
QUANTUM REIDEMEISTER TORSION, OPEN GROMOV-WITTEN
INVARIANTS AND A SPECTRAL SEQUENCE OF OH

FRANÇOIS CHARETTE

Abstract. We adapt classical Reidemeister torsion to monotone Lagrangian submanifolds

using the pearl complex of Biran and Cornea. The definition involves generic choices of

data and we identify a class of Lagrangians for which this torsion is invariant and can be

computed in terms of genus zero open Gromov-Witten invariants. This class is defined by

a vanishing property of a spectral sequence of Oh in Lagrangian Floer theory.

1. Introduction and results

Lagrangian quantum homology QH(L) is an invariant associated to a closed monotone

Lagrangian submanifold in a tame symplectic manifold (M,ω), see [BC09b]. This invariant

can vanish, for example if the Lagrangian can be displaced from itself by a Hamiltonian

isotopy, as is the case for any Lagrangians in Cn, in which case L is called narrow. A

variant of this construction associates a quantum homology to every field representation

ϕ : H2(M,L) → F×, denoted by QHϕ(L), and it often happens that the latter vanishes for

most ϕ (e.g. monotone toric fibers), even when L is not displaceable.

All known examples of Lagrangians behave in one of the following two ways: either

QHϕ(L) ∼= H(L;F), where H(L) is the singular homology of L and the isomorphism is

not assumed to be canonical. In this case, L is said to be ϕ-wide. The other extreme possi-

bility is QHϕ(L) = 0, in which case L is called ϕ-narrow and ϕ is a narrow representation.

This latter class of Lagrangians is the main character of this paper. Relevant definitions will

be given in the next sections.

Classically, Reidemeister torsion is an invariant extracted from the Z[π1(X)]-equivariant

cellular complex of the universal cover X̃ of a CW-complex X. It is a secondary invariant,

meaning that it is defined precisely for representations π1(X)→ F× for which the equivariant

cellular homology vanishes. In particular, the Euler characteristic of X vanishes, χ(X;F) =

0. It has been used to classify 3-dimensional lens spaces up to homeomorphism and plays

an important role in the classification of manifolds, via the s-cobordism theorem. For an

account of that theory and more, see for example Cohen [Coh73], Milnor [Mil66] or Turaev

[Tur01].
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The author was supported by ETH Zürich, and an MPIM Bonn fellowship.
1

ar
X

iv
:1

50
3.

00
46

0v
3 

 [
m

at
h.

SG
] 

 2
6 

Ju
l 2

01
7



In this paper, we adapt Reidemeister torsion to the pearl complex of ϕ-narrow Lagrangians,

which we call quantum Reidemeister torsion. This is rather direct over a field, although the

homological algebra involved is that of periodic chain complexes (i.e. with a Z/2Z grading),

rather than bounded chain complexes, as explained in §2 and 3.

Somewhat surprisingly, when trying to adapt the construction over rings, in order to

recover the more general notion of Whitehead torsion, one runs into algebraic difficulties

due to the cyclic grading and it is not always possible to define a notion of torsion for such

complexes, at least it is not clear to me how to do so. See §2.3 and 3.6 for more on this.

Other notions of torsion have been used in symplectic topology, although they were con-

cerned with the Floer complex rather than the pearl complex, in the works of Abouzaid-

Kragh [AK16], Fukaya [Fuk97], Lee [Lee03, Lee05a, Lee05b], Suarez [Sua14] and Sullivan

[Sul02].

1.1. Main results. Let us first emphasize the following assumption, which will hold through-

out the text: whenever we write a Lagrangian L, we always mean L with a fixed

orientation and a fixed spin structure.

Consider (M,ω) a symplectic manifold, convex at infinity whenever it is not compact,

with a closed, orientable and spin Lagrangian submanifold L. We assume furthermore that

L is monotone, which implies that its minimal Maslov index is even and satisfies NL ≥ 2, as

L is orientable. More precise definitions will be given from §2 onwards.

Our definition of torsion involves various choices of generic data D = (f, ρ, J), consisting

of a Riemannian metric ρ on L, a Morse function f : L→ R such that (f, ρ) is Morse-Smale,

and an almost-complex structure J compatible with ω. The resulting torsion is denoted by

τ((L, ϕ),D) ∈ K1(F), see §3. Here, ϕ : H2(M,L;Z) → F× = GL(1,F) is a one dimensional

representation of H2(M,L) and we assume that the characteristic of F does not divide the

order of the torsion subgroup of ⊕iHi(L;Z), denoted by Tor(L). The multiplicative group

K1(F) = F×/± 1 is called the reduced Whitehead group of F. Because torsion is defined at

the chain-level, it is not a priori clear whether it depends on the choice of generic triple D.

In the present paper, we describe a class of Lagrangians for which we can prove invariance

and compute the torsion in terms of genus zero open Gromov-Witten invariants of L. We

postpone the general study of invariance to a future paper. Recall from the work of Oh

[Oh96] that to any monotone Lagrangian L, we can associate a spectral sequence (E∗, d∗)

using the Floer complex and an energy filtration. Moreover, this can also be twisted by ϕ,

see §3.5. We say that L is E1,ϕ-narrow if the first page of the twisted spectral sequence

has no homology for a representation ϕ : H2(M,L)→ F×, which implies that ϕ is a narrow

representation; see Definition 5.0.1. Our main result is as follows.

Theorem A. Let L be a closed, monotone, orientable, and spin Lagrangian submanifold.

Let F be a field such that char F - |Tor(L)|, ϕ : H2(M,L;Z) → F× a representation and D
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a generic pearl data triple. Assume that (L, ϕ) is an E1,ϕ-narrow pair. Then the quantum

Reidemeister torsion of (L, ϕ) is independent of the choice of generic pearl data D = (f, ρ, J)

and satisfies

τ((L, ϕ),D) =
|Torev(L)|
|Torodd(L)|

τ(E1,ϕ, h∗ ⊗ 1) = τ(E0,ϕ,Crit∗f, h∗ ⊗ 1)τ(E1,ϕ, h∗ ⊗ 1)

Moreover, τ(E1,ϕ, h∗⊗1), as a function of ϕ, can be expressed as a rational function of genus

zero open Gromov-Witten invariants of L, weighted by ϕ.

Some explanations are in order. Here, Torev(L) (resp. Torodd(L)) is the torsion subgroup

of ⊕kH2k(L;Z) (resp. ⊕kH2k+1(L;Z)), and their order are non-zero elements of F, by as-

sumption on the characteristic. τ(E0,ϕ,Crit∗f, h∗ ⊗ 1) is Milnor’s torsion of page 0 from

Oh’s spectral sequence, see §2.1.1 and §5. Open Gromov-Witten invariants are defined in

§4. Finally, τ(E1,ϕ, h∗⊗ 1) is the torsion of the first page, see §2 and 5. The theorem will be

proved and stated again in Theorem 5.0.3, once all the relevant definitions are introduced.

Given g ∈ Symp(M,ω) and a spin Lagrangian L, we get a new spin Lagrangian g(L), that

we endow with the orientation and spin structure induced from the ones on L by g. There is

also an action on representations ϕ : H2(M,L;Z)→ F×, defined by ϕ ◦ g−1
∗ : H2(M, g(L))→

F×. In §5, we will prove:

Corollary 1.1.1. Fix g ∈ Symp(M,ω). Under the assumptions of Theorem A, g(L) is

E1,ϕ◦g−1
∗ -narrow and quantum Reidemeister torsion is invariant under the action of g, that

is, τ(L, ϕ) = τ(g(L), ϕ ◦ g−1
∗ ). In particular, torsion is an invariant of the Hamiltonian

isotopy class of L.

Let us now introduce a special class of E1,ϕ-narrow Lagrangians for which we can do very

explicit calculations. More details are given in §5.1. Assume that L = S2k+1 × V ⊂ (M,ω),

where V is orientable, spin, and assume that the minimal Maslov number of L is NL =

2k + 2. Let σ := ∗ × [V ] ∈ Hn−(2k+1)(L) denote the fundamental class of V in L. Let

ϕ : H2(M,L)→ F× be a representation such that the associated twisted quantum homology

QHϕ(L) vanishes, and suppose that we have

(?) rϕ :=
∑

A∈H2(M,L)

GWA
0,2(σ, pt)ϕ(A) 6= 0,

where GWA
0,2(x, y) denotes genus zero open Gromov Witten invariant with two boundary

marked points, going through the cycles x and y, in the homology class A (see §4). The

Maslov index of A must be 2k + 2 and the assumptions imply that L is E1,ϕ-narrow. Our

second main result, stated again in Theorem 5.1.1, is then:

Theorem B. Let L = S2k+1 × V be a closed, monotone, orientable, and spin Lagrangian

submanifold. Let F be a field such that char F - |Tor(L)|, ϕ : H2(M,L;Z)→ F× a represen-

tation and D a generic pearl data triple. Suppose further that assumption (?) holds. Then
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L is E1,ϕ-narrow, the quantum Reidemeister torsion of (L, ϕ) does not depend on D and

τ(L, ϕ) =
|Torev(L)|
|Torodd(L)|

r
−χ(V )
ϕ ∈ K1(F), where |Tor∗(L)| is considered an element of F×.

Corollary 1.1.2. Assumption (?) is satisfied for every narrow representation ϕ whenever

• L = S1. Then τ(L, ϕ) = r−1
ϕ .

• L is a m-torus, L = S1 × S1 × · · · × S1 (m times), where m ≥ 2. Then τ(L, ϕ) = 1

• L = S1×Σg, where Σg is a closed orientable surface of genus g ≥ 1. Then τ(L, ϕ) =

r
2(g−1)
ϕ

• L is given by a product Lagrangian embedding S1 × V ⊂ (S2 ×X,ωS2 ⊕ ωX), where

H2(X, V ) = 0.

We provide explicit examples in §6 where the coefficient rϕ is not trivial as an element of

either K1(F) or F×/± ϕ(H2(M,L)). The last case in the Corollary occurs for example if V

is closed and X is the cotangent bundle of V .

Remark 1.1.3. The case L = S1×S2 is not covered by our methods. We provide an example

due to Oakley-Usher [OU13] in §6.2. In our subsequent paper [Cha15], we study quantum

Reidemeister torsion for narrow, orientable Lagrangian 3-manifolds and prove that S1 × S2

is indeed E1,ϕ-narrow for every narrow representation.

1.2. Stably-free modules and the pearl complex. Whitehead torsion is a more general

version of Reidemeister torsion defined for acyclic chain complexes over a ring R, classically

the group ring Z[π1(X)], where X is a finite CW -complex, see Milnor [Mil66]. Its definition

relies on the fact that the boundary modules of a bounded acyclic complex are stably-free

R-modules. As we point out in §2.3, this fact is no longer true when considering general

cyclic-graded chain complexes. Therefore, in order to define Whitehead torsion for the pearl

complex (as well as the Lagrangian Floer complex) one has to answer the following structural

question:

Question 1.2.1. Are the boundary modules in the pearl complex of a narrow Lagrangian

stably-free?

We discuss this in more details in §3.6, where we prove that over the group ring Z[H2(M,L)],

the pearl boundary modules are projective.

1.3. Some questions related to Fukaya’s symplectic s-cobordism conjecture. In

[Fuk97], Fukaya sketches a construction of Whitehead torsion, for a pair of Lagrangian

submanifolds (satisfying suitable assumptions that we omit), denoted by τ(L1, L2), which is

defined precisely when the Floer homology HF (L1, L2) of the pair vanishes. He then states

the following striking conjecture:
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Conjecture 1 (Fukaya’s symplectic s-cobordism conjecture). Let L1, L2 be two Lagrangians

submanifolds. Assume that HF (L1, L2) vanishes and moreover that τ(L1, L2) = 1. Then,

there exists a Hamiltonian isotopy φ such that L1

⋂
φ(L2) = ∅.

This leads us to the following questions:

Questions. a. Suppose that L can be displaced by a Hamiltonian isotopy. Does it follow

that τ(L, ϕ) ≡ 1 ∈ F×/ϕ(H2(M,L)) for every representation ϕ : H2(M,L)→ F×? Does the

converse hold if quantum Reidemeister torsion is replaced with quantum Whitehead torsion?

b. When L1 = L2, do the above two notions of torsion coincide? In other words, are the

pearl and Floer complexes simple homotopy equivalent?

Given Theorem A, an affirmative answer to the first question would imply very strong

restrictions on open Gromov-Witten invariants of displaceable Lagrangians. The second

question is motivated by the following classical phenomenon in algebraic topology: there are

topological spaces, namely three-dimensional lens spaces, which are homotopy equivalent

(hence have the same homology) but that are not homeomorphic, because they do not have

the same Reidemeister torsion, see [Coh73].

2. The torsion of an acyclic chain complex

2.1. Bounded complexes. Following the presentation by Milnor [Mil66], we recall the

definition of torsion of an acyclic chain complex. See also [Coh73] and [Tur01].

The reduced Whitehead group of a field F is the multiplicative abelian group

K1(F) = F×/± 1,

where F× = F\{0}. Given a finite-dimensional vector space V over F of dimension r and

two bases b = (b1, . . . , br), c = (c1, . . . , cr), there is a transition matrix (ai,j), denoted simply

b/c, expressing b in terms of c:

bi =
∑

aijcj.

Define

[b/c] = det b/c ∈ K1(F).

This induces an equivalence relation on the set of bases of V , where b = c if and only if

[b/c] = 1.

Let 0 → Cn → Cn−1 → · · · → C1 → C0 → 0 be a bounded chain complex over a field F
such that each Ci has a fixed finite basis ci = (ci,1, . . . , ci,ri). Denote by Bi the image of the

boundary morphism d : Ci+1 → Ci and by Zi+1 its kernel.

Choose bases bi = (bi,1, . . . , bi,ki) of Bi and assume that C∗ is acyclic, so that Zi = Bi and

the Euler characteristic is χ(C∗) = 0. One then has exact sequences

0 // Bi
// Ci

d // Bi−1
// 0
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which split since we work over a field. Given splittings si−1 : Bi−1 → Ci, we get a new basis

of Ci obtained by concatenating the bases si−1(bi−1) and bi, which we write si−1(bi−1)bi.

Notice that given splittings si−1 and s′i−1, we have [si−1(bi−1)bi/ci] = [s′i−1(bi−1)bi/ci].

Moreover, si−1(bi−1)bi and s′i−1(bi−1)bi are equivalent bases. We will often omit the section

and write simply bi−1bi for the new basis.

Definition 2.1.1. The torsion of the chain complex C∗ with respect to the bases {ci} is

τ(C∗, c∗) =
n∏
i=0

[bi−1bi/ci]
(−1)i ∈ K1(F).

As in [Mil66], if we choose different bases b′i of Bi, we get

(1)
n∏
i=0

[b′i−1b
′
i/ci]

(−1)i =
n∏
i=0

([bi−1bi/ci] ∗ [b′i/bi] ∗ [b′i−1/bi−1])(−1)i

and the product
∏n

i=0([b′i/bi] ∗ [b′i−1/bi−1])(−1)i is equal to 1, so τ is independent of bi.

Finally, torsion depends on the choice of basis c∗, but equivalent bases yield the same

torsion. Indeed, choosing another basis c′∗, we get

(2) τ(C∗, c
′
∗) = τ(C∗, c∗)

n∏
i=0

[ci/c
′
i]

(−1)i

2.1.1. Non-acyclic complexes: Milnor’s definition and torsion subgroups. If C∗ is not acyclic

and H∗(C) has a fixed basis h∗, then one has the following exact sequences:

0 // Zi // Ci
d // Bi−1

// 0(3)

0 // Bi
// Zi // Hi

// 0

which combine to yield a new basis bi−1hibi of Ci.

Definition 2.1.2. The torsion is defined as

τ(C∗, c∗, h∗) =
n∏
i=0

[hibibi−1/ci]
(−1)i ∈ K1(F).

Choosing equivalent bases to c∗ or h∗ does not affect its value.

Suppose now that C∗ is a bounded chain complex that is finitely generated as a Z-module.

As above, let Bi and Zi be the groups of boundaries and cycles, which are free Z-modules,

say Bi
∼= Zk(i) and Zi ∼= Zr(i). Write Hi(C∗;Z) = Zr(i)−k(i) ⊕ Z/a1Z ⊕ · · · ⊕ Z/as(i)Z. By

standard algebra for modules over principal ideal domains, one can choose bases of Zi and
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Bi such that, in the second exact sequence of (3), we have

Zk(i) = Bi → Zi = Zr(i)

bl 7→

alzl 1 ≤ l ≤ s(i)

zl s(i) < l ≤ k(i)
(4)

In other words, there is only one free extension (of a given rank) of Hi(C∗;Z) by another

free module (of a given rank), and, in the appropriate bases, it is given by the obvious maps

written above.

Remark 2.1.3. Any two basis of a free Z-module are equivalent, since the transition matrix

has determinant plus or minus one.

Now, take a field F whose characteristic does not divide any of the al’s and tensor both

sequences in (3) with F. This preserves exactness, boundaries, and cycles, by assumption on

the characteristic. Note also that a Z-basis h∗ of H∗(C∗;Z)/Tor, called a basis of the free part

of homology, gives a basis of H∗(C∗;F), denoted by h∗ ⊗F 1 or simply h∗ when the context

is clear. By the remark above, all bases of H∗(C∗;F) obtained this way are equivalent.

Then, the second sequence above (considered over F) is now free and is still given by (4).

Therefore, we get

[(hi ⊗F 1)bibi−1/ci] =

s(i)∏
j=1

aj = |TorHi(C∗;Z)| ∈ K1(F).

Finally,

(5) τ(C∗ ⊗ F, c∗ ⊗ 1, h∗ ⊗ 1) =
∏
i

|Tor(Hi(C∗;Z))|−1i

Simply put, torsion equals torsion! In case C∗ is the cellular or Morse complex of a manifold

X, we will often abbreviate this formula as

τ(C∗ ⊗ F, c∗ ⊗ 1, h∗ ⊗ 1) =
|Torev(X)|
|Torodd(X)|

Remark 2.1.4. Combining Remark 2.1.3 and formula (2), we see that this torsion depends

only on the equivalence class of c∗ and the unique class of h∗ ⊗ 1.

2.2. Periodic complexes. Consider now a based 2-periodic chain complex C[∗] over a field

F, with bases c[i]:

C[1]

d
((
C[0]

d

hh
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The primary example we have in mind is the pearl complex with a cyclic grading, see §3.3.

A similar version using maximal abelian torsion for the Floer complex has been considered

by Lee [Lee05a, §2.2.3].

Given such an acyclic chain complex, we may pick bases b[i] and define its torsion:

Definition 2.2.1. The torsion of a 2-periodic acyclic chain complex is

τ2(C[∗], c[∗]) =
[b[1]b[0]/c[0]]

[b[0]b[1]/c[1]]
∈ K1(F).

Equivalent bases of C[∗] yield the same torsion.

Equation (1) still applies to prove that τ2 is independent of the choice of bases b[i]. Choosing

different sections again leaves τ2 invariant.

This torsion generalizes the one defined in the previous section. Given a bounded chain

complex C∗, define a 2-periodic complex by setting

(C[0], c[0]) =
⊕
k even

(Ck, ck), (C[1], c[1]) =
⊕
k odd

(Ck, ck)

with the differential being simply the direct sum of the differentials of C∗. Note that χ(C[∗]) =

χ(C∗). Obviously, B[0] = ⊕k evenBk and B[1] = ⊕k oddBk. The split sequences

0 // Bi
// Ci // Bi−1

si−1

ff
// 0

can be added up by defining s[0] = ⊕seven, s[1] = ⊕sodd, to yield two splittings

(6) 0 // B[i]
// C[i]

// B[i−1]

s[i−1]

hh
// 0

After a reordering of the bases, we get block diagonal matrices b[1]b[0]/c[0] = ⊕k evenbk+1bk/ck
and b[0]b[1]/c[1] = ⊕k oddbk+1bk/ck, therefore

τ(C∗, c∗) = τ2(C[∗], c[∗]).

Remark. If an acyclic complex has a Z/2kZ-grading, then one can cook up a Z/2Z-graded

acyclic complex out of it, by reducing the grading modulo 2, just as above, hence there is

no need to define the notion for such complexes, 2-periodic complexes are enough for this

purpose. It is not clear how to adapt these definitions to Z/(2k + 1)Z-graded complexes.

2.3. Stably-free modules and Whitehead torsion. It is possible to define the torsion of

free, bounded acyclic complexes with a preferred basis, over rings R satisfying the invariant

basis property (IBP) - e.g. commutative rings and group rings - as an element of the

Whitehead group of that ring, denoted by K1(R). This is ultimately possible because the

boundary modules Bi are stably-free (meaning that there exist positive integers si and ki
8



such that Bi ⊕Rsi ∼= Rki), by a simple induction argument. See e.g. Cohen [Coh73, §13] or

[Mil66, §4] for more on this.

Unfortunately, the same procedure does not work for periodic complexes over such rings,

since the boundary modules B[i] are not automatically stably-free, in fact not even projective,

as the following examples show. Moreover, it is easy to see that B[0] is stably-free if and only

if B[1] is.

Examples. (1) Let B[0] be a projective module that is not stably-free over some ring R

satisfying the (IBP) property (these exist), so that there exists a complement B[1] to B[0]

in a free module, i.e. B[0] ⊕ B[1]
∼= Rk, for some k ≥ 1. Set C[0] = C[1] = Rk and define

differentials by projecting to each factor

d : C[1] → C[0] δ : C[0] → C[1]

(b0, b1) 7→ (b0, 0) (b0, b1) 7→ (0, b1)

Then C[∗] is acyclic but the boundary modules are not stably-free, since im d ∼= B[0] and

im δ ∼= B[1].

(2) Take R = Z[Z/pZ] ∼= Z[t]/(tp − 1), the group ring of Z/pZ, for p an odd prime number.

The polynomials t− 1 and 1 + t+ · · ·+ tp−1 are zero divisors in this ring. Set C[0] = C[1] = R

with differentials

d : C[1] → C[0] δ : C[0] → C[1]

r 7→ r(t− 1) r 7→ r(1 + t+ · · ·+ tp−1)

This complex is acyclic. The boundaries are R-submodules of R given by B[0] = (t − 1)R,

B[1] = (1 + t + · · · + tp−1)R. These modules are not projective, hence not stably-free,

since projective submodules of R correspond to idempotents elements of R, and the only

idempotent elements of Z[G], with |G| finite, are 0 and 1, see e.g. Weibel [Wei13, Chapter

1, Example 2.1.2 and Chapter 2, §2, Corollary 2.5.3].

3. The pearl complex and its torsion

We refer to Biran–Cornea’s papers [BC09a, BC09b, BC12] for foundations and applications

of Lagrangian quantum homology. The version we use here (with oriented moduli spaces of

pearls) is adapted from [BC12].

3.1. Setting. Throughout the text, (M,ω) is a 2n-dimensional symplectic manifold that is

connected and convex at infinity whenever it is not closed. The space of ω-compatible almost

complex structures on M is denoted by Jω.

All Lagrangian submanifolds L ⊂ (M,ω) are closed and connected. Moreover, they are

endowed with a fixed choice of orientation and spin structure which we do not write.
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Let ω : π2(M,L) → R be given by the symplectic area of discs and µ : π2(M,L) → Z
denote the Maslov index. The generator of the image of µ is called the minimal Maslov

index and is denoted by NL. Lagrangians are assumed monotone, that is, there exists a

constant η > 0 such that

• ω = ηµ

• NL ≥ 2

Since L is orientable, NL is even and the second condition above follows from the first.

3.2. The 2-periodic pearl complex. Fix a triple D = (f, ρ, J), where f : L→ R a Morse

function, ρ is a Riemannian metric such that (f, ρ) is a Morse-Smale pair, and J ∈ Jω is an

almost complex structure compatible with ω.

Set

Ck = Ck(D) = Z[H2(M,L;Z)]〈Critkf〉, k = 0, . . . , n = dimL,

where Critkf is the set of critical points with Morse index k and Z[G] is the group ring of a

group G. We write the Morse index of a critical point x as |x|.
For a generic triple D, the pearl differential is defined by

d : ⊕k Ck(D)→ ⊕kCk(D)

Crit f 3 x 7→
∑

y∈Crit f

( ∑
A∈H2(M,L)

|x|−|y|−1+µ(A)=0

#(P(x, y, A))A
)
y

where #(P(x, y, A)) is the (signed) number of pearls in the homology class A going from x

to y. When µ(A) = 0, a pearl is simply a negative gradient flow line of f . This morphism

decomposes as a finite sum

(7) d = dM + d1 + . . .

where dM : Ck → Ck−1 is the Morse differential and di : Ck → Ck−1+iNL
counts pearls of Maslov

index iNL. Note that di’s are not differentials, they need not square to zero, even though

d2 = 0.

Since NL is even, k and k− 1 + iNL have different parity, hence there is a 2-periodic pearl

complex over Z[H2(M,L)], defined by

C[∗](D) =
⊕

k≡[∗] mod 2

Ck(D), [∗] = 0, 1

with an induced differential d : C[∗] → C[∗−1].

The homology of this complex is called the quantum homology of L, denoted by QH[∗](L),

or simply QH(L). It is independent of generic choices of D. If QH(L) = 0, we say that L is

narrow.
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3.3. Narrow representations and torsion. Fix a field F and a representation ϕ : H2(M,L)→
F× = GL(1,F). This induces a ring morphism (by convention, ring morphisms map 1 to 1)

ϕ : Z[H2(M,L)]→ F,

so that F becomes a Z[H2(M,L)]-module. This defines a 2-periodic chain complex over F
by setting

Cϕ[∗](D) = C[∗](D)⊗Z[H2(M,L)] F, dϕ = d⊗ 1.

As above, the homology of this new complex, denoted by QHϕ(L), does not depend on D.

If it vanishes, we say that L is ϕ-narrow, which implies χ(L;F) = 0.

Lemma 3.3.1. If QH(L) = 0, then QHϕ(L) = 0 for every representation ϕ : H2(M,L) →
F×.

Proof. The complexes C[∗](D) are free Z[H2(M,L)]-modules. Since QH(L) = 0, the bound-

aries d(C[∗](D)) are projective Z[H2(M,L)]-modules, by Proposition 3.6.1. By the universal

coefficient theorem (see e.g. Weibel [Wei94, Theorem 3.6.1]), there is an exact sequence

0 // QH[∗](L)⊗Z[H2(M,L)] F // QHϕ
[∗](L) // TorZ[H2(M,L)](QH[∗−1](L),F) // 0

The second and fourth term in this sequence are null, therefore L is ϕ-narrow. �

The set of narrow representations of L over F is defined by

N (L,F) =
{
ϕ : H2(M,L)→ F× | L is ϕ-narrow

}
.

We also define

N free(L,F) =
{
ϕ : H2(M,L)/Tor→ F× | L is ϕ-narrow

}
.

Picking a basis z1, . . . , zb2(M,L) of H2(M,L;Z)/Tor, we consider N free(L,F) as a subset of

(F×)b2(M,L). It is in fact an open subset, by arguments of Biran-Cornea [BC12, §3.1].

Given ϕ ∈ N (L,F) and D a generic set of data, there is a preferred basis for Cϕ[∗](D) given

by Crit[∗]f . Proceeding as in §2.2, we have:

Definition 3.3.2. The quantum Reidemeister torsion of the pair (L, ϕ) is

τ((L, ϕ),D) = τ2(Cϕ[∗](D),Crit[∗]f) ∈ K1(F).

It induces a function τ(L, ·,D) : N free(L,F)→ K1(F).

Remarks 3.3.3. a. Narrow representations do not always exist (for example, take any L with

non-vanishing Euler characteristic over F). However, when NL = 2, narrow representations

can be detected by computing partial derivatives of the Landau-Ginzburg superpotential,

see Biran–Cornea [BC12, §3.3] for more on this.

b. It is possible to give a Z-grading to the pearl complex by introducing a Novikov variable

that keeps track of Maslov indices. However, doing this makes the pearl complex unbounded,
11



and the differential becomes periodic. Thus, to define torsion in this context, one needs to

take an infinite product of determinants which repeat themselves every multiple of NL. To

avoid this type of issue, we chose to get rid of the Novikov variable altogether and use a

Z/2Z-grading.

3.4. Invariance. In this paper, we prove that τ((L, ϕ),D) is independent of D, whenever

(L, ϕ) belongs to a certain class that we call E1,ϕ-narrow and which contains tori endowed

with a narrow representation, see §5.

Remark. There are other contexts in which the behaviour of torsion under changes of

data has been studied. See for example Hutchings [Hut02], Hutchings–Lee [HL99] and

Lee [Lee05a, Lee05b] for finite/infinite-dimensional Morse-Novikov complex of circle-valued

Morse functions. In their context, torsion is not invariant, however its product with a zeta

function encoding gradient periodic orbits is invariant.

Suarez [Sua14] studies torsion for exact Lagrangian cobordisms, Sullivan [Sul02] a version

of the Lagrangian Floer complex, and Abouzaid-Kragh [AK16] study torsion for exact La-

grangians. In these contexts, torsion is invariant. Abouzaid-Kragh use the action filtration

to prove this; our Theorem 3.5.1 is a generalization of their methods to the non exact setting.

3.5. Oh’s spectral sequence and a family of chain complexes associated to d1. In

this section, we will briefly need Novikov ring coefficients in order to define Oh’s spectral

sequence [Oh96] in Lagrangian Floer homology. In the pearl context, this corresponds to the

degree spectral sequence of Biran–Cornea [BC09b]. We follow the presentation by Biran–

Membrez [BM15, Appendix A].

Set Λ = ΛR = R[t, t−1] the ring of Laurent polynomials in t. We set deg t = |t| = −NL.

Here, R is a ring, which will be either Z[H2(M,L)], Z or a field F. Set also

Pi =

Rt−i/NL i ≡ 0 mod NL

0 otherwise

Given a generic pearl triple D = (f, ρ, J), recall from formula (7) that d = dM +d1 +d2 + . . . .

Squaring this, we get 0 = d2
M + dMd1 + d1dM + dMd2 + d2

1 + d2dM + . . . . From this, we see

that d1 induces a map in Morse homology and this map squares to zero. Expanding on these

ideas, Oh obtained a spectral sequence in Floer homology, which in our context gives the

following

Theorem 3.5.1 (The degree spectral sequence). There is a spectral sequence of algebras

{Er
p,q, d

r; Λ}, with dr of bidegree (−r, r − 1), called the degree spectral sequence, having the

following properties:

• E0
p,q = Cp+q−pNL

(D)⊗ PpNL
, d0 = dM ⊗ 1

12



• E1
p,q = Hp+q−pNL

(L;R)⊗ PpNL
, d1 = d1∗ ⊗ t, where

d1∗ : Hr(L;R)→ Hr−1+NL
(L;R)

is induced from d1.

• d1∗ satisfies the Leibniz rule with respect to the Morse intersection product, i.e. d1∗(x ·
y) = d1∗(x) · y + (−1)n−|x|x · d1∗(y)

• As the differential has bidegree (−r, r − 1), {Er
p,q, d

r} collapses after at most bn+1
NL
c

pages. Moreover, it converges to QH(L; Λ). In particular, when R is a field, we have

⊕p+q=lE∞p,q ∼= QHl(L; Λ)

Remark. The Leibniz property of d1∗ was first proven by Buhosvky [Buh10].

We will sometimes indicate the Morse function and the triple D when writing Morse

homology, e.g. dD1∗ : H
f
r (L;R)→ Hf

r+NL−1(L;R). From the theorem, we get d2
1∗ = 0, thus for

each 0 ≤ k ≤ NL − 2, there is a chain complex of (not necessarily free!) R-modules

(8) 0 // Hf
k (L) // Hf

k−1+NL
(L) // · · · // Hf

k+n(NL−1)(L) // 0

We write this family of complexes as (H∗(L), d1∗). Notice the particular case NL = 2, as

there is a single complex:

0 // H0(L)
d1∗ // H1(L) // · · · // Hn−1(L)

d1∗ // Hn(L) // 0

We list below a few properties of this chain complex, which will be useful when computing

torsion later on. They all follow from the general machinery of [BC09b] and Theorem 3.5.1.

(Naturality) Given any ring morphism ϕ : Z[H2(M,L)] → F, (Er
p,q, d

r; Λ) is natural with respect

to the associated change of coefficients. The resulting spectral sequence is denoted

by (Er,ϕ
∗,∗ , d

r,ϕ;F).

(Independence) d1∗ is independent of D. Namely, first recall that given D1 = (f, ρ, J) and D2 =

(g, ρ′, J ′) two generic pearl data triples, there is a canonical comparison morphism

ΦD1
D2

between the associated pearl complexes which induces a morphism of spectral

sequence. Moreover, this morphism induces, on the first page, yet another map

which coincides with the homology value of the usual canonical Morse comparison

morphisms (see Schwarz [Sch93] for relevant definitions) [Φf
g ]∗ : H

f
∗ (L) → Hg

∗ (L)

between the respective Morse homologies of f and g, where we omit Riemannian

metrics from the notation, and makes the following diagram commute (over Z or for
13



any field representation of H2(M,L)):

(9) Hf
∗ (L)

d
D1
1∗ //

[Φf
g ]∗
��

Hf
∗−1+NL

(L)

[Φf
g ]∗

��
Hg
∗ (L)

d
D2
1∗ // Hg

∗−1+NL
(L)

Using the spectral sequence, one gets:

Theorem 3.5.2 ([Buh10], [Buh09] (Proof of Theorem 1)). Let Ln be a monotone Lagrangian

submanifold whose Morse homology ring is generated by Hn−1(L;F) and assume that L is

ϕ-narrow for some representation ϕ : H2(M,L)→ F×. Then NL = 2 and the chain complex

(H∗(L;F), dϕ1∗) is acyclic. In other words, 0 = E2,ϕ
∗,∗ = E3,ϕ

∗,∗ = · · · = E∞,ϕ∗,∗ .

Remark 3.5.3. Lagrangians with a homology ring as above are for example tori or S1 × Σg.

See Corollary 5.1.2.

3.6. Algebraic structure of the pearl boundary modules. In view of the discussion

on stably-free modules in §2.3, we were asking in Question 1.2.1 whether the pearl boundary

modules are stably free. As of now, we cannot answer this question positively, neither can

we find a counterexample. Note that the counterexamples of §2.3 were purely algebraic and

did not make use of geometry. Nevertheless, we can make a first step in the right direction:

Proposition 3.6.1. Assume that L is narrow, QH(L) = 0. Then, the pearl boundary

modules b[i] are projective Z[H2(M,L)]-modules.

Proof. The proof uses the quantum product over the ring Z[H2(M,L)] (see Biran–Cornea

[BC09b]). Recall that given any generic pearl triple D = (f, ρ, J), there is another generic

triple D′ = (g, ρ′, J ′) with the following properties:

• The Morse function g has a single maximum, denoted by Lg.

• There is a quantum product (over the ring Z[H2(M,L)])

◦ : C[k](g, ρ
′, J ′)⊗Z[H2(M,L)] C[l](f, ρ, J)→ C[k+l−n](f, ρ, J)

which endows Lagrangian quantum homology with a unital ring structure and satisfies

the Leibniz rule with respect to the pearl differentials. Moreover, Lg is a chain-level

unit for this product, i.e. Lg ◦ x = x, ∀x ∈ C(f, ρ, J).

We denote by df , dg the pearl differentials of each pearl complex. Note that dg(Lg) = 0 for

degree reasons (see (7)). Since L is narrow, this means that there exists σ ∈ C[n−1](g) such

that dg(σ) = Lg. Assume now that y = df (x), then df (σ◦y) = dg(σ)◦y+(−1)n−|σ|σ◦df (y) =

Lg ◦ y + (−1)n−|σ|σ ◦ d2
f (x) = y. Therefore, left multiplication with σ provides a splitting of

df , which implies that C(f) ∼= Im d⊕ ker d, hence the boundary modules are projective. �
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4. Open Gromow-Witten invariants and the differential dϕ1∗

In this section, we introduce the notion of open Gromov-Witten invariants that appears

in Theorem A. Contrary to absolute Gromov-Witten invariants, defined using holomorphic

spheres (see e.g. McDuff-Salamon [MS04]), care must usually be taken in the open case, as

bubbling of discs is a codimension one phenomenon. In our context however, this does not

happen and the definition is rather straightforward. For a broader view of the subject, where

bubbling issues are present, the reader is referred to Biran-Cornea [BC12], Georgieva-Zinger

[GZ13], Liu [Liu04], Solomon [Sol06a, Sol06b], Solomon-Tukachinsky [ST16], Welschinger

[Wel15], etc.

Fix A ∈ H2(M,L) such that µ(A) = NL, J an almost complex structure compatible with

ω and denote by M(A; J) = {u : (D2, S1) → (M,L) | ∂̄Ju = 0, [u] = A} the space of

J-holomorphic discs in the homology class A. By the work of Lazzarini [Laz11], these are

automatically simple curves, as µ(A) = NL and L is monotone. Therefore, for generic J ,

M(A; J) is a smooth manifold of dimension dimL+µ(A) = n+µ(A). Our implicit choice of

spin structure on L induces an orientation on this space, by the work of Fukaya-Oh-Ohta-Ono

[FOOO09, Chapter 8]. Moreover, by monotonicity and Gromov compactness for discs (see

Frauenfelder [Fra08]), M(A; J) is a closed manifold and its bordism class does not depend

on J . In other words, given two regular J0, J1 and a generic path J = {Jt, t ∈ [0, 1]} between

them, there is a smooth, oriented, closed cobordism betweenM(A; J0) andM(A; J1), given

by
⋃
t∈[0,1]M(A; Jt).

There is an evaluation map

ev2 : M(A; J)× ((S1)2\∆)/G → L× L

(u, θ1, θ2) 7→ (u(θ1), u(θ2))

where ∆ is the diagonal and G is the group of biholomorphism of the disc acting via the

formula g · (u, θ1, θ2) = (u ◦ g, g−1(θ1), g−1(θ2)). Note that M(A; J) × ((S1)2\∆) is a non

compact manifold of dimension n + µ(A) + 2 = n + 2 + NL. It represents the space of

J-holomorphic discs in class A with two distinct marked points.

Now, let D = (f, ρ, J) be a generic pearl data triple. Denote by ψt the negative gradient

flow of f with respect to ρ. Let x ∈ Critf , and define W u(x) = {p ∈ L | limt→−∞ ψt(p) = x}
the unstable manifold of x; it is a non proper submanifold of L. Similarly, W s(x) = {p ∈
L | limt→∞ ψt(p) = x} is the stable manifold of x.

Fix x, y ∈ Critf such that |y| = |x|−1+NL. By genericity of D, the map ev2 is transverse

to W u(x)×W s(y). Therefore,

P(x, y, A;D) = ev−1
2 (W u(x)×W s(y))
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is a zero dimensional manifold; it is the set of pearls from x to y in the homology class

A. By the results of Biran-Cornea [BC09b, §3.4], [BC12, Appendix A], it is in fact a com-

pact orientable manifold, hence there is a well-defined integer #{P(x, y, A;D)}. Recall the

decomposition d = dM +
∑

i di in (7). Then, over Z[H2(M,L)],

(10) d1(x) =
∑
y

(
∑

µ(A)=NL

#{P(x, y, A;D)}A)y

By definition, P(x, y, A;D) also represents the set of J-holomorphic discs in homology class

A, with two distinct boundary marked points intersecting respectively W u(x) and W s(y).

Fix x, y ∈ Hf
∗ (L;Z) two Morse homology classes in the free part of Hf

∗ (L;Z), such that

|y| = |x| − 1 +NL. Write x =
∑
aixi, y =

∑
biyi, with ai, bi ∈ Z, xi, yi ∈ Critf .

Definition 4.0.1. Let L be a closed, orientable, spin, monotone Lagrangian submanifold of

(M,ω) and A ∈ H2(M,L;Z) be such that µ(A) = NL. Fix D = (f, ρ, J) a generic pearl data

triple and x, y ∈ Hf (L;Z) satisfying |y| = |x| − 1 +NL. The number

GWA
0,2(x, y) =

∑
i,j

aibj#{P(xi, yj, A;D)} ∈ Z

is called a genus zero open Gromov-Witten invariant in class A, intersecting the cycles x and

y.

Let ϕ : H2(M,L;Z)→ F× be a representation. By formula (10) above, we get the following

interpretation of d1∗ and dϕ1∗ from §3.5:

Proposition 4.0.2. The differentials on the first page of Oh’s spectral sequences E1, E1,ϕ

are expressed in terms of open Gromov-Witten invariants of minimal Maslov index, with two

marked points. Given x ∈ H|x|(L;Z) or x ∈ H|x|(L;F), then

d1∗(x) =
∑

y∈H|x|+NL−1

 ∑
µ(A)=NL

GWA
0,2(x, y)A

 y

dϕ1∗(x) =
∑

y∈H|x|+NL−1

 ∑
µ(A)=NL

GWA
0,2(x, y)ϕ(A)

 y

Using the commutative diagram (9), which ultimately relies on the compactness results of

[BC09b, §3.4], one obtains:

Corollary 4.0.3. GWA
0,2(x, y) does not depend on the decompositions x =

∑
aixi, y =∑

biyi. Moreover, it is independent of the choice of generic pearl data triple D(f, ρ, J).
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5. Quantum torsion for E1,ϕ-narrow Lagrangians

Motivated by Buhovsky’s Theorem 3.5.2, we introduce the following class of pairs (La-

grangian, representation of H2(M,L)), which contains ϕ-narrow tori:

Definition 5.0.1. Let (L, ϕ) be a pair where L is a closed, orientable and spin monotone

Lagrangian (and assume these choices are fixed), and ϕ ∈ N (L,F) is a narrow representa-

tion. Then (L, ϕ) is called E1,ϕ-narrow if the associated degree spectral sequence satisfies

H(E1,ϕ
∗,∗ , d

1,ϕ) ∼= E2,ϕ
∗,∗ = 0.

Recall that dϕ1∗([L]) = 0 for degree reasons. Then, we see from the results in §3.5 that

E2,ϕ
∗,∗ = 0 if and only if any of the following equivalent conditions hold:

• The unit [L] ∈ Hn(L;F) for the Morse intersection product is in the image of dϕ1∗.

• The family of chain complexes given by (H∗(L;F), dϕ1∗) (see (8)) is acyclic.

Assume that char F - |Tor(L)|. For an E1,ϕ-narrow pair (L, ϕ) as above, each choice of pearl

data D = (f, ρ, J) yields a family of equivalent bases hf∗ ⊗F 1 of Hf
∗ (L;F), given by tensoring

any basis of the free part of Hf
∗ (L;Z) (which are all equivalent for a fixed f) with F, as

explained in §2.1.1. Since the complex (8) is acyclic by assumption, its torsion relative to

this equivalence class of basis is defined and we denote it by τ(E1,ϕ,D, hf∗ ⊗ 1). The choice

of pearl data triple is also irrelevant:

Lemma 5.0.2. Assume (L, ϕ) is E1,ϕ-narrow and suppose that char F - |Tor(L)|. Given

D1,D2 two generic pearl data triples, we have τ(E1,ϕ,D1, h
f1
∗ ⊗ 1) = τ(E1,ϕ,D2, h

f2
∗ ⊗ 1).

Proof. First observe that in the commutative diagram (9), the Morse comparison morphisms

over Z and F are related by the formula [Φf1
f2

]F = [Φf1
f2

]Z ⊗F 1, by assumption on the charac-

teristic of F. In other words, a basis of the form hf1∗ ⊗ 1 is mapped by the Morse comparison

morphism to a basis hf2∗ ⊗ 1. Finally, writing the comparison morphisms in those bases, we

get matrices such that det([Φf1
f2

]Z⊗F1) = det[Φf1
f2

]Z = ±1, hence changing the Morse function

does not change the value of torsion. �

Therefore, it makes sense to speak of the torsion of the acyclic complex (8) with respect to

the equivalence class of h∗ ⊗ 1, which we denote by τ(E1,ϕ, h∗ ⊗ 1) ∈ K1(F). The following

theorem gives a useful tool to compute quantum Reidemeister torsion, as well as to prove its

invariance, and is the reason we introduced the class of E1,ϕ-narrow pairs (L, ϕ). Compare

with Abouzaid-Kragh [AK16, Lemma 2.1]. Recall from §3.3 that τ(L, ϕ) induces a function

τ(L, ·) : {ϕ ∈ N free(L,F)} → K1(F),

which depends on variables z1, . . . , zb2(M,L). Moreover, the representations ϕ such that (L, ϕ)

is E1,ϕ-narrow form an open subset of N free, since their complement is given by the vanishing

of the map dϕ1∗ : Hn+1−NL
(L;F)→ Hn(L;F) ∼= F.
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Theorem 5.0.3. Let L be a closed, monotone, orientable, spin Lagrangian and ϕ ∈ N (L,F)

a narrow representation, where char F - |Tor(L)|. Suppose that (L, ϕ) is an E1,ϕ-narrow pair.

Then the quantum Reidemeister torsion of (L, ϕ) is independent of the choice of generic pearl

data D = (f, ρ, J) and satisfies

τ(L, ϕ) = τ((L, ϕ),D) =
|Torev(L)|
|Torodd(L)|

τ(E1,ϕ, h∗ ⊗ 1) = τ(E0,ϕ,Crit∗f, h∗ ⊗ 1)τ(E1,ϕ, h∗ ⊗ 1)

where τ(E0,ϕ,Crit∗f, h∗ ⊗ 1) is Milnor’s torsion of E0,ϕ. Moreover, the function τ(L, ·) is a

rational function whose coefficients are expressed in terms of genus zero open Gromov-Witten

invariants of L.

Proof. Assume first that NL = 2. We deal with the general case at the end of Step 1 below.

We also fix D = (f, ρ, J) a generic pearl data triple and ϕ ∈ N (L,F) a narrow representation.

Recall from §3.3 that we compute Reidemeister torsion τ((L, ϕ),D) with respect to the

equivalence class of bases {ci} given by Crit∗(f). We will show that one can change this

basis to a more manageable one without affecting the torsion.

Step 1:

Recall from (7) that the differential decomposes as a sum dϕ =: d = dϕM + dϕ1 + . . . , where

dϕi : Ck → Ck−1+2i, since we assume NL = 2. Moreover, dϕM is simply the reduction in F of the

count of negative gradient flow lines between two critical points of consecutive index, induced

by ϕ(1Z) = 1F, hence it computes Morse homology Hf
∗ (L;F). In matrix form, d : C[i] → C[i−1]

is then:

(11)

· · · Ci−2 Ci Ci+2 · · ·


... · · · · · · · · · · · · · · ·
Ci−1 · · · dϕ1 dϕM 0 · · ·
Ci+1 · · · dϕ2 dϕ1 dϕM · · ·
Ci+3 · · · dϕ3 dϕ2 dϕ1 · · ·

In case NL ≥ 4, define C̄2k = CkNL
⊕CkNL+2⊕· · ·⊕C(k+1)NL−2 and C̄2k+1 = CkNL+1⊕CkNL+3⊕

· · · ⊕ C(k+1)NL−1, for k = 0, 1, . . . , n/NL. Then matrix (11) will look exactly the same as

above, with Ci replaced by C̄i and the rest of the proof will also be the same. To lighten the

notation, we assume that NL = 2 in the remaining steps below.

Step 2: Change the basis of Ci to a more manageable one.

Applying the constructions from §2.1.1 to the Morse differential dϕM , we get two exact se-

quences of F-vector spaces:

0 // ZM
i

// Ci
d // BM

i−1
// 0(12)

0 // BM
i

// ZM
i

// Hi
// 0
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The superscript M is used to emphasize that these are the Morse differential boundaries,

and not the pearl boundaries. Pick any basis bMi of BM
i as well as the bases hi = hfi ⊗F 1 of

Hi(L;F). We obtain a new basis of Ci given by s(hi)b
M
i s(b

M
i−1), written sometimes hib

M
i b

M
i−1,

where s denotes sections of the sequences above, which by a slight abuse of notation are

given the same name. Set bM[i] = ⊕k≡i mod 2b
M
k and h[i] = ⊕k≡i mod 2hk, i = 0, 1. By formula

(2), we have

τ(C[∗], b
M
[∗]b

M
[∗−1]h[∗]) = τ((L, ϕ),D)

n∏
i=0

[ci/hib
M
i b

M
i−1](−1)i

By formula (5), this yields

τ(C[∗], b
M
[∗]b

M
[∗−1]h[∗]) =

|Torodd(L)|
|Torev(L)|

τ((L, ϕ),D)

Our task is now to compute the torsion on the left-hand-side of this equality.

Note that E0,ϕ is the Morse complex, therefore

τ(E0,ϕ,Crit∗f, h∗ ⊗ 1) =
|Torev(L)|
|Torodd(L)|

Step 3: Write dϕM in the new basis.

With respect to the bases hib
M
i b

M
i−1, the Morse differential dϕM : Ci → Ci−1 is given by:

(13)

s(Hi) BM
i s(BM

i−1) s(Hi−1) 0 0 0

BM
i−1 0 0 I

s(BM
i−2) 0 0 0

where I is the identity matrix.

Step 4: Write the matrix for dϕ1 : Ci → Ci+1 in the new basis.

As noted in §3.5, dϕ1 induces a map dϕ1∗ on Morse homology. The map dϕ1 : Ci → Ci+1 is then,

in matrix form:

(14)

s(Hi) BM
i s(BM

i−1) s(Hi+1) dϕ1∗ 0 ?

BM
i+1 ? ? ?

s(BM
i ) 0 0 ?

where ? denote some matrices which do not matter for our purpose.
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Step 5: Find a basis for the pearl boundaries B[i] = Im(d : C[i+1] → C[i]).

Using matrices (13) and (14), we see that a part of matrix (11) looks as follows:

(15)

Ci−2 Ci Ci+2



dϕ1∗ 0 ? 0 0 0

Ci−1 ? ? ? 0 0 I 0

0 0 ? 0 0 0

dϕ1∗ 0 ? 0 0 0

Ci+1 dϕ2 ? ? ? 0 0 I

0 0 ? 0 0 0

Pick a set of linearly independent vectors jr ⊂ s(Hr(L;F)) that are mapped by dϕ1∗ to a basis

of dϕ1∗(s(Hr)) ⊂ s(Hr+1). Abusing notation a bit, we say that jr is a basis for the image of

dϕ1∗. We see, by the shape of matrix (15), that d : C[i] → C[i−1] is injective on the vector space

spanned by the linearly independent vectors in the set V[i] = {s(bMr−1), jr | r ≡ [i] mod 2}. In

other words, d(V[i]) is a set of linearly independent vectors in C[i−1] and dimB[i−1] ≥ dimV[i].

Since L is E1,ϕ-narrow, we have

(16) ker dr,ϕ1∗ = Im(dϕ1∗ : Hr−1(L;F)→ Hr(L;F)) = Im dr−1,ϕ
1∗

Lemma 5.0.4. The vectors in d(V[i]) span all of B[i−1], hence provide a basis for the image

of d.

Proof. Since L is ϕ-narrow, we have dim C[i] = dimB[i] + dimB[i−1]. Moreover, L is E1,ϕ-

narrow, hence dimHr(L) − dim ker dr,ϕ1∗ = dim Im dr,ϕ1∗ = dim ker dr+1,ϕ
1∗ . A dimension count

then yields

dimB[i] + dimB[i−1] ≥ dimV[i−1] + dimV[i]

=
∑

r≡[i−1]

(dim s(BM
r−1) + dimHr − dim ker dr,ϕ1∗ )

+
∑
s≡[i]

(dim s(BM
s−1) + dimHs − dim ker ds,ϕ1∗ )

=
∑

r≡[i−1]

(dim s(BM
r−1) + dim ker dr+1,ϕ

1∗ )

+
∑
s≡[i]

(dim s(BM
s−1) + dimHs − dim ker ds,ϕ1∗ )

=
∑
s≡[i]

dimHs + dim s(BM
s−1) + dim s(BM

s )

=
∑
s≡[i]

dim Cs = dim C[i].
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Therefore, the first inequality is an equality and, since dimB[i−1] ≥ dimV[i] for each [i], we

get the desired conclusion. �

Step 6: The torsion of (E1,ϕ, h∗ ⊗ 1).

By assumption on L, we have the following exact sequences:

(17) 0 // Im dr−1,ϕ
1∗

// Hr(L;F) // Im dr,ϕ1∗
// 0

which split by a splitting s : Im dr,ϕ1∗ → Hr that we fix. Denote qi = di−1,ϕ
1∗ (ji−1) the basis (i.e.

a list of vectors) of Im di−1,ϕ
1∗ . By Lemma 5.0.4, a basis b[i−1] of B[i−1] = Im (d : C[i] → C[i−1])

is given by concatenating the vectors in the list q[i−1] and the vectors d(s(bM[i] )). Therefore,

using the splitting s of the sequence (17), the map sd : B[i−1] → C[i], defined via

q[i−1] → s(q[i−1])

d(s(bM[i] ))→ s(bM[i] )

is a section of d. Reordering the vectors in the basis b[i] in the order indicated by the labels

above matrix (18) (which does not change torsion, since it is an element of F×/ ± 1), we

see that the matrix b[0]b[1]/h[0]b
M
[0]b

M
[1] is upper triangular and the relevant diagonal parts of it

look as follows:

(18)

· · · dϕ1∗(j2i−1) sd(q2i+1) d(s(bM2i )) sd(d(s(bM2i−1))) · · ·



⊕
l≤2(i−1), [l]≡0 mod 2

Cl · · · 0 0 0 0 0

H2i(L;F) · · · q2i s(q2i+1) 0 0 0

BM
2i · · · ? 0 I 0 0

s(BM
2i−1) · · · 0 0 0 I 0⊕

l≥2(i+1), [l]≡0 mod 2

Cl · · · ? ? ? ? · · ·

There is also a similar matrix for b[0]b[1]/h[1]b
M
[1]b

M
[0], with q2i (resp. s(q2i+1)) replaced with

q2i−1 (resp. s(q2i)). Therefore,

τ((L, ϕ),D) =
|Torev(L)|[b[0]b[1]/h[0]b

M
[0]b

M
[1]]

|Torodd(L)|[b[0]b[1]/h[1]b
M
[1]b

M
[0]]

=
|Torev(L)|
|Torodd(L)|

n∏
k=0

[qks(qk+1)/hk]
(−1)k

=
|Torev(L)|
|Torodd(L)|

τ(E1,ϕ, h∗ ⊗ 1) = τ(E0,ϕ,Crit∗f, h∗ ⊗ 1)τ(E1,ϕ, h∗ ⊗ 1)

and this proves the first part of the theorem.

Step 7: Open GW-invariants.

The last step of the proof is now simply a matter of unwrapping definitions.
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Fix a generic pearl triple (f, ρ, J) and a basis h∗⊗1 associated to f . Then, by Proposition

4.0.2, dϕ1∗ is represented by a matrix whose entries are∑
A

GWA
0,2(hk ⊗ 1, hk−1+NL

⊗ 1)ϕ(A)

Finally, a basis for the image of dϕ1∗ is obtained by applying Gauß algorithm to the matrix

dϕ1∗. In this algorithm, one performs only rational operations (over F) on the entries of the

matrix. The same holds when taking a section of the sequence (17). Torsion is then obtained

by taking products and divisions of determinants, which are themselves polynomial functions

in the entries of the matrices involved. �

Remark 5.0.5. It seems that the theorem should generalize to yield the following formula:

τ((L, ϕ),D) =
n∏
k=0

τ(Ek,ϕ)

which would prove invariance for all monotone Lagrangians. However it is not clear how to

choose bases for the pages Ek,ϕ, k ≥ 2. In the theorem above, there was a canonical choice

of bases given by Crit∗ f and h∗ ⊗ 1 on E0 and E1. See also [Cha15, Remark 4.2.3] for a

similar discussion.

Proof of Corollary 1.1.1. This is similar to Biran-Cornea [BC09b, Proposition 4.3.1]. The

only difference concerns orientations of the space of pearls, which ultimately relies on ori-

entations of the space of pseudo-holomorphic discs. But our choice of spin structures on L

and g(L) guarantees that orientations are also preserved; this follows e.g. from Cho [Cho04,

Theorem 6.4] or Fukaya-Oh-Ohta-Ono [FOOO09, §8.1.4]. Here are the details.

Fix D = (f, ρ, J) a generic pearl data triple on L, as well as an orientation and a spin

structure on L, and g ∈ Symp(M,ω). Then g∗(D) = (f ◦ g−1, (g−1)∗(ρ), g∗Jg
−1
∗ ) is a generic

pearl data triple on g(L). Moreover, with the orientation and spin structure on g(L) induced

from the ones on L by g, using the results of Cho and Fukaya et al. , we obtain a chain-level

identification g : C(L,D)→ C(g(L), g∗(D)). Therefore, torsion on both sides coincide, as well

as the degree spectral sequences, open Gromov-Witten invariants, etc. �

We end this section with a useful computational lemma, making more precise the coeffi-

cients of the rational function mentioned above.

Lemma 5.0.6. Let (L, ϕ) be an E1,ϕ-narrow pair as above and [L] := ([L]Z⊗1) ∈ Hn(L;F) ∼=
F denote the fundamental class. Fix σ ∈ Hn+1−NL

(L;F) a preimage of [L] with respect to

dϕ1∗. Then a splitting of the exact sequence (17) is given by left-multiplication with σ:

s : (Im dϕ1∗ ⊂ Hk(L;F))→ Hk+1−NL
(L;F)

x 7→ σ · x

where · denotes the Morse intersection product.
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Proof. This is a simple application of the Leibniz rule in Theorem 3.5.1. Indeed, we have

x = dϕ1∗(y) for some y, by assumption. Moreover, dϕ1∗(σ ·x) = dϕ1∗(σ) ·x+(−1)NL−1σ ·dϕ1∗(x) =

dϕ1∗(σ) · x = [L] · x = x �

5.1. A special class of E1,ϕ-narrow pairs and their torsion. In this section, we assume

that the monotone Lagrangian L is a product S2k+1 × V ⊂ (M,ω). Moreover, in order to

apply Theorem 5.0.3, we consider only connected closed orientable V and we assume that L

admits a spin structure, which is equivalent in this case to V admitting a spin structure; we

also allow V to be a point. Let σ := ∗⊗ [V ] ∈ Hn−(2k+1)(L;Z) be the fundamental class of V

in L. We impose the following rather strong restriction on open Gromov-Witten invariants

of L:

Assumption (?): Let ϕ : H2(M,L)→ F× be a representation such that dϕ1∗(σ) = rϕL, 0 6=
rϕ ∈ F.
Obviously, L is then E1,ϕ-narrow and NL = 2k + 2. Notice also that

rϕ =
∑

µ(A)=2k+2

GWA
0,2(σ, pt)ϕ(A)

by Proposition 4.0.2.

Theorem 5.1.1. Let L = S2k+1 × V be a closed, orientable, spin and monotone La-

grangian submanifold. Let ϕ : H2(M,L) → F× be a representation satisfying Assump-

tion (?). Suppose that char F - |Tor(L)|. Then NL = 2k + 2, L is E1,ϕ-narrow and

τ(L, ϕ) =
|Torev(L)|
|Torodd(L)|

r
−χ(V )
ϕ ∈ K1(F).

In §6, we will provide non trivial applications of the above theorem and prove the following

Corollary 5.1.2. Assumption (?) is satisfied for every narrow representation ϕ whenever

k = 0 and

• V is a point.

• V is a m-torus, i.e. L is a m+ 1-torus. Then τ(L, ϕ) = 1

• V is an orientable surface of genus g ≥ 1. Then τ(L, ϕ) = r
2(g−1)
ϕ

• L is given by a product Lagrangian embedding S1 × V ⊂ (S2 ×X,ωS2 ⊕ ωX), where

H2(X, V ) = 0.

Remarks. a. The case of S1×S2 does not fit the above pattern and will be discussed in §6.2.

b. The second and third cases follow from Buhovski’s Theorem 3.5.2. We will nevertheless

(re)prove them in §6.3.

Proof of Theorem 5.1.1. Let L = S2k+1 × V and assume there exists ϕ satisfying Assump-

tion (?). Note first that, by the Künneth formula, we have Hr(L;F) = (H0(S2k+1) ⊗
Hr(V ))

⊕
(H2k+1(S2k+1)⊗Hr−(2k+1)(V ))
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Let βr,i, i = 1, . . . , dimHr(V ) denote the basis of Hr(V ;F) obtained by tensoring a basis

of the free part of Hr(V ;Z) with 1 ∈ F. Recall that all bases obtained in this way belong

to the same equivalence class. Similarly, let ∗ and [S2k+1] denote the corresponding bases of

H(S2k+1;F). Then, a basis of Im (dϕ1∗ : Hr−(2k+1)(L)→ Hr(L)), r ≤ n, is given by the set of

vectors

qr,i :=
1

rϕ
dϕ1∗(∗ ⊗ βr−(2k+1),i)

Indeed, by Assumption (?), we have

qr,i =
1

rϕ
dϕ1∗(σ · ([S2k+1]⊗ βr−(2k+1),i))

=
1

rϕ
dϕ1∗(σ) · ([S2k+1]⊗ βr−(2k+1),i)−

1

rϕ
σ · dϕ1∗([S2k+1]⊗ βr−(2k+1),i)

= [S2k+1]⊗ βr−(2k+1),i −
1

rϕ
σ · dϕ1∗([S2k+1]⊗ βr−(2k+1),i)

Also, notice that by definition of σ = ∗⊗ [V ], we have, for any x ∈ H∗(L), σ ·x ∈ H0(S2k+1)⊗
H∗(V ) ⊂ H∗(L), which proves linear independence of the vectors qr,i. To prove that the

vectors span the image, note that the above computation yields

1

rϕ
σ · qr+2k+1,j =

1

rϕ
∗ ⊗βr,j

since σ2 = 0. Therefore, the set of vectors qr,i and 1
rϕ
σ · qr+2k+1,j provide a basis of Hr(L),

where i = 1, . . . , dimHr(V ), j = 1, . . . , dimHr+2k+1(V ). Hence the vectors qr,i must span

the image.

Finally, we have the change of basis matrix qrs(qr+2k+1)/(∗⊗βr+[S2k+1]⊗βr−(2k+1)) given

by

( {qr,i} {s(qr+2k+1,j)}
H0(S2k+1)⊗Hr(V ) ? 1

rϕ
I

H2k+1(S2k+1)⊗Hr−(2k+1)(V ) I 0

)

with determinant
1

r
dimHr(V ;F)
ϕ

. By Theorem 5.0.3, we conclude that

τ(L, ϕ) =
|Torev(L)|
|Torodd(L)|

r−χ(V ;F)
ϕ

�

6. Examples and proof of Corollary 5.1.2

6.1. The circle. Although it is possible to compute this example using only a perfect Morse

function (by Theorem 5.0.3), we will do everything by brute force since it illustrates how

computations are done in general.
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Consider first a monotone circle S1 ⊂ S2, i.e. a circle dividing S2 in two parts (or hemi-

spheres) of equal area. Then H2(S2, S1) ∼= Z2, with generators given by the classes of

the hemispheres, denoted by A and B. Fix a Morse-Smale function fn : S1 → R with

Crit0fn = {yi | i = 1, . . . , n} and Crit1fn = {xi | i = 1, . . . , n}, as on Figure 1.

Figure 1. fn : S1 → R, the ”rock-and-roll” function

By varying n, this gives all possible Morse-Smale functions on S1. Fix also a generic

compatible almost complex structure J ∈ Jω.

The pearl differential on Z[H2(S2, S1)]〈Critfn〉 is then given by

d(xi) = yi−1 − yi, d(yi) = (A−B)
n∑
j=1

xj

where we used the convention y0 = yn. To understand the shape of d(yi), note that, given any

two points on S1 (e.g. yi and xj) and any generic J , there is one simple pseudoholomorphic

disc in the class A and minus one in the class B, going through xj and yi, counted with

appropriate signs.

Given ϕ : H2(S2, S1) → F×, A 7→ z1, B 7→ z2, we get an induced representation

ϕ : Z[H2(S2, S1)]→ F and S1 is ϕ-narrow if and only if r = z1−z2 6= 0, since d(yi) = r
∑
xj.

A quick check shows that bases b0 and b1 for d(Crit1f) and d(Crit0f) are given by

b0 = {yi − yi+1 | i = 1, . . . , n− 1}, b1 =
n∑
i=1

xi.

Moreover, splittings of (6) can be chosen as

s : b0 → C1 s : b1 → C0

yi − yi+1 7→ xi+1

∑
xi 7→

y1

r
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so that

s(
∑
xi) (y1 − y2) (y2 − y3) · · · (yn−2 − yn−1) (yn−1 − yn)



y1
1
r

1 0 · · · 0 0

y2 0 −1 1

y3 0 −1 1
...

...
. . . . . .

yn−1 −1 1

yn 0 −1

= s(b1)b0/c0

s(y1 − y2) · · · s(yn−1 − yn)
∑
xi


x1 0 · · · 0 1

x2 1
... I ...

xn 1

= s(b0)b1/c1

Finally, we arrive at

τ(S1, ϕ) =
1

r
=

1

z1 − z2

∈ K1(F).

Note that this holds for any generic triple defining the pearl complex, as any Morse function

on S1 is like fn for some n, hence τ does not depend on the choice of generic data, a fact we

knew already.

If ϕ is induced from a representation ψ : H1(S1)→ F×, 1 7→ z 6= 1, via ϕ = ∂ ◦ ψ, where

∂ : H2(S2, S1)→ H1(S1) is the connecting morphism, then

τ(S1, ϕ) =
1

z − 1
z

=
z

z2 − 1
=

z

(z − 1)(z + 1)

In analogy with the classical notion of Reidemeister torsion (or R-torsion), where one quo-

tients K1(F) by ϕ(H2(S2, S1)), we have:

τ(S1, ϕ) =
1

z2 − 1
∈ K1(F)/± ϕ(H2(S2, S1)) = K1(F)/± ψ(H1(S1)).

This does not coincide with the usual value of R-torsion for the circle: ∆ψ(S1) =
1

z − 1
∈

F×/±ψ(H1(S1)) (see e.g. [Mil66, §8]). Note however that ∆ψ(S1), as a function of z, divides

τ(S1, ϕ) (compare with [HL99, Theorem 1.12] or [Lee05a, Corollary 2.3.4]).

Remark. If Σg is an orientable surface of genus different than zero, closed or not, then any

simple closed contractible curve is a monotone Lagrangian L. Moreover, it bounds only one

holomorphic disc of Maslov index two (by assumption on the genus) and, using arguments

similar to the ones above, we get: τ(S1, ϕ) = 1 ∈ F×/ϕ(H2(Σg, S
1)) and ∆ψ(S1), as a

function of z, does not divide 1!
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6.2. Narrow S1 × S2. In this section, we assume that L = S1 × S2 is monotone, and we

fix pearl data D given by a perfect Morse function on L. Fix also a narrow representation

ϕ : H2(M,S1 × S2) → F×. In this case the pearl complex is H∗(L) = F〈ab, a, b, L〉, where

deg a = 1, deg b = 2 and ab denotes the intersection product. Notice that Theorem 3.5.2

does not apply to L. Nevertheless, it turns out that L must be E1,ϕ-narrow, see [Cha15].

This case is covered by Theorem 5.1.1. We have d1∗(b) = d(b) = rϕL and τϕ(L) = r−2
ϕ ∈

K1(F), rϕ 6= 0. An explicit example where this happens is given in Oakley-Usher [OU13,

Proposition 8.2], based on Biran’s Lagrangian circle bundle construction [Bir06]. In this

case, L ⊂ CP 3 and there is a single holomorphic disc contributing to rϕ, therefore

τ(S1 × S2, ϕ) ≡ 1 ∈ F×/± ϕ(H2(M,L))

In the light of Fukaya’s symplectic s-cobordism conjecture in §1.3, it is tempting to conjecture

that this Lagrangian is displaceable by a Hamiltonian isotopy.

6.3. Proof of Corollary 5.1.2.

6.3.1. The n-torus, n ≥ 2. By Theorem 3.5.2, monotone tori are E1,ϕ-narrow for every

narrow representation ϕ and their minimal Maslov number is two. In this section, we consider

a monotone Lagrangian n-torus L = S1 × · · · × S1 (n times), n ≥ 2 and we fix ϕ ∈ N (L,F)

a narrow representation.

By Theorem 5.0.3, it is enough to compute the torsion of the exact sequence

0 // H0(L)
dϕ1∗ // H1(L) // · · · // Hn−1(L)

dϕ1∗ // Hn(L) // 0

The Morse homology ring of L is generated by n classes xi ∈ Hn−1(L;F). The unit is denoted

by L ∈ Hn(L). Since the above sequence is exact, we have that dϕ1∗(xi) = riL, ri ∈ F, and at

least one of the ri is not zero. Moreover, a permutation of the xi will not change the value

of torsion as an element of K1(F), hence we assume without loss of generality that r1 6= 0.

Note also that x1 is the fundamental class of an n − 1-torus V embedded in L such that

L = S1 × V , therefore L satisfies Assumption (?). This proves the second part of Corollary

5.1.2.

Since τ(L, ϕ), a second-order invariant, is always trivial for ϕ-narrow monotone tori, it

would be interesting to know if higher order invariants can be defined and whether they

are trivial or not for such tori. Compare with [Fuk97] and the discussion in §1.3, which

conjectures that there should be no higher-order invariant.

6.3.2. The product of a circle and an orientable genus g surface, g ≥ 2. We consider mono-

tone embeddings of L = S1 × Σg, where Σg is a closed orientable surface of genus g, g ≥ 2

(the case g = 1 was treated in the previous example).
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Fix ϕ ∈ N (L,F) a narrow representation. By Theorem 3.5.2, L is E1,ϕ-narrow andNL = 2.

As a ring, we have

H∗(L) =
ΛF[α1, β1, . . . , αg, βg, z]

α1β1 = · · · = αgβg, αiβj = 0 (i 6= j)

where ΛF[x, y] denotes the free graded exterior algebra (over F) generated by x, y. By exterior

algebra, we mean here that xy = (−1)(n−|x|)(n−|y|)yx, since we use the homology product.

Moreover, we have degαi = deg βj = deg z = 2.

Set dϕ1∗(αi) = aiL, d
ϕ
1∗(βi) = biL, d

ϕ
1∗(z) = cL, where ai, bj, c ∈ F. Notice that, for i 6= j

(which is allowed since g ≥ 2), we have 0 = dϕ1∗(αiβj) = aiβj − bjαi, therefore ai = bj = 0

for all i, j. Since L is ϕ-narrow, the only possibility is that c 6= 0. The following table

determines dϕ1∗ completely:

x ∈ Hk(L) dϕ1∗(x)

L 0

αi, βi 0

z cL, c 6= 0

α1β1 0

αiz −cαi
βiz −cβi
α1β1z cα1β1

Notice that z = ∗× [Σg] and c =
∑

AGW
A
0,2(c, pt)ϕ(A), therefore ϕ satisfies Assumption (?)

and, by Theorem 5.1.1, we have

τ(L, ϕ) = c2(g−1) = c−χ(Σg) ∈ K1(F).

Of course, determining the exact value of c depends on M and on the Lagrangian embedding

of L.

6.3.3. Split Lagrangian embeddings S1×V ⊂ S2×X, where H2(X, V ) = 0. We consider the

monotone embedding of L = S1 × V in (M,ω) = (S2 ×X,ωS2 ⊕ ωX) given by the product

Lagrangian embeddings of S1 in S2 with a given Lagrangian embedding of V ⊂ X, where V

is closed and H2(X, V ) = 0. We will use the notations from §6.1.

Note that H2(M,L) ∼= H2(S2, S1)⊕H2(X, V ) and the morphisms ω, µ respect the splitting;

moreover, NL = 2. Choosing a (regular!) split compatible almost complex structure, we

see that the only pseudoholomorphic discs with boundary on L are pairs (u, pt), where

u : (D2, S1) → (S2, S1) is pseudoholomorphic and pt is a constant disc in the pair (X, V ).

Therefore,

d1∗(∗ × [V ]) = (A−B)L
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where (A − B) ∈ Z[H2(M,L)] and A,B are the generators of H2(S2, S1). Hence L is E1-

narrow, since it is ϕ-narrow as soon as S1 ⊂ S2 is. As in §6.1, set 0 6= rϕ = ϕ(A−B) ∈ F×.

We have d1∗(∗ × [V ]) = rϕL and L satisfies Assumption (?). Finally, using Theorem 5.1.1,

we get

τ(L, ϕ) = r−χ(V ;F)
ϕ ∈ K1(F).

By using the computations from §6.1, we see that this torsion is not trivial as an element of

either K1(F) or F×/ϕ(H2(M,L)), provided that χ(V ;F) 6= 0. This completes the proof of

Corollary 5.1.2.
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