
FINITENESS OF IRREDUCIBLE HOLOMORPHIC ETA

QUOTIENTS OF A GIVEN LEVEL

SOUMYA BHATTACHARYA

Abstract. We show that for any positive integer N , there are only
finitely many holomorphic eta quotients of level N , none of which is a
product of two holomorphic eta quotients other than 1 and itself. This
result is an analog of Zagier’s conjecture/ Mersmann’s theorem which
states that: Of any given weight, there are only finitely many irreducible
holomorphic eta quotients, none of which is an integral rescaling of an-
other eta quotient. We construct such eta quotients for all cubefree
levels. In particular, our construction demonstrates the existence of
irreducible holomorphic eta quotients of arbitrarily large weights.

1. Introduction

The Dedekind eta function is defined by the infinite product:

(1.1) η(z) := q
1
24

∞∏
n=1

(1− qn) for all z ∈ H,

where qr = qr(z) := e2πirz for all r and H := {τ ∈ C | Im(τ) > 0}. Eta is a
holomorphic function on H with no zeros. This function has its significance
in Number Theory. For example, 1/η is the generating function for the
ordinary partition function p : N → N (see [1]) and the constant term in
the Laurent expansion at 1 of the Epstein zeta function ζQ attached to a
positive definite quadratic form Q is related via the Kronecker limit formula
to the value of η at the root of the associated quadratic polynomial in H
(see [9]). The value of η at such a quadratic irrationality of discriminant
−D is also related via the Lerch/Chowla-Selberg formula to the values of
the Gamma function with arguments in D−1N (see [23]). In fact, the eta
function comes up naturally in many other areas of Mathematics (see the
Introduction in [4] for a brief overview of them).

The function η is a modular form of weight 1/2 with a multiplier system
on SL2(Z) (see [12]). An eta quotient f is a finite product of the form

(1.2)
∏

ηXdd ,

where d ∈ N, ηd is the rescaling of η by d, defined by

(1.3) ηd(z) := η(dz) for all z ∈ H

and Xd ∈ Z. Eta quotients naturally inherit modularity from η: The eta
quotient f in (1.2) transforms like a modular form of weight 1

2

∑
dXd with a
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multiplier system on suitable congruence subgroups of SL2(Z): The largest
among these subgroups is

(1.4) Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod N)
}
,

where

(1.5) N := lcm{d ∈ N |Xd 6= 0}.
We call N the level of f . Since η is non-zero on H, the eta quotient f is
holomorphic if and only if f does not have any pole at the cusps of Γ0(N).

An eta quotient on Γ0(M) is an eta quotient whose level divides M . Let f ,
g and h be nonconstant holomorphic eta quotients on Γ0(M) such that f =
g× h. Then we say that f is factorizable on Γ0(M). We call a holomorphic
eta quotient f of level N quasi-irreducible (resp. irreducible), if it is not
factorizable on Γ0(N) (resp. on Γ0(M) for all multiples M of N).

Irreducible holomorphic eta quotients were first considered by Zagier, who
conjectured (see [24]) that: There are only finitely many primitive and ir-
reducible holomorphic eta quotients of a given weight. An eta quotient f is
called primitive if no eta quotient h and no integer ν > 1 satisfy the equation
f = hν , where hν(z) := h(νz) for all z ∈ H. Zagier’s conjecture was estab-
lished by his student Mersmann in an excellent Diplomarbeit [15]. I gave a
simplified proof of this theorem in [8]. Unfortunately, none of the existing
proofs of Mersmann’s finiteness theorem yield an explicit upper bound for
the levels of primitive and irreducible holomorphic eta quotients of a given
weight. However, another approach would be to look at the problem from the
dual perspective, where instead of considering holomorphic eta quotients of
a given weight, we consider holomorphic eta quotients of a given level. If one
could obtain a nontrivial estimate for the least possible weight for a primitive
and irreducible holomorphic eta quotient of level N , that would immediately
imply an effective proof of Mersmann’s finiteness theorem. For example, if p
is a prime and ifN = p or p2, then the least possible weight of a primitive and
irreducible holomorphic eta quotient of level N is (p− 1)/2 (see Section 6.3
in [7]). Though the notions of irreducibility and quasi-irreducibility of
holomorphic eta quotients are conjecturally equivalent (see [4]), in practice
irreducibility of a holomorphic eta quotient is much harder to determine
than its quasi-irreducibility. However, since every irreducible holomorphic
eta quotient is quasi-irreducible, the least possible weight of a primitive
and irreducible holomorphic eta quotient of level N is bounded below by
the least possible weight of a primitive and quasi-irreducible holomorphic
eta quotient of level N . We denote the later by kmin(N)/2. With a huge
amount of numerical evidence similar to what we see below in Table 1, we
speculate that

Conjecture 1. For a positive integer N , if there exists a primitive and
irreducible holomorphic eta quotient of weight k/2 and level N , then

(1.6) 4k2 ≥ max
pn‖N
p prime

np.

Mersmann’s finiteness theorem is equivalent to say that for each k ∈ N,
there exists an Mk ∈ N such that if there exists a primitive and irreducible
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Table 1. N vs. kmin(N)

N kmin

2 · 3 1
2 · 5 2
22 · 3 1
2 · 7 3
3 · 5 2
24 2

2 · 32 2
22 · 5 2
3 · 7 3
2 · 11 4
23 · 3 2
2 · 13 5
22 · 7 3

2 · 3 · 5 2
25 2

2 · 17 6
22 · 32 2
2 · 19 7
3 · 13 5
23 · 5 2

2 · 3 · 7 2
22 · 11 3
32 · 5 2
2 · 23 8
24 · 3 2
2 · 52 2
3 · 17 6

N kmin

22 · 13 4
2 · 33 2
23 · 7 2
3 · 19 6

22 · 3 · 5 2
32 · 7 2

26 2
2 · 3 · 11 3
22 · 17 4
2 · 5 · 7 2
23 · 32 2
2 · 37 13
3 · 52 3

2 · 3 · 13 3
24 · 5 2

34 3
22 · 3 · 7 2

5 · 17 6
23 · 11 2

2 · 32 · 5 2
2 · 47 16
25 · 3 2
2 · 72 3
32 · 11 4
22 · 52 2

2 · 3 · 17 3
23 · 13 3

N kmin

3 · 5 · 7 3
22 · 33 2
3 · 37 11
24 · 7 2

23 · 3 · 5 2
2 · 32 · 7 2

27 3
2 · 5 · 13 3

7 · 19 8
33 · 5 3
23 · 17 3

2 · 3 · 23 3
22 · 5 · 7 2
24 · 32 2
22 · 37 8

2 · 3 · 52 2
2 · 7 · 11 3

2 · 34 3
23 · 3 · 7 2
2 · 5 · 17 4
22 · 43 9
24 · 11 2

22 · 32 · 5 2
2 · 7 · 13 3
23 · 23 3
33 · 7 3
26 · 3 2

N kmin

22 · 72 3
23 · 52 3
11 · 19 11
23 · 33 2

24 · 3 · 5 2
35 3

22 · 32 · 7 2
28 3

25 · 32 2
22 · 34 2
24 · 33 2

29 3
26 · 32 2

54 5
36 3

28 · 3 2
210 3

17 · 97 21
211 3
37 5
74 7
55 5
212 3
38 5
213 3
214 3
215 4

holomorphic eta quotient of weight less than or equal to k/2 and level N ,
then N divides Mk. From [24], we know that M1 = 12. Also, from Corol-
lary A.1 in the appendix of [7], we know∗

(1.7) 28 · 33 · 52 · 7 · 11|M2.

In particular, the truth of the above conjecture would imply

(1.8) M2 | 28 · 35 · 53 · 72 · 11 · 13.

Since there are only finitely many holomorphic eta quotients of a given
weight and level (see 3.12), knowing Mk is equivalent to having a complete
list of primitive and irreducible holomorphic eta quotients of weight k/2,
up to a bounded amount of computation. About thirty years ago, Zagier
gave such a list for eta quotients of weight 1/2 (see [24]), the exhaustiveness

∗Unlike the general case, irreducibility of a holomorphic eta quotient of weight 1 is
rather easy to determine, because a holomorphic eta quotient of weight 1 and level N is
irreducible if and only if it is not factorizable on Γ0(lcm(N, 12)) (see Lemma 1 in [4]). In
particular, the irreducibility of the holomorphic eta quotients listed in Appendix A in [7]
could be easily verified.
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of which was also established by Mersmann (see [15, 5]). Though Mers-
mann’s finiteness theorem predicts the existence of similar lists of eta quo-
tients for any given weight, till now we do not even have such an exhaustive
list for primitive and irreducible holomorphic eta quotients of weight 1 (for
an incomplete list, see Appendix A in [7]). On the other hand, it is much eas-
ier to list all the irreducible holomorphic eta quotients of a given level! For
example, let us look at the following cases: Since the only holomorphic eta
quotients of level 1 are the powers of eta, η is the only irreducible holomor-
phic eta quotient of level 1. In general, since the weight of any holomorphic
eta quotient is at least 1/2, each eta quotient of weight 1/2 is irreducible.
In particular, for any p ∈ N, the eta quotient ηp is irreducible. Again,
from Corollary 2 in [4], we know that for any prime p, the holomorphic eta
quotients ηp/ηp and ηpp/η are irreducible (the irreducibility of the later also
follows from Lemma 7 below). It is easy to show that any other holomorphic
eta quotient of level p except these three is factorizable on Γ0(p). So, the
above three are the only irreducible holomorphic eta quotients of a prime
level p. Here, we shall show that the finiteness of irreducible holomorphic
eta quotients of a given level also holds in general. This in particular, im-
plies that the maximum of the weights of the irreducible holomorphic eta
quotients of level N is bounded above with respect to N . Conversely, since
the valence formula implies that there are only finitely many holomorphic
eta quotients of a given level and weight (see 3.12), the finiteness of irre-
ducible holomorphic eta quotients of a given level is also implied by such an
upper bound. In particular, the finiteness of quasi-irreducible holomorphic
eta quotients of a given level (see Theorem 1), has an application in [4], in
showing that the levels of the factors of a holomorphic eta quotient f are
bounded above in terms of the level of f .

Before ending this section, let us compare the situation with that of the
modular forms with the trivial multiplier system. Note that the notions of
irreducibility and factorizability also makes sense if we replace “holomorphic
eta quotients” with “modular forms” above. For example, the modular form
∆ := η24 of level 1 is not factorizable into a product of modular forms with
the trivial multiplier system on SL2(Z), since ∆ is a cusp form of the least
possible weight on the full modular group. However, ∆ is factorizable on
Γ0(2) :

(1.9) ∆ = η8η8
2 ×

η16

η8
2

.

From (3.6), it follows readily that ηp/ηp is holomorphic for each prime p. In
particular, so is the rightmost eta quotient in (1.9). Also, from Newman’s
criteria (see [16, 17] or [19]), it follows that the multiplier systems of both
of the eta quotients on the right hand side of (1.9) are trivial.

For k ∈ 2N, we define the normalized Eisenstein series Ek by

(1.10) Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,
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where the function σk−1 : N→ N is given by

(1.11) σk−1(n) :=
∑
d|n

dk−1

and the k-th Bernoulli number Bk is defined by

(1.12)
t

et − 1
=
∞∑
k=0

Bk
k!
· tk.

For each even integer k > 2, Ek is a modular form of weight k on SL2(Z) (see
[24]). Since there are no nonzero modular forms of odd weight or weight 2
with the trivial multiplier system on SL2(Z), neither E4 nor E6 is factorizable

on SL2(Z). However, since E6(i) = 0 and E4(e2πi/3) = 0 and since the
valence formula (3.9) for Γ0(2) (resp. for Γ0(4)) implies that the modular
form

(1.13) f1 := η2(i)24 η
16

η8
2

−η(i)24 η
16
2

η8
, resp. f2 := η4(e

2πi
3 )8 η

8

η4
2

−η(e
2πi
3 )8 η

8
4

η4
2

of weight 4 on Γ0(2) (resp. of weight 2 on Γ0(4)) only has a simple zero at

i in Γ0(2)\H (resp. at e2πi/3 in Γ0(4)\H), it follows that f1 is a nontrivial
factor of E6 on Γ0(2) (resp. f2 is a nontrivial factor of E4 on Γ0(4)). It is

easy to check that for all integers N > 1, the stabilizers of i and e2πi/3 in
Γ0(N) are trivial. The holomorphy of the eta quotients in the above linear
combinations follows trivially from (3.15), once one notes the outermost
columns of the matrix in (3.17). The triviality of the multiplier systems of
these eta quotients follows again from Newman’s criteria (see [16, 17] or [19]).

Also, it follows from the valence formula (3.9) for SL2(Z) that every mod-
ular form with the trivial multiplier system on SL2(Z) has a unique factor-
ization of the form:

(1.14) C0E
a
4E

b
6

∏
t∈C∗

(E3
4 − tE2

6)ct ,

for some C0 ∈ C and some nonnegative integers a, b, ct, where ct is zero for
all but finitely many t. In particular, any modular form with the trivial
multiplier system and of weight greater than 12 on SL2(Z) is factorizable
on SL2(Z). We have E3

4 − E2
6 = 1728∆ (see [24]), which is factorizable on

Γ0(2) (see 1.9). Clearly, E3
4 − tE2

6 is nonzero at∞ for all t 6= 1. The valence
formula for SL2(Z) implies that for each t ∈ C∗r{1}, E3

4−tE2
6 vanishes only

at one point zt in a fundamental domain of SL2(Z). Since t is nonzero and
since E4 and E6 have no common zeros, neither E4(zt) nor E6(zt) is zero.
In particular, the stabilizer of zt in SL2(Z) (hence, also in Γ0(2)) is trivial.
It follows that E3

4 − tE2
6 only has a simple zero at zt. In particular, for each

t ∈ C∗ r {1}, the modular form above is not factorizable on SL2(Z). Now,
the valence formula (3.9) for Γ0(2) implies that for each such t, E3

4 − tE2
6

has three distinct zeros on Γ0(2)\H, one of which is equivalent to zt under
the action of Γ0(2) on H, whereas the modular form

(1.15) η2(zt)
24 η

16

η8
2

− η(zt)
24 η

16
2

η8
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of weight 4 on Γ0(2) only has a simple zero at zt in Γ0(2)\H. It follows that
for t ∈ C∗ r {1}, the modular form above is a factor of E3

4 − tE2
6 on Γ0(2).

Thus, every modular form on SL2(Z) is factorizable on Γ0(2)∩Γ0(4) = Γ0(4).
However, since the smallest weight of which nonzero modular forms with the
trivial multiplier system exist is 2, the modular form of weight 2 on Γ0(N)
defined by

(1.16) NE2(Nz)− E2(z)

(see [10]) is irreducible for all N > 1. It is not known whether for any
level N , there exist any “irreducible modular form” of weight greater than 2.
On the contrary, it follows from Theorem 3 below (or from Corollary 2 in [4])
that there exist irreducible holomorphic eta quotients (i. e. which are not
products of other holomorphic eta quotients) of arbitrarily large weights.
We shall also see some irreducibility criteria for holomorphic eta quotients
in [6].

2. The results

In order to state our main results, first we introduce some notations.
Denote the set of positive integers by N. For N ∈ N, by ℘N we denote the
set of prime divisors of N . For a divisor d of N , we say that d exactly divides
N and write d‖N if gcd(d,N/d) = 1. Below in Corollary 1, we provide an
upper bound for the weights of the irreducible holomorphic eta quotients of
a given level in terms of the function κ : N→ N defined by

(2.1) κ(N) = ϕ (rad(N))
∏
p∈℘N
pn‖N

(
(n− 1)(p− 1) + 2

)
,

where ϕ denotes Euler’s totient function and rad(N) denotes the product
of the distinct prime divisors of N . Let d : N → N denote the divisor
function. Clearly, we have κ(N) ≤ ϕ(rad(N))2· d(N). Below in Theorem 1
(resp. Corollary 1), we provide an upper bound Ω(N) (resp. Ω0(N)) for
the number of the holomorphic eta quotients which are not factorizable on
Γ0(N) (resp. irreducible holomorphic eta quotients of level N). We define
the functions Ω,Ω0 : N→ N by Ω(1) = Ω0(1) = 1 and for N > 1,

Ω(N) =
∏
p∈℘N
pn‖N

p2 d(N)
(p2 − 1

p4

)d(N/pn)
− 1

d(N)!

∏
p∈℘N
pn‖N

(p2 − 1)d(N)

(p+ 1)2 d(N/pn)
(2.2)

+ 2
(

d(N)−
∑
p∈℘N
pn‖N

d(N/pn)
)
− 2ω(N)(ω(N)− 1)

and

(2.3) Ω0(N) = Ω(N)− 2 d(N) + 2ω(N) + 1,

where ω(N) denotes the number of distinct prime divisors of N . It is rather
easy to show that Ω(N) (and hence, also Ω0(N)) is bounded above by

rad(N)2 d(N) for all N (see Lemma 5 below). We say that a holomorphic eta
quotient f is divisible by a holomorphic eta quotient g if f/g is holomorphic.
We shall show that
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Theorem 1. For all N ∈ N, the following assertions hold:

(a) The weight of any holomorphic eta quotient on Γ0(N) which is not
factorizable on Γ0(N) is less than κ(N)/2.

(b) The number of nonconstant holomorphic eta quotients on Γ0(N)
which are not factorizable on Γ0(N) is bounded above by Ω(N).

(c) There are at most Ω0(N) quasi-irreducible holomorphic eta quotients
of level N .

In particular, since any irreducible holomorphic eta quotient is quasi-
irreducible, from the above theorem we conclude:

Corollary 1. For all N ∈ N, the following assertions hold:

(a) The weight of any irreducible holomorphic eta quotient of level N is
less than κ(N)/2.

(b) The number of irreducible holomorphic eta quotients of level N is
bounded above by Ω0(N). �

In fact, κ(N)/2 is the smallest possible weight for an eta quotient f such
that f/g is holomorphic for all holomorphic eta quotients g which are not
factorizable on Γ0(N):

Theorem 2. For all N ∈ N, there exists a holomorphic eta quotient FN of
weight κ(N)/2 on Γ0(N) such that a holomorphic eta quotient h on Γ0(N)
is divisible by FN if and only if h is divisible by all the holomorphic eta
quotients on Γ0(N) which are not factorizable on Γ0(N).

In the above theorem, the uniqueness of the eta quotient FN readily fol-
lows from the claim. We shall see FN explicitly in (4.2). We recall that
the Reducibility Conjecture (see Conjecture 1′ in [4]) states: Every quasi-
irreducible holomorphic eta quotient is irreducible. Since holomorphic eta
quotients on Γ0(N) which are not factorizable on Γ0(N) are in particular
quasi-irreducible, it follows from the above theorem that

Corollary 2. If the Reducibility Conjecture (Conjecture 1′ in [4]) holds, then
for all N ∈ N, there exists a holomorphic eta quotient FN of weight κ(N)/2
on Γ0(N) such that a holomorphic eta quotient h on Γ0(N) is divisible by FN
if and only if h is divisible by all the irreducible holomorphic eta quotients
on Γ0(N). �

We shall also show that

Theorem 3. For N ∈ N and for any divisor t of N/rad(N), there is an
irreducible holomorphic eta quotient of weight

1

2
ϕ(rad(N))ϕ(rad(gcd(t,N/t)))

on Γ0(N). In particular, for t = N/rad(N), there exists an irreducible
holomorphic eta quotient of level N and of the weight as above.
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3. Notations and the basic facts

For N ∈ N, by DN we denote the set of divisors of N . For X ∈ ZDN , we
define the eta quotient ηX by

(3.1) ηX :=
∏
d∈DN

ηXdd ,

where Xd is the value of X at d ∈ DN whereas ηd denotes the rescaling of η
by d. Clearly, the level of ηX divides N . In other words, ηX transforms like
a modular form on Γ0(N). We define the summatory function σ : ZDN → Z
by

(3.2) σ(X) :=
∑
d∈DN

Xd.

Since η is of weight 1/2, the weight of ηX is σ(X)/2 for all X ∈ ZDN .
Recall that an eta quotient f on Γ0(N) is holomorphic if it does not have

any poles at the cusps of Γ0(N). Under the action of Γ0(N) on P1(Q) by
Möbius transformation, for a, b ∈ Z with gcd(a, b) = 1, we have

(3.3) [a : b] ∼Γ0(N) [a′ : gcd(N, b)]

for some a′ ∈ Z which is coprime to gcd(N, b) (see [10]). We identify P1(Q)
with Q ∪ {∞} via the canonical bijection that maps [α : λ] to α/λ if λ 6= 0
and to ∞ if λ = 0. For s ∈ Q ∪ {∞} and a weakly holomorphic modular
form f on Γ0(N), the order of f at the cusp s of Γ0(N) is the exponent of

q1/ws occurring with the first nonzero coefficient in the q-expansion of f at
the cusp s, where ws is the width of the cusp s (see [10, 18]). The following
is the set of the equivalence classes of the cusps of Γ0(N) (see [10, 14]):

(3.4) SN :=
{a
t
∈ Q

∣∣ t ∈ DN , a ∈ Z, gcd(a, t) = 1
}
/ ∼ ,

where
a

t
∼ b

t
if and only if a ≡ b (mod gcd(t,N/t)). For d ∈ DN and for

s =
a

t
∈ SN with gcd(a, t) = 1, we have

(3.5) ords(ηd ; Γ0(N)) =
N · gcd(d, t)2

24 · d · gcd(t2, N)
∈ 1

24
N

(see [14]). It is easy to check the above inclusion when N is a prime power.
The general case follows by multiplicativity (see 3.13 and 3.16). It follows
that for all X ∈ ZDN , we have

(3.6) ords(η
X ; Γ0(N)) =

1

24

∑
d∈DN

N · gcd(d, t)2

d · gcd(t2, N)
Xd .

In particular, that implies

(3.7) orda/t(η
X ; Γ0(N)) = ord1/t(η

X ; Γ0(N))

for all t ∈ DN and for all the ϕ(gcd(t,N/t)) inequivalent cusps of Γ0(N)

represented by rational numbers of the form
a

t
∈ SN with gcd(a, t) = 1. Let
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ψ(N) denote the index of Γ0(N) in SL2(Z). Then ψ : N→ N is given by

(3.8) ψ(N) := N ·
∏
p|N

p prime

(
1 +

1

p

)

(see [10]). The valence formula for Γ0(N) (see [3, 18]) states:

(3.9)
∑

P∈Γ0(N)\H

1

nP
· ordP (f) +

∑
s∈SN

ords(f ; Γ0(N)) =
k · ψ(N)

24
,

where k ∈ Z, f : H → C is a meromorphic function that transforms like a
modular forms of weight k/2 on Γ0(N) which is also meromorphic at the
cusps of Γ0(N) and nP is the number of elements in the stabilizer of P in
the group Γ0(N)/{±I}, where I ∈ SL2(Z) denotes the identity matrix. In
particular, if f is an eta quotient, then from (3.9) we obtain

(3.10)
∑
s∈SN

ords(f ; Γ0(N)) =
k · ψ(N)

24
,

because eta quotients do not have poles or zeros on H. it follows from (3.10)
and from (3.7) that for an eta quotient f of weight k/2 on Γ0(N), the valence
formula further reduces to

(3.11)
∑
t |N

ϕ(gcd(t,N/t)) · ord1/t(f ; Γ0(N)) =
k · ψ(N)

24
.

Since ord1/t(f ; Γ0(N)) ∈ 1
24Z (see 3.5), from (3.11) it follows that of any

particular weight, there are only finitely many holomorphic eta quotients on
Γ0(N). More precisely, the number of holomorphic eta quotients of weight
k/2 on Γ0(N) is at most the number of solutions of the following equation

(3.12)
∑
t∈DN

ϕ(gcd(t,N/t)) · xt = k · ψ(N)

in nonnegative integers xt.
We define the order map ON : ZDN → 1

24Z
DN of level N as the map which

sends X ∈ ZDN to the ordered set of orders of the eta quotient ηX at the
cusps {1/t}t∈DN of Γ0(N). Also, we define the order matrix AN ∈ ZDN×DN
of level N by

(3.13) AN (t, d) := 24 · ord1/t(ηd ; Γ0(N))

for all t, d ∈ DN . For example, for a prime power pn, we have

(3.14) Apn =



pn pn−1 pn−2 · · · p 1

pn−2 pn−1 pn−2 · · · p 1

pn−4 pn−3 pn−2 · · · p 1

...
...

... · · ·
...

...

1 p p2 · · · pn−1 pn−2

1 p p2 · · · pn−1 pn


.
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By linearity of the order map, we have

(3.15) ON (X) =
1

24
·ANX .

For r ∈ N, if Y, Y ′ ∈ ZDrN is such that Y −Y ′ is nonnegative at each element
of DrN , then we write Y ≥ Y ′. In particular, for X ∈ ZDN , the eta quotient
ηX is holomorphic if and only if ANX ≥ 0.

From (3.13) and (3.5), we note that AN (t, d) is multiplicative in N, t and
d. Hence, it follows that

(3.16) AN =
⊗
pn‖N
p prime

Apn ,

where by ⊗, we denote the Kronecker product of matrices.∗

It is easy to verify that for a prime power pn, the matrix Apn is invertible
with the tridiagonal inverse:

(3.17) A−1
pn =

1

pn · (p− 1
p)



p −p

−1 p2 + 1 −p2 0
−p p · (p2 + 1) −p3

. . .
. . .

. . .

0 −p2 p2 + 1 −1

−p p


,

where for each positive integer j < n, the nonzero entries of the column
A−1
pn ( , pj) are the same as those of the column A−1

pn ( , p) shifted down by

j − 1 entries and multiplied with pmin{j−1,n−j−1}. More precisely,

pn · (p− 1

p
) ·A−1

pn (pi, pj) =
p if i = j = 0 or i = j = n

−pmin{j,n−j} if |i− j| = 1

pmin{j−1,n−j−1} · (p2 + 1) if 0 < i = j < n

0 otherwise.

(3.18)

For general N , the invertibility of the matrix AN now follows by (3.16).
Hence, any eta quotient on Γ0(N) is uniquely determined by its orders at the
set of the cusps {1/t}t∈DN of Γ0(N). In particular, for distinct X,X ′ ∈ ZDN ,

we have ηX 6= ηX
′
. The last statement is also implied by the uniqueness of

q-series expansion: Let ηX̂ and ηX̂
′

be the eta products (i. e. X̂, X̂ ′ ≥ 0)

obtained by multiplying ηX and ηX
′
with a common denominator. The claim

follows by induction on the weight of ηX̂ (or equivalently, the weight of ηX̂
′
)

when we compare the corresponding first two exponents of q occurring in

the q-series expansions of ηX̂ and ηX̂
′
.

∗Kronecker product of matrices is not commutative. However, since any given ordering
of the primes dividing N induces a lexicographic ordering on DN with which the entries
of AN are indexed, Equation (3.16) makes sense for all possible orderings of the primes
dividing N .
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4. The finiteness

In this section, we prove the finiteness of irreducible holomorphic eta
quotients of a given level (see the corollary of Theorem 1).

Let AN be the order matrix of level N (see 3.13). From the invertibility
of AN , it follows trivially that for each t ∈ DN , there is an eta quotient
which vanishes nowhere except at the cusps a/t of Γ0(N) for all integers a
which are coprime to t (see Corollary 1.42 in the Preliminaries of [7]) ∗. Let
BN ∈ ZDN×DN be the matrix whose columns are made of the exponents of
these eta quotients. A little more precise description of BN is as follows:
Since all the entries of A−1

N are rational (see 3.16, 3.17), for each t ∈ DN ,

there exists a smallest positive integer mt,N such that mt,N · A−1
N ( , t) has

integer entries, where A−1
N ( , t) denotes the column of AN indexed by t ∈

DN . We define BN ∈ ZDN×DN by

(4.1) BN ( , t) := mt,N ·A−1
N ( , t) for all t ∈ DN .

Clearly, BN is invertible over Q. Recall that for X ∈ ZDN , ηX is holomorphic
if and only if ANX ≥ 0 (see 3.15). We define the eta quotient FN by

(4.2) FN :=
∏
t∈DN

ηBN ( ,t).

The lemma below follows immediately:

Lemma 1. For N ∈ N, let FN be as defined above. Then for X ∈ ZDN ,
both of the eta quotients f := ηX and FN/f are holomorphic if and only if
X ∈ BN · [0, 1]DN . �

Let X ∈ ZDN r {0} be such that ηX is a holomorphic eta quotient which
is not factorizable on Γ0(N). Define Y ∈ ZDN by Y := B−1

N X. Suppose,

for some t ∈ DN , we have Yt ≥ 1. Then ηX is divisible by the nonconstant
holomorphic eta quotient ηBN ( ,t). Since ηX is not factorizable on Γ0(N),
we conclude that X = BN ( , t). Thus, we have proved that

Lemma 2. For N ∈ N, let BN ∈ ZDN×DN be as defined in (4.1). For
X ∈ ZDN , if ηX is a holomorphic eta quotient which is not factorizable on
Γ0(N), then either X ∈ BN ·[0, 1)DN or X = BN ( , t) for some t ∈ DN . �

Since for N ∈ N, there are only finitely many lattice points in the bounded
polytope BN · [0, 1)DN, from Lemma 2 it follows that there are only finitely
many holomorphic eta quotients on Γ0(N) which are not factorizable on
Γ0(N) (e. g. the irreducible holomorphic eta quotients whose levels divide
N).

Proof of Theorem 1.(a). Let f be a holomorphic eta quotient on Γ0(N)
which is not factorizable on Γ0(N). From the above lemma, we see that the
weight of f is at most equal to the maximum value of σ(X)/2, where X
varies over BN · [0, 1]DN and σ is as defined in (3.2). Since for all t ∈ DN ,

∗The invertibility of the order matrix (and hence, the existence of such eta quotients)
has been known classically. For example, see Satz 8 in [15], Proposition 3.2 in [12], the
proof of Theorem 3 in [13] or the proof of Theorem 2 in [19].
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the sum of all the entries in the column BN ( , t) of BN is positive (see 4.8),
it follows that

max
X∈BN ·[0,1]DN

σ(X) =
∑
t∈DN

σ(BN ( , t)).

Hence, it suffices to show that

(4.3) κ(N) =
∑
d∈DN

σ(BN ( , t)).

Since for N ∈ N and t ∈ DN , all the entries of the columns A−1
N ( , t) are

multiplicative in N and t (see 3.16), so is the smallest positive integer mt,N

such that mt,N · A−1
N ( , t) ∈ ZDN (see Lemma 4 in [4]). Hence, from the

multiplicativity of A−1
N (d, t) in N , d and t (see 3.16), it follows that BN (d, t)

(see 4.1) is also multiplicative in N , d and t. That implies:

(4.4) BN =
⊗
p∈℘N
pn‖N

Bpn ,

where ℘N denotes the set of prime divisors of N . For a prime p, from (4.1)
and (3.17), we have

(4.5) Bpn =



p −p

−1 p2 + 1 −p 0
−p p2 + 1 −p

. . .
. . .

. . .

0 −p p2 + 1 −1

−p p


.

Summing up the entries of each column of Bpn , we get:

(4.6) σ(Bpn( , pj)) =

{
p− 1 if j = 0 or j = n

(p− 1)2 otherwise.

Since (4.4) implies that

(4.7) BN ( , t) =
⊗
p∈℘N
pj‖t

Bpn( , pj) for all d ∈ DN ,

from (4.6) we get:

σ(BN ( , t)) =
∏
p∈℘N
pj‖t

σ(Bpn( , pj))(4.8)

=
( ∏
p∈℘N

p6 |gcd(t,N/t)

(p− 1)
)
·
∏
p∈℘N

p| gcd(t,N/t)

(p− 1)2

= ϕ(rad(N)) · ϕ(rad(gcd(t,N/t))).
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Since ϕ(rad(gcd(t,N/t))) is multiplicative in t ∈ DN , the summatory func-

tion N 7→
∑
t∈DN

ϕ(rad(gcd(t,N/t))) is multiplicative in N . So,

∑
t∈DN

ϕ(rad(gcd(t,N/t))) =
∏
p∈℘N
pn‖N

n∑
j=0

ϕ(rad(pmin{j,n−j}))(4.9)

=
∏
p∈℘N
pn‖N

((n− 1)(p− 1) + 2).

Now, (4.3) follows from (4.8) and (4.9).

The only X ∈ BN · [0, 1]DN with σ(X) = κ(N) is X =
∑

t∈DNBN ( , t).
Since N > 1, it follows trivially from Lemma 2, that for such an X, the
holomorphic eta quotient ηX is factorizable on Γ0(N). �

Proof of Theorem 1.(b). In Lemma 2, we saw that each holomorphic eta
quotient which is not factorizable on Γ0(N) correspond either to a column
of BN or to a lattice point in the fundamental parallelepiped BN · [0, 1)DN .
Clearly, the number of the columns of BN is d(N). In Lemma 3 below,
we show that the number of lattice points in a fundamental parallelepiped
of BN is

(4.10) Ω′(N) :=
∏
p∈℘N
pn‖N

p2 d(N)
(p2 − 1

p4

)d(N/pn)
.

However, there also exist lattice points in the fundamental parallelepiped
BN · [0, 1)DN which correspond to some holomorphic eta quotients which are
factorizable on Γ0(N). For example, if X is a lattice point outside the unit

sphere in Rd(N) such that all its entries are nonnegative, then ηX is clearly
factorizable on Γ0(N). In Lemma 4 below, we show that the number of such
lattice points in BN · [0, 1)DN is at least

Ω′′(N) :=
1

d(N)!

∏
pn‖N
p prime

(p2 − 1)d(N)

(p+ 1)2 d(N/pn)
+ 2

∑
p∈℘N
pn‖N

d(N/pn)(4.11)

− 2ω(N)(ω(N)− 1)− d(N),

where ω(N) denotes the number of distinct prime divisors of N . Hence,
we conclude that the number of holomorphic eta quotients which are not
factorizable on Γ0(N) is bounded above by

(4.12) Ω(N) = d(N) +Ω′(N)−Ω′′(N).

�
Now, we prove the lemmas which were necessary in the above proof:

Lemma 3. There are exactly Ω′(N) lattice points in a fundamental paral-
lelepiped of BN , where Ω′ : N→ N is as defined in (4.10).

Proof. Since the number of integer points in a fundamental parallelepiped
of a nonsingular integer matrix is equal to the volume of the parallelepiped
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(see Theorem 2 in [2]), it suffices to show that the determinant of BN
is Ω′(N). Indeed, for a prime number p and a positive integer n, we have
det(Bpn) = Ω′(pn) which follows trivially after transforming Bpn (see 4.5)
to the following matrix through elementary column operations

p

−1 p2

−p p2 p2

−p p2 p2 0
−p p2−1 −p

p2 −p p2

0 p2 −p p2

p2 −1

p




and from the fact that for square matrices A and D, we have

det

(
A B
0 D

)
= det(A) det(D).

Since for any two matrices Am×m and Bn×n,

(4.13) det(A⊗B) = det(A)n det(B)m

(see [11]), the general case now follows by induction on the number of prime
divisors of N (see 4.4), �

Lemma 4. Let Ω′′ : N → N be as defined in (4.11). In the fundamen-
tal parallelepiped BN · [0, 1)DN , there are at least Ω′′(N) lattice points with
nonnegative coordinates, none of which lies on the unit sphere in RDN .

Proof. From (4.1), it follows that BN is invertible for all N ∈ N. For n ∈ N
and a prime p, the matrix Bpn is as in (4.5). It is easy to verify that

(4.14) B−1
pn =

1

pn · (p− 1
p)



pn pn−1 pn−2 · · · p 1

pn−2 pn−1 pn−2 · · · p 1

pn−3 pn−2 pn−1 · · · p2 p

pn−4 pn−3 pn−2 · · · p3 p2

...
...

... · · ·
...

...

p p2 p3 · · · pn−2 pn−3

1 p p2 · · · pn−1 pn−2

1 p p2 · · · pn−1 pn



.

Clearly, the axes-intercepts of the fundamental parallelepiped BN ·[0, 1]DN is
given by the reciprocals of the diagonal entries of B−1

N . Hence, from (4.4) and
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(4.14), it follows that the coordinates of the furthest points in BN · [0, 1]DN

on the axes of RDN are given by the columns of the matrix

(4.15)
⊗
p∈℘N
pn‖N



p− 1
p

p2 − 1 0
p2 − 1

. . .

0 p2 − 1

p− 1
p


.

In particular, BN · [0, 1]DN contains the simplex SN which is the convex
hull of the origin and the points in RDN whose coordinates are given by the
columns of the following matrix

(4.16) CN =
⊗
p∈℘N
pn‖N



p− 1

p2 − 1 0
p2 − 1

. . .

0 p2 − 1

p− 1


.

The number of lattice points in the d(N)-dimensional rectangular paral-
lelepiped PN := CN ·[0, 1)DN is clearly the same as its volume. i. e. det(CN ).
Since the ratio of the volumes of SN and PN is 1/d(N)! (see [20]), the simplex
SN contains at least

(4.17)
(detCN )

d(N)!

lattice points excluding all the vertices of SN except the origin. From (4.15)
and (4.16), it follows that for t ∈ DN , gcd(t,N/t) is divisible by rad(N) if
and only if

(4.18) CN ( , t) ∈ BN · [0, 1]DN rBN · [0, 1)DN .

In other words, the number of nonzero vertices of SN which are contained
in BN · [0, 1)DN is the same as the number of t ∈ DN such that rad(N) does
not divide gcd(t,N/t). It is easy to show that the number of such divisors
of N is

(4.19) 2
∑
p∈℘N
pn‖N

d(N/pn)− 2ω(N)(ω(N)− 1),

where ω(N) denotes the number of distinct prime divisors of N . Again,
from (4.16) and (4.13), it follows that

(4.20) det(CN ) =
∏
pn‖N
p prime

(p2 − 1)d(N)

(p+ 1)2 d(N/pn)
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From (4.11), (4.17), (4.19) and (4.20), we obtain that there are at least
Ω′′(N) + d(N) lattice points in BN · [0, 1)DN with nonnegative coordinates.
However, exactly d(N) among these points lie on intersections of the unit
sphere with the axes of RDN . �

Proof of Theorem 1.(c). From Lemma 2, we recall that for X ∈ ZDN , if ηX

is a holomorphic eta quotient which is not factorizable on Γ0(N), then either
X ∈ BN · [0, 1)DN or X = BN ( , t) for some t ∈ DN . The parallelepiped
BN · [0, 1)DN contains d(N) points which lie at the intersections of the unit
sphere with the axes of RDN . These points corresponds to the rescalings of
η by the divisors of N . In particular, these are eta quotients of weight 1/2.
So, each of these d(N) rescalings of η are irreducible, whereas only one of
them, viz. ηN is of level N .

Next, we count the number of eta quotients of the form ηBN ( , t) which
are of level N . For a prime p, from (4.5) we see that the eta quotient

ηBpn ( , pj) is of level pn if and only if j ≥ n− 1. Hence, from (4.7) it follows

that for N ∈ N, the eta quotient ηBN ( , t) is of level N if and only if for
each prime divisor p of N , we have pn−1 |t, where n ∈ N is such that pn‖N .

It is trivial to note that the number of such divisors t of N is 2ω(N), where
ω(N) denotes the number of prime divisors of N . Thus, among the d(N)

columns of BN , only 2ω(N) correspond to eta quotients of level N . �

In the following, we provide a rather uncomplicated function which dom-
inates Ω(N) for all N :

Lemma 5. Let Ω : N→ N be as defined in (2.2). For all N ∈ N, we have

Ω(N) ≤ rad(N)2 d(N).

Proof. From the proof of Theorem 1.(b), we see that Ω(N) < Ω′(N) + d(N)
for all N > 1. By induction on the number of prime divisors of N , it follows
easily that Ω′(N) +N2 ≤ rad(N)2 d(N) for all N > 1. �

5. The common multiple with the least weight

In the previous section, we saw that if a holomorphic eta quotient on
Γ0(N) is not factorizable on Γ0(N), then its weight is at most equal to
κ(N)/2. In this section, we show that κ(N)/2 is the smallest possible weight
for an eta quotient f such that for each holomorphic eta quotient g which
is not factorizable on Γ0(N), f/g is holomorphic (see Theorem 2).

Lemma 6. For N ∈ N and t ∈ DN , the holomorphic eta quotient ηBN ( ,t)

is not factorizable on Γ0(N), where BN ∈ ZDN×DN is as defined in (4.1).

Proof. For t ∈ DN and for Y = AN ·BN ( , t) ∈ ZDN , from (4.1) we get

Yd =

{
mt,N if d = t

0 otherwise

for all d ∈ DN . Recall that for X ∈ ZDN , ηX is holomorphic if and only
if ANX ≥ 0 (see 3.15). Suppose, ηBN ( ,t) is factorizable on Γ0(N). Then
there are X ′, X ′′ ∈ ZDNr{0} with BN ( , t) = X ′+X ′′ such that ANX

′ ≥ 0
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and ANX
′′ ≥ 0. Hence, there exist m′, m′′ > 0 with mt,N = m′ + m′′ such

that for d ∈ DN , we have

(ANX
′)d =

{
m′ if d = t,
0 otherwise

and (ANX
′′)d =

{
m′′ if d = t,
0 otherwise.

In other words, we have X ′ = m′ · A−1
N ( , d) and X ′′ = m′′ · A−1

N ( , d).
Since m′,m′′ < mt,N and since mt,N is the smallest positive integer such that

mt,N ·A−1
N ( , t) ∈ ZDN , we conclude that X ′ /∈ ZDN and X ′′ /∈ ZDN . Thus,

we get a contradiction! Hence, ηBN ( ,t) is not factorizable on Γ0(N). �

Proof of Theorem 2. Let FN be the same as in (4.2). Then Lemma 1 and
Lemma 2 together imply that if a holomorphic eta quotient h on Γ0(N) is
divisible by FN , then it is divisible by all the holomorphic eta quotients on
Γ0(N) which are not factorizable on Γ0(N).

Conversely, let a holomorphic eta quotient h on Γ0(N) be divisible by each
holomorphic eta quotient g on Γ0(N) which is not factorizable on Γ0(N).
Let BN ∈ ZDN×DN be as defined in (4.1). Then Lemma 6 implies that h is

divisible by ηBN ( ,t) for all t ∈ DN . So in particular, we have

(5.1) ord1/t(h ; Γ0(N)) ≥ ord1/t(η
BN ( ,t); Γ0(N)) = ord1/t(FN ; Γ0(N)),

where the last equality holds since FN is the product of all the eta quotients
{ηBN ( ,t)}t∈DN , and since (4.1) and (3.15) together imply that ηBN ( ,t)

has nonzero order only at the cusp 1/t of Γ0(N). Since any eta quotient on
Γ0(N) is uniquely determined by its orders at the set of the cusps {1/t}t∈DN
of Γ0(N), from (5.1) it follows that h is divisible by FN . �

6. Examples of irreducible holomorphic eta quotients

In this section, we shall show that there exist holomorphic eta quotients
of arbitrarily large weights (see Theorem 3).

Lemma 7. For N ∈ N and t ∈ DN/rad(N), the holomorphic eta quotient

ηBN ( ,t) is irreducible, where BN ∈ ZDN×DN is as defined in (4.1).

Proof. From Theorem 3 in [4], we know that a holomorphic eta quotient
on Γ0(N) is reducible only if it is factorizable on some Γ0(M) for some
multiple M of N with rad(M) = rad(N). Suppose, for some t ∈ DN/rad(N)

the holomorphic eta quotient ηBN ( ,t) is reducible. Then there exists a
multiple M of N with rad(M) = rad(N) such that ηBN ( ,t) is factorizable
on Γ0(M). Since t ∈ DN/rad(N) ⊆ DM/rad(M), it follows from (4.7) and (4.5)
that BM (d, t) = BN (d, t) for all d|N and BM (d, t) = 0 if d 6 | N . In other

words, we have ηBN ( ,t) = ηBM ( ,t) which is not factorizable on Γ0(M)
by Lemma 6. Thus, we get a contradiction! Hence, for all t ∈ DN/rad(N),

ηBN ( ,t) is irreducible. �

Proof of Theorem 3. Since for all X ∈ ZDN , the weight of the eta quotient
ηX is σ(X)/2, the theorem follows immediately from Lemma 7, (4.8) and

from the fact that for t = N/rad(N), the eta quotient ηBN ( ,t) is of level N
(see 4.7 and 4.5). �
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Appendix: Comparison of the weights

By kmax(N)/2, we denote the maximum of the weights of holomorphic eta
quotients of level N which are not factorizable on Γ0(N). Let p be a prime.
From the discussion about holomorphic eta quotients on Γ0(p) in Section 1,
it follows that kmax(p) = p − 1. Also, from Theorem 6.4 in [7], we know
kmax(p2) = (p − 1)2. With the support of a huge amount of experimental
data, we make the following conjecture:

Conjecture 2. (a) For each prime number p, all the irreducible holomorphic
eta quotients of level p3 are rescalings of eta quotients of smaller levels. In
particular, we have kmax(p3) = (p− 1)2.
(b) For each odd prime p and for all integers n > 3, we have

(6.1) kmax(pn) = (n− 1)(p− 1)2 − 2rn
(⌊n

2

⌋
(p− 1)− 1

)
,

where rn ∈ {0, 1} is the residue of n modulo 2.

For all odd primes p and for all integers n > 3, in [6] we see examples
of irreducible holomorphic eta quotients of level pn and of the same weight
as in (6.1) (see Corollary 1 and (2.1) in [6]). However, the catch of the
above problem is to show that any holomorphic eta quotient of level pn

whose weight is greater than the quantity given in (6.1), must be reducible
(see Conjecture 1 in [6] and Theorem 2 in [4]).

In the table below, we compare kmax(N) with κ(N) for several N ∈ N,
where κ(N)/2 is the weight of the eta quotient FN which we defined in
Theorem 2 (see also 4.2). Since we have already discussed above the cases
of odd prime powers as well as those of 2n for n ≤ 3, we omit such levels
from the following table.

Table 2. kmax(N) vs. κ(N)

N kmax κ
2 · 3 2 8
2 · 5 4 16
22 · 3 3 12
2 · 7 6 24
3 · 5 8 32
24 2 5

2 · 32 5 16
22 · 5 5 24
3 · 7 12 48
23 · 3 5 16
2 · 13 12 48
22 · 7 8 36

2 · 3 · 5 15 64
25 2 6

2 · 17 16 64
22 · 32 6 24
2 · 19 18 72

N kmax κ
3 · 13 24 96
23 · 5 8 32

2 · 3 · 7 23 96
22 · 11 13 60
32 · 5 18 64
2 · 23 22 88
24 · 3 6 20
2 · 52 17 48
3 · 17 32 128
22 · 13 16 72
2 · 33 7 24
23 · 7 12 48
3 · 19 36 144

26 3 7
2 · 3 · 11 38 160
22 · 17 20 96
2 · 5 · 7 33 192

N kmax κ
2 · 37 36 144

2 · 3 · 13 45 192
24 · 5 11 40
5 · 17 64 256
23 · 11 20 80
2 · 47 46 184
25 · 3 8 24
2 · 72 37 96
32 · 11 45 160
22 · 52 25 72

2 · 3 · 17 60 256
23 · 13 24 96
3 · 5 · 7 56 384
3 · 37 72 288
24 · 7 18 60

27 3 8
7 · 19 108 432
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N kmax κ
33 · 5 32 96
23 · 17 34 128
22 · 37 48 216
2 · 34 13 32

2 · 5 · 17 85 512
22 · 43 56 252

N kmax κ
24 · 11 30 100
11 · 19 180 720

28 4 9
29 5 10

2 · 503 502 2008
210 6 11

N kmax κ
17 · 97 1536 6144

211 6 12
212 7 13
213 7 14
214 9 15
215 9 16
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