
ar
X

iv
:0

80
6.

20
25

v1
  [

m
at

h.
A

G
] 

 1
2 

Ju
n 

20
08

CALCULATING THE MORDELL-WEIL RANK OF

ELLIPTIC THREEFOLDS AND THE COHOMOLOGY OF

SINGULAR HYPERSURFACES

KLAUS HULEK AND REMKE KLOOSTERMAN

Abstract. In this paper we give a method for calculating the rank
of a general elliptic curve over the field of rational functions in two
variables. We reduce this problem to calculating the cohomology of a
singular hypersurface in a weighted projective 4-space. We then give
a method for calculating the cohomology of a certain class of singular
hypersurfaces, extending work of Dimca for the isolated singularity case.

1. Introduction

Throughout this paper we work over the field of complex numbers C. We
study families π : X → S of elliptic curves over rational surfaces, i.e., X is
a smooth threefold, S a smooth rational surface and π is a flat morphism
admitting a section σ0 : S → X. Throughout this paper we will assume that
X is not birational to a product E × S′ with E an elliptic curve and S′ a
rational surface.

The two main invariants of π are its configuration of singular fibers and
the Mordell-Weil group MW(π) consisting of rational sections of π. Unlike
the configuration of singular fibers the Mordell-Weil group is a birational
invariant (in the sense of Section 2).

The configuration of singular fibers is well-understood. The general fiber
of π is an elliptic curve over C(S), in particular we have an equation of the
form

(1) y2 = x3 +Ax+B, where A,B ∈ C(S).

The singular fibers lie over the curve ∆ given by the zero and pole divisor
of 4A3 + 27B2. The fiber-type over a general point p of some irreducible
component of ∆ can be easily calculated using Tate’s algorithm. The fiber-
type over a special point can be calculated using the work of Miranda [19].
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In this paper we concentrate on the Mordell-Weil group MW(π). Using
the Shioda-Tate-Wazir formula [26, Theorem 4.2] one can relate the rank
of MW(π) to the Picard numbers ρ(S) and ρ(X) and the type of singular
fibers of π over a general point of each component of ∆. In general it turns
out to be rather hard to calculate ρ(X) directly. Even in the case of elliptic
surfaces it is a difficult problem to calculate ρ(X) for a given example, this
can only be done in very specific cases, see e.g. [15].

The main idea is the following: every elliptic threefold over a rational
surface (with a section) has a model as a hypersurface Y of degree 6n in the
weighted projective space P := P(2n, 3n, 1, 1, 1), for some n. The existence
of such a model (with minimal n) is a direct consequence of the existence of a
(global minimal) Weierstrass equation for an elliptic curve over the function
field C(S) of S. Whenever we refer to a minimal model in this paper we
mean the model given by a minimal Weierstrass equation, not to a minimal
model in the sense of Mori theory. In general, this threefold Y is singular.
In the first part of this paper we show

Theorem 1.1. Let π : X → S be an elliptic threefold X over a rational

surface S and let Y be a minimal model of X/S in P(2n, 3n, 1, 1, 1). Assume

that H4(Y,Q) has a pure weight 4 Hodge structure. Then

rankMW(π) = rank(H2,2(H4(Y,C)) ∩H4(Y,Z)) − 1.

In particular, this theorem shows that a multiple of a Hodge class is
algebraic.

The advantage of this theorem is that we can relate the computation of
MW(π) to a computation for a hypersurface in weighted projective space.
The latter problem is indeed doable as we will show in the second part of
the paper.

The assumption that H4(Y,Q) has a pure weight 4 Hodge structure is
very weak. We do not know of examples such that H4(Y,Q) does not have
a pure weight 4 Hodge structure. Later on we will describe a large class of
elliptic threefolds for which we have a method to calculate H4(Y,Q). Each
member Y of this class has a pure weight 4 Hodge structure on H4(Y,Q).

For a complete proof we refer to Section 4. Here we only give a sketch of
the proof: from [19] we get a factorization of the birational map Y 99K X.
This factorization is sufficiently explicit to relate the difference ρ(X)− ρ(S)
to H2,2(H4(Y,C)) ∩ H4(Y,Z). The configuration of singular fibers of π is
relatively easy to compute. Applying the Shioda-Tate-Wazir formula then
yields the proof.

If X is chosen sufficiently general then Y is quasismooth and hence a
V -manifold. Using this one can show that h4(Y ) = 1. Theorem 1.1 then
implies rankMW(π) = 0. For this reason we shall focus in this paper on
non-quasismooth hypersurfaces.

A more explicit form of the above remark is the following (see Corollary
4.4):
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Corollary 1.2. Let π : X → S be an elliptic threefold associated with a

hypersurface defined by

y2 = x3 + Px+Q

with P ∈ C[z0, z1, z2]4n and Q ∈ C[z0, z1, z2]6n, such that

(1) the curve ∆ : 4P 3 + 27Q2 = 0 is reduced with only double points as

singularities and Q vanishes at each of these double points or

(2) P is identically zero and Q = 0 defines a smooth curve of degree 6n
in P2.

Then rankMW(π) = 0.

Theorem 1.1 implies the following two results: if we call δ = h4(Y ) − 1
the defect of Y then rankMW(π) ≤ δ. (The notion of defect for singular
hypersurfaces is due to Clemens [3].) Moreover, one can show that MW(π)⊗
Q is isomorphic to the group of Weil Divisors on Y modulo the Cartier
Divisors tensored with Q.

In the case of elliptic surfaces ψ : E → P1 one has a theorem similar to
Theorem 1.1. However, we are not aware of any statement concerning elliptic
surfaces similar to Corollary 1.2. The reason for this is the following: let T
be a surface in weighted projective space corresponding to ψ. The degree of
T is divisible by 6. Set n = deg(T )/6. One can show that rankMW(ψ) =
rank(H1,1(H2(T,C)) ∩H2(T,Z)) − 1 and h2,0(H2(T,C)) = n − 1. In this
case, using Noether-Lefschetz theory, one can obtain a series of statements
on the Mordell-Weil rank of a very general elliptic surface: e.g., one obtains
statements on the Mordell-Weil rank for a very general degree 6n elliptic
surface, and results on the dimension of the locus of elliptic surfaces with
fixed Mordell-Weil-rank [4, 16]. However, if n > 1 then h2,0(E) > 0 and
hence it seems hard to calculate rank(H1,1(H2(E,C)) ∩ H2(E,Z)) − 1 in
concrete examples. This is the key obstruction for proving results similar to
Corollary 1.2.

To calculate the rank of MW(π) we need to calculate the group H4(Y,C)
together with its Hodge structure. If Y has only isolated singularities and all
singularities are semi-weighted homogeneous hypersurface singularities then
this can be done by applying a method of Dimca [8]. However, Y might have
non-isolated singularities. It turns out in our situation that at a general
point of a one-dimensional component of Ysing we have a transversal ADE
surface singularity. We extend Dimca’s method to a class of hypersurfaces
with non-isolated singularities:

For the calculation of H4(Y,C) there is no reason to assume that the
hypersurface comes from an elliptic fibration, i.e., at this stage we work
in the following context: let P = P(w0, w1, w2, w3, w4) be a 4-dimensional
weighted projective space and set w = w0 + w1 + w2 + w3 + w4. We call
a degree d hypersurface Y ⊂ P admissible if Y is defined by a weighted
homogeneous polynomial f ∈ C[x0, x1, x2, x3, x4], such that
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(1) Y intersects Psing transversally, i.e., if Σ is the locus where all the
partials of f vanish, then Σ ∩ Psing = ∅. (Y will still have singular-
ities along Psing, these arise from the construction of the weighted
projective space and are finite quotient singularities.)

(2) Y is smooth in codimension 1.
(3) In codimension 2 the threefold Y has only transversal ADE surface

singularities.
(4) In codimension 3 all singularities are contact equivalent to a weighted

homogeneous hypersurface singularity (cf. Remark 7.2).

To formulate our theorem concerning the calculation of the cohomology
groups we have to introduce some notation: we define P as the set of all
points p ∈ Σ, such that (Y, p) is not a transversal ADE surface singularity.
Now let fp ∈ C[y0, y1, y2, y3] be such that (fp, 0) is contact equivalent to
(Y, p), where fp is weighted homogeneous of degree dp and wp is the sum
of the weights. In particular, fp = 0 defines a surface in some weighted
projective 3-space.

Let R(fp) be the Jacobian ring of fp. If (Y, p) is an isolated singular-

ity we set R̃(fp) = R(fp). If (Y, p) is not an isolated singularity, then

R̃(fp) is defined as follows: the equation fp = 0 determines a surface
S ⊂ P(v0, v1, v2, v3), which has finitely many singularities (S, q1), . . . , (S, qt).
Let Mj be the Milnor-algebra of (S, qj) and set µ :=

∑
j dimMj to be the to-

tal Milnor number. Let h1, . . . , hµ be polynomials of degree 2dp − wp, such
that their image under the natural (surjective) map R(fp)2d−w → ⊕jMj

spans ⊕jMj and set R̃(fp) = R(fp)/(h1, . . . , hµ).
Using that fp = 0 is contact equivalent to (Y, 0) one obtains a natural

map R(f)kd−w → R(fp)kdp−wp
for k = 1, 2.

The following theorem is a combination of Proposition 7.7 and several
results from Section 8.

Theorem 1.3. Let Y be an admissible hypersurface. Then

H1(Y,Q) = H5(Y,Q) = 0 and

H0(Y,Q) = Q,H2(Y,Q) = Q(−1),H6(Y,Q) = Q(−3).

The group H4(Y,Q) has a pure weight 4 Hodge structure, with vanishing

h4,0 and h0,4 and

h3,1(H4(Y,C)) = dimcoker(R(f)d−w → ⊕p∈PR̃(fp)dp−wp
)

h2,2(H4(Y,C)) = dimcoker(R(f)2d−w → ⊕p∈PR̃(fp)2dp−wp
).

Combining Theorems 1.1 and 1.3 we obtain the following (see also Sec-
tion 9)

Theorem 1.4. Let π : X → S be an elliptic threefold, such that S is a

rational surface, and the associated threefold Y ⊂ P is admissible. Assume

that the map

R(f)d−w → ⊕p∈PR̃(fp)dp−wp
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is surjective. Then

rankMW(π) = dim coker(R(f)2d−w → ⊕p∈PR̃(fp)2dp−wp
).

Remark 1.5. The only non-zero Betti number that we have not determined
so far is h3(Y ). Usually, one is able to calculate e(Y ) and one can use this
to determine h3(Y ).

Remark 1.6. If Y is not admissible then our method fails. In this case
the first step would be to calculate the local cohomology H i

p(Y,Q) of such
a singularity. To our knowledge there is no method which works for a large
class of such singularities.

This theorem can be used to classify elliptic threefolds with small numer-
ical invariants. In [17] we classify the possibilities for MW(π) if n = 1 and
the j-invariant of the fibers of π is constant.

Our method is similar to Dimca’s, but differs from recent methods such
as work by Cynk [5], Rams [22], Grooten-Steenbrink [13], and the classical
work of Clemens [3], Werner [28], Schoen [23] and van Geemen-Werner [11].

The differences between the methods of the papers quoted above and
ours are the following: in all cases the method is applied to a smaller class of
singularities, namely in the isolated singularity case Rams deals with isolated
Ak,Dm, En singularities. In the non-isolated case, Grooten-Steenbrink deal
with transversal A1 singularities and singularities of the type w2 = xyz and
zw = x2y. The other papers deal with a subset of these singularities.

The restriction on the type of singularity (by Rams and by Grooten-
Steenbrink) implies that (Rfp

)d−w = 0 for all singularities. In particular,

H4(Y,Q) is a pure (2, 2) Hodge structure. In most of these cases a map
ψ : H4(P \ Y,C) → V is constructed, where V is a certain vector space,
such that coker(ψ) ∼= H4(Y,C). We use V = ⊕p∈P(Rfp

)2d−w, whereas in
the above mentioned articles vector spaces of higher dimension are used.
In the isolated singularity case we can explain this as follows: Rams takes
V = ⊕p∈PH

4(Fp,C), where Fp is the Milnor fiber of (Y, p). In this language
our choice of V corresponds to ⊕p∈PH

4(Fp,C)0, the subspace fixed by the
monodromy. For an isolated Ak-singularity one has that h4(Fp,C) = k,
whereas h4(Fp,C)0 = 0 or 1. Choosing a smaller dimensional space is of
computational advantage.

The organization of this paper is as follows. In Section 2 we recall some
standard facts on elliptic fibrations over rational varieties. In Section 3
we discuss some results of Miranda from [19] that allow us to describe the
rational map X 99K Y . In Section 4 we give proofs of Theorem 1.1 and
Corollary 1.2. In Section 5 we recall some standard results on the coho-
mology of hypersurfaces Y in weighted projective space. In the case of non-
quasismooth hypersurfaces we use the Poincaré residue map to calculate the
cohomology of the smooth part of Y . In Sections 6, 7 and 8 we relate the
cohomology of the smooth part of Y and some local cohomology with the
cohomology of Y . This enables us to prove Theorem 1.3. In Section 9 we
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summarize our method to calculate the Mordell-Weil group. The remaining
sections are devoted to applications of our method. In Section 10 we dis-
cuss how one can obtain the results of Grooten and Steenbrink [13] by our
approach. In Section 11 we calculate the Mordell-Weil rank of three elliptic
threefolds. In Section 12 we calculate the Mordell-Weil rank of a class of
elliptic Calabi-Yau threefolds which were constructed by Hirzebruch. This
calculation allows us to compute all the Hodge numbers of these threefolds.

Part 1. Relation between the Mordell-Weil group and

cohomology of singular hypersurfaces

2. Set-up

Definition 2.1. An elliptic threefold is a quadruple (X,S, π, σ0), with X
a smooth projective threefold, S a smooth projective surface, π : X → S
a flat morphism, such that the generic fiber is a genus 1 curve and σ0 is a
section of π.

The Mordell-Weil group of π, denoted by MW(π), is the group of rational
sections σ : S 99K X with identity element σ0.

Recall that a morphism π : X → S (with X a smooth projective three-
fold and S a smooth projective surface) is flat if and only if all fibers have
dimension one. Clearly MW(π) is a birational invariant, in the sense that
if πi : Xi → Si, i = 1, 2 are elliptic threefolds such that there exist an bi-

rational isomorphism ψ : X1
∼

99K X2 mapping the general fiber of π1 to the
general fiber of π2 then ψ∗ : MW(π2) → MW(π1) is well-defined and is an
isomorphism.

The following technical definition will be needed

Definition 2.2. Let π : X → S be an elliptic threefold. An effective divisor
D ⊂ X is called fibral if π(D) ⊂ S is a curve.

We shall frequently make use of the following fundamental result:

Theorem 2.3 (Shioda-Tate-Wazir, [26, Theorem 4.2]). Let π : X → S be

an elliptic threefold then

ρ(X) = ρ(S) + f + rankMW(π) + 1

where f is the number of irreducible surfaces F in X such that π(F ) is a

curve, and F ∩ σ0(S) = ∅.

Using Lefschetz’ (1,1) theorem and Poincaré duality we can rephrase the
Shioda-Tate-Wazir formula as

rankMW(π) = rankH2,2(X,C) ∩H4(X,Z) − f − ρ(S) − 1.

In general this is hard to compute. Theorem 1.1 says that the analogous
formula also holds if we replaceX by a minimal (singular) Weierstrass model.
In this case one has tools to compute the right hand side.
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We shall now describe in some detail how to associate to an elliptic three-
fold π : X → S a hypersurface in weighted projective 4-space. Here we
restrict ourselves to the case where S is a rational surface. In this case we
can find a hypersurface Y of degree 6n in P(2n, 3n, 1, 1, 1) which is birational
to X as follows: the morphism π establishes C(X) as a field extension of
C(S) = C(z1, z2). The field C(X) is the function field of an elliptic curve
over C(z1, z2), i.e., C(X) = C(x, y, z1, z2) where

(2) y2 = x3 + f1(z1, z2)x+ f2(z1, z2)

with f1, f2 ∈ C(z1, z2). Without loss of generality we may assume that (2) is
a global minimal Weierstrass equation, i.e., f1, f2 are polynomials and there
is no polynomial g ∈ C[z1, z2] such that g4 divides f1 and g6 divides f2.

To obtain a hypersurface in P(2n, 3n, 1, 1, 1) we need to find a weighted
homogeneous polynomial. Let n = ⌈max{deg(f1)/4,deg(f2)/6}⌉ and define
P and Q as the polynomials

P = z4n
0 f1(z1/z0, z2/z0), Q = z6n

0 f2(z1/z0, z2/z0).

Then

y2 = x3 + P (z0, z1, z2)x+Q(z0, z1, z2)

defines a hypersurface Y of degree 6n in P := P(2n, 3n, 1, 1, 1). Let Σ be
the locus where all the partial derivatives of the defining equation vanish.
Consider the projection ψ̃ : P(2n, 3n, 1, 1, 1) 99K P2 with center L = {z0 =

z1 = z2 = 0} and its restriction ψ = ψ̃|Y to Y . Then there exists a diagram

X //___

π

��

Y

ψ
��
�

�

�

S //___ P2.

Note that Y ∩ L = {(1 : 1 : 0 : 0 : 0)}. If n = 1 then Psing consists of
two points, none of which lie on Y . If n > 1 then an easy calculation in
local coordinates shows that Psing is precisely L, that Σ and L are disjoint
and that Y has an isolated singularity at (1 : 1 : 0 : 0 : 0). For any n we

have that ψ is not defined at (1 : 1 : 0 : 0 : 0). Let P̃ be the blow-up of

P along L. Let X0 be the strict transform of Y in P̃. An easy calculation
in local coordinates shows that X0 → Y resolves the singularity of Y at
(1 : 1 : 0 : 0 : 0) and that the induced map π0 : X0 → S0 with S0 = P2 is a
morphism. Moreover, all fibers of π0 are irreducible curves.

3. Miranda’s construction

The threefolds X0 and X are birational and one might therefore ask for a
precise sequence of birational morphisms relating X0 and X. This question
might be too hard. A slightly weaker problem is solved by Miranda: starting
with π0 : X0 → S0 Miranda [19] produces a smooth elliptic threefold π′ :
X ′ → S′ birational to π. Actually, Miranda produces a series {πi : Xi → Si}



8 KLAUS HULEK AND REMKE KLOOSTERMAN

where {πi+1 : Xi+1 → Si+1} can be obtained from {πi : Xi → Si} by
applying one of the following three types of birational transformations:

(1) Si+1 is the blow-up of Si in a point p of the discriminant curve of π,
i.e., with π−1

i (p) a singular curve. Then we define Xi+1 as the fiber
product of Xi with Si+1 over Si:

Xi+1 := Xi ×Si
Si+1

��

// Xi

��

Si+1 := Blp Si // Si.

This procedure is applied in the following two cases
(a) To simplify the geometry: let ∆i ⊂ Si be the (reduced) dis-

criminant curve of πi. After applying this procedure sufficiently
many times, we may assume that each irreducible component
of ∆i is smooth, and that ∆i has only ordinary double points
as singularities.

(b) Suppose Xi has an isolated singularity in the fiber of p ∈ Si.
Blowing up this singularity would yield a non-flat morphism.
Instead, if we apply this base change procedure we get a curve
of singular points in Xi+1.

(2) Even when we start with a minimal local equation, we might obtain
a non-minimal equation, i.e., it might happen that Xi has, in one of
its charts, a local equation of the form by y2 = x3 + u4f1x + u6f2,
where f1, f2 ∈ C[z0, z1] and u ∈ C[z0, z1] \ C is irreducible. In this
chart the elliptic fibration is given by (x, y, z0, z1) 7→ (z0, z1), which
can be interpreted as projection onto the plane x = y = 0. Note
that after applying the first operation sufficiently many times, we
can assume that x = y = u = 0 is a smooth irreducible curve. We
need to get rid of the factor u4 and u6 in the equation, which can be
done as follows:
(a) Blow up Ci : x = y = u = 0, yielding a threefold Xi+1 with

local equation y2 = ux3 +u3f1x+u4f2 in one of the charts. An
easy calculation shows that in the other two “new” charts we
have that Xi+1 is smooth.

(b) Blow up Ci+1 : x = y = u = 0, yielding a (non-normal) three-
fold Xi+2 with local equation y2 = u2x3 + u2f1x+ u2f2 in one
of the charts.

(c) Blow up the surface Ri+2 : u = y = 0, yielding a threefold Xi+3

with local equation y2 = x3 + f1x+ f2 in one of the charts.
(d) If we patch all the local charts together, we see that the fiber

over a point in {u = 0} is a reducible curve, consisting of two
rational curves and one elliptic curve. Actually π−1

i+3({u = 0})
consists of three irreducible components, two of them are ruled
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surfaces over C : {u = 0}, the third is an elliptic surface. We
can contract the two ruled surfaces, obtaining Xi+5.
An easy calculation in local coordinates shows that bothXi+3 →
Xi+4 andXi+4 → Xi+5 are blow-ups with center a smooth curve
contained in the smooth locus.

The base surface remains unchanged, i.e., Si = Si+1 = · · · = Si+5.
The geometric construction is summarized in the following table:

Threefold Singular locus Important divisor
Xi Ci (curve) Fi = π−1

i ({u = 0})
Xi+1 = BlCi

(Xi) Ci+1 (curve) Ei+1/C = P1 − bdle.
Xi+2 = BlCi+1(Xi+1) Ri+2 = Ei+2 (surface) Ei+2/C = P1 − bdle.
Xi+3 = BlRi+2(Xi+2) ∅ Ei+3 = elliptic surface

double cover of Ei+2

Xi+4 = ConEi+1(Xi+3)
Xi+5 = ConFi

(Xi+4)

When we contract Ei+1, Fi we mean that we contract the strict trans-
form of Ei+1, Fi.

(3) To resolve singularities: Xi+1 is obtained by blowing up a curve
C inside the singular locus of Xi such that Cred is smooth. Set

Si+1 = Si and πi+1 to be the composition Xi+1 → Xi
πi→ Si.

Note that by using the defining equation one can show that at a
general point of Cred one has a transversal ADE surface singularity.

These three steps should be applied in the following order:

(1) Apply step 1, to obtain a fibration with nice properties: i.e., repeat
step 1 until ∆i,red ⊂ Si has at most nodes as singularities and the
j-function j : Si 99K P1 is a morphism.

At this stage we obtain a Weierstrass fibration i.e., there exists a
line bundle Li on Si and sections A ∈ H0(Si,L

⊗4
i ), B ∈ H0(Si,L

⊗6
i )

such that Xi = {Y 2Z = X3 +AXZ2 +BZ3} ⊂ P(O ⊕L−2
i ⊕L−3

i ).
We can consider A = 0 and B = 0 as curves inside Si. Repeat step 1
until the reduced curves underlying A = 0 and B = 0 have at most
ordinary double points as singularities.

(2) Apply step 2, until there is no curve C ⊂ Si such that A vanishes
along C with order at least 4, and B vanishes along C with order at
least 6.

(3) Apply step 3, until Xi has only isolated singularities or is smooth.
If Xi is smooth then stop.

(4) Apply step 1 for each of the isolated singularities of Xi. The outcome
of this is a threefold whose singular locus consist of finitely many
smooth irreducible curves which are all disjoint.

(5) If necessary apply step 2.
(6) Go to point (3).
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From this description it is not at all clear why this procedure should
terminate. For this fact we refer to [19].

Remark 3.1. Miranda uses a slightly different order and he uses a fourth
type of modification, namely the contraction of P1×P1 to a P1. We indicate
now why this does not influence the termination of this procedure.

The extra modification is applied if Xi has an isolated A1 singularity at
p ∈ Xi. We can then first blow up Xi in p. The exceptional divisor E
is isomorphic to P1 × P1. The morphism πi+1 : Xi+1 → Si+1 = Si has a
fiber with a two-dimensional component, contradicting flatness. This can be
resolved by contracting E to P1, a so-called “small resolution”. The problem
is that the space Xi+2 obtained in this way is a priori only an algebraic space,
rather than an algebraic variety. To determine whether Xi+2 is actually an
algebraic variety one needs to consider the global geometry of Xi+2.

To avoid this problem we choose a different procedure: namely we blow
up Si in πi(p) and then base change. The threefold Xi+1 now has a curve C
of singularities. Then we blow up C and obtain a threefold Xi+2. A direct
calculation in local coordinates shows that Xi+2 is smooth in a neighbor-
hood of the exceptional divisor of Xi+2 → Xi+1. We give a sketch of this
calculation: in local coordinates (Xi, p) is given by t21 + t22 + t23 + t24 = 0. If we
use the base change procedure, we obtain a curve C ⊂ Xi+1 of singularities.
A straightforward calculation shows that at a general point of C we have
a local equation of the form s21 + s22 + s23 = 0, i.e., we have a transversal
A1 surface singularity, except for two points on C where we have a local
equation of the form s21 + s22 + s4s

2
3 = 0 (a so-called pinch point). Here C is

given by the equation s1 = s2 = s3 = 0.
Following the above algorithm, we now need to blow up C. A calculation

in local coordinates shows that the threefold Xi+2 obtained in this way is
smooth in a neighborhood of the exceptional divisor.

In order to show that our procedure terminates, note that one could follow
Miranda’s algorithm until one has only isolated A1-singularities left. It is
clear that the above procedure then resolves all the remaining singularities.

4. Comparing Mordell-Weil ranks

Starting with an elliptic threefold π : X → S we found a hypersurface
Y ⊂ P(2n, 3n, 1, 1, 1). Applying Miranda’s construction to Y gives us an
elliptic threefold π′ : X ′ → S′. We now want to express rankMW(π) =
rankMW(π′) in terms of invariants of Y . For this we use the following
result:

Theorem 4.1. Let V and Ṽ be complex varieties. Let ϕ : Ṽ → V be a

proper birational morphism. Let Z ⊂ V be a closed subvariety such that ϕ
restricted to Ṽ \ π−1(Z) is injective. Set E := π−1(Z). Then there is an

exact sequence of Mixed Hodge structures

· · · → H i−1(E,Q) → H i(V,Q) → H i(Ṽ ,Q)⊕H i(Z,Q) → H i(E,Q) → . . . .
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Proof. See [21, Corollary 5.37]. �

Lemma 4.2. Let V be a threefold, C ⊂ V be a smooth curve contained in

the smooth locus of V . Let Ṽ be the blow-up of V along C, let E be the

exceptional divisor and ι : E → Ṽ be the inclusion. Then

ι∗ : H3(Ṽ ,Q) → H3(E,Q)

is surjective.

Proof. Let ψ : V1 → V be a resolution of singularities of V and let E1 be
the exceptional divisor of ψ. Since C is contained in the smooth locus we
have that ψ−1(C) is isomorphic to C. Let ψ1 : Ṽ1 → V1 be the blow-up of

V1 along ψ−1(C). Equivalently, Ṽ1 = Ṽ ×V V1.
The exceptional divisor of ψ1 is isomorphic to E and the exceptional

divisor of Ṽ1 → V is isomorphic to the disjoint union of E and E1. Denote
Σ = Vsing.

From Theorem 4.1 we get the following exact sequence

· · · → H3(Ṽ1,Q) → H3(E,Q) → H4(V1,Q) → . . . .

Since V1 and E are smooth we have that H3(E,Q) has a pure weight 3
Hodge structure and H4(V1,Q) has a pure weight 4 Hodge structure. Hence

the map H3(E,Q) → H4(V1) is the zero map and H3(Ṽ1,Q) → H3(E,Q)
is surjective. Consider now the exact sequence of Theorem 4.1 for ψ1 ◦ ψ:

· · · → H3(Ṽ1,Q) ⊕H3(Σ,Q) → H3(E1,Q) ⊕H3(E,Q) → H4(V,Q) → . . .

Since H3(Ṽ1,Q) → H3(E,Q) is surjective we obtain that H3(E,Q) →
H4(V,Q) is the zero map.

Consider now the exact sequence of Theorem 4.1 for Ṽ → V :

· · · → H3(Ṽ ,Q) → H3(E,Q) → H4(V,Q) → . . .

Since H3(E,Q) → H4(V,Q) is the zero map we obtain that H3(Ṽ ,Q) →
H3(E,Q) is surjective. �

Theorem 4.3. Let Y ⊂ P be a minimal Weierstrass fibration and let π :
X → S be an elliptic threefold, birational to Y . Assume that H4(Y,Q) has

a pure weight 4 Hodge structure. Then

rankMW(π) = rank
(
H2,2(H4(Y,C)) ∩H4(Y,Z)

)
− 1

and H5(Y,Q) ∼= H5(X,Q).

Proof. Since both rankMW(π) and H5(X,Q) are birational invariants of
smooth fibred threefolds, it suffices to prove this statement for the elliptic
threefold π′ : X ′ → S′ obtained from Miranda’s procedure. Then by the
Shioda-Tate-Wazir formula and Lefschetz (1,1) one has

rankMW(π) = ρ(X ′) − ρ(S′) − f − 1

= rankH2(X ′,Z) ∩H1,1(X ′,C) − ρ(S′) − f − 1

= rankH4(X ′,Z) ∩H2,2(X ′,C) − ρ(S′) − f − 1
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where f is the number of independent fibral divisors, not intersecting the
image of the zero section.

Let πi : Xi → Si be the associated sequence of modifications. Let fi
denote the number of independent fibral divisors of πi, not intersecting
the zero-section. We will show by induction that for each i we have that
H4(Xi,Q) has a pure weight 4 Hodge structure and that

(3) rank
(
H2,2(H4(Xi,C)) ∩H4(Xi,Z)

)
− ρ(Si) − fi − 1

is independent of i.
This suffices for the first statement: for the elliptic threefold in the final

step of Miranda’s construction we have that (3) equals rankMW(π) by the
Shioda-Tate-Wazir formula.

Now consider (3) for i = 0. From S0 = P2 we get ρ0(S0) = 1. Since all
fibers of π0 are irreducible, we get f0 = 0. Finally, Theorem 4.1 applied to
X0 → Y yields an exact sequence of Q-MHS

H3(E,Q) → H4(Y,Q) → H4(X,Q) → H4(E,Q) → H5(X,Q).

Since E ∼= P2 we get H3(E,Q) = 0 and H4(E,Q) = Q(−2). Also the map
H4(X,Q) → H4(E,Q) is non-zero, hence we get

0 → H4(Y,Q) → H4(X0,Q) → Q(−2) → 0.

In particular, H4(X0,Q) has a pure weight 4 Hodge structure and

rank
(
H2,2(H4(X0,C)) ∩H4(X0,Z)

)
− ρ(S0) − f0 − 1

= rank
(
H2,2(H4(X0,C)) ∩H4(X0,Z)

)
− 2

= rank
(
H2,2(H4(Y,C)) ∩H4(Y,Z)

)
− 1.

To prove that (3) is actually independent of i, we consider each of the
three types of modifications mentioned in Miranda’s construction separately.
In each case we apply Theorem 4.1 several times without mentioning it
explicitly:

(1) Consider the first type of modification, i.e. we blow up a point
p ∈ ∆ ⊂ Si and then base change. For the proper modification
Xi+1 → Xi we have that Z = C ⊂ Xi is a curve of arithmetic
genus 1, i.e., C is either a union of k rational curves, a cuspidal
rational curve or a nodal rational curve. In the last two cases we set
k = 1. Using the universal property of the fiber product we obtain
that the exceptional divisor E ⊂ Xi+1 is isomorphic to a product
C × P1. Using our induction hypothesis on H4(Xi,Q) (i.e., that it
is of pure weight 4) and that H3(E,Q) has no classes of weight ≥ 4
[21, Theorem 5.39], the exact sequence of Theorem 4.1 yields the
following exact sequence

0 → H4(Xi,Q) → H4(Xi+1,Q) → H4(E,Q) = Q(−2)k.
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Each of the k irreducible components of C × P1 yields a class ξj in
H4(Xi+1,Q). I.e., we have

span{ξ1, . . . , ξk} ⊂ H4(Xi+1,Q) → H4(E,Q)

Clearly dimH4(E,Q) = k and the ξj map to a basis of H4(E,Q).
In particular, the ξj are independent in H4(Xi+1,Q) and the map
H4(Xi+1,Q) → H4(E,Q) is surjective. The conclusion is that

rank
(
H2,2(H4(Xi+1,C)) ∩H4(Xi+1,Z)

)
=

= k + rank
(
H2,2(H4(Xi,C)) ∩H4(Xi,Z)

)
,

fi+1 = fi + k − 1 and ρ(Si+1) = ρ(Si) + 1, and hence the quantity
(3) is unchanged.

(2) The second modification consists of two blow-ups of a curve, the
blow-up of a rational surface and two blow-down morphisms. We
consider first the blow-up of a curve in Xi, and the blow-up of the
curve in Xi+1. A reasoning very similar to the previous case yields
that H4(Xi+1,Q) and H4(Xi+2,Q) have a pure weight 4 Hodge
structure, that classes of type (2, 2) are added to H4(Xi+1,Z) and
H4(Xi+2,Z) and that fi+2 = fi+1 +1 = fi+2. I.e., the quantity (3)
is unchanged.

Consider now the third step, the blow-up of a rational surface.
In this case both Z and E are irreducible surfaces and we have an
isomorphism H4(Z,Q) → H4(E,Q). Since H3(E,Q) has Hodge
weights at most 3 [21, Theorem 5.39] and H4(Xi+2,Q) has a pure
weight 4 Hodge structure, Theorem 4.1 implies that we have an
isomorphisms H4(Xi+2,Q) → H4(Xi+3,Q). Hence H4(Xi+1,Q) is
of pure weight 4 and all entries in (3) remain unchanged.

The final two steps are the contraction of the two ruled surfaces.
I.e., Xi+3 → Xi+4 and Xi+4 → Xi+5 are blow-ups of curves. In the
previous section it is argued that these curves are smooth and lie in
the smooth locus of Xi+4 and Xi+5.

Combining Lemma 4.2 with the exact sequence of Theorem 4.1
yields exact sequences

0 → H4(Xi+4,Q) → H4(Xi+3,Q) → H4(Ei+1,Q) → . . .

and

0 → H4(Xi+5,Q) → H4(Xi+4,Q) → H4(Fi,Q) → . . .

(notation as in the previous section.)
In particular, H4(Xi+4,Q) and H4(Xi+5,Q) have pure weight

4 Hodge structures. As above, one can show that the class of
Ei+1 (resp. Fi) in H4(Xi+3,Q) (resp. H4(Xi+4,Q)) is mapped
to a nonzero element in H4(Ei+1,Q) ( resp. H4(Fi,Q)). Hence
these maps are surjective, i.e., H4(Xi+5,Z) has rank 1 smaller than
H4(Xi+4,Z), and the difference is a class of type (2, 2). Similarly,
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H4(Xi+4,Z) has rank 1 smaller than H4(Xi+3,Z), and the difference
is a class of type (2, 2). Moreover, fi+3 = fi+4 + 1 = fi+5 + 2, hence
the quantity (3) is unchanged.

(3) The third modification is to blow up a curve C inside Xi,sing such
that Cred is smooth. The exceptional divisor of such a blow up
is not necessarily irreducible, say it has k irreducible components,
hence H4(E,Q) = Q(−2)k. Each component of E yields a class
ξj in H4(Xi+1,Q) and the same argument as above shows that
H4(Xi+1,Q) has pure weight 4 and that the classes ξj are indepen-
dent. Hence fi+1 = fi + k and rank

(
H2,2(H4(Xi,C)) ∩H4(Xi,Z)

)

increases by k. Since Si+1 = Si we have proved that (3) remains
unchanged.

To prove that H5(Y,Q) ∼= H5(X,Q), note that in all three cases the map
H4(Xi,Q) → H4(E,Q) is surjective. Since h5(Z,Q) = h5(E,Q) = 0 it
follows from Theorem 4.1 that H5(Xi,Q) ∼= H5(Xi+1,Q) for all i. �

Corollary 4.4. Let π : X → S be an elliptic threefold associated with a

hypersurface

y2 = x3 + Px+Q or y2 = x3 +R

with P ∈ C[z0, z1, z2]4n and Q ∈ C[z0, z1, z2]6n, such that

(1) the curve ∆ : 4P 3 + 27Q2 = 0 is reduced, ∆ has only double points

as singularities, and Q vanishes at each of these double points or

(2) P is identical zero and Q = 0 defines a smooth curve of degree 6n
in P2.

Then rankMW(π) = 0.

Proof. Using Lefschetz hyperplane Theorem [9, Theorem B22] we obtain
that h2(Y ) = 1. An easy calculation shows that our assumptions on P and
Q are equivalent to Y being quasismooth. Then [9, Corollary B19] states
that H i(Y,Q) satisfies Poincaré duality, hence

h4(Y ) = h2(Y ) = 1

and rankMW(π) = 0. �

Part 2. Cohomology of hypersurfaces in P

5. Cohomology of hypersurfaces in P: general results

In this section let Y be an irreducible and reduced hypersurface of degree
d in some weighted projective space P of dimension n + 1 defined by the
polynomial g. Let Σ ⊂ P denote the locus where all the partials of g vanish.
We assume that Σ does not intersect Psing, i.e., Y intersects the singular
locus of P transversally. As usual we set dim ∅ = −1.

For an arbitrary hypersurface Y the following form of Lefschetz’ hyper-
plane theorem holds:
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Proposition 5.1 ([9, Corollary B22]). We have the following isomorphisms

for the cohomology of Y :

(1) H i(Y,Q) ∼= H i(P,Q) for i ≤ n− 1.
(2) H i(Y,Q) ∼= H i(P,Q) for n+ 2 + dim Σ ≤ i ≤ 2n.

In all our applications we have dim Σ ≤ 1. Our main interest lies in the
case where Σ 6= ∅, but we start by discussing what happens in the case
Σ = ∅, i.e., we assume for the moment that Y is quasismooth.

We can calculate the cohomology for such Y as follows: from Propo-
sition 5.1 it follows that H i(Y,Q) ∼= H i(P,Q) for i 6= n, 2n + 2. Since
dimY = n we have that H2n+2(Y,Q) = 0. Hence it remains to calculate
Hn(Y,Q). The Poincaré residue map

Hn+1(P \ Y,C)(1) → Hn(Y,C)prim

is an isomorphism (see e.g. [27, Section 6.1.1].) The left hand side can
be calculated using ideas of Griffiths [12], extended to weighted projective
spaces by Steenbrink [24]:

Let U := P \ Y . Since U is affine we have that

Hk(U,C) = H0(U,Ωk
U )/dH0(U,Ωk−1

U ).

Note that
H0(U,Ωk

U ) ∼= ∪i≥0H
0(P,Ωk

P(iY )).

For ω ∈ H0(U,Ωk
U ) define ordY (ω) := min{i : ω ∈ H0(P,Ωk

P
(iY )}. Let P •

be the filtration defined by

P sH0(U,Ωk
U ) = {ω ∈ H0(U,Ωk

U ) : ordY (ω) ≤ k − s+ 1}.

Since d(P sH0(U,Ωk−1
U )) ⊂ P sH0(U,Ωk

U ) this induces a filtration P • on

Hk(U,C), called the polar filtration.

Theorem 5.2 (Griffiths-Steenbrink [24, Section 4]). The Hodge Filtration

F • on Hn+1(U,C) coincides with the filtration P •.

If we drop the assumption that Y is quasismooth then we get the following
weaker

Theorem 5.3 (Deligne-Dimca [6]). For any hypersurface Y ⊂ P we have

P sHk(U,C) ⊃ F sHk(U,C).

There exist examples for which both filtrations differ, see [9, Remark
6.1.33], [10].

Remark 5.4. Since Hn+1(U,C) = F 1Hn+1(U,C) it follows from the above
theorem that Hn+1(U,C) = P 1Hn+1(U,C). This implies that every class
of Hn+1(U,C) has pole order at most n+ 1.

Our main interest lies in the case where k = n + 1 = dimU . In this
case we can make this more explicit. The de Rham complex with filtration
P • yields a spectral sequence Ep,qr . Essentially, Griffiths and Steenbrink
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show that this spectral sequence degenerates at E1 in the case that Y is
quasismooth. This yields an isomorphism

GrpF H
n+1(U,C) = GrpP H

n+1(U,C) =

H0(P,Ωn+1
P

((n + 2 − p)Y )

H0(P,Ωn+1
P

((n + 1 − p)Y )) + dH0(P,Ωn
P
((n + 1 − p)Y ))

.

Recall that g is a defining polynomial for Y . Let xi denote the coordinates
on P of weight wi and let w =

∑
wi. Set

Ω :=


∏

j

xj


 ∑

(−1)iwi
dx0

x0
∧
dx1

x1
∧ · · · ∧

d̂xi
xi

∧ · · · ∧
dxn+1

xn+1
.

Then H0(P,Ωn+1(kY )) is generated (as C-vector space) by

ωf :=
f

gk
Ω

where deg(f) = kd−w. An easy calculation shows that ωf ∈ H0(P,Ωn+1(k−
1)Y )+dH0(P,Ωn(kY )) if and only if f is in the ideal (gx0 , . . . , gxn) generated
by the partial derivatives of g. Let R(g) be the Jacobian ring

C[x0, . . . , xn+1]/(gx0 , . . . , gxn+1).

Combining this observation with Theorem 5.2 yields:

Proposition 5.5. We have natural identifications between R(g)id−w and

Grn+2−i
P Hn+1(U,C) ∼= Grn+2−i

F Hn+1(U,C) ∼= Grn+1−i
F Hn(Y,C)prim.

We will now extend these results in certain cases to the non-quasismooth
situation: suppose that Y ⊂ P is a hypersurface in a weighted projective
space P of dimension n + 1 defined by a weighted homogeneous equation
g = 0. Write Y ∗ = Y \ Σ and let P∗ = P \ Σ where, as before, Σ is defined
by the vanishing of the partials of g. Note that, since we have assumed
that Y intersects Psing transversally, we have Σ ∩ Psing = ∅. In particular,
U = P∗ \ Y ∗ = P \ Y .

In generalizing the approach described above we encounter the following
problems:

(1) The Poincaré residue map is not an isomorphism.
(2) We can still define the filtered de Rham complex and construct the

spectral sequence Ep,qr . This sequence, however, does not degenerate
at E1 but at a higher step.

(3) The polar filtration and the Hodge filtration differ.

The following approach is similar to [8], where Dimca studied hypersur-
faces with isolated singularities. The exact sequence of the pair (Y, Y ∗) reads
as

(4) · · · → Hk
Σ(Y,Q) → Hk(Y,Q) → Hk(Y ∗,Q) → Hk+1

Σ (Y,Q) → . . .

This is a sequence of Mixed Hodge structures by [21, Proposition 5.47].
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From now we on assume that n = 2 and dim Σ ≤ 0 or n = 3 and dim Σ ≤
1. This will be the case in all our applications. By Proposition 5.1 the only
interesting cohomology groups are H i(Y,Q) for i = n, n+ 1, n+ 2. We will
study these groups by using (4). In this section we focus on the calculation
ofH i(Y ∗,Q). The calculation ofH i

Σ(Y,Q) will then be done in the following
sections.

We start by relating the cohomology of Y ∗ to the cohomology of U and Σ.
For this we need the notion of primitive cohomology. If V ⊂ P is a quasi-
projective subvariety of codimension c, we define H i(V,Q)prim to be the
kernel of the natural map H i(V,Q) → H i+2c(P,Q)(c), given by repeated
cupping with the hyperplane class.

In the quasismooth case we can relate H i(Y ∗,C)prim to H i+1(U,C) by
using the Poincaré residue map. In the non-quasismooth case this is more
subtle.

Proposition 5.6. We have the following:

(1) Suppose n = 2 and dim Σ = 0, then

H2(Y ∗,Q)prim
∼= H3(U,Q)(1); H3(Y ∗,Q) ∼= Q(−2)#Σ−1

and H4(Y ∗,Q) = 0.

(2) Suppose n = 3 and dim Σ = 0, then

H3(Y ∗,Q) ∼= H4(U,Q)(1); H4(Y ∗,Q) ∼= Q(−2)

and H5(Y ∗,Q) ∼= Q(−3)#Σ−1.

(3) Suppose n = 3 and dim Σ = 1, then

0 → H4(U,Q)(1) → H3(Y ∗,Q) → H2(Σ,Q)∗prim(−3) → 0

is exact. Moreover

H4(Y ∗,Q) ∼= H1(Σ,Q)∗(−3) and H5(Y ∗,Q) ∼= H0(Σ,Q)∗prim(−3).

Before proving Proposition 5.6 we shall prove some auxiliary results.

Proposition 5.7. We have a Thom-type isomorphism

(5) T : Hk(Y ∗,Q) → Hk+2(P∗, U,Q)(1).

Proof. The map T is induced by the Thom isomorphism on the (punctured)
affine cones over Y ∗, P∗ and U . For the precise construction we refer to [8,
Section 2]. �

Consider now the long exact sequence of MHS of the pair (P∗, U):
(6)

. . .→ Hk(P∗, U,Q)
j∗
→ Hk(P∗,Q)

i∗
→ Hk(U,Q) → Hk+1(P∗, U,Q) → . . .

Lemma 5.8. We have that

Hk(P∗, U,Q) ∼= Hk(P∗,Q)
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for k > n+ 2 and that

Hk(Y ∗,Q) ∼= Hk+2(P∗,Q)(1)

for k > n.

Proof. Since U is affine we have H i(U,Q) = 0 for i ≥ n+ 2, hence the first
isomorphism follows from sequence (6). The second isomorphism follows
from the Thom isomorphism combined with the first isomorphism. �

Using that P∗ is a V -manifold we can relate Hk(P∗) to the cohomology
of Σ:

Lemma 5.9. If dim Σ = 0 then

H i(P∗,Q) ∼=





0 for i = 2n+ 2
H0(Σ,Q)∗prim(−n− 1) for i = 2n+ 1

H i(P,Q) for i < 2n+ 1

as MHS and if dim Σ = 1 then

H i(P∗,Q) =





0 for i = 2n+ 2
H0(Σ,Q)∗prim(−n− 1) for i = 2n+ 1

H1(Σ,Q)∗(−n− 1) for i = 2n
H2(Σ,Q)∗prim(−n− 1) for i = 2n− 1

H i(P,Q) for i < 2n− 1

as MHS.

Proof. We have the Gysin exact sequence

0 → H0
c (P

∗,Q) → H0
c (P,Q) → H0

c (Σ,Q) → H1
c (P

∗,Q) → . . .

Note that P and Σ are compact. If dim Σ = 0 then it follows immediately
from the Gysin sequence that

H i
c(P

∗,Q) =





0 i = 0
H0(Σ,Q)prim i = 1
H i(P,Q) i > 1.

If dim Σ = 1 it follows that

H i
c(P

∗,Q) =





0 i = 0
H0(Σ,Q)prim i = 1
H1(Σ,Q) i = 2

H2(Σ,Q)prim i = 3
H i(P,Q) i > 3.

Since P is a V-manifold, the same holds for P∗ and we can apply Poincaré
duality to obtain the lemma. �

We are now in a position to prove Proposition 5.6.
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Proof of Proposition 5.6. Suppose that n = 2 and dim Σ = 0. Then we have

H3(Y ∗,Q) ∼= H5(P∗, U,Q)(1) ∼= H5(P∗,Q)(1)

∼= H0(Σ,Q)prim(−2)∗ ∼= Q(−2)#Σ−1.

The first isomorphism is the Thom-isomorphism (Proposition 5.7), the sec-
ond isomorphism comes from Lemma 5.8, the third isomorphism comes from
Lemma 5.9 and the fourth isomorphism is immediate. Similarly, one has
H4(Y ∗,Q) ∼= H6(P∗, U,Q)(1) = 0. To calculate H2(Y ∗,Q) consider the
long exact sequence (6) of the pair (P∗, U):

. . .→ H3(P∗,Q) → H3(U,Q) → H4(P∗, U,Q) → H4(P∗,Q) → . . . .

It follows from Lemma 5.9 that H3(P∗,Q) ∼= H3(P,Q) = 0. From the
same lemma it follows that H4(P∗,Q) ∼= H4(P,Q). Since U is affine and of
dimension 3, we have that H4(U,Q) = 0. Finally, the Thom-isomorphism
yields H4(P∗, U,Q) ∼= H2(Y ∗,Q)(−1). Combining everything gives

0 → H3(U,Q) → H2(Y ∗,Q)(−1) → H4(P,Q) → 0

whence H3(U,Q)(1) ∼= H2(Y ∗,Q)prim.
In the case n = 3 we can proceed similarly: combining the Thom isomor-

phism with Lemmas 5.8 and 5.9 yields the following isomorphisms:

H5(Y ∗,Q) ∼= H7(P∗,Q)(1) ∼= H0(Σ,Q)∗prim(−3).

If dimΣ = 0 then

H4(Y ∗,Q) ∼= H6(P∗,Q)(1) ∼= H6(P,Q)(1) = Q(−2)

and if dimΣ = 1 then

H4(Y ∗,Q) ∼= H6(P∗,Q)(1) ∼= H1(Σ,Q)∗(−3).

The calculation of H3(Y ∗,Q) is slightly more complicated. We have an
exact sequence

H4(P∗,Q) → H4(U,Q) → H5(P∗, U,Q) → H5(P∗,Q) → H5(U,Q) = 0.

From Lemma 5.9 it follows that H5(P∗,Q) ∼= H2(Σ,Q)∗prim(−3). From

the same lemma it follows that H4(P∗,Q) ∼= H4(P,Q). Since H4(P,Q) →
H4(U,Q) is the zero-map, we obtain, after applying the Thom-isomorphism,
the following short exact sequence

0 → H4(U,Q)(1) → H3(Y ∗,Q) → H2(Σ,Q)∗prim(−3) → 0.

To finish the proof, note that if dimΣ = 0 then H0(Σ,Q)prim = Q#Σ−1 and
H2(Σ,Q)prim = 0. In particular, H4(U,Q)(1) ∼= H3(Y ∗,Q) in this case. �

Remark 5.10. Later on we will show that the contribution of H•(Σ,Q) to
H•(Y ∗,Q) is irrelevant for the calculation of H4(Y,Q).
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Remark 5.11. To finish our analysis of Hn(Y ∗,Q) we give a set of gener-
ators for Hn+1(U,C). Recall that we have the pole order filtration on Ω•

U ,
inducing a filtration on H i(U,C).

As explained above, the pole filtration on the de Rham complex yields a
spectral sequence. Remark 5.4 implies that P 1Hn+1(U,C) = Hn+1(U,C).
From this it follows easily that

⊕n+1
p=0E

n+1−p,p
1 → Hn+1(U,C)

is surjective. An easy calculation (the same as in the quasismooth case)
shows that

⊕n+1
p=0E

n+1−p,p
1 = ⊕n+1

k=1R(g)dk−w.

The right hand side is finite dimensional and generates Hn+1(U,C). More-
over, the direct sum decomposition is the same as the direct sum decompo-
sition with respect to the graded pieces of the polar filtration.

A summary of our results is the following:

Proposition 5.12. Suppose n = 3. Let C be the cokernel of H4(U,Q) →
H4

Σ(Y,Q). Suppose C is a pure weight 4 Hodge structure, with trivial (4, 0)
and (0, 4)-part. Then the cokernel of

ψ1 : Rd−w(g) → H4
Σ(Y,C)

contains F 3CC. The cokernel of

ψ2 : R2d−w(g) ⊕Rd−w(g) → F 2H4
Σ(Y,C)

contains F 2CC. Moreover, if ψ1 is surjective, then C has a pure (2, 2)-Hodge

structure with

dimC = dim coker(R2d−w(g) → H4
Σ(Y ∗,C)).

Proof. Since P 4H4(U,C) consists of forms of pole order 0, we have that
P 4H4(U,C) and H0(P,Ω4

P
) are isomorphic. Since this group vanishes we

have that P 4H4(U,C) = 0. Since F 3H4(U,C) ⊂ P 3H4(U,C) (by Theo-
rem 5.3) it follows that

P 3H4(U,C) = Gr3P H
4(U,C) → Gr3F H

4(U,C)

is surjective. SinceRd−w(g) surjects onto P 3H4(U,C) we obtain that h3,1(C)
equals the dimension of the cokernel of

Rd−w(g) → Gr3F H
4
Σ(Y,C).

Similarly one obtains that h3,1(C) + h2,2(C) equals the dimension of the
cokernel

Rd−w(g) ⊕R2d−w(g) → F 2H4
Σ(Y,C).

Finally, if ψ1 is surjective then 0 = h3,1(C) = h1,3(C). Hence C is of pure
type (2, 2) and

dimCC = dim Gr2F CC = dim coker(R2d−w(g) → Gr2F H
4
Σ(Y,C))

= dim coker(R2d−w(g) → H4
Σ(Y,C)).
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�

Remark 5.13. The above proof could be slightly simplified if P • = F •.
However, there exist degree 5 surfaces in P4 with one singularity, namely
an ordinary double point, such that F • 6= P •. See [10].

6. Cohomology of a surface with isolated ADE-singularities

Let S ⊂ P be a surface in a 3-dimensional weighted projective space given
by an equation g = 0, such that the set Σ, the locus where all partials of g
vanish, is finite and all singularities of S at points of Σ are of type Ak, Dm

or En. As usual we set S∗ = S \Σ. We want to calculate H2(S,Q)prim and

for this reason compare it to a quasismooth surface S̃ of the same degree as
S.

Lemma 6.1. Let µ be the total Milnor number of S. We have that H i(S,Q)
has a pure Hodge structure of weight i and

hp,q(S) =

{
hp,q(S̃) if (p, q) 6= (1, 1)

h1,1(S̃) − µ if (p, q) = (1, 1).

Proof. We first remark that the statement follows from the Lefschetz Hy-
perplane Theorem 5.1 for all p+ q 6= 2, 3.

Consider the long exact sequence of the pair (S, S∗)

. . . → H3
Σ(S,Q) → H3(S,Q) → H3(S∗,Q)

→ H4
Σ(S,Q) → H4(S,Q) → H4(S∗,Q) → . . .

from e.g. [8, Example 1.9] it follows that H3
Σ(S,Q) = 0. For each p ∈

Σ we have that (S, p) is given locally by a weighted homogeneous equa-
tion. In particular, we can find a small neighborhood X of p such that
X is a cone over a projective curve, and X∗ = X \ {p} is a C∗-bundle
over this curve. It follows directly from the Leray-spectral sequence that
H3(X∗,Q) = H1(C∗,Q) ⊗ H2(X,Q) = H2(X∗,Q)(−1). From the long
exact sequence of the pair (X,X∗) and the fact that X is contractible it
follows that H4

p(S,Q) = H4
p (X,Q) = H3(X∗,Q) = Q(−2).

Using Proposition 5.6 the above exact sequence simplifies to

0 → H3(S,Q) → Q(−2)#Σ−1 → Q(−2)#Σ → Q(−2) → 0.

In particular, H3(S,Q) = 0. The same argument with Σ = ∅ also shows

H3(S̃,Q) = 0. It remains to show that H2(S,Q) has a pure Hodge structure
and to determine the Hodge numbers of H2(S,Q).

Let S′ be a minimal resolution of the singularities of S that are contained
in Σ. The exceptional locus E consist of a union of smooth rational curves.
Each connected component has an intersection matrix of type ADE. We
want to apply Theorem 4.1 with Z = Σ and exceptional locus E. Since the
singularities are rational we have h1(E,Q) = 0. In particular, H2(S,Q) →֒
H2(S′,Q). Since H2(S′,Q) has pure weight 2 Hodge structure the same
holds for H2(S,Q).
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Again using that S has rational singularities it follows that h2,0(S) =

h2,0(S̃) and h0,2(S) = h0,2(S̃) (see e.g., [25, Introduction]). Since e(S) =

e(S̃) − µ (e.g., by [9, Corollary 5.4.4]), the lemma follows. �

As argued in Section 5, we can express the Hodge numbers of S̃ in terms
of the Jacobian ideal of g̃, where g̃ is an equation for S̃. Let d = deg(g̃) and

w =
∑
wi. Let R(g̃) be the Jacobian ring of g̃. Then h2,0(S̃) = h0,2(S̃) =

dimR(g̃)d−w = dimR(g̃)3d−w and h1,1(S̃) = dimR(g̃)2d−w.
We want to calculate H2(S,C) together with the Hodge filtration. From

Proposition 5.6 it follows that H3(U,C)(1) ∼= H2(S,C)prim. In [25] it is
proven that the Hodge and polar filtration coincide in this case.

Let g be an equation for S and let R(g) be Jacobian Ring of S. Then we
have surjections

R(g)d−w → H2,0(S,C), R(g)3d−w → H0,2(S,C)

and

R(g)2d−w → H1,1(S,C)prim

(cf. the results in Section 5, in particular, Remark 5.11).
In [25] this statement is made more precise. For each singularity (S, p)

let gp be a local equation and let R(gp) be the Jacobian ring of gp. Note
that R(gp) is naturally isomorphic to the Milnor algebra of (S, p). Let πp :
R(g) → R(gp) be the natural projection. Then

Theorem 6.2 (Steenbrink [25]). The Poincaré residue map induces the

following isomorphisms

H2,0(S,C) ∼= Rd−w(g)

and

H1,1(S,C)prim
∼= {f ∈ R2d−w(g) : f ∈ ker(πp) ∀p ∈ Σ}.

Proof. This is a reformulation of the main result of [25]. We show how this
statement can be obtained from the result in [25]. In the introduction of
[25] it is argued that H2,0(S) ∼= Rd−w(g). In Section 5 of [25] it is moreover

shown that dimR2d−w(g) = dimR2d−w(g̃)(= h1,1(S̃)prim). As argued in
Section 5 the map

R2d−w(g) → H1,1(S)prim

is surjective. Using these two facts and h1,1(S) = h1,1(S̃) − µ we get that
the kernel of

R2d−w(g) → H1,1(S,C)prim

has dimension µ.
We will now construct a section to this map. Let j : S \ Σ → S be the

inclusion. Let Ω̃p
S = j∗Ω

p
S\Σ and let T be the cokernel of d : Ω1(S) → Ω2(2S).

Then T is a skyscraper sheaf supported at Σ. At each p ∈ Σ we have that the
stalk Tp is isomorphic to the Tjurina algebra of (S, p), which is by definition
isomorphic to R(gp). Since S has only ADE singularities we have for each
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p ∈ Σ that the Milnor algebra and the Tjurina algebra of (S, p) coincide, in
particular, h0(S,Tp) = µ.

Consider the exact sequence (from [25, Corollary 17])

0 → H1(S, Ω̃1
S)prim → R2d−w(g) → H0(S,T ) → H2(S, Ω̃1

S) → 0.

As argued in [25] we have that H2(S, Ω̃1
S) ⊂ H3(S,C) = 0.

Hence this exact sequence reduces to

0 → H1(S, Ω̃1
S)prim → R2d−w(g) → ⊕p∈ΣR(gp) → 0.

In [25] it is then argued that H1(S, Ω̃1
S) = H1,1(S,C). Hence the above map

provides the desired section. (The fact that H1,1(S) → R2d−w(g) → H1,1(S)
is actually the identity follows from the construction of the first map in
[25].) �

Remark 6.3. Steenbrink’s point of view is different from the approach
taken by Dimca. In the previous section we constructed a surjection from
R2d−w(g) onto H1,1(S,C), whereas Steenbrink constructs an injection from
H1,1(S,C) to R2d−w(g), which is a section of the former map.

To unite the two approaches we can do the following. Let µ be the total
Milnor number of S. Fix µ polynomials h1, . . . , hµ of degree 2d − w such

that their image spans ⊕p∈ΣR(gp). Set R̃(g) := R(g)/(h1, . . . , hµ). Then

H2,0(Y,C) ∼= R̃d−w(g) and H1,1(Y,C) ∼= R̃2d−w(g).

Remark 6.4. Suppose p ∈ Σ has a non-trivial stabilizer group, i.e., p̃ :=
(x0, x1, x2, x3) is a lift of p to C4 and the stabilizer subgroup Gp ⊂ C∗ of p̃
is non-trivial.

Without loss of generality we can assume that p̃ = (1, α, 0, 0). Suppose
f(x0, x1, x2, x3) is a defining polynomial for S. Let g(x1, x2, x3) = f(1, x1 +
α, x2, x3). If Gp consists of one element then the Milnor algebra of (S, p)
equals C{x1, x2, x3}/(gx1 , gx2 , gx3). However, if #Gp > 1 then the Milnor
algebra of (S, p) equals

(C{x1, x2, x3}/(gx1 , gx2 , gx3))
Gp .

7. Calculation of H4
Σ(Y,C), local information

In this and the following section we assume that Y is an admissible hyper-
surface in a weighted projective space P(w0, . . . , w4) (cf. the Introduction)
given by f = 0. Let Σ ⊂ P(w0, . . . , w4) be the locus where all partials of f
vanish.

Since Y is admissible we can find for every p ∈ Σ a weighted homogeneous
polynomial gp (with weights w1,p, w2,p, w3,p, w4,p and degree dp) such that

(1) (Y, p) is contact equivalent to ({gp = 0}, 0) ⊂ (C4, 0);
(2) the surface S := {gp = 0} ⊂ P(w1,p, w2,p, w3,p, w4,p) has finitely

many ADE-singularities.
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Remark 7.1. The conditions on the singularities of Y are very mild. For
example in the case of elliptic threefolds we considered hypersurfaces of the
form y2 = x3 + Px + Q, with (P,Q) ∈ C[z0, z1, z2]4n × C[z0, z1, z2]6n. For
fixed n the locus where the conditions on the singularities are not satisfied
has a large codimension. E.g., in the isolated singularity case the most
frequently occuring singularities such as ADE threefold singularities are all
weighted homogeneous singularities.

Remark 7.2. Recall that two singularities ({f1 = 0}, 0) and ({f2 = 0}, 0)
are contact equivalent if and only if

C{x1, . . . , xn}/(f1) ∼= C{x1, . . . , xn}/(f2).

If f1 (and f2) are isolated singularities then f1 and f2 are contact equivalent
if and only if their Milnor algebras are isomorphic. If we assume that f1 is
weighted homogeneous then, by the Euler formula, we get f1+J(f1) = J(f1),
hence the Tjurina algebra and the Milnor algebra of f1 are isomorphic.

It turns out that if f2 is isolated and contact equivalent to a weighted
homogeneous singularity f1 then it is also right equivalent to f1, and hence
the Tjurina algebra of f2 is isomorphic to the Tjurina algebra of f1. This
implies that in the isolated case we could reword our condition on (Y, p) by
saying that the Milnor number and the Tjurina number of (Y, p) coincide.
(Details of this reasoning can be found in [7, Theorem 7.42] and [14, Section
9.1].)

For non-isolated singularities we are not aware of such a simple reformu-
lation.

Remark 7.3. Note that the surface S satisfies the hypothesis of the previous
section. We define S∗ = S \ Σp where Σp is the locus where all the partials
of gp vanish. Let X ⊂ C4 be the zero set of gp, i.e. the affine cone over the
surface S.

Lemma 7.4.

H i
p(Y,Q) ∼= H i

0(X,Q).

Proof. This follows directly from the definition of contact equivalence. �

Let Σ′ be the singular locus of X and set X∗ = X \ {0}. In this section
we relate H•

0 (X,Q) to H•(S,Q).

Lemma 7.5. For i > 1 we have isomorphisms

H i
0(X,Q) ∼= H i−1(X∗,Q).

Moreover,

H i
0(X,Q) = 0

for i = 0, 1.
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Proof. Since X is the affine cone over S ⊂ P(w1,p, w2,p, w3,p, w4,p) it is con-
tractible and hence H i(X,Q) = 0 for i > 0. The long exact sequence of the
pair (X,X∗) therefore yields an isomorphism

H i
0(X,Q) ∼= H i−1(X∗,Q)

for i > 1. Clearly, the natural map

H0(X,Q) → H0(X∗,Q)

is an isomorphism. Since H1(X,Q) = 0 the same sequence gives that both
H0

0 (X,Q) and H1
0 (X,Q) vanish. �

The cone X∗ is a C∗-fibration over S. Recall from Section 6 that H i(S,Q)
vanishes unless i = 0, 2, 4 and that H0(S,Q) = Q, H4(S) = Q(−2). The
Hodge structure on H2(S,Q) can be calculated by Theorem 6.2. This en-
ables us to calculate the Hodge structure of H•

0 (X,Q).

Proposition 7.6. We have that

H i
0(X,Q) =





H2(S,Q)prim for i = 3
H2(S,Q)prim(−1) for i = 4

Q(−3) for i = 6
0 otherwise.

Proof. Consider the E2 part of the Leray spectral sequence for X∗ → S:

H1(C∗,Q) Q(−1) 0 H2(S,Q)(−1) 0 Q(−3)
H0(C∗,Q) Q 0 H2(S,Q) 0 Q(−2)

H0(S,Q) H1(S,Q) H2(S,Q) H3(S,Q) H4(S,Q)

The only possible non-zero differentials are the maps Q(−1) → H2(S,Q)
and H2(S,Q)(−1) → Q(−2). We will show below that these maps are
actually injective, respectively surjective. Assuming this for the moment it
follows that the E3-terms equals

H1(C∗) 0 0 H2(S,Q)prim(−1) 0 Q(−3)
H0(C∗) Q 0 H2(S,Q)prim 0 0

H0(S) H1(S) H2(S) H3(S) H4(S)

and the spectral sequence degenerates at E3. Hence H i(X∗,Q) ∼= ⊕jE
i−j,j
3

and thus

H i(X∗,Q) =





Q for i = 0
0 for i = 1

H2(S,Q)prim for i = 2
H2(S,Q)prim(−1) for i = 3

0 for i = 4
Q(−3) for i = 5.

By Lemma 7.5 we have H i
0(X,Q) = H i−1(X∗,Q) for i > 1 and thus we

obtain the proposition.
It remains to show that the differential Q(−1) → H2(S,Q) is injective

and that the differential H2(S,Q)(−1) → Q(−2) is surjective.



26 KLAUS HULEK AND REMKE KLOOSTERMAN

Let X̃ be the blow-up of X at 0. Then X̃ is a C-fibration over S. Note
that S admits Poincaré duality (a consequence of Lemma 6.1). Using that
H i
c(C

∗,Z) = 0 for i 6= 1 it follows that the Leray-Spectral sequence (for

cohomology with compact support) associated with X̃ → S degenerates at

E2 and we get that H6−i
c (X̃,Q) ∼= H i(S,Q)(−1). Similarly, we get that

H i(X̃,Q) = H i(S,Q).

Let E ⊂ X̃ be the exceptional divisor. Then E ∼= S and X̃ \ E = X∗.
Consider the following part of the Gysin exact sequence:

H1(E,Q) = 0 → H2
c (X

∗,Q) → H2
c (X̃,Q) → H2(E,Q)

→ H3
c (X

∗,Q) → H3
c (X̃,Q) = 0.

The map H2
c (X̃,Q) → H2(E,Q) is induced by a map from integral co-

homology. Let h ∈ H2(E,Z) be the hyperplane class. From the Leray

spectral sequence it follows that H2
c (X̃,Z) = H0(E,Z) ⊗ H2

c (C,Z). Let

h1 ∈ H2
c (X̃,Z) be [E] times a generator of H2

c (C,Z). Let ι : E → X̃ be
the inclusion. Then it is easy to see that ι∗(h1) = −h. Hence the map

ι∗ is not constant and since h2
c(X̃,Q) = h4(S,Q) = 1 it follows that ι∗ is

injective. From the Gysin exact sequence it follows that H2
c (X

∗,Q) = 0 and
that h3

c(X
∗) = h2(E) − 1. Assume for the moment that X∗ is smooth, i.e.,

E is quasismooth. Using Poincaré duality we get that h3(X∗) = h2(E) − 1.
Since H3(X∗,Q) equals

ker(H2(E,Q)(−1) → H4(X̃,Q)) = ker(H2(S,Q)(−1) → Q(−2))

it follows that the differential H2(S,Q)(−1) → Q(−2) is surjective.
For the other differential we can proceed similarly:

H3(E,Q) = 0 → H4
c (X

∗,Q) → H4
c (X̃,Q) → H4(E,Q)

→ H5
c (X

∗,Q) → H5
c (X̃,Q) = 0.

The map H4
c (X̃,Q) → H4(E,Q) is again induced by a map on integral

cohomology, and the class of h times a generator of H2
c (C,Z) is mapped to

a nonzero multiple of a generator of H4(E,Z). This implies that h4
c(X

∗) =

h4
c(X̃) − h4(E) = h2(E) − 1. Using Poincaré duality we get that the differ-

ential Q(−1) → H2(S,Q) is injective, provided that S is quasismooth.
If S is not quasismooth then we can find a family of quasismooth surfaces

Sλ degenerating to S for λ = 0. Now for λ 6= 0, we have that the differential

Q(−1) → H2(Sλ,Q)

is induced by a non-zero map H2(X̃λ,Z) → H2(Eλ,Z). Let hλ be a family

of generators ofH2(Eλ,Z) and let h′λ be a family of generators ofH2(X̃λ,Z).
Then h′λ is mapped to −hλ. By taking the limit λ → 0, we see that h′0 is

mapped to −h0, hence H2(X̃0,Q) → H2(E,Q) is injective, and from this
it follows that Q(−1) → H2(S,Q) is injective. A similar argument shows
that also H2(S,Q) → Q(−2) is surjective. This finishes the proof. �

The following proposition will be useful for our purposes
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Proposition 7.7. Let Y, p, dp be as above. Let wp = w1,p+w2,p+w3,p+w4,p.

Then H4
p(Y,Q) has a pure weight 4 Hodge structure without (0, 4) and (4, 0)-

component. We have

F 3H4
p(Y,C) ∼= R̃dp−wp

(gp)

and

F 2H4
p(Y,C)/F 3H4

p (Y,C) ∼= R̃2dp−wp
(gp)

where R̃ is obtained from R as explained in Remark 6.3.

Proof. This is a combination of Lemma 7.4, Proposition 7.6 and Theo-
rem 6.2. �

Proposition 7.8. Let (Y, p) be a transversal ADE surface singularity. Then

H6
p(Y,Q) = Q(−3) and H i

p(Y ) = 0 for i 6= 6.

Proof. For simplicity we assume that (Y, p) is an Ak-singularity. Using
Lemma 7.4 it suffices to prove the statement for (Y, p) given by

x2
1 + x2

2 + xk+1
3 = 0.

This equation defines a surface S ⊂ P(k+1, k+1, 2, 1) of degree 2k+2 with
an isolated Ak singularity in (0 : 0 : 0 : 1).

From Lemma 7.4 and Proposition 7.6 it follows that it suffices to prove
that H2(S,Q)prim = 0. We start by calculating h2(S̃) for a quasismooth

surface S̃ of the same degree, e.g., g̃ := x2
1 + x2

2 + xk+1
3 + x2k+2

4 = 0. This
can be done by calculating the dimension of several graded pieces of the
Jacobian ring of Ỹ . The sum of the weights equals 2k + 5, hence we are
interested in h2,0(S̃) = dimR(g̃)−3 = 0, h0,2(S̃) = R(g̃)4k+1 = 0 and

h1,1(S̃) = dimR(g̃)2k−1 = dimspan{[xi3x
j
4] : 2i+ j = 2k − 1} = k.

Hence h2(S̃)prim = k. Since µ(Y, p) = k, we get h2(S)prim = h2(S̃)prim −
µ(Y, p) = 0. This finishes the Ak case.

For Dm, En singularities one can proceed similarly. �

8. Glueing local information

Let P be a four dimensional weighted projective space and let Y ⊂ P be
a hypersurface, given by f = 0. Let Σ be the locus where all the partials of
f vanish. We assume the usual conditions, i.e., Σ∩Psing = ∅, dim Σ ≤ 1 and
that at a general point of any one dimensional component of Σ we have a
transversal ADE surface singularity. Finally, let P ⊂ Σ be the set of points
p ∈ Σ such that (Y, p) is not a transversal ADE surface singularity.

We want to use the previous section to relate H4(Y,Q)prim to the cokernel
of H4(U,Q)(1) → ⊕p∈PH

4
p (Y,Q). In this section all considerations are

topological. For this reason we work with Q coefficients and use H i(·) as
shorthand for H i(·,Q).
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For each point p ∈ P, fix a small contractible neighborhood Up ⊂ Σ. Let
Σ1 := Σ \ ∪p∈PUp be the complement of the Up. Note that Σ1 is a closed
Riemann surface with boundary embedded in P.

Lemma 8.1. We have that

H4
Σ1

(Y ) ∼= H2(Σ1)
∗(−3), H5

Σ1
(Y ) ∼= H1(Σ1)

∗(−3)

and

H6
Σ1

(Y ) ∼= H0(Σ1)
∗(−3).

Proof. Take a finite open covering U := {Vi} of Σ1 such that each Vi is home-
omorphic to a disc with boundary S1, in particular each Vi is contractible.
Let Di = Vi be the closure in the complex topology. It is easy to show
that we can find such a covering with the property that each intersection
Di1 ∩Di1 ∩ · · · ∩Dik is empty or contractible.

We now proceed by induction. If #U = 1, then Σ1 is contractible. Hence
H0(Σ1) = Q and all other cohomology groups of Σ1 vanish. In this case
we have a deformation retract (Y, Y \ Σ1) to (Y ′, Y ′ \ {p}) where (Y ′, p) is
a transversal ADE surface singularity. From this it follows that H i

Σ1
(Y ) ∼=

H i
p(Y

′). From Proposition 7.8 it follows that H6
p(Y

′) = Q(−3) and all other
local cohomology groups vanish. Hence the statement is true in this case.

Assume now #U = k, let Σ0 = ∪1≤i≤k−1Di. We have two Mayer-Vietoris
sequences (one is dual to the usual Mayer-Vietoris sequence, the other is
Mayer-Vietoris for cohomology with support), namely

Hi(Dk ∩ Σ0)∗ //

∼

��

Hi(Dk)∗ ⊕Hi(Σ0)∗ //

∼

��

Hi(Σ1)∗ //

��

Hi−1(Dk ∩ Σ0)∗

∼

��

H6−i
Dk∩Σ0

(Y )(3) // H6−i
Dk

(Y )(3) ⊕H6−i
Σ0

(Y )(3) // H6−i
Σ1

(Y )(3) // H
6−(i−1)
Dk∩Σ0

(Y )(3)

The first two vertical maps are isomorphisms by the induction hypothesis.
From the five-lemma it follows that dimH i(Σ) = dimH6−i

Σ (Y ), which yields
the lemma. �

Lemma 8.2. We have that

H6
Σ(Y ) ∼= H0(Σ)∗(−3) and H5

Σ(Y ) ∼= H1(Σ)∗(−3).

Proof. Let Dp = Up. Using that Dp is contractible we have that H i
Dp

(Y ) ∼=

H i
p(Y ). From Proposition 7.6 it follows that H6

p (Y ) = Q(−3) and also that

H5
p(Y ) = 0.

Let Σ2 = ∪Up. Since Up is contractible we have that H1(Σ2) = 0 and

H5
Σ2

(Y ) = ⊕H5
p(Y ) = 0. In a similar way we get H6

Σ2
(Y ) = Q(−3)#P =

H0(Σ2)
∗(−3).

Along D := Σ1 ∩ Σ2, which is union of circles, we have transversal ADE
surface singularities. A reasoning as in Lemma 8.1 shows that H5

D(Y ) ∼=
H1(Y )∗ and H6

D(Y ) ∼= H0(D)∗.
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As in the previous lemma we can consider the two Mayer-Vietories se-
quences (the vertical arrows are isomorphisms by either the above discussion
or using Lemma 8.1)

H1(D)∗ //

∼

��

H1(Σ1)
∗ ⊕H1(Σ2)

∗ //

∼

��

H1(Σ)∗ //

��

. . .

H5

D
(Y )(3) // H5

Σ1
(Y )(3) ⊕H5

Σ2
(Y )(3) // H5

Σ
(Y )(3) // . . .

. . . // H0(D)∗

∼

��

// H0(Σ1)
∗ ⊕H0(Σ2)

∗ //

∼

��

H0(Σ)∗ //

��

0

. . . // H6

D
(Y )(3) // H6

Σ1
(Y )(3) ⊕H6

Σ2
(Y )(3) // H6

Σ
(Y )(3) // 0

An application of the five-lemma yields the proof. �

Lemma 8.3. Suppose dim Σ = 1. Then H5(Y ) = 0 and H4(Y ∗) → H5
Σ(Y )

is an isomorphism.

Proof. Consider the exact sequence of the pair (Y, Y ∗)

H4(Y ) → H4(Y ∗) → H5
Σ(Y ) → H5(Y )

→ H5(Y ∗) → H6
Σ(Y ) → H6(Y ) → H6(Y ∗) = 0.

Note that it follows from Proposition 5.6 that H5(Y ∗) = H0(Σ)∗prim(−3).

Using Lemma 8.2 it follows that h5(Y ∗) = h6
Σ(Y ) − h6(Y ), hence the map

H5(Y ∗) → H6
Σ(Y ) is injective.

From Proposition 5.6 it follows thatH4(Y ∗) is isomorphic to H1(Σ)∗(−3).
From Lemma 8.2 it follows that H5

Σ(Y ) is isomorphic to H1(Σ)∗(−3). Hence
H4(Y ∗) and H5

Σ(Y ) have the same dimension.
Note that the possible Hodge weights of H4(Y ∗) ∼= H1(Σ)∗(−3) are 5 and

6, where H4(Y ) has Hodge weights at most 4 [21, Theorem 5.39]. Hence
H4(Y ) → H4(Y ∗) is the zero-map, H4(Y ∗) ∼= H5

Σ(Y ) and H5(Y ) = 0. �

Theorem 8.4. We have that

H4(Y )prim = coker(H4(U)(1) → ⊕p∈PH
4
p(Y )).

Proof. Suppose first that dimΣ = 0. Then P = Σ.
Consider the exact sequence

H3(Y ∗) → H4
Σ(Y ) → H4(Y ) → H4(Y ∗).

From Proposition 5.6 it follows H4(Y ∗)prim = 0 and H3(Y ∗) ∼= H4(U)(1),
hence we have an exact sequence

H4(U)(1) → H4
Σ(Y ) → H4(Y )prim → 0.

This proves the case dim Σ = 0.
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Suppose that dim Σ = 1. Consider the diagram (where both the horizon-
tal and the vertical sequence are exact)

0 // H4(U)(1) // H3(Y ∗) //

��

H2(Σ)∗(−3)prim
// 0

H4
Σ(Y )

��

H4(Y )

��

0.

The horizontal sequence comes from Proposition 5.6, the vertical sequence
is part of the long exact sequence of the pair (Y, Y ∗). From Lemma 8.3 it
follows that H4

Σ(Y ) → H4(Y ) is surjective.

We start by constructing a map H4
Σ(Y ) → H2(Σ)∗(−3): let Ỹ be a res-

olution of all singularities contained in Σ of Y . Let E be the exceptional
divisor. Then there is a natural map H2(Σ) → H2(E). Since Ỹ is smooth

we have that H i
E(Ỹ ) = H6−i(E)∗(−3). The resolution (Ỹ , E) → (Y,Σ)

induces a natural map H i
Σ(Y ) → H i

E(Ỹ ). Composing the maps as follows

H4
Σ(Y ) → H4

E(Ỹ ) ∼= H2(E)∗(−3) → H2(Σ)∗(−3)

yields a map H4
Σ(Y ) → H2(Σ)∗(−3). It is easy to check that the compo-

sition H3(Y ∗) → H4
Σ(Y ) → H2(Σ)∗(−3)prim is the same map as the map

H3(Y ∗) → H2(Σ)∗(−3) in the above diagram.
Let K be the kernel of the map H4

Σ(Y )prim → H2(Σ)∗prim(−3). The above
diagram shows that

H4(Y )prim = cokerH3(Y ∗) → H4
Σ(Y )prim = cokerH4(U)(1) → K.

The final equality is a consequence of the snake lemma.
Hence it remains to show that

K ∼= ⊕p∈PH
4
p(Y ).

Let Σ2 := ∪Up and D = Σ1 ∩ Σ2. Note that D is a union of circles.
Consider the Mayer-Vietoris sequence

H4
D(Y ) → H4

Σ1
(Y ) ⊕H4

Σ2
(Y ) →

→ H4
Σ(Y ) → H5

D(Y ) → H5
Σ1

(Y ) ⊕H5
Σ2

(Y ) → H5
Σ(Y )

Note that H5
Σ(Y ) = H1(Σ)∗(−3) by Lemma 8.2. Note also that that

H5
Σ2

(Y ) = H1(Σ2)
∗(−3) by a reasoning similar to the one in the proof

of Lemma 8.1. Since H1(Σ2) = 0 it follows that H5
Σ2

= 0.
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Since we have transversal ADE singularities along D and Σ1 this sequence
becomes (after tensoring with Q(3))

0 = H2(D)∗ → H2(Σ1)
∗ ⊕H4

Σ2
(Y )(3) →

→ H4
Σ(Y )(3) → H1(D)∗ → H1(Σ1) → H1(Σ)∗ → . . .

Since Σ1 is a deformation retract of Σ \ P we obtain the following exact
sequence: (dualized sequence of the pair (Σ,Σ \ P))

0 → H2(Σ1)
∗ → H2(Σ)∗ → ⊕p∈PH

2
p (Σ)∗ → H1(Σ1)

∗ → H1(Σ)∗

This yields a diagram

0 // H2(Σ1)
∗
⊕ H4

Σ2
(Y )(3)

ϕ1
//

��

H4
Σ(Y )(3) //

��

H1(D)∗ //

��

H1(Σ1)
∗

=

��

0 // H2(Σ1)
∗

ϕ2 // H2(Σ)∗ // ⊕p∈PH2
p(Σ)∗ // H1(Σ1)

∗

Here, the map H4
Σ2

(Y )(3) → H2(Σ)∗ is the unique map, making this
diagram commutative.

Using that gp = 0 is weighted homogeneous we get that (Σ, p) is locally a

set of m lines through p. In particular, Up \{p} can be retracted to Up∩Σ1.
Taking direct sums over all p ∈ P this shows that H i(Σ2\P) ∼= H i(D). Since
for each p ∈ P we have that Up is contractible we get a natural isomorphism

H i+1
P (Σ) ∼= H i(Σ2 \ P) ∼= H i(D).

Hence the above diagram simplifies to

0 // H2(Σ1)
∗ ⊕H4

Σ2
(Y )

ϕ1
//

��

H4
Σ(Y ) //

��

cokerϕ1
//

∼

��

0

0 // H2(Σ1)
∗ ϕ2

// H2(Σ) // cokerϕ2
// 0

(The main point here is that cokerϕ1
∼= cokerϕ2.) From this diagram

it follows that H4
Σ2

(Y ) = ker(H4
Σ(Y ) → H2(Σ)∗) = ker(H4

Σ(Y )prim →

H2(Σ)∗prim).

Since the Dp := Up are contractible, there exists a deformation retract
from Y \ Σ2 to Y \ P, hence H4

Σ2
(Y ) ∼= H4

P(Y ), which yields the proof. �

9. Method for calculating MW (π)

In this section we present a method to calculate the Mordell-Weil rank of
a general elliptic threefold.

We start by identifying the set Σ and a finite subset P ′ containing the set
P (cf. the previous section.)

Proposition 9.1. Suppose we have a threefold Y ⊂ P(2n, 3n, 1, 1, 1) defined

by the vanishing of g := −y2+x3+Px+Q, where P and Q are homogeneous

polynomials in z0, z1, z2 of degree 4n and 6n. Suppose Y is minimal.



32 KLAUS HULEK AND REMKE KLOOSTERMAN

Let ∆ be the curve defined by 4P 3 + 27Q2 = 0 and ∆1 be the underlying

reduced curve. Let ψ : P(2n, 3n, 1, 1, 1) → P2 be the projection onto the

plane x = y = 0. Take P to be the set defined in Section 8. Then ψ(P) is

contained in ∆1,sing ∪Q1 ∪ Q2 where

Q1 := {q ∈ ∆1,smooth : q is an isolated zero of P |∆1}.

and

Q2 :=

{
q ∈ ∆1,smooth :

P and ∆1 have a common component C
containing q, ordC(P ) = 2 and ordq(P ) ≥ 3.

}
.

Proof. If all the partials of g vanish at p then, in particular, ∂g/∂x and

∂g/∂y vanish, hence p is a singular point of ψ|−1
Y ψ(p) and ψ(Σ) ⊂ ∆1.

Moreover, if p ∈ Σ, then p is the unique singular point of ψ|−1
Y (ψ(p)).

For a general point q on a component C of ∆ one can find the transversal
type of the singularity along the corresponding component of Σ by Tate’s
algorithm. For more details we refer to [19]. We will use Tate’s algorithm
to identify the set of points where we do not have a transversal surface
singularity.
Iν-fiber. Suppose C is a component of ∆ of multiplicity ν and P |C 6≡ 0.

We show now that if p ∈ P then q := ψ(p) is either in ∆1,sing or P (q) = 0
(i.e., q ∈ Q1).

For each q ∈ C we have that ψ−1(q) has precisely one singular point. Let
Σ′ be the union of all these points. Let t = 0 be an equation for C and let
s be a second local coordinate.

An easy calculation show that at a general point of C the x-coordinate of
p equals −3Q(s, t)/2P (s, t). As long as P (s, t) 6= 0 we can move the point
x = −3Q(s, t)/2P (s, t), y = 0 to (0, 0). This yields a new local equation of
Y , namely

8P 3y2 = 8P 3x3 − 36PQ2x2 + 2P∆x−Q∆.

Since ∆(s, t) = tνh(s, t), we have that (Y, p) is equivalent to the singularity

y2 = x2 + tνx+ tν

unless h(t, s)P (t, s)Q(t, s) = 0. For degree reasons we can disregard tνx,
hence we have a transversal Aν−1 singularity unless h(t, s)P (t, s)Q(t, s) = 0.
Since ∆ = 4P 3 + 27Q2 we have that then h(t, s)P (t, s) = 0.
I∗ν -fiber, ν > 0. Suppose C is a component of ∆ with multiplicity 6 + ν

and that ordC(P ) = 2, ordC(Q) = 3. Let t = 0 be an equation for C and
let s be a second local coordinate. I.e., we can write P (s, t) = t2P1(s, t) and
Q(s, t) = t3Q1(s, t). As above, we move the point (−3tQ1(s, t)/P (s, t), 0) to
(0, 0). Then we get a local equation of the form

8P1(t)
3y2 = 8P1(t)

3x3 − 36tP1(t)Q1(t)
2x2 + 2t2P1(t)∆2(t)x− t3Q1(t)∆2(t).

Where ∆2(t, s) = ∆(t, s)/t6. Then ∆2 = 4P1(t, s)
3 + 27Q1(t, s)

2 = tνh(t, s)
for some h. This local equation is equivalent to a transversal D4+ν -singula-
rity, unless P1(t, s)Q1(t, s)h(t, s) = 0. A reason similar to the Iν case shows
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that either p ∈ ∆1,sing or P1 and Q1 vanish at q, which implies that P = t2P1

vanish at least up to order 3 at q, i.e., q ∈ Q2.
Exceptional cases II, III, IV, I∗0 , IV

∗, III∗, II∗.
Of these we do only the most difficult cases II∗, III∗, the other cases

being very similar.
Case II∗: from Tate’s algorithm it follows that we have a local equation

of the form

y2 = x3 + t4P1(s, t)x+ t5Q1(s, t)

such that Q1(s, t) does not vanish at a general point of C. Hence ∆(s, t) =
t10(4t2P1(s, t)

3 + 27Q1(s, t)
5). This is a transversal E8 singularity unless

Q1(t, s) vanishes, but then q is a singular point of ∆1.
Case III∗: from Tate’s algorithm it follows that we have a local equation

of the form

y2 = x3 + t3P1(s, t)x+ t5Q1(s, t)

such that P1(s, t) does not vanish at a general point of C. Hence ∆(s, t) =
t9(4P1(s, t)

3 + 27tQ1(s, t)
2). This is a transversal E7 singularity unless

P1(s, t) vanishes, but then q is a singular point of ∆1. �

Lemma 9.2. Suppose q ∈ P2 is such that P (q) = 0 and q is an isolated

double point of ∆. Then P ∩ ψ−1(q) = ∅.

Proof. Using that ∆ = 4P 3 + 27Q2 and our assumptions on ∆ and P we
obtain that Q = 0 is a smooth reduced curve in a neighborhood of q and
that Q = 0 does not have a common component with P = 0 or ∆ = 0 in a
neighborhood of p. I.e., we have a local equation of the form

y2 = x3 + Px+ s.

If Σ and ψ−1(q) intersect, then the fiber needs to be singular at that point,
i.e., (x, y, t, s) = (0, 0, 0, 0), However, it is easy to see that Y is smooth at
this point, hence ψ−1(q) ∩ Σ = ∅. �

For a Weierstrass equation g := −y2 + x3 + Px + Q let Q := (∆1,sing ∪
Q1 ∪ Q2) \ Q3, where Q1 and Q2 are defined as in Proposition 9.1 and

Q3 = {q ∈ ∆1,sing : P (q) = 0 and q is an isolated double point of ∆}.

Let

P ′ :=
⋃

q∈Q

ψ|−1
Y (q)sing ⊂ Y.

Note that P ′ is a finite set and contains the set P of the previous section.

Procedure 9.3. Given an equation y2 = x3 + Px + Q with homogeneous

polynomials P ∈ C[z0, z1, z2]4n, Q ∈ C[z0, z1, z2]6n such that there is no

u ∈ C[z0, z1, z2] \ C with u4|P and u6|Q.

(1) Set Y = {(x, y, z0, z1, z2) ∈ P(2n, 3n, 1, 1, 1): y2 = x3 + Px+Q}.
(2) Determine the set P ′ ⊂ Y defined above.
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(3) For each p ∈ P ′ check whether (Y, p) is contact equivalent to a

weighted homogeneous hypersurface singularity (Y ′, p′).
If not, then stop, otherwise fix weights w1,p, w2,p, w3,p, w4,p and

a weighted homogeneous polynomial gp ∈ C[y1, y2, y3, y4] such that

(Y, p) is contact equivalent to ({gp = 0}, 0). Fix also a map (Y, p) →
({gp = 0}, 0). Let dp := deg gp, wp :=

∑
wi,p.

(4) For each p ∈ P ′ let R(gp) be the Jacobian ring of gp. If (Y, p) is

an isolated singularity then set R̃(gp) = R(gp). If (Y, p) is not an

isolated singularity then R̃ is defined as in Remark 6.3.

(5) Calculate the dimension r1 of the cokernel of the natural map

C[x, y, z0, z1, z2]7n−3 → ⊕p∈P ′R̃(gp)2dp−wp
.

(6) Calculate the dimension r0 of the cokernel of the natural map

C[x, y, z0, z1, z2]n−3 → ⊕p∈P ′R̃(gp)dp−wp
.

(7) If r0 = 0 then rankMW(π) = r1.
(8) If r0 > 0 then rankMW(π) ≤ r1.

Proof. As is shown above P ′ is finite and contains P. For each p ∈ P ′ \ P
we have that (Y, p) is smooth or a transversal ADE surface singularity.
By 7.8 it follows that H4

p (Y,Q) = 0. Hence to calculate the cokernel of

H4(U,Q)(1) → ⊕q∈PH
4
q (Y,Q), we can replace P by P ′.

We proceed by calculating h3,1(H4(Y,C)) and h2,2(H4(Y,C)). Combining
Proposition 7.7 with Theorem 8.4 yields that

(1) h3,1(H4(Y,C)) ≤ r0 and h2,2(H4(Y,C))prim ≤ r1.
(2) If r0 = 0 then h3,1(H4(Y,C)) = h4,0(H4(Y,C)) = 0. Since H4(Y,Q)

has a pure weight 4 Hodge structure it follows that h1,3(H4(Y,C)) =
h0,4(H4(Y,C)) = 0, hence H4(Y,C) is of pure type (2, 2) and

rankH4(Y,C)prim ∩H2,2(H4(Y ))prim = r1.

Applying Theorem 4.3 finishes the proof. �

Remark 9.4. An elliptic curve E over C(t1) is for trivial reasons also an
elliptic curve over C(t1, t2). We discuss what the outcome of our method is,
if we apply it to such Y . Note that Y is defined as the zero-set of

−y2 + x3 + P (z0, z1)x+Q(z0, z1)

i.e., Y is a cone over an elliptic surface. Here we assume that n is such that
deg(P ) = 4n and deg(Q) = 6n. The discriminant curve is a union of lines
through (0 : 0 : 1). From this it follows that P ′ = {(0 : 0 : 0 : 0 : 1)}. For
simplicity assume that the (0 : 0 : 0 : 0 : 1) is an isolated singularity.

For p = (0 : 0 : 0 : 0 : 1) we have a local equation

(7) − v2 + u3 + P (s, t)u+Q(s, t) = 0
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i.e., we have dp = 6n and wp = 5n+2. Our algorithm tells us that we should
calculate the dimension r1 of the cokernel of

C[x, y, z0, z1, z2]7n−3 → R̃(gp)7n−2

and calculate the dimension r0 of the cokernel of

C[x, y, z0, z1, z2]n−3 → ⊕p∈P ′R̃(gp)n−2.

It is easy to see that both maps are the zero map. In particular, our method
tells us that

rankMW(π) ≤ r1 = dimR(gp)7n−2 = h1,1(S)prim

where S is the elliptic surface defined by (7). Of course, we could obtain
this inequality directly, i.e., by applying the Shioda-Tate formula to S.

Part 3. Examples

10. Example of Grooten-Steenbrink

Grooten and Steenbrink studied the family of threefolds

g := −W 2 +A2X
2
0 + 2A1X0(X1X3 −X2

2 ) +A0(X1X3 −X2
2 )2 = 0

where Ai ∈ C[X1,X2,X3]i. This defines a degree 4 threefold Y in P =
P(1, 1, 1, 1, 2).

For general A0, A1, A2 Grooten and Steenbrink proved that h4(Y ) = 2 .
Here we will give a proof of this by our methods. We shall use the notation
of the previous sections.

Lemma 10.1. Let Ai ∈ C[X1,X2,X3]i for i = 0, 1, 2. Assume that A2A0 −
A2

1 defines a smooth conic intersecting the conic X1X3 −X
2
0 in four distinct

points. Then

(1) The locus Σ is given by W = X0 = X1X3 −X2
2 = 0.

(2) If p ∈ Σ is such that A2(p)A0(p)−A
2
1(p) 6= 0 then (Y, p) is a transver-

sal A1-singularity.

(3) If p ∈ Σ is such that A2(p)A0(p) − A2
1(p) = 0 then (Y, p) is a pinch

point. There are precisely four such points.

Proof. An easy calculation shows that the partials of F vanish if and only
if W = 0,X0 = 0,X1X3 −X2

2 = 0, yielding the first claim.
Note that the conic X1X3−X

2
2 = 0 is smooth. Hence we can parameterize

this conic by a local coordinate t. Let s be a second local coordinate in the
plane W = X0 = 0, such that s = 0 is a local equation for the conic
X1X3 −X2

2 = 0. Then we have a local equation for Y of the form

w2 = A2x
2
0 + 2A1x0s+A0s

2.

If p is such that A2(p)A0 − A2
1(p) 6= 0 then this defines a transversal A1-

singularity. This gives the second claim.
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If p is such that A2(p)A0 − A1(p)
2 = 0 then we change the coordinate t

such that t = 0 is an equation for A2A0 −A2
1. Then Y has a local equation

of the form w2 = x2
0 + ts2, hence we have a pinch point.

The pinch points are precisely the point in the intersection of A2(p)A0 −
A1(p)

2 = 0 with Σ, i.e., the intersection of two plane conics. Our assump-
tions on the Ai yield that there are exactly four distinct intersection points,
i.e., there are four pinch pints. This finishes the proof. �

Proposition 10.2. Let Ai ∈ C[X1,X2,X3]i for i = 0, 1, 2. Assume that

A2A0 −A
2
1 defines a smooth conic intersecting the conic X1X3 −X

2
0 in four

distinct points. Then h4(Y ) = 2.

Proof. Lemma 10.1 shows that the set P of Theorem 8.4 consists precisely
of the four pinch points p1, p2, p3, p4. A local equation for a pinch point p is
gp := x1x2 − x2

3x4 = 0. If we set wt(x1) = 2 and let all other variables have
weight 1, then we get a weighted homogeneous equation of degree 3. The
surface S defined by gp has an A1-singularity at q : x1 = x2 = x3 = 0. This
implies that we can apply Theorem 6.2 to calculate the cohomology of S:

H2,0(S,C) = R(gp)−2 = 0, H1,1(S,C)prim = {f ∈ R(gp)1 : f(q) = 0}.

To determine the latter group, note that x1 and x2 are in the Jacobian ideal
of gp, hence R(gp)1 = 〈x3, x4〉 and

R̃(gp)1 = H1,1(S,C)prim = Cx3.

We would like to calculate H4(Y,Q). By Proposition 7.7 and Theorem 8.4
we have that h3,1(Y,C) is at most the dimension of the cokernel

R(g)−2 → ⊕4
i=1R(gpi

)−2

hence h3,1(Y,C) = 0.
From the same results it follows that h2,2(Y,C) equals the dimension of

the cokernel

ψ2 : R(g)2 → ⊕pi∈PR̃(gpi
)1.

An easy calculation shows that for f ∈ R(g)2 we have

ψ2(f) = (fX0(p1), fX0(p2), fX0(p3), fX0(p4)).

Since f is a a degree 2 polynomial it follows that fX0 = a0X0 + a1X1 +
a2X2 + a3X3 for some ai ∈ C. All points of P lie in the subspace given by
W = X0 = 0, i.e., are of the form (0 : αi : βi : γ3 : 0). This means that the
image of ψ2 is of the form

span(a1αi + a2βi + a3γi : i = 1, 2, 3).

Hence the image of ψ2 has dimension at most 3. If the dimension of the image
were less than 3 then the above description shows that the four points in
P are collinear, contradicting the fact that they lie on an irreducible conic,
hence the image has dimension 3, and the cokernel is one dimensional. This
implies that H4(Y,Q) = Q(−2)2, and the defect of Y equals 1. �
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11. Three easy examples

We give three examples of rational elliptic threefolds. The first and
third threefold have rankMW(π) = 2 and the second threefold satisfies
rankMW(π) = 0.

Example 11.1. Consider y2 = x3 + z6
0 + z2

1z
4
2 . The set Σ consists of

p = (0 : 0 : 0 : 0 : 1) and q = (0 : 0 : 0 : 1 : 0). Local equations
for p and q are v2 = u3 + t61 + s21 and v2 = u3 + t62 + s42, both singulari-
ties are weighted homogeneous with weights (3, 1, 2, 3) and (3, 2, 4, 6) and
of degree 6 and 12 respectively. In particular wp = 9, wq = 15. Hence
R(gp)dp−wp

= R(gq)dq−wq
= 0, and H4(Y,Q) has a pure (2, 2) Hodge struc-

ture by Proposition 7.7 with Theorem 8.4.
Note that

R(gp)2dp−wp
= R(gp)3 = Ct31 ⊕ Ct1u

and

R(gq)2dq−wq
= R(gq)9 = Cut2s2 ⊕ Ct32s2.

This implies that C[x, y, z0, z1, z2]4 → H4
p(Y,C) is

f 7→ (δ3z0f(p), δxδz0f(p))

and C[x, y, z0, z1, z2]4 → H4
q (Y,C) is the map

f 7→ (δ3z0δz2f(q), δxδz0δz2f(q)).

Write f ∈ C[x, y, z0, z1, z2]4 as
∑

I aIw
I . Then it follows that

ψ2(f) = ((6a00301, a10101), (6a00301, a10101)) .

Hence the image of ψ has dimension 2. From this it follows that the cokernel
is also 2-dimensional and rankMW(π) = 2.

Let ω = e2πi/3. Note that the sections (x, y) = (z2
0 , z1z

2
2) and (x, y) =

(ωz2
0 , z1z

2
2) are independent in MW(π), hence generate a finite index sub-

group of MW(π).
To determine the torsionpart of MW(π), fix a general line ℓ ⊂ P2. Then

πℓ : π−1(ℓ) → ℓ is a rational elliptic surface with 6 I2-fibers. From e.g.
[20] it follows that MW (πℓ) ∼= Z8, in particular it has no torsion. Since
MW(π) →MW (πℓ) is injective it follows that MW(π) has also no torsion.

Example 11.2. Consider y2 = x3 + x2 + f , where f is the product of
six distinct lines, and no three lines pass through one point. The set P
is precisely the set of points (0 : 0 : α : β : γ), where (α : β : γ) is an
intersection point of two of these lines.

All singularities are of type A1, with local equation x2
0 +x2

1 +x2
2 +x2

3 = 0.
From this it follows that R(fp)2dp−wp

= C1.
Fix some coordinates (αi : βi : γi) for pi ∈ P. Then rankMW(π) equals

dimcoker C[x, y, z0, z1, z2]4 → C15

where we map f to ⊕f(0, 0, αi, βi, γi).
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Since dimC[x, y, z0, z1, z2]4 = 15, this cokernel is non-zero precisely when
there exists a degree 4 plane curve C containing all the pi. Such a curve
does not exist since for each of the six lines Lj we have #C ∩ Lj ≥ 5,
hence C ⊃ Lj. Since there are six distinct lines, this implies deg(C) ≥ 6,
contradicting deg(C) = 4.

Hence the cokernel is trivial and rankMW(π) = 0. Using a reasoning
similar as in the previous example it follows that the torsion part of MW(π)
is also trivial, hence MW(π) = 0.

Example 11.3. Consider the elliptic threefold Y

y2 + x3 + z2
0z

2
2(z0z2 − z2

1).

The locus Σ of Y is given by y = w = z0z2 = 0, i.e., is 1-dimensional.
The discriminant curve is z2

0z
2
2(z0z2 − z2

1). The set P ′ consists of three
points p1 = (0 : 0 : 1 : 0 : 0), p2 = (0 : 0 : 0 : 1 : 0), p3 = (0 : 0 : 0 : 0 : 1).
Note that Σ is one dimensional in this case.

At p1 and p3 we have a local equation of the form

v2 = u3 + t2s2 + s3

Set weights for s, t, u, v as 2, 1, 2, 3. Then this equation is weighted homoge-
neous of degree 6, and

R(gp)dp−wp
= 0, R(gp)2dp−wp

= span{t4, s2, rt2, rs}.

Along v = u = s = 0 we have a transversal A2-singularity. The Milnor
algebra of an isolated A2-singularity v2 +u3 + t2 is generated by 1 and u. If
we homogenize these two monomials we get t4 and ut2. Hence

R̃(gp)2dp−wp
= R(gp)2dp−wp

/(t4, ut2) = span{s2, us}.

For p = p1 we have that, after homogenizing, s2 corresponds to z2
0z

2
2 and xs

corresponds to xz0z2. For p = p3 we get similarly that R̃gp is generated by

z2
0z

2
2 and xz0z2.
At p = p2 we have a local equation of the form

v2 = u3 + t2s2

If we set weights for s, t, u, v as 2, 2, 1, 3 we get a weighted homogeneous
equation of degree 12. Again R(gp)dp−wp

= 0. We get that R(gp)2dp−wp
is

four dimensional, and that

R̃(gp)2dp−wp
= 0.

This implies that r0 = 0 and r1 is the cokernel of

C[x, y, z0, z1, z2]4 → R̃(gp1)4 ⊕ R̃(gp3)4.

Since both summands have the same generators it turns out that the cok-
ernel has dimension 2. In particular, rankMW(π) is 2. The sections (x =
ωiz0z2, y = z0z1z2) for i = 0, 1 generate a finite-index subgroup of MW(π).

In order to determine the torsion subgroup of MW(π): fix a general line ℓ
in P2 and consider πℓ : π−1(ℓ) → ℓ. Then π−1(ℓ) is a rational elliptic surface
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with 2IV fibers and 2II fibers. Such an elliptic surface has tivial torsion
subgroup [20], hence MW(π) has no torsion.

12. An application

The following construction of Calabi-Yau threefolds is due to F. Hirze-
bruch and was communicated to us by N. Yui. Some of the details of the
construction were worked out in the Diplomarbeit [2] of N. Behrens.

Construction 12.1. Let S be a del Pezzo surface, i.e., the blow-up of P2

in m points p1, . . . pm in general position (meaning no three points on a line,
and no six points on a conic), 0 ≤ m ≤ 8. By Ei we denote the exceptional
divisors of the blow-down morphism ϕ : S → P2. Let L be the pullback to
S of a general line in P2.

We consider the anti-canonical line bundle L = ω−1
S = O(3L−

∑
Ei) and

define the rank 3 bundle E = O ⊕ L−2 ⊕ L−3. Then P(E) is a P2-bundle
over S. We use Grothendieck’s definition of projective space, in particular
p∗OP(E)(1) = E where p is the bundle projection. Fix sections

X := (0, 1, 0) ∈ H0(L2 ⊕O ⊕ L−1) = H0(OP(E)(1) ⊗ L2),

Y := (0, 0, 1) ∈ H0(L3 ⊕ L⊕O) = H0(OP(E)(1) ⊗ L3),

Z := (1, 0, 0) ∈ H0(O ⊕ L−2 ⊕ L−3) = H0(OP(E)(1)).

For general sections g2, g3 in H0(L4) and H0(L6) respectively, the equation

(8) Y 2Z = 4X3 + g2XZ
2 + g3Z

3

defines a smooth hypersurface W in P(E). Note that W is in the linear
system defined by the anti-canonical line bundle ω−1

P(E)
= (p∗L6)⊗OP(E)(3).

The projection onto S defines an elliptic fibration π : W → S with a section.

Lemma 12.2. The threefold W has trivial canonical bundle.

Proof. Since

ωP(E) = p∗(ωS ⊗ det E) ⊗OP(E))(−3) = p∗L−6 ⊗OP(E))(−3)

and OP(E)(W7) = p∗L6 ⊗ OP(E))(3) it follows from the adjunction formula
that

ωW7 = ωP(E)(W7)|W7 = OW7 .

�

In [2] a detailed proof of the following result is given:

Theorem 12.3 ([2, Theorem 2.35]). Let r = rankMW(π). Then W has

the following Hodge numbers:

(1) h1,0(W ) = h0,1(W ) = h2,0(W ) = h0,2(W ) = 0,
(2) h1,3(W ) = h3,1(W ) = 0,
(3) h0,3(W ) = h3,0(W ) = 1,
(4) h1,1(W ) = m+ 2 + r,
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(5) h1,2(W ) = h2,1(W ) = 272 − 29m+ r.

The topological Euler characteristic e(W ) = −540 + 60m.

Remark 12.4. The fact that h1,0(W ) = h2,0(W ) = 0 and that ωW7 = OW7

implies that W7 is a Calabi-Yau threefold. For Calabi-Yau threefolds finding
their mirror partner is of particular interest. The line bundle (p∗L6) ⊗
OP(E)(3) is not an ample line bundle. (This follows e.g., since π∗(OP(E)(1)⊗

L2) = E ⊗ L2 = L2 ⊕ OS ⊕ L−1.) Hence we are not in a position where
Batyrev’s mirror construction [1] can be applied directly. In order to find a
mirror family it is first of all necessary to compute the Hodge numbers of
W . This was the motivation behind [2].

To actually find the Hodge numbers we need to determine the rank of
MW(π). In [2] it is conjectured that r = 0 for all such W . We apply our
methods to prove this conjecture. We first calculate the Mordell-Weil rank
by computing h4(Y ). In the second half of this section we illustrate our
methods by determining all Hodge numbers by going through the various
constructions, thus avoiding a direct reference to Theorem 12.3.

We know that W is birational to a hypersurface Y of degree 6n in some
weighted projective space P(2n, 3n, 1, 1, 1). For n = 1, 2 such a threefold is
a deformation of a rational variety. Since W is a Calabi-Yau hypersurface
we have n ≥ 3.

Lemma 12.5. There exists a degree 18 hypersurface Y in P(6, 9, 1, 1, 1),
birational to W and such that Ysing consists of (1 : 1 : 0 : 0 : 0) and m
isolated semi-weighted homogeneous hypersurface singularities with Milnor

number 50. For each of these singularities we have that H4
p(Y,Q) ∼= Q(−2)8.

Proof. We need to consider g2, g3 as functions on P2, rather than elements
in H0(S,Li). Since ϕ∗L = O(3)⊗Ip1,...,pm, it follows that g2 ∈ H0(O(12)⊗
I4
p1,...,pm

) and g3 ∈ H0(O(18) ⊗ I6
p1,...,pm

). Let P and Q be the associated
weighted homogeneous polynomials of degree 12 and 18 respectively. Then

(9) y2 = x3 + Px+Q

defines a degree 18 hypersurface Y in P(6, 9, 1, 1, 1) birational to W .

Let ψ̃ : P → P2 be the projection from {z0 = z1 = z2 = 0} to the plane

{x = y = 0}. Then ψ = ψ̃|Y corresponds to the elliptic fibration on W .
Note that p is defined on Y \ {(1 : 1 : 0 : 0 : 0)}. Since W is smooth all
singularities (besides (1 : 1 : 0 : 0 : 0)) lie in ψ−1(pi) for i = 1, . . . m.

Equation (9) shows that ψ−1(pi) has equation Y 2Z = X3 + P (pi)XZ
2 +

Q(pi)Z
3. In particular, ψ−1(pi) is an irreducible and reduced cubic plane

curve and it has at most one singularity. Since Y is singular at qi = (0 : 0 :

pi), the same holds for ψ−1(pi), and there are no other singular points on
Y \ {(1 : 1 : 0 : 0 : 0)}.

We proceed by calculating the Milnor number of (Y, qi). A local equation
for Y around qi is

v2 = 4u3 + h4(t, s)u+ h6(t, s) + h.o.t.
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An easy calculation, using that W is smooth, shows that the lowest degree
part

v2 = 4u3 + h4(t, s)u+ h6(t, s)

defines a quasismooth surface in P(2, 3, 1, 1). In particular, (Y, qi) is a
semi-weighted homogeneous hypersurface singularity, i.e., we may ignore
the higher order terms.

To calculate the Milnor number of (Y, qi) we need to consider the Jacobian
ring R of the defining equation of the singularity. Using Lemma 12.6 (proven
below) it follows that
∑

dimRdt
d = 1 + 2t+ 4t2 + 6t3 + 8t4 + 8t5 + 8t6 + 6t7 + 4t8 + 2t9 + t10.

Hence µ = dimR = 50.
To calculate the local cohomology it suffices to determine dimRd−w =

R−1 and dimR2d−w = dimR5. The former space is 0, the latter space is
8-dimensional. Now apply Proposition 7.6 and Theorem 6.2. �

Lemma 12.6. Let f ∈ C[x0, . . . , xn+1] be a weighted homogeneous polyno-

mial of degree d with weights w0, . . . , wn+1. Assume that each wi divides d
and that f = 0 has at most an isolated singularity at the origin. Let R be

the Jacobian ring of f . Then

∑

k

dimRkt
k =

∏ td−wi − 1

twi − 1
.

Proof. Since f = 0 has at most a singularity at the origin it follows that the
partials of f form a regular sequence in C[x0, . . . , xn+1]. This implies that R
is resolved by its Koszul complex. An easy calculation yields the proof. �

For the rest of this section, let Y be the degree 6n hypersurface in
P(6, 9, 1, 1, 1) constructed in the proof above. In particular, Y ∩ {z1 =
z2 = z3 = 0} = {(1 : 1 : 0 : 0 : 0)}. Let qi = (0 : 0 : pi).

The form of the singularity (Y, qi) allows us to use Dimca’s results. For
this we first prove the following two lemmas.

Lemma 12.7. Let T ⊂ P(6, 9, 1, 1, 1) be a quasismooth hypersurface of

degree 18. Then h3(T ) = 546 and the topological Euler characteristic e(T ) =
−542.

Proof. Since the topology of quasismooth hypersurfaces is invariant under
deformation, it suffices to prove this statement for T given by

f := y2 + x3 + z18
0 + z18

1 + z18
2 .

Let R be the Jacobian ring of f . Using Griffiths-Steenbrink (see Section 5)
we know that

h3(T ) = dimR0 + dimR18 + dimR36 + dimR54.

An easy calculation shows that dimR0 = dimR54 = 1 and dimR18 =
dimR36 = 272. Hence h3(T ) = 546. From Lefschetz’ hyperplane theo-
rem (Proposition 5.1) it follows that hi(T ) = 1 for i = 0, 2, 4, 6 and all
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other Betti numbers vanish. From this the equality e(T ) = 4 − 546 = −542
follows. �

Lemma 12.8. The topological Euler characteristic e(Y ) of Y equals −542+
50m.

Proof. Let T be a quasismooth hypersurface of the same degree of Y . From
e.g. [9, Corollary 5.4.4] it follows that

e(Y ) = e(T ) + µ

where µ is the total Milnor number of Y , i.e., the sum of the Milnor numbers
of the singularities of Y besides (1 : 1 : 0 : 0 : 0). From Lemma 12.5 and
Lemma 12.7 it follows that e(Y ) = −542 + 50m. �

Using the Lefschetz hyperplane theorem (Proposition 5.1) we obtain that

h0(Y ) = h2(Y ) = h6(Y ) = 1 and h1(Y ) = h5(Y ) = 0.

Hence h3(Y ) = 546 − 50m+ h4(Y ) − 1.
To calculate h4(Y ) we use Dimca’s method. For this we need some results

on linear systems on P2.

Definition 12.9. Let Ld(k
m) be the linear system of degree d curves hav-

ing a point of order k at p1, . . . , pm. The defect of Ld(k
m) equals mk(k+1)

2 −
codimC[z0,z1,z2]d Ld(k

m), i.e., the difference between the expected codimen-
sion and the actual codimension.

We are interested in L18(6
m) and L12(4

m), in the case that the m points
are the pi.

Proposition 12.10. For k > 0 we have that the linear system L3k(k
m) has

no defect.

Proof. Note that L3k(k
m) is isomorphic to H0(S,OS(3kH − k

∑
Em)). Set

D = 3H −
∑
Ei and let C be an irreducible smooth curve in |D|. (Such a

curve exists since the pi are in general position and m ≤ 8.) Since C is the
strict transform of a degree 3 curve in P2 we have that g(C) = 1.

Let L = O(D)|C . Then deg(L) = D2 = 9 −m > 0. Using g(C) = 1 we
find for t > 0 that h0(Lt) = t(9 −m) and h1(L⊗t) = 0.

Consider now the long exact sequence in cohomology associated to

0 → OS((t− 1)D) → OS(tD) → L⊗t → 0.

Since for t ≥ 1 we have that h1(L⊗t) = 0, we find that h1(OS(tD)) ≤
h1(OS((t − 1)D)). Note that for t = 1 we have that h1(OS((t − 1)D)) =
h0,1(S) = 0. Combining this yields that h1(OS(tD)) = 0 for t ≥ 0. This
implies that

h0(OS(tD)) = h0(OS((t− 1)D)) + h0(L⊗t) = h0(OS((t− 1)D)) + t(9 −m)

whence

h0(OS(tD)) =
t(t+ 1)(9 −m)

2
+ h0(OS) =

t(t+ 1)(9 −m)

2
+ 1.
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The expected dimension of L3k(k
m) equals

(3k + 1)(3k + 2)

2
−m

k(k + 1)

2
=
k(k + 1)(9 −m)

2
+ 1.

This implies that L3k(k
m) has the expected dimension and thus L3k(k

m)
has no defect. �

Proposition 12.11. We have that h4(Y ) = 1, hence h3(Y ) = 546 − 50m.

Proof. From Dimca’s work, (the dimension zero case of Sections 7 and 8),
it follows that the primitive cohomology H4(Y,Q)prim is isomorphic to the
cokernel of

H4(P \ Y,Q) → ⊕qiH
4
qi(Y,Q).

From Lemma 12.5 we know that H4
qi(Y,Q) = Q(−2)8.

A local equation of (Y, qi) (see the proof of Lemma 12.5) is

fqi := −v2 + 4u3 + h4,i(t, s)u+ h6,i(t, s).

This equation is weighted homogeneous. Moreover, we know that this is an
equation of a quasismooth surface. Let R(fqi) denote the Jacobian ring of
fqi.

From Proposition 7.7 and Theorem 8.4 it follows that the cokernel of
H4(P \ Y,C) → ⊕H4

qi(Y,C) equals the cokernel of Gr2P H
4(P \ Y,C) →

⊕H4
qi(Y,C). Using the natural maps

C[z0, z1, z2]12x⊕ C[z0, z1, z2]18 ։ R(f)18 ։ Gr2P H
4(P \ Y,C)

it follows that it suffices to prove that

(10) C[z0, z1, z2]12x⊕ C[z0, z1, z2]18 → ⊕H4
qi(Y,C) = ⊕iR(fqi)5

is surjective.
Define Tq,m,d : C[z0, z1, z2]d → Cm(m+1)/2 to be the (m− 1)st part of the

Taylor expansion around (α1, α2, α3) for some fixed lift of q ∈ P2 to C3.
Then the map form (10) can be factored as

C[z0, z1, z2]12x⊕C[z0, z1, z2]18
⊕(Tqi,4,12⊕Tqi,6,18)

−→ ⊕i

(
C10 ⊕ C21

)
→ ⊕R(fqi)5.

The first map is surjective by Proposition 12.10 and the second map is
surjective since it is a projection. From this the lemma follows. �

Applying Theorem 4.3 yields:

Corollary 12.12. We have rankMW(π) = 0.

Remark 12.13. Actually, MW(π) = 0: let ℓ ⊂ P2 be a general line. Then
πℓ : π−1(ℓ) → ℓ is an elliptic surface with 36 I1 fibers. (This follows from the
fact that the discriminant curve is reduced.) Suppose MW(πℓ) has a torsion
section of order k, then one can factor the j-map over X1(k) → X(1) since
this map is ramified at ∞ with ramifaction index k it turns out that πℓ has
a fiber of type Ikm of I∗km for some m ≥ 1. Since all fibers of πℓ are of type
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I1 it follows that MW(πℓ) has trivial torsion part, hence MW(π) has trivial
torsion.

Remark 12.14. We can now determine all Hodge number of W by apply-
ing 12.3. In particular, h1,1(W ) = m+ 2 and h2,1(W ) = 272 − 29m.

We would like to illustrate the techniques used in the proof of Theo-
rem 4.3 by explicitly factorizing the rational map W 99K Y . This explicit
factorization yields also the Hodge numbers of W without using the results
of [2].

To study the behavior of the cohomology groups we factor W 99K Y as
a series of proper modifications and inverse proper modifications. For each
modification Z is the center of the modification and E is the exceptional
divisor.

(1) We start by blowing up (1 : 1 : 0 : 0 : 0). Denote the obtained
threefold by W1. In this case Z = {pt}, and E ∼= P2 and W1 is
smooth near E.

(2) Base change with S. We denote the resulting threefold by W2. In
this case Z is the union of m cuspidal cubic curves C and E is the
disjoint union of m copies C×P1. Applying Theorem 4.1 we obtain
that h4(W2) = h4(W1) +m and h2(W2) = h2(W1)+m and all other
Betti number remain unchanged.

(3) The singular locus of W2 consists of m disjoint curves Ci (topologi-
cally a P1), namely m copies of {c} ×P1 ⊂ C ×P1, where C is the
cuspidal curve from the previous point and c ∈ C is the cusp.

Let s = 0 be a local equation for one of the exceptional curves in
S. Then a local equation of W2 is of the form

y2 = x3 + s4f1(s, t)x+ s6f2(s, t).

Blowing up {x = y = s = 0} yields a P1-bundle over {s = 0}. Let
W3 be the blow-up of all m curves in the singular locus. Then Z is
the disjoint union of m copies of P1 and E is the disjoint union of
m ruled surfaces. The ruling on each of the irreducible components
of E gives a class in H4(W3,Q), in total yielding m independent
classes in H4(W3,Q). Each irreducible component of E yields a
class in H2(W3,Q), hence in total we get m classes in H2(W3,Q).
Applying Theorem 4.1 we obtain that h4(W3) = h4(W2) + m and
h2(W3) = h2(W2) +m, all other Betti number are invariant.

(4) The singular locus of W3 consists of m disjoint curves (topologically
a P1), each of which lies in one of the exceptional divisors of the
previous step. Let s = 0 denote the image of such a curve in some
open set in S. Then a local equation of W3 is of the form

y2 = sx3 + s3f1(s, t)x+ s4f2(s, t).

Blowing up {x = y = s = 0} yields a P1-bundle over {s = 0}. Let
W4 be the blow-up of all m curves in the singular locus. Then Z is
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the disjoint union of m copies of P1 and E is the disjoint union of m
ruled surfaces. As above the ruling on each of the irreducible compo-
nents of E gives a class in H4(W4,Q), in total yielding m indepen-
dent classes in H4(W4,Q). Each irreducible component of E yields
a class H2(W4,Q), hence in total we get m classes in H2(W4,Q).
Applying Theorem 4.1 we obtain that h4(W4) = h4(W3) + m and
h2(W4) = h2(W3) +m, all other Betti number are invariant.

(5) The singular locus ofW4 consists ofm disjoint surfaces (topologically
a ruled surface F with base a rational curve in S). This locus is
precisely the exceptional divisor of W4 → W3.

Let s = 0 denote the image of such a surface in some open set in
S. Then a local equation of W4 is of the form

y2 = s2x3 + s2f1(s, t)x+ s2f2(s, t).

Blowing up {y = s = 0} yields a smooth threefold W5. In this
case Z consists of m copies of F , and E consists of m elliptic sur-
faces Ri. A calculation in local coordinates shows that each Ri is a
relatively minimal rational elliptic surfaces, hence the Betti numbers
of R equal 1, 0, 10, 0, 1 by [18].

The Betti numbers of F are 1, 0, 2, 0, 1. From these Betti numbers
and Theorem 4.1 it follows that h4(W4) = h4(W5). Since h2(W4) =
h4(W4) we obtain by Poincaré duality on the smooth threefold W5

that h2(W4) = h2(W5). The exact sequence from Theorem 4.1 reads

0 → H2(F,Q)m → H2(S,Q)m → H3(W4,Q) → H3(W5,Q) → 0,

whence h3(W4)−h
3(W5) = 8m. The kernel of the mapH3(W4,Q) →

H3(W5,Q) is an 8m-dimensional weight 2 sub-Hodge structure of
H3(W4,Q).

(6) The threefold W5 is smooth, but the elliptic fibration π5 : W5 → S
is not minimal. Let Ei be one of the (fixed) exceptional curves in
S. Then over each point p ∈ Ei we have a reducible fiber, consisting
of three components, namely two rational curves and one elliptic
curve. Actually π−1

5 (Ei) is the union of three surfaces, two of which
are P1-bundles and one is a rational elliptic surface.

To obtain a minimal elliptic threefold we need to contract the
ruled surfaces over the Ei. Recall that over Ei we have two ruled
surfaces, namely the strict transform of π−1

1 (Ei) and the strict trans-
form of the exceptional divisor of W2 → W1. In order to obtain a
smooth threefold we first need to contract the strict transform of the
first exceptional divisor first, denote the threefold obtained in this
way by W6. Denote by W7 the threefold obtained by contracting the
second ruled surface.

Both contractions are the inverse of a proper modification, where
Z consists of m copies of P1 and E consists of m ruled surfaces.
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Applying Theorem 4.3 yields that h2(Wi) = h2(Wi−1) − m and
h4(Wi) = h4(Wi−1) −m, for i = 6, 7.

A summary of the changes in cohomology is the following:

Y W1 W2 W3 W4 W5 W6 W7 W7

h0 1 1
h1 0 0
h2 1 +1 +m +m +m −m −m m+ 2
h3 546 − 50m −8m 546 − 58m
h4 1 +1 +m +m +m −m −m m+ 2
h5 0 0
h6 1 1

We started with W ⊂ P(E) and we ended up with another smooth three-
fold W7. It is by no means clear that it is again isomorphic to W . We
show now that W7 can indeed be embedded in P(E) and that W and W7

are actually isomorphic.
For this we have to consider the notion of a Weierstrass fibration. Given

an elliptic fibration π : X → S with a zero section σ0 : S → X, we can
define a hypersurface Y ⊂ P(O ⊕ N−2 ⊕ N−3), with N = π∗N

−1
S0/X

and

S0 = σ0(S), e.g., see [19, Section 1].
The main difference between Y and X is that all components of fibers

not intersecting the zero section are contracted. A threefold Y obtained by
this procedure is called a Weierstrass fibration. The line bundle N is called
the associated line bundle.

Lemma 12.15. The following holds for Weierstrass fibrations:

(1) Let ψ1 : Y1 → S1 be a Weierstrass fibration with line bundle N1, let

ϕ : S2 → S1 be a morphism and let Y2 = Y1 ×S1 S2 → S2 be the

base changed Weierstrass-fibration with associated line bundle N2.

Assume that Pic(S2) does not contain an element of order 2. Then

N2
∼= ϕ∗N1.

(2) Let ψ3 : Y3 → S3 be a non-minimal Weierstrass fibration with line

bundle N3. Assume that it has an equation of the form

y2 = x3 + u4f1x+ u6f2

where u = 0 defines a reduced divisor D. Assume that Pic(S3) does

not contain an element of order 2. Then the Weierstrass fibration

given by

y2 = x3 + f1x+ f2

has associated line bundle N3(−D).

Proof. (1) A Weierstrass fibration is a fibration of the form

y2z = x3 +Axz2 +Bz3

with A ∈ H0(N 4), B ∈ H0(N 6). After base change we get an equation

y2z = x3 +A2xz
2 +B2z

3
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where A2 = f∗A and B2 = f∗B, hence the associated line bundle is N⊗4
1 =

f∗N⊗4
1 and N⊗6

2 = f∗N⊗6
1 , whence N⊗2

2 = f∗N⊗2
1 . Since Pic(S2) has no

elements of order 2, this implies that N2 = f∗N1.
(2) Similarly, if we minimize

y2z = x3 +A3xz
2 +B3z

3

then we have for the new threefold that

y2z = x3 +A4xz
2 +B4z

3

satisfies A4 = A3/u
4 and B4 = B3/u

6. Hence (N4)
⊗i = (N3(−D))⊗i, for

i = 4, 6, which yields the statement. �

Proposition 12.16. The threefold W7 can be embedded in P(E) and it is

isomorphic to W .

Proof. Of the threefolds Wi we considered above, three are actually Weier-
strass fibrations, namely W1,W2 and W7.

Since P ∈ H0(OP2(12)) and Q ∈ H0(OP2(18)), we have that W1 has
associated line bundle N1 = OP2(3).

Using Lemma 12.15 we get that N2 = OS(3H). In the minimalization
process W2 → W7 we minimalize over D = E1 + E2 + · · · + Em. Applying
the above lemma yields that N7 = OS(3H−

∑
Ei) = ω−1

S = L. This implies
that W7 ⊂ P(E). Yielding the first claim.

To show that the procedures W 7→ Y and Y 7→ W7 are each-other’s
inverse, we start by describing the former one. We start by taking g2, g3 in
H0(L4) and H0(L6). We consider these two sections as functions on S. In
order to consider them as function on P2 we multiply them with u4 and u6,
where u = 0 is a defining equation for D, the union of all the exceptional
divisors. The functions u4g2 and u4g3 are pullbacks of functions from P2,
say u4g2 = ϕ∗P and u6g3 = ϕ∗Q. Then Y is given by y2 = 4x3 + Px+Q.

The first part of the proof shows that Y 7→W7 is exactly the inverse. �

From Lemma 12.2 it follows that W7 has trivial canonical bundle. Hence
h3,0(W7) = h0(W7,Ω

3) = 1. By Serre duality we get H2(W7,OW7)
∼=

H1(W7,OW7)
∗. We already observed that h1(W7) = 0, hence

H2(W7,OW7)
∼= H1(W7,OW7)

∗ = 0.

This finishes the determination of all Hodge numbers. To conclude we give
the complete Hodge diamond of W (and W7):

1
0 0

0 1 0
1 272 − 29m 272 − 29m 1

0 1 0
0 0

1 .
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