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In this article, we study quantum randomness of stochastic cosmological particle production sce-
nario using quantum corrected higher order Fokker Planck equation. Using the one to one corre-
spondence between particle production in presence of scatters and electron transport in conduction
wire with impurities we compute the quantum corrections of Fokker Planck Equation at different
orders. Finally, we estimate Gaussian and non-Gaussian statistical moments to verify our result
derived to explain stochastic particle production probability distribution profile.

It is a well known fact that the particle production sce-
nario in the early universe cosmology (during reheating)
follows the dynamical master equation, aka Klein-Gordon
equation. On the other hand, transport phenomena of
electron through a conduction wire with impurities fol-
low time independent Schrödinger equation. Both of this
dynamical time dependent phenomena have structural
one to one correspondence [1, 2]. Anderson Localization
and saturation of the chaos are some well studied phe-
nomena in the context of scattering problem can be ex-
tended to describe the quantum randomness phenomena
during cosmological particle production. From their in-
herent stochastic nature quantum chaos can be related to
them and chaos bound can be defined either by Lyapunov
exponent [3] or by Spectral Form Factor [4, 5]. The possi-
ble quantum effects arising from higher order corrections
in dynamical master equation aka Fokker Planck equa-
tion for particle production scenario in the early universe
cosmology (during reheating) can be achieved from the
present discussion. For comparing scattering event with
stochastic particle production Dirac Delta profile of time
dependent coupling (mass function) is chosen,

m2(τ) =

N∑
j=1

mjδD(τ − τj), (1)

localized at time scale τ = τj (where j represents the
number of non-adiabatic events). Further using the con-
cept of transfer matrices occupation number can be com-
puted from this set up. To model a phenomenological
situation where width (wj) of the profile of the time de-
pendent coupling is finite and the scattering event is rele-
vant, we consider sech scatterers. It is important to note
that, in the limit wj →∞ the Dirac Delta profile can be
recovered from this phenomenological profile.

In the context of disippative system, Fokker Planck
equation explains the probability density for particle po-
sition of Brownian motion in a random system. For
a Markovian process this situation can be expressed
by Chapman-Kolmogorov equation [1]. Now consider-
ing Maximum Entropy Anstaz we can derive the Fokker

Planck equation from Smoluchowski equation when we
integrate the probability density over the angular coor-
dinate θ:

P (n, θ, φ; τ + δτ) ≡ P (n, θ; τ + δτ)→ 〈P (n+ δn; τ)〉δτ
(2)

where we consider an infinitesimal change (δθ) is not
functionally dependent on θ. Further Taylor expansion
of 〈P (n + δn; τ)〉δτ with respect to the infinitesimal oc-
cupation number (δn) with the constraint in this context
〈P (n; τ)〉δτ = P (n, τ) gives the following result:

〈P (n+δn; τ)〉δτ = 〈P (n; τ)〉δτ +

∞∑
q=1

(q!)−1∂qnP (n; τ)〉δτ

(3)
This gives the following general structure of Fokker-
Planck equation which we will use for our all calculations:

∂τP (n; τ) =

∞∑
q=1

(q!)−1 (〈(δn)q〉δτ/δτ) ∂qnP (n; τ) (4)

Using Smoluchowski equation the occupation number can
be expressed as:

δn ≡ n2(1 + 2n)− 2
√

(1 + n2)(1 + n)n2n cos 2(φ2 − θ)
(5)

which help us to further define various statistical mo-
ments from the probability density function. Assum-
ing that the particle production rate is small locally
(µδτ < 1) we have the truncation in Taylor expansion.
With primary truncation in first order 〈(δn)〉δτ Fokker-
Planck equation is derived as:

µ−1k ∂τP (n; τ) = ∂n [n(1 + n)∂nP (n; τ)] (6)

Here the mean particle production rate have Fourier
mode dependence (µk). By Fourier transformation with
respect to the occupation number n of the distribution
function:

P (n; τ) = (2π)−1
∫
dk eiknP̄ (k; τ). (7)
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Which simplifies the Fokker Planck equation in Fourier
space :

∂τ P̄ (k; τ) = µk
(
2ink − k2n2

)
P̄ (k; τ), (8)

Imposing initial condition for probability distribution
function at time τ is given by the Dirac Delta profile
or its derivatives in different orders we get:

∂Jτ P (n; τ) = (−1)J n−JJ ! δ(n) ∀J = 0, 1, 2, · · · (9)

where J denoting the order of quantum corrected Fokker
Planck Equation.

For J = 1 we get the following solution of the proba-
bility density function:

P (n; τ) =
exp[−n(µk(n+ 1)τ + 1

4µkτ(n+1) + 1)]

2
√
µkn(n+ 1)τπ

.(10)

Comparing the coefficient of δτ from the both sides of
the Taylor expansion we get quantum corrected Fokker

Planck equation at different order. Without truncation
on both sides of this expression additional contributions
in δτ and in its higher order can be obtained and gen-
erate quantum corrected version of the Fokker Planck
equation valid upto higher orders. All such higher order
corrections justify non-Gaussian effects appearing during
cosmological stochastic particle production in reheating
phase. In another words origin of higher order contribu-
tions describe the quantum effects from its non vanish-
ing statistical moments originating from quantum corre-
lations.

Equating both sides of Eq (4) after Taylor expansion
and comparing the coefficient of δτ2 the second order
Fokker Planck quation is computed as:[

n2(1 + n)2/2 ∂4n + 2n(1 + 3n+ 2n2)∂3n

+(1 + 6n+ 6n2)∂2
]
P (n; τ) = µ−2k ∂2τP (n; τ) (11)

At at the second order the probability distribution func-
tion has the form:

P (n; τ) =
(
π(n2 − µ2

kτ
2)
)−1

[n sin(Ln) cos(Lµkτ)− µkτ cos(Ln) sin(Lµkτ)]− (4πµkn)−1 [i {Ci(−L(n+ µkτ))

− Ci(L(n+ µkτ))} − Ci(−L(n− µkτ)) + Ci(L(n− µkτ))− 2i {Si(L(n+ µkτ))− Si(L(n− µkτ))}] , (12)

where L is the momentum cut-off.
Following the same procedure from Eq (4) and compar-

ing the coefficient of δτ3 the third order Fokker Planck
equation is obtained as:

[
n3(1 + n)3/6 ∂6n + 3n2(1 + n)2(1 + 2n)/2 ∂5n + 3n(1 + n)(1 + 5n+ 5n2)∂4n

+ (1 + 2n)(1 + 10n+ 10n2)∂3n
]
P (n; τ) = µ−3k ∂3τP (n; τ). (13)

Three fold boundary conditions for this equation for
J=1,2 and 3 from Eq. (9) with the same initial condi-

tions we get the following probability distribution func-
tion from third order contribution as given by:

P (n; τ) =
((
√

3 + 3i)µk + 2(
√

3 + i))n3

4(
√

3 + 2i)µ2
kn

2((−1)2/3µkτ + n)
√

((−1)2/3µkτ + n)2

+2in2(2i
√

3µ2
kτ + µk(

√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ + 3i

√
3τ + 3τ)− 2

√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ)

−µknτ((−(
√

3− 3i))µ2
kτ + 2 6

√
−1µ(

√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ + 3i

√
3τ + 3τ)

−2(
√

3− i)
√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ) + (

√
3 + i)µ2

kτ
2(2µkτ +

√
−2i(

√
3− i)µ2

kτ
2 + 4n2 + 4i(

√
3 + i)µknτ). (14)

For fourth order contribution equating both sides of Eq (4) and comparing the coefficient of δτ4 we get fourth
order Fokker Planck equation as given by:



3[
70n4(1 + n)4∂8n + 140n3(1 + 2n)∂7n + 30n2(1 + n)2(3 + 14n+ 14n2)∂6n

+ 20n(1 + n)(1 + 2n)(1 + 7n+ 7n2)∂5n + (1 + 20n+ 90n2 + 140n3 + 70n4)∂4n
]
P (n; τ) = µ−4k ∂4τP (n; τ). (15)

Applying four fold boundary conditions (J=1,2,3,4) from Eq. (9) we get the following expression for the probability
distribution function, as given by:

P (n; τ) = −(2π)−1
∫ q

−p
dk eikn

{
(k2n2µ2

k + 2knµk + 6)

4k3n3µ3
k

e−µkkτ +
(k2n2µ2

k − 2knµk + 6)

4k3n3µ3
k

eµkkτ

+
(k2n2µ2

k − 6)

2k3n3µ3
k

sin(µkkτ) +
1

k2n2µ2
k

cos(µkkτ)

}
(16)

where we introduce IR and UV regulators, p < k < q.

FIG. 1. Variation of fourth order quantum corrected proba-
bility distribution with respect to the particle number density.

From Fig. (1) the Pi (i=1,2,3,4) denote the i-th or-
der probability distribution. The order by order small
corrections (fluctuations) from Gaussian profile support
the quantum effects in stochastic particle production.
From the quantum corrected probability distribution we
can further calculate different statistical moments using
Eq (4). Calculating expression for 〈n〉,〈n2〉,〈n3〉 and 〈n4〉
and standard deviation, skewness and kurtosis for a given
time solidify the quantum nature as predicted earlier.

To compute the first moment of the occupation number
we use the first order master evolution equation:

µ−1k ∂τ 〈n〉 = 1 + 2〈n〉 . (17)

To compute the second moment we use first and second
order master equations in two different orders:

1st order : µ−1k ∂τ 〈n2〉 = 4〈n〉+ 6〈n2〉, (18)

2nd order : µ−2k ∂2τ 〈n2〉 = 12〈n〉+ 12〈n2〉+ 2. (19)

Continuing in the same way one can similarly calculate
third and fourth moments corrected upto different orders.

From Fig. (2(a)) we obtain the large variance with in-
creasing τ . But the quantum corrected and uncorrected
distribution have same variance at all time signifying that
width of the peak is unchanged by the quantum effects.

Additionally, it is important to note that the computed
probability distribution function has a long right tail a
specific effect of positive skewness. Considering different
order correction in 〈n3〉 and standard deviation we cal-
culate skewness with and without correction. Now from
Fig. (2(b)), we can say that the corrected Skewness devi-
ate significantly from the uncorrected one at low τ limit.
But we can see that at higher time scale they overlap.
So for particle production at initial time the skewness is
dominant over uncorrected skewness. So the effects of
quantum corrections are more clearly visible for initial
time scale. Using the corrected 〈n4〉 and standard de-
viation we calculate the kurtosis for particle production
event which we have shown in Fig. (2(c)). Here we have
shown the quantum corrections are dominant at large
time scale, but at low time scale both the corrected and
uncorrected kurtosis overlap with each other.

From Itô and Stratonovitch perspective the Fokker
Planck equation can be expressed as:

Itô : ∂τP (n; τ) = ∂2n(D(n)P (n; τ)), (20)

Stratonovitch :

∂τP (n; τ) = ∂n((D(n))1−Q∂n((D(n))QP (n; τ))) (21)
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FIG. 2. Time evolution of variance, skewness and kurtosis
computed from the probability distribution profile.

where D(n) = n(n + 1). Using this we get the following
solution of probability distribution:

Itô : P (n, τ) =
exp

[
− ((4n+2)τµk+n)

2

4n(n+1)τµk

]
2
√
π
√
n(n+ 1)τµk

, (22)
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FIG. 3. Variation of probability density function for Itô and
Stratonovitch with the occupation number per mode

Stratonovitch :

P (n, τ) =
1

2
√
µkπτ(n(n+ 1))Q

× exp

[
−
(
n2(n+ 1) + µkτ(2n+ 1)Q(Q+ 1)(n(n+ 1))Q

)2
4µkτ(n(n+ 1))Q+2

]
.

(23)

The probability distribution function obtained from this
have the same the log normal form.

From General perspective the Fokker Planck equation
with effect of potential(U(n)) can be expressed as:
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(a)Probability distribution for β = 1/T = 0.01.
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FIG. 4. Variation of the probability density function with respect to the the occupation number per mode at different temper-
atures.

∂n

(
D(n) ∂n

(
exp

(
βV (n)

2

)
P (n; τ)

))
− U(n) exp

(
βV (n)

2

)
P (n; τ) = ∂τ

(
exp

(
βV (n)

2

)
P (n; τ)

)
, (24)

where the effective potential at finite temperature can be
expressed in terms of the diffusion function D(n) and the

specific model potential V (n) for the number density of
the created particles as:

U(n) =

[
β2

4
D(n)(∂nV (n))2 − β

2
D(n)(∂2nV (n))− β

2
(∂nD(n))(∂nV (n))

]
. (25)

Choosing a specific form of the diffusion function,
D(n) = n(n+ 1) and the model potential for the number

density of the created particles, V (n) = n2 we get the
following simplified expression for the probability distri-
bution function at finite temperature:

P (n; τ, β) =
1

2
√
π
√
n(n+ 1)τµk

× exp

[
− (n− µk(2nτ + τ))2

4n(n+ 1)τµk
− βn2

2
− βn {n(βn(n+ 1)− 3)− 2}

]
. (26)

This result is perfectly consistent as it can able to pro-
duce the previously obtained result in the limiting ap-
proximation, β → 0 (or equivalently at T → ∞). This
happened because in this limit one can fix U(n)→ 0 and

exp
(
βV (n)

2

)
→ 1. As a result, we get,

P (n; τ, β → 0) = P (n; τ), (27)

where P (n; τ) is the probability distribution function

which we have obtained in the Itô prescription.

From Fig. (4) of the probability distribution function
we observe that for large value of occupation number the
distribution function decays to a finite saturation value.
On the other hand for small occupation number we get
peak in the distribution function for different values of
µkτ .

With different order solutions of Fokker Planck equa-
tion we construct probability density function which ex-
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plain the quantum nature in stochastic particle produc-
tion scenario in early universe cosmology. Also the exis-
tance of higher order statistical moments of the proba-
bility density function. The present approach can extend
to explain the semi-classical behaviour of particle produc-
tion event and relating chaos to this approach eventually
set a bound to the quantum randomness [4].

From this non-gaussianity in stochastic particle
production during inflation period we can connect it
with the idea of non-gaussianity in finite universe. Con-
sidering interacting background field it will be possible
to introduce the other non-linear and dissipative effects
into the system introduced by the background itself
and can be studied as open quantum system interacting
with the defined background set-up [6]. Using more
general statistical field theory along with using the well
known Itô and Stratnovitch prescription in presence of
general background potential at finite temperature the
result for analytically obtained probability distribution
function for particle creation can be further generalised
for any system where randomness plays significant role
within it.
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