infinitely many fields and is formally infinite. We shall now
argue that one can partially resolve this problem by exhibiting that infinitely many terms cancel
upon using the self-duality equation (8.9), and that the resulting Lagrangian agrees with the
eleven-dimensional supergravity Lagrangian at low order in the level truncation. However, this
will not yet provide the complete answer. The Lagrangian must not only give rise to a meaningful
finite Rarita—Schwinger equation, but this equation must moreover be gauge invariant. The
Lagrangian (8.8) is not a priori gauge invariant, since neither the K (e;1) covariant derivative nor
the field strength FL is covariant under generalised diffeomorphisms. Thus one will need to check
gauge invariance separately. We shall see that gauge invariance can also be achieved partially by
modifying the corresponding Rarita—Schwinger equation by a term proportional to the bosonic
field equation gl

First of all we will introduce a Darboux basis on 7_1 = S, & S_ as a K(FEj1) module. To
argue why one needs to do this it is useful to recall the case of N' = 8 supergravity in four
dimensions. In this case, the Lagrangian includes two terms that are not invariant under the
full R-symmetry group, but only under the subgroup SO(8) C SU(8) acting on the 28 vector
fields [82]. One of these two terms is in particular the source of the Pauli coupling F¥W. For Ejq
we have similarly that 7_ is a symplectic representation of Fy1, and therefore Sy are conjugate
unitary representations of K (FE11), and one needs to introduce a Lagrangian subspace that further
breaks K (F11) to a subgroup preserving a quadratic norm 77}'] on S; and S_. The choice of
Lagrangian subspace is not unique, as it is neither for the sympl(;tic frame in four dimensions, but
there is a natural choice associated to any maximal standard parabolic subgroup of E7;. This
choice is defined by the positive weight components in the corresponding parabolic subgroup
decomposition. Since in this section we want to compare with eleven-dimensional supergravity,
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we shall use the Lagrangian subspace determined by the GL(11) weight, such that 77;] is the
projection of 77,; to the negative weight components along I, i.e. for a positive weight coaponent
G+REL one has G*PFIy = 0, and is non-degenerate on the negative weight 2 *"FLyf £ 0.
More explicitly, we take B B

1 ‘3

1 1 s
nIJFIOJ 4 7 a1 a4Oa1 a4+ 2 T a1azb0a1a2 (7>Fabb0acc

4 -5 L (= L=
6 TF(ML larasas Oa4]a1a2a3 + (5 >Fa,b0a’b + _!( - )Fal---a4,b0a1 aq,b
+ @ 2IpaT o a60a7]a1 a4 = S 2 F[a1a2 ag,bOalaz .ag),b §< 3 )Fba1---a87boca1...as,c 4. (8.11)

Now we can define

_ . 1 R
LRS — waGa’bM,DMwb 4= (?’]gFlOi + 77;__J . %(51 4 gl)ol :) 7

4

:&JWWDM%+%@fQﬂ—é:@}ﬂGL, (8.12)
where the normal ordered product is introduced on the infinite sum of quartic fermions to reg-
ularise it. The bilinear terms combine to give a finite set of contributions for each field in the
GL(11) decomposition for a chosen solution to the section constraint, so even if there is an infi-
nite set of fields contributing to the Rarita—Schwinger equation, it makes sense as a formal sum
over the infinite set of fields. By contrast, anOiOi would involve infinitely many times the
same vector-spinor fields and must be replacec? by a finite polynomial in the vector- spinor that
we write : nIJOIO‘] We shall argue below that this polynomial can be determined by K(EH)

invariance. The Lagrangian (8.12) is not manifestly K (E11) invariant, but the corresponding
Rarita—Schwinger equation p* = 0 obtained by variation via

Shap® = %MRS +0u(...), (8.13)

-~ RS

differs from the manifestly covariant one pfj defined from above by a term proportional to

the equations of motion

. 1 oroL 1 oLoL
s _ rabM _ lpaN L Lot .
Pt = G (Dyty — 5T uPraths) + 1t goe 3 MY g0
otoL
=00+ g 3" 1J5[ EIC (8.14)

so that it is ensured to be covariant under K (E11), modulo term that vanish when the duality
equation EL = 0 is satisfied. Note that the A' = 8 Rarita—Schwinger equation is only covariant
under SU(8) modulo the twisted self-duality equation for the 28 vector fields in four dimensions
[82], so it is to be expected that the same complication must arise in E7; exceptional field theory.
The extra term appearing with the covariant derivative can be understood in terms of the

current Jyr, as
Dyt — VTP NPpo = Dyt — TN mrJan (8.15)
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such that it is a weight term that appears at level 0 in the GL(11) decomposition because of the
ei in the definition of the vector-spinor (8.7).

Note moreover that the K(Fy;) invariant Lagrangian L§% in (8.8) does not include quartic
terms in the vector-spinor. Indeed, one can infer from the invariance under the K (Eqp) C K (En)
subgroup that there is no quartic invariant in the vector-spinor. Under SO(10), ¥, decomposes
as Y, for a =1 to 10 and A = 99 — I'g 2[110:1 ['%),, which transform respectively under K (eqg)
as a vector-spinor and a spinor [49]. However, the vector-spinor of K (E10) transforms under a
quotient subgroup SO(32,288) = K (E1) /Zy [83], so there is no quartic antisymmetric invariant
that can be written. One straightforwardly concludes that there is no quartic invariant under
K(E1).

The necessity of introducing cubic terms in the fermions would therefore arise when one
introduces a Lagrangian subspace to define the Rarita—Schwinger equation. The Lagrangian
L% in (8.12) is not K (E11) invariant and does have quartic fermion terms. We stress that it is
still formal, since it involves a sum over infinitely many fields and infinitely many components.
We shall argue that one can make sense of its part that is quadratic in the vector-spinor by
expanding in level, such that cancellations arise for different fields at each level. This answer is
nonetheless incomplete, and one will need to add other terms to the Lagrangian. The situation is
more complicated for the quartic terms in the vector-spinors, since the naive polynomial does not
even make sense formally. The bilinear W includes 61776 components that appear infinitely
many times in OL in the infinite representation S_, so there is no way to directly make sense of
the infinite sum of terms appearing in Ny JOI OZ. Instead of defining : Ny JOI OZ : through some
regularisation scheme, we hope that one could think of : 7} JOI OZ : as a finite quartic polynomial
in the vector-spinor that is determined by (on-shell) K (e;;) covariance of the non-linear Rarita—
Schwinger equation. Let us explore this idea in some more detail.

The component of the Rarita—Schwinger equation linear in 1, is'®
1, 007
ph=po+ 3 8 ]Jg Ea (8.16)

and transforms by construction under K(e11) as

5pa _ iAbchbcdpa o gAabCFch + %Aabcrbcdpd (817)
oto’ 1 ool 1 otoL 1 oro’
+ ol ot el —A Fbcd _Aabcr _ _Aabcr
5(8 U ) s < N T L TSl W )
= Apobs ELR, 110203

bib2bs - since L transforms into itself under K (ej;). When evaluated on section,

for some Rq1
one may hope that most of the components of &L cancel such that ELR, lblebS would only
involve finitely many components of £L in a level decomposition. If this were true, the purported

regularised quartic term in the fermions would be determined then such that it would transform

16The notation means the convention to differentiate fermions from the left.

oL
opa
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under K (ej1) as

1 1 -
b [g s, 0107 :] = S Abiats OLy*R,, fbrb2bs (8.18)
The full Rarita—Schwinger equation with cubic fermion terms would then transform under K (e11)

as
2 1

3 6

Whether a regularisation prescription with (8.18) exists and produces finite expressions, needs
to be established.

Fdeﬁa o

1 iy S -
0p" — 15 Abea AType + = AT yeqp” = Apybg, EFRG P25 (8.19)

8.1.3 Relation to D = 11 supergravity

Let us finally describe how the conjectured Lagrangian £%° partly reproduces the eleven-dimen-
sional supergravity Lagrangian when the fields only depend on the eleven coordinates z". In
GL(11) parabolic gauge, the Maurer-Cartan form dVV~! only has components at positive levels

o0
AV = e, Mden Kyt 4y TP BN =P - Q, (8.20)
k=1
where
(1) 3
Ja;b1bzbs 11 = 62eam€b1mebzmebgnaamAmnzm )
2 1
J(i;l))l...b@- " = e2eameb1n1 PN €b6n6 (amAnl...ng - 10An1n2n38m‘4n4”5”6) ’ (821)

and similarly for higher GL(11) levels. Here we slight abuse of notation to denote the strictly
positive components of the Cartan-Maurer by J®* although they only agree with the strictly
positive components of the current V7V ~! and not J itself. Because of the expression of the
Maurer—Cartan form (8.20), at non-zero level, the composite K(e11) connection and the coset

components are both defined by Jxek):

o= 1o
Q = e, "depy K — 2 3 TG (B — FA) P = e "depp K+ 5 > T (B + FA)
k=1 k=1
(8.22)

The covariant derivative is not covariant under generalised diffeomorphisms, because of the terms
in Jff}: that involve the higher level fields through an ordinary partial derivative and not an
exterior derivative. But this is also the case for the field strength at level £ < —% —kfork>1
evaluated on section, see (4.15). One finds that most of these field strengths vanish on section,
in particular (2)F®?|;; = 0 and (?)F®1%2@394:5|; — (. The non-vanishing ones are those that are
in the SO(1,10) representation of the field of level k times the standard co-tangent space, and
in that case

M| = (I8, 523)
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according to [43]. We observe that the components J* include the gauge invariant field strengths
(-3+KF for k = 0,1,2. In fact, we are going to show that in the Rarita-Schwinger Lagrangian
these components J* combine remarkably into the gauge invariant combination 2 *®F. This
kind of recombination cannot occur, however, for k > 3 since 2 *¥F contains the constrained
x fields that are not present in J®. For k > 3, the J* would need to cancel in the Rarita—
Schwinger Lagrangian for gauge invariance but preliminary calculations show that they do not.

We now assemble the various pieces for expanding the Lagrangian (8.12) in GL(11) decom-
position to exhibit the remarkable recombinations mentioned above. The covariant derivative at

level zero DYy only includes the SO(1,10) connection oW
1
D;g)¢a = amwa + e[anamen\b}wb + Zebnamencrbcwa . (8'24)

The Pauli couplings at level —% and —% give

1 -1 1 -3 =3
ﬁ(T)Fa1a2a3a4Oala2a3a4 + §(T>Fa1a2b0a1a2b _ (T)Fabboacc (8.25)
— 1 1 1 — _
= 2 (= STl ™ Fae " 4 ST b ) + S Funananar (97 T2 + Fyy, D010, )
3

_§F[a1a2;a3} (%@al [%29)% 4 iqﬁqraww:’,cwzd}@ _ 1/;0«1 I‘U«QGSCQZJC) 7

so, using that Fj [ala%%]]ll = 0, the corresponding contributions to the Lagrangian combine into

_ 1/1 1
[¢arabcpé0)¢c + 5 <5Fa1a2a3a40a1a2a3a4 + 5 a1a2b0a1a2b o FabeacC)] ‘

= @arabcebm (amwc + OJmcdq/}d + %Wmdldz Pdldzwc) +

11

ﬁFalaz%M&blFblfal"'“4fb2¢b2 . (8.26)
The first term reproduces the standard covariant derivative of the gravitino field, where one notes
that the term in %Qﬁaf“bce_labe 1. = 0 due to the et rescaling in (8.7) drops out by symmetry.
Note that we drop the explicit level when there is no ambiguity, but we shall keep it for the field
strength of level ¢ < —%. The second term is the expected Pauli coupling in eleven-dimensional
supergravity, but with a factor of one-half.

To exhibit the cancellation of the non gauge invariant terms between 1),p® and %n}"JF 104
one needs to consider higher levels. The kinetic term expands as B

$al Dyt = YT Dhe + > Pl 6(3 T e (8:27)
k=1

where §(3 ;") denotes the K (e11) action of the corresponding component. At the first level has

the contribution
_ 1 _
warabcé(%Jél))¢c = _EJab1b2b3¢c1chcz (%Fb1b2b3¢02 + 4”702b1rb2¢b3 - Fczb1b2¢b3)
1

_ 3 - _ _
— §Jab1b2b3 <%¢C1 F6162ab1b2b3¢62 - §¢blrab2¢b3 - 55)1r¢)bzrb3]cr¢)c + %¢Crca[blb2¢b3]> . (828)
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The Pauli coupling at level —3 gives using (7.11) and (8.11)

5 1- 5 - 1-
60 [b1b2b3<T)Fa]b1b2b3 — <Z¢[b1rb2b3}¢a _ Z¢[blrab2¢b3] + §¢crca[b1b2¢b3}
1 - - -5
+ ﬂ¢01F0102ab1b2b3¢02 o 5[[lb1¢b21"b3}cwc)(T)Fablbzbg ) (829)

Using (ZF, Wbb2bs | = — J{Vbib2bs when neglecting higher level derivatives, one gets from the
previous two results

14

_ 7 1
Dal 0 (" W+ 550" putat T a1y =

@Falaza:;a;;'l;bl Pblra1---a4rb2wb2 ) (830)

so that all the non gauge invariant terms disappear. Importantly, one gets an additional contri-
bution to the Pauli coupling and the sum of these first two terms is in full agreement with the
supergravity Lagrangian.

At the next level, using the fact that the K (e11) action on the vector-spinor at level 2 is the
same as for K (ejg) given in [49], i.e.

1 1
5(%,]{52))?#0_ 2. 61( J(2)a1 “Ta,.. a6¢c_10=](2)a1 Ty ..asVas +4J(2)a1 “Leqy.. as¢“6) J
(8.31)
one finds that
T pabcgr1l 7(2) 1 1 Tca d 7 a
V' "0(5J, 7 e = 2—6'< - §¢ T, . bgeath” — 45y, L, b5 "

+ 61/71,11“1)2,,,1)6“01/)0 + 305{,’1&01“01,2___1,5%6) J((f)bl"'lm . (8.32)
The Pauli coupling on the other hand, upon using (7.16), gives

7 -1 1 /1- 75 - -
5. 6'0 R R <Z¢Crab1...b6cd¢d + 5 U Lo b5 "o + 30 Ty, Tt

26!
— 6y, Ty s ““te — 3008 VT ey, s Tﬂbg) Fpbr-be o (8.33)

Combining (8.32) with (8.33) gives

17

7 1 1
Pl ST e+ 26'0 1.6 2 oyl br---bo

b1...by 7 biai...asbs
|11 @ﬁealaga:ﬂu Fb1...b7¢b1]~—‘ F F ¢b27

(8.34)
where we note that the last two terms in (8.32) with (8.33) cancel each other and the remaining
terms sum up to an expression that is totally antisymmetric in [b;b;...bg], thereby making it
possible to use the relation J[(;;)bl...bﬁ]‘ll = <%7)F[a;b1...bg]‘11 = %(%)Fabl...bg‘ll- From level ¢ = 2 one
gets therefore in total

1
o Fayasagas Gl T2 T ),

_ 1 _
Pal " Dyte + 50, FPLO% = $al ™ Vithe + o

11

B @ﬁeawmasml b -b7Fb1...b?qzblFblFalm(Mszqbbz T (835)
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which would give the correct equation if one had not included the contribution from the level 2
field. It is difficult to imagine which kind of contribution would eliminate it.

For higher levels k > 3 one cannot get the same type of cancellation, because the J&* factor
does not include the y fields present in the gauge invariant combination (2 *®F. They thus
cannot recombine into a component of L in order to contribute to a term involving only the
metric and the 3-form gauge field. Preliminary calculations show that they do not cancel either.
Hence it seems that we are still missing a term in the Lagrangian that would cancel all the
contributions from level 2 to infinity. At present, we do not have a candidate for such terms.

8.2 Non-linear supersymmetry transformations

Let us now consider the non-linear supersymmetry transformation of the fermion, the linear
transformation was given in (6.15). At the non-linear level, one expects that the partial derivative
will again be replaced by the K (E11) covariant derivative, plus possibly additional terms involving
the field strength F'/ and higher order terms in ¥, such that the supersymmetry transformation
may read

1 1
5 by = G (D + AT 3Py ) — ZU;F_JFL GT7e + g’ nrsOLGTY - e

= GGM(DM + %TMM'PM)E — %(UQFLGEJ +: nzjélG;l :)e, (8.36)
where G, and GIZ are the K (Ey;) invariant constant tensors in the Spin(1,10) Cifford algebra
that define (6.15) and (7.32). The covariant derivative includes the same weight term with the
opposite sign as for the vector-spinor (8.15), consistent with the fact that the e¥ bilinear does not
carry a weight. The regularisation prescription is understood to work as for the Rarita—Schwinger
equation, such that the supersymmetry variation is only covariant under K (E11) modulo a term
in the self-duality equation, and the bilinear term : nQOlG(Tll :in YW is determined to restore
K (E11) covariance. This proposed ansatz is not a priori exhaustive, and we expect to miss some
terms that would contribute at higher level.

The spinor is related to the eleven-dimensional spinor parameter as
1
e=e 1" (8.37)

so that the covariant derivative term in the eleven-dimensional supergravity supersymmetry
transformation reads'”

1 1 1
Ve = e_%ane”D + —wnabI‘“be_%e“D = Ope + ~wnap e + ggpqﬁngpqe

4 4
1 1 1
= DWe + ngq <8p9qn - %@z%q)e + 1 (anp|11 - §€ncFabc|11Fab>€ : (8.38)
The covariant derivatives itself gives
1 1
Dye =DVe — ﬂj,;”blbmrbmbge + mJQQ)bl---bﬁrbl,,,b6e +... . (8.39)

17Here7 V.. denotes the full covariant derivative including both the spin and affine connection such that V,,e,,* =
11D

0, such that V,, effectively only acts on €.
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To construct the coupling to the field strength we need the components of the tensor GLL. They

can be computed from the definition (7.32) using (7.33a) as
T 1
Ga;b1b2b3b4 = gna[blrbzbsbd - Erflblmlu ’

2 C
§Par[b1 5b2] 3

1 2 1 1
Gl;bclczcg — ErabCICZCB + 5([101Fb0203} + g77achlczcg o §5l[)01raczcg} _ gét[lelCQFCﬂ ,

1
Cha” = 55T~ T+

1
Gl;b’c = 51(1bFC) - énbcra )
1

GT C1...C6 __ _6b01...05d1...d4< 1

é I‘ad1 do d3d4) + "’/abrc1 e

_25l[)01rac2...c6} _ 25([1017102F03040506} ) (8.40)

ab T Nadi Ldadsds —

Using then (8.11), the components of GT7 = n}rJGEl are given by

1 1
G b babbs = 18 (na[blrb2b3b4] glab. b4) , (8.41)
1
Gl?lnbzc = _56Fb1b2 N 5 [blrbﬂc - [b15g2] )
Gl.r2010203 — %I\ 016203 + 6[61Pb0203] + 9?,, Pclczc;g + 6[61P 0263] 35£2102F63]
GTnerc6 — _ 1 g C1eCcod1...da T _ lr + i Tc1--co
a:b ~ 718 6! b Nady L dadsdy 3 adidadsdy 6!77ab
4 10
_ 21 leresgeel | 2 slenpeacseacs gl
S Lal e 4 T ol

Putting these components together, one obtains

1 1
+ FI GTJ lF b Fb1b2 Fblbz + Fachbc i (P b1bab3bs 8521Fb2b3b4)Fb1b2b3b4

Ta' 288
J(l)b1b2b3r 4+ 1 1 J(l)blbzc o 2Fb
24 b1babs 4 6 ab1 > 3 (1)abc
1/4 1
b1...b b1...bs by...b
e 6' Jé2) Rl B (@Fabl...stf) 1..bsc _ = _ = 1biba (2)ab1 b4c)
1 1
_@(Fahbzb:ﬁm 85[b1Fbe3b4) - €b1...b461m67F01...07 +o, (842)

where the dots state for the terms involving the field strength component F ;j; Y for k > 3.

MpaN

Then we need to compute the term in G MPnNq. For this one first computes that

1
2TMQIPN0¢‘11 - egeangpq (apgqn - %angIJQ> ’
2TaNa1a2P ‘
11
2TMG1MG5,PM‘11 — _JC(2)a1...a5C . (843)

— Jc(l)alazc ,

For establishing these relations, we have used the K (FE1;) transformations of the various compo-
nents of dys leading to 9y,

00 = kO — Lk, 6O = fANPY, §HTS = R (8.44)
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These formulas extend the level £ = 1 transformations given in (4.4). Substituting the compo-
nents of G,MT Py, to the ones of 9y in (6.15) one obtains

1 2 1
2GaMTﬂMPM|11 = eze," g™ <8pgqn - %81191%1) + grb (yabe — érablbz Jc(l)blbzc -
1 4
+mrbl“'b4 (cz)abl...b4c — @Fabl...bs Jc(z)bl...b5c + ..., (8.45)

up to terms involving Jff}: for k > 3.
Altogether, one obtains eventually that all the non gauge invariant terms cancel out such
that

1
(G (Das + 3Ty Piva)e — Juf, FL GEe) |
12 1 1
= D€+ 162%”9‘1’(] <8p9qn - %&19])(1)5 + 1 (Fabb - §Fb1bz;arble>€
1 1 1
_’_% (Fab1b2bsb4 _ 8521 Pb2b3b4)Fb1b2b3b4€ o @ (Fab1b2b3b4 o 861[1b1 Pb2b3b4) ﬁgbl...b401...C7F01...C76
1 , 1
= Vae+ gag (D20 — salirtahin) (Fb1b2b3b4 - ﬁsbl,,,bjl---C?Fcl___w)e . (8.46)

We recover therefore the same situation as for the Rarita—Schwinger equation. Namely, if we
had considered naively the level truncation to the level 1 field, we would have recovered the
expected supersymmetry transformation of the gravitino potential in eleven-dimensional super-
gravity. However, the level 2 fields gives an extra contribution that is nonetheless gauge invariant
in eleven-dimensional supergravity. One expects similarly that the higher level fields will also
give similar contributions, and the absence of y ;% field in the current components J&* for k > 3,
forbids to possibly eliminate them using the duality equations. For the same reason, this pro-
posal for the non-linear supersymmetry variation of the vector-spinor cannot be complete and
there is yet some structure to be understood.

The resolution of this problem would permit to understand the notion of generalised SL(32) =

K (E11)/Zc holonomy for the full supergravity field equations, generalising the constructions that
have been implemented in E7 generalised geometry for the SU(8) holonomy [84].

9 Conclusions

In this paper we have constructed non-linear duality equations that are invariant under Fq; gen-
eralised diffeomorphisms. These equations involve several crucial E1; group theoretical properties
that are understood thanks to the use of the tensor hierarchy algebra 7 (e11). The tensor hierar-
chy algebra defines a differential complex for fields satisfying the section constraints, and provide
in particular a field strength representation that generalises the embedding tensor representation
of gauged supergravity. The field strength can only be defined as an Fj; tensor provided one
consider additional constrained fields x/® transforming in an indecomposable representation of
F11. We have provided strong evidence that a certain algebraic identity between Fq; structure
coefficients holds, thanks to which one can prove that the first order duality equation we propose
in this paper is invariant under E7; generalised diffeomorphisms. We find that there is also a

63



formulation of the theory with yet more fields, such that the scalar fields parametrize not only
E11/K(E11) but an extended non-semi-simple coset G(7y)/K (E11), together with some addi-
tional ¥ gauge invariance. Within this extended formulation, one can define supersymmetry
transformations in a manifestly K(F1;) covariant form.

We have computed the first components of the Fy; self-duality equation upon branching on
GL(3) x Eg C E11. By choosing a partial solution to the section constraint such that the fields
only depend on 3 + 248 coordinates, we recover the Eg exceptional field theory duality equation
between the scalar and the vector fields. An infinite chain of duality equations emerge in this
way, but one does not recover the whole dynamics without imposing first order equations for the
constrained fields. Similar results hold for Fy exceptional field theory, and it would be interesting
to analyse the Fq1 equations in their decompositions under the Fg9 and Fpy subgroups as well.
It would also be interesting to compare the thus constructed Ejg exceptional field theory with
the one-dimensional Ej( coset model considered in [85,86].

An important open problem is the construction of the non-linear first order field equations
of the constrained fields ya/®. These equations do not follow simply by substituting the du-
ality equations (3.22) into the Bianchi identities. This is perfectly analogous to the situation
encountered in FE,, exceptional field theories in lower dimensions [3]. One may try to construct
the desired field equations for the constrained fields directly, or from a (pseudo-)action with the
desired gauge symmetry. It is worth noting that the constrained fields x ;% are expected to be
non-zero in any non-trivial supergravity. Moreover, the structure of the Eq; equation (3.22) is
such that it does not admit an obvious consistent truncation to a finite-dimensional subgroup.
This is due to the fact that one cannot have a non-trivial solution with a finite number of non-
vanishing fields as the duality equation automatically relates an infinite series of fields to each
other.

In this paper, we have also studied the supersymmetric extension of Fy; exceptional field
theory by including an unfaithful vector-spinor representation W of K (E11), the double cover of
K (E11). We have established that the bilinears in ¥ transform in the same K (F1;)-representation
as the bosonic first-order self-duality equation, up to a suitable quotient. We have defined the
supersymmetry transformation rules on all the fields and presented a K (E11) covariant Rarita—
Schwinger equation of motion for the vector-spinor W, at the linearised level. We have also
investigated the extent to which these equations can be made non-linear. Terms in the resulting
non-linear Rarita—Schwinger equation include those arising from the Pauli couplings present in
D = 11 supergravity, but the results are incomplete.

Another challenge for any F,, exceptional field theory is to find a global interpretation of the
infinitely many new coordinates associated with R(A;) that are present in the theory. Locally,
any solution of the section constraint depends only on finitely many coordinates. Non-trivial
global configurations have appeared as non-geometric backgrounds where patching is done with
the F,, symmetry group; most work on this subject has been done in the context of double field
theory [22-26]. These global problems should probably be first addressed for finite-dimensional
exceptional groups before tackling Fq1.

Our work also suggests some interesting group-theoretic identities for 7, Eq1q and K(F1q)
that might be interesting to investigate further. They define the embeddings of various spinor
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bilinears in the different representations of Fy11: The symmetric bilinear € ® € appears to arise as
a quotient of the R(A1) representation of Eq; while the antisymmetric ¥ ® U bilinear appears to
arise as a quotient of the field strength representation 7_;. While these embeddings are natural
from a physical perspective and have been checked at low levels here, their existence might also
entail interesting mathematical consequences.

One of the main promises of the F; exceptional field theory lies in its power to unify all max-
imal (gauged) supergravities in all dimensions D < 11. It has been found to provide non-linear
and consistent reductions of D = 11 supergravities on nontrivial internal manifolds to gauged
supergravities in lower dimensions [16-21]. In attempts to go beyond pure (two-derivative) su-
pergravity, exceptional field theory has also been utilised in the analysis of contributions of
BPS states to loop corrections in these theories [87,88]. However, the continuous exceptional
symmetry cannot directly be used as a tool for classifying generic higher derivative corrections
to supergravity because these corrections are expected to generically break the FE, symmetry
to a discrete subgroup E,(Z) [89], with interesting implications for the low-energy effective ac-
tion [90-99]. For the continuous E11, one finds immediately that only a two-derivative Lagrangian
can possibly be invariant. Whether Ej;(Z) and its automorphic forms [100,101] can be used for

higher derivative terms remains to be seen.
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A Representations of ¢y

In this appendix, we collect the decomposition of some of the key representations of e;; under
its gl(11) and gl(3) & eg subalgebras.
A.1 Level decomposition into gl(11)

The generators of gl(11) are written as K"n with fundamental indices m,n € {1,...,11} and
with commutators

K", K] =060 K", —6"'KV,, myn,...=0,1,...10 . Al
[ ) q n q q ) ) 1oy )y

Defining the level £ as the eigenvalue of the generator %Kmm, the levels 0 < ¢ < 4 of the gl(11)
decomposition of the adjoint representation is given in Table 4. Similarly, the low lying levels of
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Level ¢ | sl(11) representation Generator Potential

, | (100,000,000 o -
(0,0,0,0,0,0,0,0,0,0)

1 (0,0,0,0,0,0,0,1,0,0) Erinens A inons

2 | (0,0,0,0,1,0,0,0,0,0) Em Ap, oo

3 (0,0,1,0,0,0,0,0,0,1) Erensm Iy ong,m
(0,1,0,0,0,0,0,1,0,0) | E™ = moP1P2P3 | AL 0 o paps

4 (1,0,0,0,0,0,0,0,0,2) | Em™ 0P B, niopg
(0,0,0,0,0,0,0,0,0,1) | Em=nim Craroomsym

Table 4: Level decomposition of e11 under its gl(11) subalgebra obtained by deleting node 11 from
the Dynkin diagram in Figure 1, up to level { = 4.

the gl(11) decomposition of the fundamental representation is displayed in Table 5, and that of
R(A1p) representation in Table 6. The method of level decomposition is explained for example
in [85,102].

The commutation relations of ¢;; and its action on the 7 o part of the tensor hierarchy
algebra can be summarised in this level decomposition by considering an element of 7_o given

by

¢%tg = ...+ %hﬁl'""&mﬁmmns,m + éAT"'”‘)‘Fm___nG + %A’Pm"f"ﬁnmm +hImK™,
b A BT L AT B g e
I éanmngEanl...ng n %anl...nlo,rsENm"'mo’m n %anl...nu,mEm"'n“’m
+ %Ym,,,mmEnlmnnvm . (A.2)
and studying its transformation under £ = +1 defined by
65 = %emngm"W + % framensp e 60| (A.3)

In (A.2), we have labelled the generators of the adjoint at p = —2 with a tilde just as in Table 2.
The sub- and superscripts 4+ on the the parameters indicate whether the generator is at level
¢ >0 or £ <0, respectively. The last two lines in (A.2) contains the dual of the generators that

are not part of e;; but of the tensor hierarchy algebra, with X _ being associated with R(Ag) and

Y. being associated with R(A1g). As these generators only appear for £ > 0, we have suppressed
the superscript on them.
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¢ | sl(11) representation | Generator | Coordinate | Parameter
31 (1,0,0,0,0,0,0,0,0,0) P, ™ gm

21 (0,0,0,0,0,0,0,0,1,0) zmn Yrmn Amn
£11(0,0,0,0,0,1,0,0,0,0) | Zmms Ynyms Ay oooms

0 (0,0,0,1,0,0,0,0,0,1) | P™™0™ | Zpiinrm &niongm
’ (0,0,1,0,0,0,0,0,0,0) | Prms Ty -ng Any g

Table 6: Level decomposition of the R(A1g) representation of E1; under gl(11).

Table 5: Level decomposition of the representation R(A1) of e11 under gl(11), up to level ¢ = 11/2.

Level £ | sI(11) representation | Generator structure
4 (0,0,0,0,0,0,0,0,0,1) m
5 (0,0,0,0,0,0,1,0,0,0) I
6 (0,0,0,1,0,0,0,0,0,0) [ni-ng
(0,0,0,0,1,0,0,0,0,1) Ime,m

Performing the e;; variation (A.3) one then obtains

ShEm

SAT
SAS

ni--ne

Sht

ni---ng,m

5Xn1---n9

5Xn1...n10,rs

mpip2

—en o
9 P1p2

1 mpip2
2 A+
5

npip2

1

T 18 ' (6P1p2p3

= 206[“1”2”3 An4n5n6

= 56€ (nynans Al

= —286[

— _éfp1P2P3A+

ninan3

ninans

Ap1p2p3 o fp1p2p3A+

n1N2N3IP1P2P3 367’[”1”2

1 nyngng 1, +
}—§f789h

_ %fmmp:sA—i-

T4 g My

A+

ng---ng|

1
- p1p2p3A+
18f

h+

P
TL3] ?

ni.

117111721173) )

ni---ng,ng ’

p1{n1..ng,m)p2p3 o

--N9,p1P2pP3

_ 1 rpip2p3 P1P2P3
2f Xn1---n91017p2p3 + f Xm---ngplp%m +... )

=3 (2ers[n1Xn2...n10} - 3er[n1n2Xn3...n10}s + 3es[n1n2Xn3...n10}r) + ...

Xn1-..n117m = 116m[n1n2Xn3...n11} +...,

5Yn1...n11,m

=0+....

Here, we have only given the transformation of the 4+ parameters, the ones for — are obtained

by replacing es by f3 and changing the sign. The ellipses represent additional terms going into

e11 that will consistently play no role in this paper and that we therefore have not determined.
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We end this subsection by listing the coordinate representation R(A;) and the (first) section

constraint representation R(Ajp) in gl(11) decomposition. The coordinate representation of
Table 5 was originally studied in [51,103| and the section constraint representation of Table 6
in [43).

A.2 Level decomposition under gl(3) @ eg

The gl(3) @ eg level decomposition of ej; is obtained by grading the adjoint of ej; with respect
to node 3 of the Dynkin diagram shown in Figure 1.

We shall label the gl(3) generators by K*, with fundamental indices p,v € {1,2,3} and the
generators of eg by t4 with A € {1,...,248}. Levels 0 < ¢ < 2 of this decomposition are shown
in Table 7. The position of the A index on FEg tensors can be changed by using the Fg Killing
metric. This decomposition was first given in [41,42].

Level ¢ | sl(3) @ eg representation | Generator | Potential

(1,1;0,0,0,0,0,0,0,0)

0 (0,0;0,0,0,0,0,0,0,0) Ky hui”

(0,0;1,0,0,0,0,0,0,0) tA D4

1 (0,1;1,0,0,0,0,0,0,0) EY Al
(1,0:0,0,0,0,0,0,0,0)

EH BAB

2 (1,0;0,0,0,0,0,0,1,0) AB p

(0,2;1,0,0,0,0,0,0,0) ERY hit,

Table 7: Level decomposition of e11 under its gl(3) @ eg subalgebra obtained by deleting node 3
from the Dynkin diagram in Figure 1, up to level £ = 3. The Dynkin labels for the two summands
are separated by a semi-colon.

In order to list the remaining generators in the indecomposable representation and also the
coordinate representation and field strength representation it is more useful to directly consider
the tensor hierarchy algebra 7 (e;1) decomposed under gl(3) & eg. The construction of this
algebra is similar to the one performed in the gl(11) grading in [43] and we present only the
salient features here.

The local algebra is constructed out of the generators of degree ¢ = —1,0,1 in Table 3. The
components of degree ¢ = 0 are parametrised in the BRST formulation by a bosonic vector
superfield V,(¢) generating the reparametrisation in three Grassmann variables 1, and scalar

fermionic superfield ®4() in eg. We use #* = 8?,7. The components of degree ¢ = 1 are
parametrised by the fermionic superfield zﬁ;‘ and the bosonic superfield 745 in the 3875 @ 1.
The components of degree ¢ = —1 are parametrised by the bosonic superfield S4 and the
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fermionic superfield ©#. The BRST operator is then

0V = V" Vi + 04 Sa (A.5)
504 = L fpet @B + Vot + TAPSE — fpo (309,1SC + ¢l SY) +pller
584 = V'S4 + 'V, 84 + fpeltadPsY
SOH = V,iYOF — (FV,0Y + YV, 0" — FdAS, |
0y = Vi + Vb — Vil + fec Py
ST4P = Vo' TP — "V, TP 4 20 fopUTPIP — 20 oAyl — fPAG Pl aCyl .

One checks indeed that 62 = 0 on V,, and ®4 and vanishes up to terms quadratic in the degree
g = =£1 on the components of degree ¢ = +1 respectively, showing that this defines a local
superalgebra. The tensor hierarchy algebra is defined as the quotient of algebra freely generated
from this local algebra by its maximal ideal. The algebra generated at p = 0 includes by
construction eq1, and defining the direct sum over all ¢ for each p one identifies the same FE1;
representations that appear in the tensor hierarchy algebra constructed in [43] so we conclude that
they are indeed the same algebras. One would expect that there is a minimal local algebra, similar
to the finite-dimensional construction of [44], which is a subalgebra of both local subalgebras used
in the GL(11) covariant construction of [43] and the GL(3) x Eg covariant construction presented
here. This minimal local algebra would then imply the uniqueness of the tensor hierarchy algebra.

As for (A.2), we parametrise an element at level p = —2 as
POtz = ...+ AJNFL+ hIVKE, + @t + ATAEN + L BIAPEN, + 2B EM + RN
+ X EF 4+ IXAEY + (A.6)

to compute its transformation under e1; generators at level £ = £1 in the gl(3)@®es decomposition,
defined by

50T, = [e;‘Ef; + fHED qsat‘a} . (A7)

One computes within this level truncation that

ShYY = e ALY — fRARA — §h (e AL — FIAEA, (A.8a)
Sdt = fABceanu _ fABcng:B , (A.8b)
DA = el + [ e el — fyBLAY — PPt (A.8¢)
5B:-VAB _ 28PABCD6[C/;A,—/|—}D n %,{AB/{CDE[%A;D’ (A.8d)

for the elements in e11, and

5X,u = f,Z(X;?V + h:VA) + eﬁq)—"A_ )
0y = —2¢{, X)) — fApee AL (A.9)

for the elements in X% in R(As).
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The gauge transformations are likewise defined from the parameters

PMoy = Pro, + FAO + L EM O, + 4F,0, + 260 + ...,

EM Py = €4, + M Fy + S AABEE L AN PP 268008 (A.10)
by
8 ¢ ta = o {PM, Pn} (A.11)

which gives
SFBL = 2045+ ...
SFh =20 + ...
ST AL = 0ag + OUpA® + fap oA + .
SN = 0,8 — LupAIE — 40V, + 204€) + 8, (8A)\A + 185,548 + 88")\0) Yo,
5 4 = —faBC0c AP — L faC AP + 2fa 0Ll +
SFATA = oM + apNyP — AP ooRe] +
+ n+AB __ AB
55 B,w = QG[MAV} +.o.,
+p+A _ A
¢ hy = 20,6 + - (A.12)
for the e1; fields and for the fields in R(As) we obtain
A A A
0 Xy = 2048, + ..., 0 X = 200,80 + - (A.13)
One also defines the following invariant bilinear forms. The Killing—Cartan form expands as
KPOLOL = WiVt — Lh Y 4 kAP E + 2451 A4
| AB —pv —pvyp+A
+ ﬂBAg B:[,, +4B7# B:[,, + 20" h:,, +... (A.14)

One can also check the K (FE1;) invariant bilinear form on R(A;) and 7_; respectively expand as

1 P
P00 = 10,0, + 650405 + ﬁaAcaBDnWajBagD
+ 41, 01 + 2648 7,,040% + ... (A.15)
and
UIJFIFJ _ %nup"?'»\"?onFuuUFp)\ﬁ _ nMVF,ucraprp + nuuéABFuAFuB
+ 30" PS5 apF i FE + 0 0P Fuy Fo
+ 407D BapFop +4F2 + 9B (B4Rl — BARS) +... ), (A16)
with Fap = FAB + kapF with FAB in the 3875. We have also the Fj; invariant symplectic
form
QPG = 36 (Fi,Gon + FuG o — 2F 5y G iy — Gity Foa — G Fpo + 2Gap Fruy + ... )
(A.17)
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B Variations of the fermionic bilinears under K(Fj;)

In this appendix, we tabulate the variations of various fermionic bilinears under the K (E11)
transformations (6.2). The Spin(1,10) I'-matrices I, that we are using satisfy the duality relation

n(n—1)

(_) 2 Gn+1...0411 T

Fal...an = m%l...an (B-l)

an41..-011 *

Using the charge conjugation matrix C = iI'% for Majorana spinors, we have that the combinations
CI'*, CT'™%2 and CI'*t% are symmetric in their spinor indices, meaning that for anti-commuting

spinors
€1€9 = +€2€7, €% = —651'% , 1M %2ey = —g"1%2¢ ,ete. (B.2)

For calculating the explicit variations below we made use of the gamma package [104].

B.1 Bilinears of the form €y,
Under K(Ey;) as defined infinitesimally in (6.2) we find

1
5 (€¢a) — EACICQCS (—€F61C203¢a + Era6162¢63 _ 45[011 €F62¢63) , (B3)

1
5(grb¢a) — EACICZC3 ( _ Erabcwz wc3 —9 5;1 Erac11/}c3 _ 4521 Erbczww

— BELET2B4h, 4 el 12 — 451 52 ap%) , (B.4)
1 , _ .

0(€LbbyYa) = whercaes (ETab1b26162¢c3 — &b, " PP P + 46y by Y
— 405 &Ly, Y — 2nap, €L, AP + 6571 52 €D,
— 2651552 e + BELG2 Tyt — A, 6 gr%cs)

: B.5
- (B.5)

_ 1 _ _ _
6(6Fblb2l)3wa) - 6A610263 ( - 6Fab162630102w63 + 377ab1 Erbgbgclcchg - 4521 Erblbgbgc2w63

Cl = 2, /.C: Cc1 = coc C1 $Co — c
— 665 a2 — 90 200 — 6651552 Ay t)

— 12 (521 5;? EFbe?)l/JCB — 12 Naby 5;; 61“;,3021/103

C Cc3 —,/,C C C: C3 —,
— 61y OEL0E2 €57 + 6,051 02058 apa> _— (B.6)
_ 1 _ _ _

6(€Fb1b2bsb4wa) = 6A016203 <6Fab1b2bsb46162¢03 - EI‘b1bzb?)bz;CICQCSl/}a + 8512 6Fb2f>3b4aC27/163

- 45[611 Erb1b2b3b462 ,IIZ)CS - 477ab1 Erb2b3b46162¢63 —12 55; 552 Erb3b4a7;bcg

+ 16 (521 5;? EFbeSIsz% — 24 Naby 5;21 Erb3b4021/163

36 051 522 €0y, 1 + 24 1jap, 05 62 €T C3> , B.7
+ 360y, 0y, ELbsb, "V + 24 7ab, O, Oy ELb, Y [b1b2b3ba] (B.7)
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_ 1 _ .
5(€Pb1b2b3b4b57/1a) - 6A610263 ( - 6Fab16263b4b50162w03 - 10 6{,11 6Pb2b364b5a02¢63

— — C1 —

- 46[611 6Fb1b2b3b4b5621/)63 + 5 nabl 6Fb2b3b4b5 61621/)63 - 15 6[); 6Fb2b3b4b5 6263¢a
C CQ — CQ — C1 —

—20 5{,11 5(,; 6Fb3b4b5al/)63 —20 621 5(,? 6Fb2b3b4b5¢03 — 40 Naby 6(,21 6Fb3b4b5021/)c3

— 6010, 053052V, 6% -+ 60 851 672352 € 1,100 ) (B.8)

[b1b2b3b4bs5]

The bar notation in the above formula denotes (anti-)symmetrizations to be carried out on a
tensor expression, e.g. Tuplias) = Tjap) = %(Tab — Tpq) and so on. The totally antisymmetric,
hook symmetric and single traces can easily be obtained from the expressions given above.
Furthermore, the variations of €l'y, _p, 1, for n > 6 can be obtained from (B.1).

B.2 Bilinears in 1,1,

The variations of the gravitino bilinears are

B 1 _ B _
(hathy) = 5 Adydods <¢ard1d2d3¢b — 20, TpHrd2pds 4 g 5 ¢brd27/)d3) ‘(ab) . (B.Y9)

_ 1 _
(el ethy) = 6 Ay dods < — 20 TP 2apds — 3591 o) T 9234y 4 8 391 4y, T, B24)%

- 4551 Dalp 2% — 215 by DN %29p% 48 531 5§l2 @b¢d3) ‘[ . (B.10)
a
_ 1 _ _ _
5(¢arclcgwb) - 6 Ad1d2d3 <2 warbclcgdld2 ¢d3 - warclczdldeS wb + 8 5;[1 T/Jbrclcz dedS
+ 868 T, 2% + A nge, YpLe, P290% 6691522 1, Ty, (B.11)
— 16091622 T, th™ — 408622 o Tyth™ + 81, 02 @bfdz”tb@) atliercal
1€2

_ 1 _ _
5(¢arclczcgwb) - 6 Ad1d2d3 < -2 warbclczc:),dldzwdg -9 616111 waPCQC3d2d3¢b

B 8 52[1 lebrclch3d2 wdS —12 52[11 ﬁbra0203d2 wdS + 677(101 Jjbrcz%dld%/}ds
—24 631 6(212 &br@%wdg +12 5d1 5d2 &brac3wd3 —24 Nacy 5?; &brc3d2wd3

C1 7C2

+ 6 001 002 608 hathy — 12 ac, Os 012 TZJbTZ)dS) (B.12)

(ab)[c1c2c3] ’

_ 1 _ _
5(¢aF01020304¢b) = 6 Adldzdg <2 ¢arbclczcgc4dld2 TZ)dS - ¢aF010203C4d1d2d3¢b

-8 52{1 Jjbrclcz%c‘ldzw@ — 16 5(6111 &bracz%cﬁ;dzw@ — 8Nacy TZJchzcgchdldzT/}d3
+ 36 5?11 52122 ’lz[_)arcgc4d3¢b + 32 531 52[12 Tz)bFCQCgcﬂ[)dS — 94 5?11 5?22 T;bra0304¢d3

48 700, 028 Dol eges ™ + 48 100, 0022 YT, ) . (B13)

(ab)[c1c2c3e4]
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1 _ _
6 Ad1d2d3 <2 wbra016203c405d1d2wd3 —15 6511 warcg03C4C5d2d31/}b

+38 531 1ZbF0102030405d2 ¢d3 +20 52[11 &bra02030405d2¢d3

—10 Nacy &brcgcgczlcsdldzwd:s +40 52[1 5512 @brczcgmcs ¢d3 (B14)
— 4062622 Yy acgeres ™ + 80 Taey 06 Yol egeses P90 ™

2

60 0% 651 BTy + 120 e, 022622 TuT e

6(1/;(1F01CQC3C4C5 wb) -

c1 YeaYes co Yes

[ab][c1caczcacs]

Here we have also used the symmetry properties of the Gamma matrices.

C Eleven dimensional supergravity

18

Eleven dimensional supergravity equations in our conventions *° are given by

1 1
L=eR(w)— deanqumnpq - @EmlmmnFM1---m4FM5---msAm9m1om11

w +(AAJ 1 7 rmn, S n

Fedn T Dy (21

where
. o 1.- . "
Wmab = Wpap — Z(wmra¢b - ¢mrb¢a + %Fmﬂlb) )

1-
~ n
Wmab = Wmab — gdjnrmab pwp )

Frnpg = 405 Anpq Fonpg = Frnpg — 3Vmlnptq (C.2)

(0)

b 15 the spin connection without torsion. The local supersymmetry transformations are

and w

a 1 a 3
eyt = —§6F Ym 0 Amnp = §€F[mnwp] )

~ 1 -
O = Din(@)e + 5oz (T — 85IP) Frpgy (C.3)

For the purposes of this paper, it is of interest to identify the quartic fermion terms coming

from different sources. These are
Lys = LT+ L3+ £0m (C4)
where

—1EH_17 Tcra, b Tbe a 17bfca
e LB = —belay (VT — 20°Ty" ) — ZU Il Y

_%J}drcabdewe (szfrcabfgwg _’_41[}craq/}b) , (05)

18In this section only we shall denote )

1P simply by ta, thereby suppressing the 11D superscript in order

to avoid clutter in notation. Everywhere else in this paper 1, is as defined in (8.7). In our conventions ¢ =
Tily, {Ta,Ts} = 2n4p with 14 = diag(—,+ + ...4), Dm(w)e = Ome + %wm“bfabg [e1-011 — _ o111 554
R=e"el Rymn®.
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— 1~ LCTa 1,be, a - 7y T°Co/y@
eTILE = — Lty (VT — 20T ) + BT ey

1 - - _
+a¢drcabdewe (lefrcabfgwg""ﬁdjcraq/}b) , (06)
—1 pPauli 1 - 7. Tabede Jambe, ) d
eTLLY = — i Loty (@D vy + 12T ) (C.7)

Summing these up yields

I - - _ - _
e_1£1/14 = _§¢cra¢b <27pcra¢b - 4¢brc¢a - 8ﬁca¢drd¢b — Tf)dradeeQ[)e)

1 - _
_ad}[arbcd}d} (werabcdefwf 4 12warbcwd> ) (C.S)

D The gauge parameter representation

The gauge algebra suggests an embedding of the bilinear spinor in the gauge parameter repre-
sentation. Recalling (4.4), we want to check this embedding. The representation satisfies
0 (eT%) = —%A“bcEFbce ,
5 <EF“be> — LA geeTedec 4 ABCET (D.1)
§ (eT@azasaaas ) — qoplarcaasgpasasle _ L Abibalargy \ azesssaslercacacacag

cieacaeacs € -

At this level truncation one finds a consistent embedding with

£ = el
Aap = —€lgpe
)‘a1a2a3a4a5 = Era1a2a3a4a5€ s
7
—cieacseacs
gal---fl%b = _gnb[alEaz...a7101026364056F 1626805 e
)‘al---as =0 )
)\al...ag,blbgb3 = _4277b1[a1n\bz\a2n|b3\a3gra4a5a6a7as]€ ,
7
—TC1C:
§a1~~~a107b = §6b[a15a2...a10]clczer e,
21
§a1...a9,b,c = _%(T,bcgal---agdldz + nb[a1€a2...a9}cd1d2 + nc[algag...ag}bdmz)grdulge :
/
Sal...alo,b =0, (D2)

and two the other parameters g2 and Ay at this level vanish. One checks indeed that £%, Ay, 4,
and Mg asazasas transform as in (4.4), while &, 4,4 and Ay, 4y do as well provided on defines
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the additional variation

105

_ cicac
5£a1...a7,b - = 3 (A[a1a2a3)‘a4a5a6a7]b + Ab[alag )‘a3a4a5a6a7]) — 4\ 3)‘cl<a1...a7,b)czcg
1A010203 1A010203
+6 5010203(a1...a7,b) + 5 66102<a1...a7,b>,03 )
_ 1 Acicacs 1 Acicacs ¢!
5)‘al~~~as - 7A[a1a2a3)‘a4a5a6a7as] + EA >\G«1~~~a87010203 + EA gal...asclcz,cg : (D'3)

In particular one has

5£a1...a7,b _ _%nb[al60,2...a7}c16263d1d2A61C263Erdldz6 o 105776[&1 Aa2a36€F04a5a6a7]C€
— _%nb[alECLQ~~~a7}610203d1d2A010263EI’dldQG — 168Aclc2c377<b’[a177‘61|¢1277|02‘asEFM%%CW]C36
_ % (A[a1a2a3gra4a5aﬁa7}be + Ablarazg pasasasagar] 6) . (D4)

Alternatively, one can consider the submodule parametrised by the combination

€aroarp = Eapoarp + 5 lor Eaa.arer.cs A (D.5)
Aar.asbibsbs = Aar..as,bibsbs + 4201 [0y MbalasMbs|as Nasasasaras] »

€ararod = Caroarod — ;5b[a1€a2...alo}c1cz)\Clcz ;

Coronbe = Earanbe & ;_é(nbcgal...agdldz | pplen gz asledids | clar coa-alodia) iz
and A, . 4 and 52” ar0.b and check that they vary into each others. One has for instance
0arrarb = —4NTPBN 01 ar Byeses 2;5!776[&1Eaz...a7]cl...C5A66C7d561m677d (D.6)

+6A0162035C1CQC3(a1...a77b> +§A016203§clcg(al...a7,b),03 + g1 lar €as arer...csDegeres A

1 5 1
5)‘f11~~~¢18 = _ACICZCB)‘aL..aS,szC?, + §Ac10203£/

6 ai...agc1c2,c3

up to terms in {92 and Ay that we did not compute and are part of the invariant subspace.

The above results exhibit to this level truncation that there is an invariant subspace in R(A1)
such that the associated quotient is the symmetric SL(32) tensor representation of K(Ej;)
obtained from the symmetric bilinear. A complete proof seems out of reach.

E K(Ej;) fermions under Spin(1,3) x SU(8)

In this appendix, we perform the decomposition of the K (E11) spinors under Spin(1,3) x SU(8)
associated with exceptional field theory in four external dimensions. We use this to probe the
action of generalised diffeomorphisms discussed in (7.18) and compare with results available in
the literature for the supersymmetric E7 exceptional field theory [80,81].

The K (e11) level 1 variation in the gl(4) & e7 decomposition is defined from the generators

A Eq i+ napFPij) — Aija(E*7 + 1™ BY) (E.1)
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such that the Fermi fields transform as follows

51[)2 = QZAZ]b’}/[aﬂ)b]j + 5Ajkb'7b'7axwk s
Sk = ;z’A[”‘“l/zf} + égwklmrsAlmfyaxqm , (E.2)

One can check the closure of the K (e1;) algebra by treating A%¢ as a Grassmann odd parameter
such that the commutator is the square of the variation

; . C i 1 i TS
52"% = zzsab d’yd (A[ JbAkl]c + EE Jklpa qubArsc)Xjkl
. . . 1 . .
+ <AZk[bAjkc} -3 5§Akl[b1\k1d> (DYl 4 Yocthl) + §Akl(bAle) (= + 1etls)
. . 1 . .
+<AlkbAjkb — 1oAY + S NN (ot + Fmetsc) (E3)

where the last line reproduces an so(1,3) @ su(8) = K(gl(4) @ e7) transformation, while the
others appear at level 2 in K(e11). Indeed, level decomposition predicts at level 2 [41,42]: a
rank 2 antisymmetric tensor of SL(4) in the 133 of E; that branches under SU(8) as a complex
self-dual rank 2 antisymmetric tensor and a anti-hermitian traceless tensor, and a symmetric
tensor of SL(4) in the singlet representation of E;. Similarly

i 6 i 1 i TS a, b
07X = (AW AR 4 TN )y )
. ; . . 1 .y
_3<A[2|p[bAlpc} _ %‘%‘qu[b/\pq ])%Cxﬂf}l _ gqubqubX ik
. ; . 1 a4
+3( ALy — Lo AP A )M AP oy (E.4)

where the last line reproduces a so(1,3) @ su(8) transformation, while the others appear at
level 2 in K (e11). This shows that the action (E.2) of K(ej1) on the fermions closes in this
decomposition.

We next work out the general formula (7.18) for the generalised diffeomorphism on the
fermions with the partial solution of the section constraint corresponding to the GL(4) x Ex
subgroup. In this decomposition one defines the K(FE7;) spinor as ¥ = (eiea”i/)f“ B%Xijk)y and
the compensating transformation X of (3.32) has only one parameter A% at level 1 given by

XU = VA, 0,60 (E5)
One obtains in this way from (E.2) the external diffeomorphism
Oty = € O, + D Uy, + 4V AT DA Yaep, Uy — 2iV e, 08 rax "
5§XUk — guaﬂxwk _ —Z'VA[UaAﬁuﬂluk] _ %ewklquSVAlpeuaaAgu/anqrs- (E.6)
z

If we put z = % this is in complete agreement with [81, Eq. (3.1)].2°

9We introduce the real parameter z to compare with other conventions.
2ONote that the appearence of covariant derivatives in [81] is because they take a gauge parameter M =
(€, 6" ALy, . ..) whereas we take €M = (¢",0,...).
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The spinor representation (6.2b) of K (E11) in the present decomposition becomes

Set = —iNTy.e; . (E.7)
It closes according to
1 : . : :
0% = AN Pape + (AN g — $0AH A, ) (E.8)
1 . . . ‘
+ AT A e + (A’kaAjkb - ga;AklaAklebeﬂ , (E.9)

where the second line corresponds to level 2 generators.
Generalising (6.4), one obtains moreover for the components in e;; © K (e;7)

Zab = Eiy(aqb(i)) + EZ"Y(awb)i )
TR 1 oo
:ijl _ E[ZX]k” + ﬂgljklpqrserqrs ’
Y T z_ ..
By =@yl + §6k7ax”k ,

—=ijkl _ —[i ikl L iikipgrs—
Sab el YabX’ I ﬂe Jpd €pVabXqrs >

- 1 —1i - ) 1 i (= —_
Eabj = €Vap]j + €Yty — 55]- (Yt + ek’Y[al/}(If}) )

Eb = 1€l — 1€ V()i (E.10)
that transform under K(e11) as
0Zap = —2iAij(aEy) + iy S + 2A7 (Zpyiy — inap AT e (E.11)
g 30/ T
—ijkl =kl kl —_
Skl — —;(A[m“:a] — ﬂgw qu’Squa:Tsa) ,
L o i ‘ iy T 1 .0
‘EZj = ZZAkla\:wkl + ZAwb:ab - ZZAklb:;]bkl + 22Ak[Z:ab]]k + ZAwb (‘:a,b + Tab) :

The extra bilinear T, from the R(A2) module is
Tap = igi’Y[a%] — &y oy - (E.12)

One checks that it transforms into a vector in the 28 that also belongs to R(A2) and not into
the components in ¢17 © K (e11), as required by the indecomposable structure of the module:

0T ap = IATY gy — iAi; L 2 (E.13)
with
_ z
Yaveij = 30€[Vabv¥e)|5) + §€abcd€k7dxz'jk : (E.14)

This is indeed consistent with the supersymmetry transformations of 7 exceptional field theory
[80, Eq. (3.32)] with
5susyhab = Eab 5
5susy¢ijkl _ 2ZEijkl ’
OV AY = —iz=Y

5susy(Bijkl Bagj) = —2i(z E?;kl,Eagj) . (E.15)

ab
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Similarly as for D = 11 in (6.12) one can combine the symmetric dual graviton ila7b and the
anti-symmetric field hap of the indecomposable module R(A3) into a single reducible field fza;b
with supersymmetry transformation

5 g = Zpy + Tap = 1€Yath} — 1€ Yati - (E.16)

Moreover, one checks that the fermion bilinears OL introduced in Section 7.2.1 become

. 22
O;jb = ¢[Z¢ + €ab6d¢ 71) + wck'yab’yc ik + = Z]klpqkalp’Vaqursy

P 72
O = =0l Wy — "ty — %’Y[a% - _EadeX TEraxin — ican™ (W Yt sk — irev}) |
O = ¢l + Q_ileijklpqmi)apst — sea" (% Yeax 245ijklpqqu’bp%d><qr8) ’
Oavéj = 691, 1t — 25§7;ﬁ17b¢c}k + 122 abea (XY XG0 — 26XV Xhap) - (E.17)

For these one finds the K(e;1) variation

50;]{, - _ZAUC(OabC + %Eabefoefc) + ZAk[Z‘C(Oabc]]k + %Eabefoefc]]k)

— 2izAa Oy + 22 A0 . (E18)
The absence of undesirable representations determines the relative coefficients in OZJI;, which in
turn reproduces the supercovariantisation of the twisted self-duality equation in A/ = 8 super-
gravity [82]. The expressions in (E.18) have been fixed by requiring that Og° is real, Ogp;
Hermitian traceless, and 0 M complex self-dual. The first two terms in 0 M give the superco-
variantisation of the scalar field momentum P.7*! [7,82], while the last two terms represent the
supercovariantisation of the 3-form field strength H;%]zl [81]. Similarly, Ogpd j is the supercovari-
antisation of the 3-form field strength Habcij [81]. This is consistent with the duality equation
relating the scalar field current and the 3-form field strength in the adjoint representation. The
first four terms in Oy reproduce the supercovariantisation of the spin connection [82], while the
last two terms define the supercovariantisation of the dual-graviton field strength, consistently

with the dual-graviton supersymmetry transformation =/, in (E.10).
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