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GENERALISED DIVISOR SUMS OF BINARY FORMS OVER NUMBER
FIELDS

CHRISTOPHER FREI AND EFTHYMIOS SOFOS

ABSTRACT. Estimating averages of Dirichlet convolutions 1# y, for some real Dirichlet char-
acter y of fixed modulus, over the sparse set of values of binary forms defined over Z has
been the focus of extensive investigations in recent years, with spectacular applications to
Manin’s conjecture for Chatelet surfaces. We introduce a far-reaching generalization of this
problem, in particular replacing x by Jacobi symbols with both arguments having varying
size, possibly tending to infinity. The main results of this paper provide asymptotic estimates
and lower bounds of the expected order of magnitude for the corresponding averages. All of
this is performed over arbitrary number fields by adapting a technique of Daniel specific to
1% 1. This is the first time that divisor sums over values of binary forms are asymptotically
evaluated over any number field other than @Q. Our work is a key step in the proof, given
in subsequent work, of the lower bound predicted by Manin’s conjecture for all del Pezzo
surfaces over all number fields, under mild assumptions on the Picard number.

CONTENTS
1. Introduction El
2. Preliminaries
3. Proof of Theorem [L.1] [15
4. Proof of Theorem Asymptotics for divisor sums [d
References 32

1. INTRODUCTION

Our aim in this paper is to study averages of arithmetic functions that generalise the divisor
function over values of binary forms, defined over arbitrary number fields.

1.1. Divisor sums. Estimating averages of arithmetic functions is among the primary ob-
jects of analytic number theory and its applications to surrounding areas. Owing to their
connection with L-functions, two of the most studied examples are the divisor and the repre-
sentation function of sums of two integer squares, respectively given by

7(n):=> 1 and r(n):=4 ) <_71>

deN deN
dln d odd
dn

where (=}) denotes the Jacobi symbol, see for example [Tit86, Chapter XII]. It is possible to
obtain level of distribution results, a problem first studied by Selberg and Linnik; research on
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this problem is currently active due to advances in estimating sums of trace functions over
finite fields, see for example [FKMI15], where the ternary divisor function is studied.
Asymptotically estimating the average of these functions over the sparse set of values of
general integer polynomials in a single variable is naturally harder. It is only the case of
degree 1 and 2 polynomials that has been settled, see the work of Hooley [Hoo63] and of
Duke, Friedlander and Iwaniec [DFI94]. The closely related problem regarding integer binary
forms was studied later. Let us introduce some notation to help us describe previous work
on this area. For a positive integer n and each 1 < i < n, let F; € Z[s,t] be forms, coprime

in pairs, and for any constants ¢; € {1, —1} set € = {(Fi,ci),i =1,... ,n} and

D(¢;X) := D ﬁ ( > (2—)) (1.1)

(s,)e(Zn[—X,X])2 =1

) d; odd
Fi(s )70 | F (s.1)
where the restriction to odd d; is present only when ¢; = —1. The case of degree 3 was first

studied by Greaves [Gre70], who obtained an asymptotic for D(€; X) when € = {(F,1)} and
F is any irreducible form with deg(F') = 3 via the use of exponential sums.

Extending this result to higher degrees was considered intractable for a long time until the
highly influential work of Daniel [Dan99], who employed geometry of numbers to treat the
case € = {(F,1)} for any irreducible form F' with deg(F') = 4. Developing this approach to
allow negative c;, Heath-Brown later tackled the case where n = 4, each ¢; is —1 and
all forms F; are linear.

It was subsequently realised that proving asymptotics whenever > " | deg(F;) = 4 would
constitute a key step towards the resolution of Manin’s conjecture for Chatelet surfaces over Q.
This is a conjecture in arithmetic geometry and regards counting rational points of bounded
height on Fano varieties defined over arbitrary number fields; it was introduced by Manin
and his collaborators [FMTR9] in 1989 and has subsequently given rise to a long standing
research program that still continues. Thus, Browning and de la Breteche reworked later
the case € = {(L;,—1) : 1 < i < 4}, where each form L; is linear in [dIBB0§|, the case
¢ = {(C,-1),(L,—1)}, where deg(C) = 3, deg(L) = 1 in [dIBB12], and recently Destagnol
settled the case € = {(Q,—1), (L1, —1),(La,—1)} with deg(Q) = 2, deg(L;) = 1 in [DesIf].
In addition, Browning and de la Breteche treated the case € = {(Q, 1), (L1,1),(Le,1)} with
deg(Q) = 2, deg(L;) = 1 in [dIBBI0J; this investigation formed a significant part in their
proof of Manin’s conjecture for a smooth quartic del Pezzo surface for a first time [dIBB11].
The remaining cases in the divisor sum problem with >} ; deg(F;) = 4 require a further
development of Daniel’s approach, one that necessitates the use of a generalisation of Hooley’s
delta function [Hoo79]. This was achieved independently by Briidern [Briil2] and de la
Breteche with Tenenbaum [dIBT12], enabling the settling of the cases € = {(Fy,—1)} and
¢ = {(F2,—1), (F3,—1)}, where the forms satisfy deg(F1) = 4 and deg(F) = deg(F3) = 2
in .
It should be remarked that each work following Daniel came into fruition only for integer
forms F; fulfilling a list of extra assumptions regarding the small prime divisors and the sign
of the integers Fj(s,t) as (s,t) ranges through certain regions in R2. It will be crucial for
our work that Daniel’s approach is able of providing a polynomial saving in the error term if
ey deg(F;) = 3 but not when )" ; deg(F;) = 4, while it has never been extended to any
case with > | deg(F;) > 4.
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Lastly, the spectacular work of Matthiesen [Matl2a], [Mat12b| and [Matl3], using tools
from additive combinatorics, tackled all cases where > " ; deg(F;) can be arbitrarily large
under the restriction that each Fj is linear. Naturally, this approach does not yield an explicit
error term.

1.2. Generalised divisor sums. In our forthcoming joint work [FLS16] with Loughran,
we study Manin’s conjecture in dimension 2. As a special corollary we obtain the lower
bound predicted by Manin for all del Pezzo surfaces over all number fields, only under mild
assumptions regarding the Picard number. For del Pezzo surfaces of degree 1 in particular,
tight lower bounds were not known before, not even in special cases. The underlying strategy is
to use algebro-geometric arguments to translate the problem into one of estimating averages
that are a vast generalisation of the ones appearing in ([LI). The success of this strategy
therefore relies heavily on a very general conjecture concerning the growth order of our divisor
sums; its precise statement is recorded in Conjecture[Il In this paper we prove it in all cases
that we need for our applications to Manin’s conjecture, see Theorem [[LIl In the very special
case that the base field is QQ, dealing with a del Pezzo surface of degree 1 < d < 5 gives birth

to averages of the rough shape
Gi(s,t
h(Fi(s, 1)) < 3 <—; )> ) 12)

n
(s,)e(Zn[-X,X])? =1 d;eN
Fi(s,t)#0 d; odd
(s,t)=(o,7) mod ¢ di| Fi(s,t)
where o, T, ¢ are positive integers, h is a “small” arithmetic function, each F;, G; is an integer
binary form with deg(G;) divisible by 2, all forms F; irreducible and satisfying

> deg(F) =8 —d,
i=1

which is an integer in the range {3,...,7}. Our assumption on h is that it can be written as
h = 1% f, where % denotes the Dirichlet convolution and f is a multiplicative function on N
that satisfies f(m) = O(Z) for m € N. We shall call a sum as in (L2) a generalised divisor
sum. This is because G; are not constants and hence the terms are no more a product of
multiplicative functions on N restricted at values of binary forms. A further new trait lies in
the fact that a level of distribution result is required with respect to the modulus ¢, such a
result has not appeared previously for divisor sums over values of polynomials or forms. In
particular, we shall be able to handle the case h(n) = 1 for all n € N, thus our results are a
true generalisation of previous work and not a different problem.

A supplementary aspect of our work is that we estimate asymptotically, for the first time,
divisor sums over values of binary forms in arbitrary number fields, see Theorem Thus,
one of the central innovations in our work lies in revealing how to extend Daniel’s approach
to this setting. We shall rely on a lattice point counting theorem of Barroero and Widmer
[BW14], based on the framework of o-minimal structures. It is important to note here that
the essence of Daniel’s approach lies in taking advantage of the, possibly large on average, size
of the first successive minima to produce a sufficiently small error term. Directly adapting
this approach to number fields yields an error term whose order supersedes the main term;
this would preclude the proof of both Theorems [[.1] and We shall introduce an artifice
that overcomes this difficulty, namely we shall modify Daniel’s method by taking into account
not only the first, but also higher successive minima of the lattice.
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Let us finally state that it is not clear what is the expected growth order for generalised
divisor sums. The role of Conjecture [l is to provide an answer in terms of various number
fields generated by roots of Fj(s,1). It is important to note that our conjecture will turn out

to be in agreement with the growth order predicted by Manin’s conjecture for surfaces; this
will be revealed in [FLST6].

1.3. Statement of our set-up. Throughout this paper, K will be a number field of degree
m = [K : Q], whose ring of integers is denoted by 0. By p and p; we always denote non-zero
prime ideals of O and vy is the p-adic exponential evaluation.

1.3.1. Systems of binary forms. We consider finite sets of pairs of binary forms
§={(F.G)i=1,....n},

where each F;, G; € Ok|s,t] is such that F; is irreducible and does not divide G; in K|s,t].
Moreover, we assume that all F; are coprime over K in pairs and that each deg(G;) is even.

We next define the rank of §, which will be an invariant of § that will characterize the
growth order in Conjecture [II If F; is proportional to ¢, we denote 6; := (1,0). Otherwise,
letting K be a fixed algebraic closure of K, we set 6; € K to be a fixed root of Fj(x,1), and
0, := (0;,1). Let K(6;) be the subfield of K generated by K and the coordinates of 8;. We
define the rank of § to be the cardinality

p(F) =t{1<i<n:Gi6;)e K(6;)?},
where, for any field k, we denote the set of its non-zero squares by k*2.
1.3.2. The group % . The terms involving the function h in ([L.2]) have the role of insignif-
icant modifications. We proceed to introduce them precisely. Letting .#x denote the monoid

of non-zero integral ideals of Ok, 9la be the absolute norm of a € £ and ux the Mobius
function on £ allows us to introduce the set of functions

f multiplicative,
P =R f: 95— (—=1,0): f(p) <f ‘JILp for all p,
f(a) =01if px(a) =0

For each f e Z%, we subsequently define another function 1¢ : #x — (0,00) given by
Ly(a) = [ J(1 + £(0) = (1% )(a).
pla
This then allows us to form the following set of positive multiplicative functions on g,
%K = {lf : f € ffK} (1.3)

The growth condition placed on f indicates that 1; behaves on average like a constant func-
tion. Note that for all f € 2% and € > 0 we have

1/(a) <7 Mo, (14)

and moreover, that the set Zx forms a group under pointwise multiplication. This will be
used often with the aim of simplifying the exposition, for example via replacing terms like
14,1y, or 1/1y,, where f; € 2%, by 1; for some f € Zk.
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1.3.3. §-admaissibility. As usual, we shall identify all completions K, at archimedean places
v with R or C. We shall thus let K, := K®@gR = Hv|oo K, which we identify with R via
C =~ R2. In addition, we shall denote by Z a set of the form 2 = HU‘OO 2,, where 9, < K2
is a compact ball of positive radius. Fixing an integral ideal vt € .k, we shall consider t-
primitive points (s,t) € 0%, by which we mean that sOx + t0k = v. For an ideal 20 of Ok
divisible by 2t, and a € i, we define the ideal

@ = [ [pr®@, (1.5)
P20

and for a € Ok ~ {0}, we let @’ := (a0k)". Keep in mind that this notion depends on 20.
Let 0,7 € Ok be such that 00k + 70k = t. The symbol &2 will refer exclusively throughout
this paper to triplets of the form

P =(D,(o,7),20),

where 2, (0,7),20 are as above. Given any system of forms § as in §L.31] a triplet & and a
parameter X > 1, we let

M*(2,X) :={(s,t) e > n X™P . (s,t) = (0,7) mod W, sOk + tO =t}

and
M*(2,0) = | ] M*(2,X).
X=1
We shall say that & is §-admissible if each of the following conditions (L&])—(LS8) holds:
Fi(o,7) #0 forall 1 <i<mn, (1.6)
and whenever (s,t) € M*(Z, ) we have
Fi(s,t) #0 forall 1 <i<n, (1.7)
as well as C
7 7t .
(5,%) =1 forall1<i<n. (1.8)
Fi(s,t)

In the last condition, we used the Jacobi symbol for K, which is defined as follows: for a € Ok
and a non-zero ideal b = p{* - -ple’, with distinct prime ideals p;, none of which lies above 2,

we let
(B -11(2)"

i=1

where <%> is the Legendre quadratic residue symbol for K.

1.4. Lower bound conjecture for generalised divisor sums. For any § as in §L.3.1] any
function f € Zk and any triplet &2, we define the function r : M*(%,00) — [0,0) by

r(s,t) =r(3, f, P;s,t) == Hlf(Fi(S,t)b) Z <Gi(8,t)>

! 0;
i=1 2| Fi(s,t) ¢

We are now in the position to introduce generalised divisor sums as averages of the form

D, [, 2:X):= Y, @[ Pis0)

(s,)eM* (2,X)
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The special case of the following claim corresponding to each G; being constant and K = Q
ought to be familiar, at least among experts, but has not yet appeared in text.

Conjecture 1 (Lower bound conjecture for divisor sums). Let K be a number field, fix
t € Iy, let f € Zx, and let § be a system of forms as in .31 Then there exists a finite
set Spad = Spad(T, f,t) of prime ideals in O, such that for all F-admissible triplets & with
0 being divisible by each p € Speq, we have

D(F, f, 2;X) > X*? (logX)p(g) , as X — 0.
The implicit constant may depend on every parameter except X .

It should be stated that the appearance of G;, f and &2 in Conjecture Il as well as the
consideration of arbitrary number fields, are absolutely necessary for our applications to
Manin’s conjecture in [FLST6]. The presence of the set of bad primes Sy,q can be avoided; it
is only included here to minimise the technical details in the present work.

We next supply heuristical evidence supporting that Conjecture [ does in fact provide
the true order of magnitude of D(F, f, #; X). Firstly, there are about X? summands and
each term 1 f(F,-(s,t)l’) behaves as a constant on average, since our conditions on § suggest

that the integral ideals Fj(s,t)” behave randomly. Secondly, as we shall see in Lemma 3.2 if
the index i contributes towards the rank p(§F) then the Jacobi symbols <%‘jt)> assume the
value 1, while in the opposite case they take both values 1 and —1 with equal probability.
Consequently, in the former case the sum over d;|Fj(s,t)” will resemble the divisor function
in Sk, thus contributing a logarithm, while in the latter case it will be approximated by a
constant on average owing to the cancellation of the Jacobi symbols. A subtle point here
is that if one does not impose condition (L8] then the implied constant in the lower bound
could vanish, so the restriction to admissible triplets is necessary. Furthermore, each work
referenced in 1.1 is in agreement with Conjecture [Il when K = Q and G; = +1. Lastly,
the work of de la Breteche and Browning can be used to provide a matching upper
bound over Q whenever each (; is constant.

The main purpose of this paper is to prove Conjecture [Il under a condition regarding only
the complexity of §, which we define by

c(§) = Z deg F;,
1<i<n
Gi(0:)¢K(6;)*?

but without a restriction on the value of >, | deg(F;) or the factorisation type of [ [;_, Fi.
Theorem 1.1. Conjecture 1l holds for all K, ¢, f and systems of forms § with ¢(F) < 3.
Theorem [[T] will be reduced to Theorem [[L2] whose statement is given in §L.5

Remark 1.1. As an immediate consequence of [FLS16, Theorem 1.6], we will see that
Conjecture [Il implies Zariski density of rational points on conic bundle surfaces over num-
ber fields, under the necessary assumption that there is a rational point on a smooth fibre.
This well-known problem is currently open in most cases, see the recent work of Kollar and

Mella [KM14].

1.5. Skeleton of the paper and further results. The preliminary parts, §2.11 and §2.2]
respectively, provide general counting results, that are not limited to our applications, for
points of certain lattices and averaging results concerning coefficients of Artin L-functions.
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The reduction of Theorem [[.Tlto Theorem [[2] below will take place in §3] while the proof of
the latter theorem will be given in §l It provides asymptotics in cases where > " | deg F; < 3
and G;(0;) ¢ K(0;)*? for all i, under some further assumptions.

It is worth following the strategy laid out in our proof of Theorem to show that, for
any positive integers o, 7,d and fixed irreducible binary forms F; with ;" | deg(F;) < 3, an
asymptotic estimate with a power saving in terms of X and a polynomial dependence on d
in the error term holds for the analogue of the classical divisor sums

n
s ()
(s,)e(Zn[—X,X])? i=1 d;eN
Fi(s,t)0 di| Fi(s,t)

(s,t)=(o,7) mod d

over any number field. We refrain from this task in the present work to shorten the exposition.
We proceed by providing the statement of our second theorem. We say that an §-admissible

triplet & = (2, (0, 7),20) is strongly F-admissible, if, in addition, for all 1 < ¢ < n and
(s,t) € M*(Z,0) one has

Fi(o,7) #0mod 20 and v,(F;(s,t)) = vp(Fi(o, 7)) for all p | 20. (1.9)

Theorem 1.2. Let K be a number field, v € L and f € Zx. Let § be a system of forms with
() =0 and c(§F) < 3. Then there is a non-zero ideal Wy of Ok and constants P, 2 > 0,
such that the following statement holds.

For every strongly §-admissible triplet &2 = (2, (0,7),20) fulfilling Wy | W, there are
Bo > 0 and a function fy € Z¥, depending only on ¢, f,§, 2,20, such that for each 0 € Fx
for which the triplet Py := (2, (o, 7),020) satisfies

HF,-(s,t)QH—i-D: Ok for all (s,t) € M* (P, ), (1.10)
i=1
the asymptotic

1
SN @ st = o fO(S)X2 +O(X2 Pt
, Mo
(s,t)eM*(P5,X)

holds with an implied constant independent of 0,0,7 and X.

This is the first time that any divisor sum over values of binary forms is asymptotically
evaluated over any number field other than Q. Even over Q, both Theorems [[.T] and are
novel due to the appearance of the forms G;. Furthermore, the extra condition that (s,t) lies
in a progression, whose modulus is explicitly recorded in the error term, gives rise to a new
level of distribution result, since an asymptotic holds when 9% < X# for all 0 < 3 < 1/53s.

The power saving in the error term of Theorem is crucial for deducing Theorem [L.T]
from it, and therefore for the application to Manin’s conjecture. Even in the simple case
K = @Q, such a strong error term can presently only be obtained under the assumption
>, deg(F;) < 3, which is the reason for the restriction placed on the complexity c¢(F).

As a first step for the proof of Theorem [[.2] we use Dirichlet’s hyperbola trick and partition
the variables in the summation into a small number of lattices; this is exposed in §4.11 The
next part, residing in §4.2] consists of counting points on these lattices; it is here that the
main step towards the power saving in the error term in Theorem takes place. Finally,
in §§4.3HL.6] we prove that the average of the contribution of each lattice alluded to above
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gives the main term as stated in Theorem [[.2] this part contains the treatment of volumes of
slightly awkward regions introduced by the consideration of arbitrary number fields.

Acknowledgements. We are grateful to Tim Browning and Roger Heath-Brown for helpful
suggestions relating to the proof of Theorem[I.2l The authors would furthermore like to thank
Daniel Loughran for useful discussions concerning the presentation of our results. A part of
this work was completed while the second author was supported by London’s Mathematical
Society’s 150th Anniversary Postdoctoral Mobility Grant to visit Gottingen University, the
hospitality of which is gratefully acknowledged.

Notation. The set of places of the number field K will be denoted Qi and for each v € Qg
we shall let m, := [K, : Q], where w is the place of Q below v. For a € Ok, we write
N(a) := M(aOk) = [],eq,, laly™ for the absolute value of its norm. For s € Koo = [ [,cq, Ko
and v € Qy, we write s, € K, for the projection of s to K,. Furthermore, for any prime ideal
p the p-adic exponential valuation on ideals (and elements) of Ok will be denoted by v,. As
usual, the resultant of two binary forms F, G € Ok |s, t] will be represented by Res(F, G) € O,
while Euler’s totient function and the divisor function for non-zero ideals of &'k will be denoted
by ¢x and 7. Lastly, we shall choose a system of integral representatives ¢ = {ty,...,t,} for
the ideal class group of Ok and fix it once and for all. Unless the contrary is explicitly stated,
the implicit constants in Landau’s O-notation and Vinogradov’s <-notation are allowed to
depend on K, %, ¢, f,§ and & but no other parameters. The exact value of a small positive
constant ¢ will be allowed to vary from expression to expression throughout our work.

2. PRELIMINARIES

2.1. Lattice point counting. For any lattice A = K2 = R?™ we denote its i-th successive
minimum (with respect to the unit ball) by A()(A). We write ||-|| for the Euclidean norm on
R?™. For a,d € .k and v € O, we define the lattice

Aa,0,7) := {(s,t) €a® : s =+t modd}.

It has determinant proportional to M(a?d(a+0)~1), and we write A)(a,9,7) := A (A(a,,7))
for its i-th successive minimum. Recall that @ = {v;,...,t;} is a fixed system of integral
representatives of the class group of K. Let us prove some facts about the minima A (a,0,7).

Lemma 2.1. Let a,0€ I, v€ O and 1 < i < 2m.
(1) Whenever [a] = [v,] for 1 < ¢ < h, we have
Na /™A (v, t,0(a + )71 ) < AD(a,0,7) < Nat/™AD (¢, v,0(a +0) 7L, 7).
(2) For any non-zero ideal b of Ok, the following estimate holds,
A (a,0,7) < AD(a,00,7) < N(b)Y™AD (a,0,7).
(3) We have A\ (a,0,7v) < N(a?d(a +0)~H)Y/Em—i+l),

Proof. Let a € K ~ {0} such that a = ar,. Then the elements (s,t) € a> with s = v¢ mod d
are exactly those of the form (s,t) = a(s1,t1), with (s1,t1) € A(vg, v, 0(a +0)71,7y) =: A’. By
Dirichlet’s unit theorem, we can choose our generator a to satisfy |a|, < Ma'/™ < |a|, for all
v € Q. Then, for any (s1,t1) € A’ we have

Na'/™ [|(s1,81)| < [lalsr,t1)]| < Na™ [|(s1,81)]]
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which shows claim (1). The first inequality of (2) is clear. For the remaining one, let b €
b such that |b], < 9bY™ < |b|, for all v € Qp and let (s,t) € A(a,0,7). This implies
that (bs,bt) € A(a,bd,7) and ||(bs,bt)|| < 9N6Y/™ ||(s,t)||. Assertion (3) flows directly from
Minkowski’s second theorem combined with the obvious fact that A (a,,v) > 1. O

We use the framework of [BW14], built on o-minimality, to count points of A(a,,7) in fairly
general domains. Assume we are given an o-minimal structure that extends the semialgebraic
structure. Let Z < RF*2™ be a definable family, such that for each T € R¥ the fibre

Ry = {(s,t) e R¥*™ | (T,s,t) € #}

is contained in a ball, not necessarily zero-centered, of radius < X%/ " for some X7 > 1. The
first part of Lemma [ZJ] makes the following lemma an immediate consequence of [BWT4]
Theorem 1.3].

Lemma 2.2. Whenever [a] = [v;] and T € R¥, the quantity §(A(a,0,7) N Z7) equals

ci vol Zr L0 2"12_1 X%/m
M(a%d(a +0)7) j=0 Nad /M [ T1_y A (tg, tgd(a +2)71,7) ’
with an explicit positive constant cx depending only on K. The implicit constant in the error
term may depend on K, 2%, but not on T, a,0,.

Still keeping the notation from above, we now fix an ideal v € #k and assume that ¢ | a
and that a + 0 = Ok . Let 0,7 € v such that 00k + 70k + a = ¢ and define a discrete subset
of K2 = R?™ by

(s,t) = (o,7) mod a,
A*(a, (0,7),0,7) == < (s,t)et? : sOk +tOk =r, . (2.1)
s =yt mod 0
Moreover, we require now that each % is contained in a zero-centered ball of radius < Xflp/ .

Lemma 2.3. We have

% ci vol At 1 -1 1 -1
ﬁ(A (a’(U’T)’D’W)m%T)_Wp}Jl <1_m—p2> 1;[<1+‘ﬁ_p>

mol X3 (log Xp) 7k (0)

< - —.
=0 mlnlgqgh{)\(l) (tqa tqa7 ’Y)mA(m—i_l) (ttp tqau ,Y)] }

Here, (i is the Dedekind zeta function of K and Tx is the divisor function on k. The
implicit constant in the error term depends on K,tv, %, but not on T,a,0,7,0 or 7.

Proof. After Mobius inversion the quantity under consideration becomes equal to

Z Z w(0)i{(s,t) € (tb)? N (%7 ~ {0}) : (s,t) = (0,7) mod a,s = vt mod d}.

e|o be K

Writing b = b’e, we see that b’ + 0 = Ok whenever p(b) # 0, thus the sum becomes
Diule) DL u(6)i{(s.t) € (xb'e)® A (Zr ~ {0}) : (s,t) = (0,7) mod a,s = 7t mod d}.

e[d be sy
b +arlo=0k
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Since the set counted in the inner summand is contained in A(xb’e,d,7v) N (Zr ~ {0}), the
summand is zero unless A (vb’e,,v) < Xflp/ " Using Lemma 2.1] this condition implies that

X7

mne’ :
< ming <g<n {AW (tg, 10, 7)} N

(2.2)

Let 6,7 in tb’e such that (,7) = (o,7) mod a. We have (o,7) = (0,0) mod (tb’e + a) = ¢
hence, such (7, 7) exist. The Chinese remainder theorem allows us to transform our sum to

diule) D> p(o){(s,t) € ((6,7) + (abe)®) n (%1 ~ {0}) : s =t mod }.

e[d @2
ble‘f}{
b +aro=0x

Next, we replace (s,t) by (s1,t1) := (s — &,t — 7), so that the inner cardinality becomes
#{(s1,t1) € (ab'e)*> N (Zr ~ {0}) — (6,7)) : 81+ & — 7 = yt; mod d}.

Since ¢ —y7 = Omod e = ab’e + 0, we can find § € ab’e with § = 6 — v7 mod 0. The
replacement of s1 by s9 := s1 +  transforms the count to

#{(s0,t1) € (ab'e)®> n ((Zr ~ {0}) — (6,7) + (6,0)) : s5 =~t; mod d}
= £(A(ab’e,d,7) N ((Zr ~ {0}) — (5,7) + (6,0))). (2.3)
Clearly, we can extend our family % to a definable family R RE+2m)+2m - whoge fibre

%’(TJJ) for (T,0,7) € RET2™ is the translate Zr + (0,7). Lemma 22 thus allows us to
approximate the quantity in (2.3]) by

\ % 2m—1 X]/m
= ‘;O 2 2 +0 Z : . J ; . (24)
D(a”b"ed) o MNab’e)/mming <gen{I T/ AO (g, vg0e 71, 7))}
Summing the main term over ¢ and b’ gives

CKVOL@T /LK(Q) /LK([J,)
N(a?0) Ne Z

The desired main term is obtained by removing condition (Z2]), present in the inner sum.
This introduces an error of size

vol Zr m . TK(0) vol Zr minlgigh{)\(l)(tq,tqb,'y)}mmt
X ‘ﬁb th 1I<nql\nh{A (tqatqa,V)} < XT‘J'ID

XTTK(D)mt

ming <;<p{AM (vg, t,0,7)}™

Summing the summand for j in the error term of (Z4]) over ¢ and b’ gives a total error

; 1 1

< Xy _ — — (2.5)
dZD e/ m mmlquh{Hg:l AG) (tg tqaeila 7)} [,/;yK Mo/

22
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and
1 ( XT >max{0,l—j/m}
j < : (log XT).
P e e
@2

Observe, moreover, that 9te!/m\@) (tg, ta0e 1t y) > @) (tq,v40,7), by Lemma 211 Thus, for
J = m the expression in (23] is
) x3™ (log X1)7(2)
ming < <p {AD (vg, t,0, 7)™ A+ (v, v 0, 7))

which, upon replacing j by j — m, is covered by the lemma’s error term. For j < m, the
expression in (2] is at most < X7 (log X7)7(2)(ming < <n{ A (t4, t,0,7)™H) 7L O

2.2. Averages of certain arithmetic functions related to Artin L-functions. We shall
provide asymptotic estimates for averages of functions that will later appear in the treatment
of the main term in Theorem

Lemma 2.4. Let a : N — C be an arithmetic function with associated Dirichlet series
A(s) = > ena(n)n™. Let 6,C > 0, A > 2 and assume that

a(n) < Cnd, (2.6
A(s) has an analytic continuation to R(s) > 1/2,
A(s) < C(L+ |S(s))) V2, for R(s) =1 — 1/, (2.8)

Then
Z a(n) <C«X171/(2)\)+25’
n<X

for X =1, where the implicit constant may depend at most on A and 6.

Proof. The Dirichlet series defining A(s) converges absolutely for £(s) > 1 + 4§, thanks to
@8). Let og := 1 +20 and T := X"/*. We shall make use of Perron’s formula (see for
example [MVOT7Dh, Corollary 5.3]) to obtain

1 oo+iT X
> an) - — A(s)=—ds
% 2700 Jog—iT 5
) X 490 4 X0 la(n)|
< Z \a(n)\mln{l, T|X—n\}+ T Z e
r/2<n<2x neN

Replacing the minimum by its second term unless | X —n| < 1, the first error term becomes

X 1 _
< CX5 (1 + T Z _) <6 C«Xl 1/>\+25,

1<m<2X

while the second error term is < CX!=VA20 %" | n=170 <5 OX1=1/A+25 Ghifting the line
of integration to the left, we see that the main term equals

o0—iT 1-1/A+4T oo +iT X5
- J + J + J A(s)—ds.
1-1/A—iT 1-1/A—iT 1—1/A+iT $
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The first and third integral are bounded by
a0

< CTl/Qj Xtdy < OT~V2x00 — O x1-1/(2X)+25
u=1-1/\

and the second integral attains a value
T 1 1/2 T
<CX11/,\j (1+t]) AT < CX1UA <1_|_J t1/2dt>
=1 |1 = 1/A +it] t=1
< CXI VA2 ¢ ox1-1/@N),
O

Lemma 2.5. Let p : I — C be a multiplicative function whose assosiated Dirichlet series
is Dp(s) = Dgerpe P(@)Na™%. Let We I, A > 2, and f € Zk. Assume that the following
conditions hold:

p(a) =0 unless a + W = O, (2.9)
p(p*) <, 1 for all prime ideals p{ W and all k > 0, (2.10)
D,(s) has an analytic continuation to R(s) > 1/2, (2.11)
Dy(s) <, (L+[S(s))'? for R(s) =1 —1/A, (2.12)
o p(pf)| 1
Z | < 5 for all prime ideals p t 2 and R(s) > 1/2, (2.13)
i 2
1¢(p) i pp) < ! for all prime ideals p + 2 and R(s) > 1/2 (2.14)
f = mpks 2 . .

Then there is B > 0 and vy € Z¥, such that, for any ¢ € i with ¢ + W = O, we have

Z 1f(a)p(a) _ Dp(l)ﬁly(t) ~|—O(‘nC8X_1/(2)‘)+E),

Na< X Na
a+cW=0

for all e > 0. The implicit constant is allowed to depend on e, p, 20, f, X, but not on ¢, X.

Proof. For p 120 let ®y(s) := i, p(p*)Mp~*, which is bounded in absolute value by 1/2
whenever R(s) > 1/2, due to ([ZI3). Moreover, condition ([ZI0) implies that

Py(s) <, Mp~*  for N(s) > 1/2. (2.15)
Define formally the Dirichlet series

psy= Y HOAY T (10,

ae Ik pre2s

a+cW=0k
W(s) = [T+ 1260 and

ple
T L) F ) y(s)
o= 56 M@(”H%))’

Dc(s) = Dy(s)P(s)¥c(s). (2.16)



GENERALISED DIVISOR SUMS OVER NUMBER FIELDS 13

By (213), the Euler products for D¢(s) and D,(s) converge absolutely and define holomorphic
functions for R(s) > 1, while [2I5]) and (213) guarantee that ®(s) converges absolutely and
defines a holomorphic function on R(s) > 1/2. Moreover, ([2I4]) ensures that all factors of
the finite product ¥ (s) are defined and holomorphic for R(s) > 1/2. Consequently, the
factorization (ZI6]) holds for R(s) > 1 and, using (211]), provides an analytic continuation of
D.(s) to R(s) > 1/2. For R(s) = 1 —1/A, we obtain by (ZI2]) and (ZI3]) that

IDe(s)] <, (L+S()D)? [ T2 ]12()] <e ppir M (L + ()12
ple

Since moreover » o, 17(a)p(a) <. s, k%, we may apply Lemma [2.4] to obtain for any € > 0,

DT 1p(@)p(a) <o ppp MEX TN

Na< X
a+cW=0k

Partial summation reveals that the series defining D,(s) converges for s = 1 and

> Li(@pla) _ D,(1)®(1)W (1) + O(NeE X ~ YV Fey,

Na< X Na
a+cW=0

Conditions ([213]) and (2.I4) show that 8 := ®(1) > 0. We finish our proof with the observa-
tion W (1) = 1y(c), where

Y(p) = (1 +1p(p)@p(1) " — 1= > (Lr(n)y(1))".

k=1

In particular, [y(p)] < 1 and y(p) < Np~*, so y € Zk. O

In our proof of Theorem [[.2, we shall apply the above result for Dirichlet series D,(s) of
the following form. Let (F,G) be a pair of binary forms in Ok/[s,t], such that F' is irreducible
in K[s,t], not proportional to ¢, and does not divide G in K|[s,t]. We assume furthermore
that G is of even degree, and that G(6,1) ¢ K(6)*?, where 6 € K is a root of F(s,1).

Fix 2 € f with 2 | 20. We define, for a € #k, the multiplicative function p(xq)(a) by

p(F7(;)(Cl) = Z (@) , ifa+20 = Ok,
A mod a
F(A\1)=0mod a
and p( F,G)(a) = 0 otherwise. We assume that 2 is divisible by enough small prime ideals to
ensure that 2 [ppq)(p)] < Mp'/2 for all prime ideals p.

Lemma 2.6. The Dirichlet series of p(p ), given by

pre)(a)
Dirao) = Y 2,
CIEJK

defines a holomorphic function in R(s) > % that does not vanish at s = 1. We furthermore
have |D g (s)] < (1 + 1S(s)) /% in. the region R(s) > 1 —1/X, where A = 1+ 2m deg F.
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Proof. Let a := F(1,0) € Ok ~ {0}. Then F(s,at) = aF(s,t), where F(s,1) € Ok[s] is monic
and irreducible. Note that the constant 6 := af is a root of F(s,1). Define the number field

H := K(0,A/G(6,a)) = K(0,+/G(6,1)), which clearly fulfills [H : K()] = 2.

The non-trivial representation of Gal(H /K (0)) gives rise to the Artin L-function

L(s,x) =] (1- XOB) M (00B )
T

with the product running over the non-zero prime ideals B of K(6). The character x () is 0
if 9P is ramified in H/K(0) and 1 or —1 according to whether 8 is split or inert in H/K ().
This L-function is entire and does not vanish at s = 1. The usual argument about split primes
shows that

[T+ x®)NeooB ) =1+ D x(B) |9+ 0(Mp~>),

Plp Plp
F(B/p)=1

for every prime ideal p of Ok, where f(/p) is the inertia degree.

In the following considerations, we assume that p is relatively prime to ¢ and to the con-
ductors of the orders @k[f] in K(6) and Ok (6) [\/G(6,a)] in H. Then the primes B in K (6)
above p with f(B/p) = 1 are parameterized by the roots A of ﬁ(s, 1) modulo p. If/‘\B cor-
responds to the root A, then we have an isomorphism Ok /B — Ok /p given by 6 — .

Consequently,
_(G6.a) (G(A,a>>
X(B) ( T ) .
and in particular,

Z X(P) = Z <@> = Z (W) = pra)(P)s

Blp A mod p A mod p
fF(PB/p)=1 F(\1)=0 mod p F(X\,1)=0 mod p
where we again relied on the fact that G is of even degree. Let 2J; be the product of all the
prime ideals excluded above. We have shown that

L(s,x) = go(s) |] <1 + W%ﬁ) —a(s)] ] (1 + W%ﬁ) = 92()D(r,c) (),
P12 P10
where gg, g1, g2 are holomorphic functions and have ablosutely convergent Euler products on
R(s) > 1/2 that do not vanish there. Hence, for R(s) > 1/2 + £. we have 1 <. g2(s) <. 1.
Convexity bounds, for example [Mor05, Theorem II1.14 A] with n = 1/(2mdeg F'), show
that
Lis,x) < (1+[S(s))Y? in 1—n<R(s) <147,
which extends to the region 1 —n < R(s) by absolute convergence of L(s,x) in (s) > 1. O

We shall need to handle averages of volumes of certain regions (see ([AIIl)). The next
version of Abel’s sum formula is optimally tailored for this task.

Lemma 2.7. Let g,w : N — C be functions, and write G(u) := >, ., g9(n). Let X > 1,
A, B =0 with A+ B <1, and assume that
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(1) w(n) =0 forn>= X,
(2) there is Q = 0 such that |w(n) —w(n + 1)| < Qn= holds for all n € N,
(3) there are Ao € C, M >0, such that |G(n) — X\o| < Mn~* holds for all n € N.
Then
Y, 9(n)w(n) = Aow(1)

n<X

leAfB
<SMQ(1+—"—= .
@ ( T aAs B)
Proof. Telescoping and using assumption (1), we see that

Y, 9mw(n) = Y} Gn)(w(n) —w(n +1))

n<X n<X
=X D) (wn) —wn+1))+ Y (G(n) = Xo)(w(n) —wn+1)).
n<X n<X

The first summand is equal to A\ow(1), and, using assumptions (2) and (3), the last sum has
absolute value at most

A B X du Xl—A—B
MQ Y nmA” <MQ<1+j W)éMQ<1+m>.

n<X 1

3. PrROOF OF THEOREM [IL.1]

In this section we assume the validity of Theorem and we prove Theorem [Tl from it.
The finite set Spaq Will contain all prime ideals that we want to exclude at various steps of
our argument. It will grow during the proof, but it will never depend on anything but K,
t, § and f. In Theorems [T and [[2] we will always assume that none of the forms Fj(s,t)
is proportional to t. This can be achieved by a unimodular transformation ¢, : K? — K2,
(5,t) = (s,as + t), for suitable a € 0. This map ¢, extends to K2 — K2 in an obvious
way, transforming 2 to ¢,(2). Clearly, all our hypotheses are still satisfied.

3.1. Simple reductions.
Lemma 3.1. Let & = (2,(0,7),20) be an F-admissible triplet, and k € N. Then

P = (97 (0-77_)7mk)
is also an F-admissible triplet and D(3, f, 2; X) > D(F, f, Z*: X).
Proof. Since 20 and 0% have the same prime factors, the ideals o’, for a € Sk, are the
same for 2 and 2*. Moreover, M*(2* X) € M*(#,X). This shows that, 2* is admis-
sible, and moreover (g, f, Z;s,t) = r(g, f, 2*;s,t). The lemma follows immediately, since
r(§, f, P;s,t) = 0. O

It is enough to prove Conjecture [Il for all strongly F-admissible triplets. Indeed, given any
§-admissible triplet & = (2, (0, 7),20), we may assume it to be strongly F-admissible. To
this end, we may replace 20 by any positive power of itself, thanks to Lemma Bl By (L),
we can find k € N, such that 2% satisfies (LJ).

By including in Sp.q enough small prime ideals and replacing 20 by a high enough power,
we can moreover assume that

2c[ [ Fi(1,0) | [ Res(F;, Fy) | 20, (3.1)
i i#]
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3.2. Eclipsing the trivial G;.

Lemma 3.2. Whenever i € {1,...,n} is such that G;(0;) € K(0;)*2, then for all s,t € O
with sOk + tO =t we have

Gi S,t
S (B - i)
0;
Di|Fi(8,t)b
Proof. The isomorphism K[S]/F;(S,1) — K(0;), S — 6;, sends G;(S,1) to G;(6;). Hence,
Gi(S,1) = h(5)* + c(S)Fi(S, 1),
with polynomials h(S),c(S) € K[S], such that F;(S,1) t h(S). Let d be the maximum of the
degrees of G;(S,1), h(S)?, ¢(S)F;(S,1). Re-homogenizing, we obtain
G2(57 T)Td—deg Gi — H(S, T)2Td_2 degH + C<S7 T)Td—deg C—deg F1E<S7 T),

with forms H,C € K|[S,T]. Letting b € Ok such that bH(S,T) € Ok[S,T], we find
that Res(bH(S,T),F(S,T)) € Ok ~ {0}. After adding to Spaq all prime ideals that divide
bRes(bH(S,T),F(S,T)), and all modulo which the form C' can not be reduced, we obtain,
for all 5,t € O and all p | Fy(s,t)’,

<Gi(8,t)td_degG> - <H(S,t)2td_2degH>
p p '

Using sOk +t0k = vand p 1 F;(1,0), we see that if p | ¢ then p | s, which shows that p | ¢ | 20,
a contradiction. Hence, t is invertible modulo p and using that deg G is even, we derive

(552)- (52 ()" (52

In the last equality, we were allowed to exclude the case H(s,t) = 0 mod p due to the condition
p{Res(bH(S,T), Fi(S,T)). O

By possibly reordering the (Fj, G;) € §, we may assume that

(0)) e K(6,)*% for1<i<p(F),
Y ¢ K(6;,)%% for p(F) +1<i<n.

We define f/(p) := 0 if p € Spaq and f/(p) := 2f(p) otherwise. Note that choosing Sp.q large
enough ensures that ' € 2%. All n factors in the definition of r(s,t) are non-negative and
for 1 <i < p(F) we see by Lemma [3.2] that

L (Es ) Y (M)— [T (+ Fo)(wn(Fi(s,8)) + 1)

2| F(s,)? ¢ p|Fi(s,t)

> [ a+a+2fm) = >, pk@)1p).
p‘Fi(S,t)b Ui‘Fi(s,t)
0, +W=0k

If p(F) < n, we let § := {(F,@)+1,GpF)+1): - - » (Fn, Gn)} comprise those pairs in § with
Gi(0;) ¢ K(6;)*2. Then p(F') = 0 and ¢(F') = ¢(F) < 3. Clearly, the strongly F-admissible
triplet & is also strongly §'-admissible.
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Lemma 3.3. Let p(§) <n. Then, for any € € (0,1), the sum D(F, f, Z; X) is >

P(3)
> [ [ k@1 () > Yo r@f Pist). (32)
01,...70/)(3)€f[{ i=1 (O’i,Ti) mod 0; Vi (s,t)EM*(:@,X)
No; < XE Vi 00 +T; O +0;=0k (s,t)=(0;,7;) mod 0; Vi
0, +W=0k Vi F;(o4,7:)=0 mod 9; Vi
0;+0;=0k Vi#j
In these sums, the quantifiers Yi run over all i € {1,...,p(F)}.

Proof. This stems upon re-ordering the sum with respect to the factors 9; | Fi(s,t) and
splitting into congruence classes mod 9;. Since r(s,t) = 0, we are allowed to impose additional
restrictions on the 9;, such as 919; < X°©. O

Lemma 3.4. Let v,a € Jk, t | a, and let (5,7) € v2 such that 60k + 70k + a = t. Then
there is (o, 7) € ©* satisfying (o,7) = (6,7) mod a and 0O + 7Ok = t.

Proof. Let b € #x such that ba = w0 is a principal ideal, and such that any prime ideal p
dividing & divides b if and only if it does not divide 7t=!. We may then choose o := & and
T:=T-+w. ]

We next deploy Theorem to estimate the innermost sum in Lemma B3]

Lemma 3.5. Let p(F) < n. There is a function fo € Zx and By, 51, P2 > 0, such that the
Jollowing holds: for anyd1,...,0,s) € Ik and (04, 7;) mod 0;, satisfying the conditions under
the first two sums in [B.2), we have, with 0 := 010 ,z), the asymptotic

Y. @ Pist) = BX? ;;(2) +O(X> i), (3.3)
(s,t)eM*(2,X)
(s,t)=(04,m;) mod 0; Vi
The implicit constant in the error term is independent of all 0;, (o, 7;).

Proof. The Chinese remainder theorem and the coprimality conditions on 01,...,0,s), 200
allow us to express the congruences (s,t) = (o,7) mod 20 and (s,t) = (04, ;) mod 9; for all
i as one congruence (s,t) = (&,7) mod 020. The pair (5,7) € 0% then necessarily satisfies
00K + 7Ok + 020 = t. Using Lemma [3.4] we may thus assume that 60k + 70k = t.

The triplet &' := (2, (5,7),20) is strongly §-admissible. Moreover d satisfies the condi-
tion (LI0) in Theorem [L.2) since [, ; Res(F;, F})|W, and since 9; + W = O for all i.

The sum in the lemma equals

> @170,
(s;)eM* (2, X)

so the lemma stems from Theorem [L2], once we enlarge Sp.q and replace 20 by a sufficiently
high power to ensure that 20, | 20. O

Using the bound [14(9;)| < 910;, we see that the error terms arising from substituting
B3) into B2) are < X2 A+ep@)(B243) " Finally, choosing e small enough makes the exponent
smaller than 2.

Let us consider the main term. For a form F' € Ok[s, t], irreducible over K and not divisible
by t and for 0 € .k we define

Tr(0) :=#{pne Okx/d: F(u,1) =0 mod d}. (3.4)
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Using ([B1]), we obtain for all 9 € Fx with 0 + 0 = O,
D 1=1(0)0x(0).

(o,T) mod ®
F(o,7)=0 mod 0
0O +TO0K+0=0F

Let us now introduce the function

p(3)
L@):=1p@)1,0N0) éx@) >, []Tm@)

D1"'Dp(3)=0 =1
To finish the proof of Theorem [[Tlin the case p(F) < n, it remains to show that
L(o
202 5 (tog X)),

No<X*® Mo
V+W=0x

This bound can be proved in a straightforward manner by alluding to the generalisation
of Wirsing’s theorem to all number fields as supplied in [FS16, Lemma 2.2]. The required
estimate
Z TF&,(—@ log Mp = log X + O(1)
Np< X P
follows from the prime ideal theorem for the number field K(6;).

Finally, if p(§) = n, we proceed as in Lemma[B.3]to obtain a lower bound for D(F, f, &; s, t)
as in (B2), but with »(§, f, &; s, t) replaced by 1. Arguing as in Lemma [3.5]and using M6bius
inversion as in the proof of Lemma 2.3] the innermost sum then becomes

o= Y ﬁ(((a*,T*)+(atbﬂﬁ)2)mX1/m9),
(s,;t)eM* (2}, X) aEIK
a+0Wr 1 =0k
Na< X

for some (o*,7%) € @}2(. By lattice point counting, the summand for a is

2 2—1/m
# <(atDQU)2 A (= (", 7%) + Xl/m@)) = % +0 <<%> " 1) '

Summing this over all a yields a positive constant 5y = fy(t, Z,20), such that

X2
Z 1 :BOW+O(X2_1/mlogX)
(s,;t)eM*(2},X)

We may use this asymptotic instead of Lemma to proceed as in the case p(§F) < n. This
completes our proof of Theorem [T.11

4. PROOF OF THEOREM [[.2 ASYMPTOTICS FOR DIVISOR SUMS

Recall that we have shown that it is sufficient to consider the case when none of the forms
F; is proportional to t. The ideal 20y will be modified throughout the proof, but it will only
depend on K,t,F, f. We start by assuming that 20 satisfies (B.I]). Let § be a system of
forms as in the theorem, and 20 be a strongly F-admissible triplet with 20, | 20. Moreover,
let 0 € S satisty (LI0).
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4.1. The Dirichlet hyperbola trick. Let us recall that the expression
@) Pst)
(s,t)EM* (P, X)

can be recast as

L Gi(s,t
S e | 3 (259)). (4.)
(s;)EM* (P5,X) i=1 ci|Fi(s,t)? ‘
Defining 20; := HPIQU p”F(F (@) makes apparent, once (C9) has been taken into account,
that Fj(s,t)’ = Fi(s,t)20; . Furthermore, for each (s,t) € M*(%%,, X) we have the following
inequalities,
NE(s,t) =W [ [ |FGs 0l < [ ] max{fs], [} 485 < X,
VEQ o vEQ

thus for each index i there exists ¢; > 0, independent of X, such that whenever X > 1 and
(s,t) € M*(Py,X) then NEF(s,t)" < ¢; X8 We let V; := ¢; X8 Suppressing the
dependence on 27 in the notation, we define the arithmetic functions

(st = Y (@) and 1 (s,t):= ), b <Gi(§’t)>v

;| Fs(s,t) c?‘fi(&/—t) Z
91c1-< )/1 mci< YZ
mc:‘kwnmngm(}?@ (Svt))

an action which, upon writing Fj(s,t)” = ¢;cf and using assumption (L.§), allows us to obtain

the validity of
2 (M) = 1y (s,1) + 7] (s,1).

T
Let us introduce for every v € [0,00)" and ¥ = (¢1,...,%y) € {0,1}" the region
Dp(X;v) =) {(s,t) e XYmg . N(Fy(s,1)) > wwi\/?ismm} CK2. (4.2
i=1

Here X is considered as fixed and the dependence on v is what we are interested in. Define
wy (X;v) : R” — R through

v = vol(Zy (X Vv)). (4.3)
For ¢ = (¢1,...,¢,) € S we use the abbreviation D¢ := (Ncy,...,MNc,) € (0,00)" and arrive
at the equality of the quantity in (4.I]) with

S TEs, ) (rils,6) + rals,t)™),
) =1

(s,)EM* ( Py, X) i=

which can be reshaped into

n
) DEC
. C;
pe{0,1}" eI (s,t)eM* (25,X) i=1 ¢
Ne;</Y; Vi (5,t)€Py (X;59%)
;L:l G+H0W=0k  ¢|Fi(s,t) Vi
c¢+Cj=lﬁK Vi#j

) 1 (Fi(s, 1)),
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Here we added the coprimality condition [ [} ¢; + 920 = Ok due to (LI0) and the assump-
tions ¢; + ¢; = Ok for i # j due to (BI]). The identity

(F(s,t)) = Y, f(by)
bi‘Fi(s,t)
b; +W=0

reveals that, with

R EC I R (-

bcesp: i=1 (5.)6%4 (X;Me) =1
‘ﬂbi<Yi,‘ﬂci<\/7i Vi (S,t)EM*(@o,X)
H” b; CZ+DQU 07}{ (biﬂti”Fi(s,t) Vi

¢i+c;=b; +b i=bi+cj=0K Vi#j

one has

> r(3.f, Pist) = > Sy (4.4)

(S,t)EM*('@a, ) ’(,Z)E{O 1}”

For any a € Sk we let {(a) c Fx denote the monoid generated by the prime ideals dividing
a. We collect here some conditions on n-tuples a,b”, ¢”, ¢” € #}¢ for later reference:

Vi:a; + 00 = O and Cli-l-HClj:ﬁK, (4.5)
J<i
Vi: Nab! <Y, b +amz1_[aj "= 0k and b+ | [b] = Ok, (4.6)
Jj=1 j<i

n
Vi: Nagel ! <A/Y;, o elay, o + DQUHaj =0k and ¢ + Hcg’ =0g. (4.7)
j=1 j<i

Recall the definition of A*(a, (o,7),0,7) in (21).

Lemma 4.1. Write d; := ;b c/c”, ' := [/, 0; and let X be the, unique modulo ?', solution

Z’l’

of the system A = \; mod 0; for all i. Then the sum Sy equals

= m(Gi(his1
(o) 3 (f1(%0)).
a,b” ", "’Eﬂ” i=1 A; mod 0; Vi i=1 v

fona Xeno X ew) ol i)

| A* (020, (0,7),0", X)) N Dy (X5 (Maef )iy -

Z

Proof. For each pair of ideals b;, ¢; in the definition of Sy we let a; := b; + ¢;. Therefore
b; = a;b) and ¢; = a;¢; for some coprime ideals b}, ¢, which satisfy b; n¢; = a;b}c;. We may
further decompose b; and ¢; uniquely as b = b/b? and ¢, = /¢!, where b/, b7, ¢/, ¢ € Ik

7 ’l ’ 79V 17 1
and for all non-zero prime ideals p we have

plocf = pla; and  p[bf’c’ = pfa;.

Since the function f is supported on square-free ideals, the only relevant value for b} in Sy,
is b7 = Ok . Taking into account the conditions {3]), (£06) and ([7T) we have thus obtained
the following factorization for the b;, ¢; in the sum Sy,

b; = a;b! and ¢; = a;c/c;.
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We are therefore led to the equality of Sy, with

> (fpes) s TS5

bm c// ///e]n =1 EM*(gm ) i=1

), @8, @D (5,)€ P (X5 (Ma ")} ;)
a; b Fy (s, t) Vi

For any pair (s,t) in the inner sum we have t0x + 0; = Ok, since if p | tOk + 0; then p + 20
and hence p 1 F;(1,0). This implies that p | s and thus p | sOx +tO0x = v | 20, a contradiction.
Hence, letting \; := st~ mod d; we obtain the congruence s = \;t mod d;. Note that each
G; has even degree and therefore

Gi(s7t) G()\Zvl)
a;clc - W ’

an equality which can be exploited to transform Sy, into

n i(Aiy 1)
Z (H f(aibg”)> Z H < a: c//c/// > Z L.
a,b” ¢ ”/Eﬂn A mod 0; Vii=1 v (s,t)eM™* (F5,X)
@3),E0), (IH) 04l Fi (A1) (5,)€ 7 (X;(Naze )i y)

s=\;t mod 0; Vi

Since the 0; are relatively prime in pairs, we may combine the congruences under the innermost
sum to a single congruence of the form s = A mod ?" and our lemma is furnished upon
tautologically reformulating the innermost sum. O

4.2. Application of lattice point counting. Let us define the multiplicative function on

j[{,
-1
1k (@) 1
= 14+ —
n(a) = 5 ﬂ( +‘ﬁp> :
which is supported on square-free ideals and satisfies [n(p)| < 1/9p for all prime ideals p. We
use the symbols 9;,9’, A with the same meaning as in Lemma [Tl For any 4 € {0, 1}", let

n
F(a;b!) 1y (a;b7c) Gi(Ai, 1)
Mw = Z (X (muz i ;” 2 1 *Jtalb”’c” " Z alc”c”’
a,b” ¢ ”/Eﬂn = 17 Z A; mod 0;
o e W 2ilFi(Ae1)

Lemma 4.2. Let Y :=[[;_,Y;. Then, for all e > 0, we have

-1
Z T(syf,a@;s,t):ﬁ H <1_‘J”t+32> Z My, + O.(X2Hm)tey

(s,)EM*(25,X) ploge—1 pe(o, 1}

Here, ci is a positive constant depending only on K and the implied constant in the error
term depends only on K,v,2,20,F, f,¢c.

Proof. Recall that € = {v1,...,t;} is a fixed system of integral representatives of the class
group of K. By possibly modifying 20, we may assume that v - -t | 20.

Since 2 < K2 = R?" is a cartesian product of balls in K2 = R?™_ it is clear that
the sets Zy(X;v) < R?™, for X > 0 and v € R" are fibres of a definable family with
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parameters (X, v, ) € R'*2" in the o-minimal structure R, of semialgebraic sets. Moreover,
P¢(X;v) € XY™9, which is contained in a zero-centered ball of radius < X /™.

Injecting the estimate of Lemma into Lemma [4.]] yields the desired main term. The
sum over the error terms in Lemma 2.3] can be bounded by < Eg + -+ + E,,_1, where, for
0<j<m—1,

. n X 1+i/m+e
= lsew 2 1 1 T
a b/// c// ”’Eﬂ” i=1 bl )\ mod v; Vi mlnlgqsh{A( )(tQ’ tqbl’ )\)m)\(er )(tfﬁ tqa,’ )\)]}
:mzbmsyz % F (A1)
Na; c//c///<\/*

b/// Cl/ /// +Qn ﬁK
bll/ +al c// c/// _ 0?K

Let us bound Ej;. The Chinese remainder theorem allows us to separate the sum over

A; mod 9; into a sum over A\; mod a;c/¢/” and a sum over A\; mod bY. Write " := [ 7", a;c/c”

and let X = \; mod a;c/ ¢’ for all i. S1nce A(rg, v, N) < A(tq,tqb’ )\'), we obtain
AD (rg, 140", ) = A (g, 150", V)

for all 1 < i < 2m. This allows us to sum over b”, obtaining the estimate

S S s (48
5 < ‘ —. (4.8
e i=1 Na; " X\ mod a; i mlnléqéh{)‘(l) (tQ’ tqa”’ )\/)m)\(erl) (tq7 tqa”’ )\,)J}

ma C”C/”<\/— a;c;C ’”‘F ()\“1)

ClZC” ”/JFQB ﬁK

Each first successive minimum A (v,, v, 0", ') is attained by a point v = (vy, v2) in the lattice
A(ry, ", N) € 0% < K2, of euclidean norm bounded by

HVH < ma//l/(2m) < Y*l/(4m,)7
due to Lemma 21l Let

h n 1 1
- Z Z 211 MNa; Z Hv”m )\(m+1)(tq,tq0’/, )\/)j’

=1 a(" e} A; mod a;c/c! Vi

‘ﬁa c//cm<\/}72 a; C”C/”|F1()\171)
// ///_,’_w ﬁK veA(tq,tqD”,)\/)

[V lI=AM (rq,1q0",X)
Sorting the expression in (48] by the first successive minimum, we see that

Ej < Z X1+j/m+EEj(V)-
veo?~{0}
vl </

For v € 0% to be an element of the lattice A(vy, t,0”, \), it is necessary that v; = X'vy mod d”,
S0 in partlcular v1 = Az mod a;c)¢; and hence a;c/c/” | Fj(v). This allows us to conclude
that

[, NFW) X0

v ™2 v

Ej(v) <
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whenever F;(v) # 0 holds for all 1 <4 < n. The sum of E;(v) over all such v is

< xtHfmte ) ;mﬂ < XVHI/mrey1/20—(m+))/(2m)) o yl+i/m+ey1/a—j/(dm).
veo?.~{0} H H
Ivll<y 1/ 4m)

Recalling our assumption that ¢(F) < 3 and the fact that Y < X°®), we see that this error
term does not exceed

X2—1/4+j/(4m)+s < X2—1/(4m)+e

It remains to bound the sum over those v for which Fj(v) = 0 for some 1 < k < n. Since
Fy(s,t) is irreducible, this necessarily implies that Fj(s,t) is linear and since the forms Fj(s, t)
are pairwise coprime we conclude that F;(v) # 0 for all ¢ # k. This allows us to bound the
number of a;, ¢f, ¢}’, A;, for i # k, as before by [ [,., M(Fi(v))® < X°. Writing temporarily

z )
Fy(s,t) = as — bt,

with a # 0 and a | 20, | 20, we see that the equality Fj,(\g, 1) = 0 mod ayc) ¢} is equivalent to
A = a~tb mod agclcy. Moreover, A(ty,t,0", N) S A(ry, vrgaxchcy, Ax). We may thus bound

XE
) < -
; ar, CZ% HVHm)\(m+l)(tmtqakc%c%’7)‘k)]
mak c// C’”<\/_
apcle Z’—G-Qﬂ Ok
Let ay,...,a, be Z-linearly independent elements of v, with |ja;|| = A?(x,) = 1 and let
B1,- .., Bm be Z-linearly independent in v axcycl with ||B;]| = A (vgapclcl) = N(apc) )™,

To estimate the successive minima, we used Minkowski’s second theorem and the fact that
A (a) > Mal/™ holds for any a € I (see, e.g. [MV07al, Lemma 5] or Lemma 5.1)).
This provides us with the linearly independent lattice points

ba bOém ﬁ Fme e A a
(aa11> ’ 7 (aam> 7 ( 11) T ( 1 > <tq7tq kacZ’=)‘k)‘
" //l)l/m

The first m of these have norm = 1, whereas the latter m ones have norm = 9M(ajc)c

the product of their norms is = ‘J'I(akcgcg’ ) = det A(ry, tgapcicl, \y). Using again Minkowski’s

second theorem, this shows that the successive minima of A(tg, tgaic)c}, A\y) satisfy

A (e, vaanehed M), - A (e, vgapel el Ag) = 1,
A(erl) (ttb tqakcgc;gv )‘k)y SRR >\(2 )(tfb tqakcgc;g’ Ak) = m(akczc”/)l/m

As a result, we obtain the bound

X€
E;(v) <
<D M

muk c// c///< /
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In addition, we observe that any v = (v1,v2) € 0% with Fy(v) = 0 is uniquely determined by
vo. Consequently,

. ) 1 1
Z X1+,7/m+€EJ(V) < X1+,7/m+€ Z m Z m( I /”)j/
(3 m

veo2 {0} v2€0~{0} vz apcl s Rk
[[v]<yL/(4m) [[vz || <Yt/ (4m) Nay, el <vVX
Fy(v)=0

< X1+j/m+€(10gY)mX1/2(17j/m)+€ < X3/2+j/(2m)+€ < X271/(2m)+€
O

4.3. Controlling the main term. Let p;(a) := p(p, ¢,)(a), as defined prior to Lemma 2.6]
and moreover recall (3.4]).

Lemma 4.3. The arithmetic factor in the definition of My, decomposes as follows:

Z < a C”C”/ > = pl(al )TFz<b/”)pl( /”)'
>\i mod 0; v
;[ Fi (A, 1)

Proof. Recall that we set d; = a;b;¢/¢/, and that the ideals a;c/, b, ¢/ are coprime in pairs

due to (LA),#0) and [@T). The Chinese remainder theorem, jointly with multiplicativity
properties of the Jacobi symbol, yields

Gi(hi, 1 Gi(N,1 G\ 1
> (457 - ¥ (25 DR (“E).

A; mod 0; X, mod a;c// 7 mod b7’ Z— : t
ol Fi(xi1) a;c! |Fy(\},1) 6 [F (1) [ F (1)
O
Letting B := 0 [[/_, a;c], we define M(a,c”, ") as
nm nm nm nm nm nm nm nm nm
5 Ly (bY') f (61) TR, (bY) 3 Ly (b5) f(65)Tr, (b3) 5 Ly (b)) f (7)) TR, (b77)
" " te m " 9
bYesK by byesK b bl o
NOY <Y /MNay N4 <Ya/MNaz NL <Yy, /‘J?un
b +B=0k by +Bb) =0k by +B [, b)'=0
a definition that makes the succeeding equality valid,
n /// ///
// /// nm f )pl(al )p71< )
My = > wy(X; (Maiefe) i) M(a, ¢’ ¢ H sn Rr . (4.9)
Il ”/6]" i=1 al
(IEIL(EZZD

Let us bring into play the multiplicative function 7y, supported on square-free ideals, by
letting y(p) := 0 for p | 2 and in the remaining case, p 1 20, we define

v(p) = —1+ (1 + (1 +ng(fp))f(p) Z_ZlTFz(p)>

Including enough small prime ideals in the factorization of 2y, we can ensure that 1, € %x.

Lemma 4.4. Let o := [ [joy(1 +v(p))~t and suppose that Na; <Y; for all 1 <i < n. Then

m .
M(a,¢", ") = vo1y( Hl a;) 1y () + O, (X€ _max {Yal}>

71_17"'7” (2
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The implied constant is independent of a,¢”,¢”, 0, and X.

Proof. The bound bestowed upon f by (I]B]) shows that each sum over b} in M(a,c”, ")
forms an absolutely convergent series. We may complete the summation step-by-step for

t=mn,n—1,...,1. The bounds
ANbS Na;
1,(65), 9107 £(61)], TR (b)) <. MbY"® and Z 5 < X°© i
’ Nb; Y;
9?bl->Yi/91ai ¢
reveal that the error introduced by this process is <. X©max {Ja;/Y; .,n}, thus
acquiring the main term
1y (67) £ (b7) T (B7) 1y (by) f (b3)TF, (b))
Z MNp” e Z No”
bie Sk 1 b"e Ik n
b+ BT, b7=0

6 +B=0)
Grouping all n-tuples b” according to the value of b := Hizl b and letting

g(b) = ]‘T'I(b) Z Hf b”’ b///

bresp  i=1
b=bw...bw
bm+b///:10> nVi;ﬁ -
i j K J

the main term becomes
S =TT(1+52) ~TTa+ven

beJK 1B prB
b+B=0x

Here, we used the observation that 1 + y(p) = <1 + %‘;)) holds for all p t 20

We may now plant Lemma f4] into ([£9) to show that M., equals
f a /// a n 1 a 1 c/'//
Y)Y w mmmwzlﬂ e
// ///ej’l’b
@ﬂ),m

up to an error of size

| f (@) [Lq (aici") pilaici) pi(c}’) Na;
<. X°© Z (X (MNayc; ; ;” )iz1) (H Naycc!” max :
// I//e]’fl
Using the inequalities Y; > X, max{1,(a), p;(a), f(a)Na} <. Na®,
max {MNa;} < H‘ﬁai, and wy (X; (Mazc/ )P ,)) < vol(X V™) < X2,

1<i<n "
i=1

we find that the sum in the error term is

<. X1+E Z Hgﬁa ” ”/ < X1+€.
i€

l/ ///EJTL 1= 1
l/ n
‘ﬁa [ <\/YZ
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To analyze the main term further, we define on i the multiplicative functions

gi(c) == > fla)ln(aic])pi(aic))pi(ef ) 1y (aic),
ai,¢ ceSk
a;c ! =c;
/eda;)
ai+c' =0k

which satisfy, for prime ideals p and positive integers k,

g ) = > FEOLE) e )i (7)1 (pF).

(X,B7'Y€Z>O

a+B+y=k

B>0=a>0

ay=0

Since f is supported on square-free ideals the only candidate values for («a, 3,) are (0,0, k)
and (1,k —1,0). Let us mention that the group structure of %, provides us with a function
§ fulfilling 171, -1, = 15. We are therefore afforded with the equality g;(p*) = pi(p¥)15(p¥),
which, upon introducing

n gi(ci) 1 ifCi-l-Cj:ﬁK Vi?éj
g(c) := : .
ket Ne; 0 otherwise,

, (4.10)

makes the ensuing estimate available,

My =v0l,(0) > wp(X;MNo)g(e) + O(X'F).
IR

‘ﬁci< 1/1

¢ +0W=0k
4.4. Excluding small conjugates. For X,Z > 0, w € {2y and a separable form F' €
Ky[s,t], let

Brw(X;Z) = {(s,t) e K2 : |s],,|t|, < XY™ and |F(s,t)], < Z"/™}.

Lemma 4.5. We have
(X Z)mw/m if 1 <degF < 3,

vol %F,w(X; Z) <F {szw/(mdog(F)) if deg F > 3.

Proof. First, let deg F' = 1. The bound claimed in the lemma is obvious if F' is proportional
to t. If F is not proportional to ¢, then the linear transformation L : K2 — K2 given by
L(s,t) = (F(s,t),t) is an isomorphism and thus

vol Br(X; Z) <p vol{(s,t) € K2 : |s|,, < ZY™ Jt], < XY™} < (X Z)mw/m,

Next, let us consider the case where F' is a quadratic form equivalent to s? — t2 over K,,.
Then we can find an invertible linear transformation L : K2 — K2 with F(L(s,t)) = st, and
hence

vol Bra(X; Z) <p vol{(s,t) € K2 - |s|,,, |t], <r XY™, |st], < ZY/™}
<p XMl gmelmog(X) < (X Z)™e/™,
If F is a quadratic form equivalent to s + t? over K,, = R, then we get

vol Brw(X; Z) <p vol{(s,t) e R? : s2 412 < 2™} < ZV™ < (X Z)™w/m,
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It remains to consider the case where deg F' > 3. In this case, F' is the product of at least
three non-proportional linear factors in C and therefore

Vi, = vol {(s,t) € K2, : |F(s,t)], <1} < 0.
We procure the validity of

vol Brw(X; Z) < vol(Z2V/(maeeNy, oy «p z2mw/(mdeg(F))

For any non-constant separable form F' € K, [s,t], let
Di(X) = {(5,t) e XY™ D ¢ |F(s0,t0)], < 1}.
Using Lemma validates the next estimate
Vol 5 (X) <o X272m0/M . vol B (X, 1) <p X272me/m . xmw/m
thus providing the proof of the next lemma.
Lemma 4.6. For X > 1 we have vol 75 ,(X) < F X2mw/m,

For every w € 4, we choose a finite set ., of forms in K,[s,t], whose absolute values we
want to prevent from becoming too small. For all w € 4, the set 7, contains s, t, and the
forms F; for 1 < ¢ < n. Additionally, for each form F; that is of degree 2 and reducible over
K,,, we choose a factorization F; = G;.,H;,, and also include G ., H; . in J7,.

Recall the definition of Zy(X;v) in [@2). For 4 € {0,1}" and v € R", let

Dy (X5v) = {(s,t) € Zyp(X;v) ¢ |[Hy(Sw,tw)l, =1 Yw e Qop, YH, € 5,}
and
W (X5 V) 1= vol Z, (X5 v). (4.11)
We obtain that

| (X5 V) — wiyy (X5 V)] < Z Z vol 751, w(X)
wWEN e HyweHy,

and thus
wy(X;v) = wh(X;v) + O(X*>Ym).
We can now bring into play the entity
My =Y wi(X;N)g(e), (4.12)
IR
‘ﬁci< 1/1
¢ +0W=0k

something which instantly permits us to infer the asymptotic relationship

My = Yoly(d) My + O (X2 1/mtey, (4.13)
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4.5. Volume computations. In this section we provide estimates of the correct order of
magnitude regarding the volumes wy, (X;v) appearing in .#,,. The assumption ¢(§) < 3 will
not be used. Let us write d; := deg I; for 1 < ¢ < n and consider, for ¢ € N and T" > 0, the
real integral

I,(T) := 1 dzy---dzg

T1yees@q2=1
r1xg<T

One can show that in the range 1" > 1 the equality

i
I

1,(T) T(logT)’~

]:1

holds via induction coupled with I,41(7) = Sl (T'/x)dzx, thus furnishing the succeeding
result.

Lemma 4.7. There is a polynomial Py(T) € Q[T] of degree ¢ — 1 and with leading coefficient
1/(qg — 1)! such that for T =1 one has 1,(T) =TP,(logT) + (—1)7.

For Z > 1 and 1 < i < n with deg Fj(s,t) > 3 we let

P5(Z) = {(s,t) e K2 : |Fy(8wtw)l, =1 for all we Qyy an N(Fi(s,1)) < Z}

and
25(Z):={se Ky : |sy|, =1 for all we Qy and N(s) < Z}.
Letting ' < Q4 be a set of real places, we write Q" := Qy ~ Q' and subsequently define
95/7911<Z) through
‘312” + t?ﬂ‘w > 1 for all we ),

|Sw],, =1 for all we Q"

((swatw)weQ’y(sw)weQ”) € H KZ} X 1_[ Ky

we)! we H |S%U +t3}|§w . H |Sw|mw < Z
weY weN
Lemma 4.8. Let q := |Qy|. There are positive constants ¢;, cs, cor o, such that
vol ZX(Z) = ¢s1y(Z),

vol ZF(Z) = ei1,(Z2%%),
vol 95;79//(2) = CQ/7Q//Iq<Z).
Proof. Let C = [],cq, (av,by] < [0, ), V, ;= vol{(s,t) € K : |Fi(s,t)|, < 1}<oo and
consider the measurable functions
®; 0 K3 — (0,000, (5,8) = ([Fy(su, tw) 2" “ o
Dy Koo = [0,00)%, s (|Swliy Jweto -
o H Kz% ’ H Ky — [Ovoo)ﬂoov ((8ws tw)ws (Sw)w) = ((‘32 + t2’$w)weﬂ’a (I8l )wenr)-

weY weN
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By homogeneity we see that vol ®;1(C) equals
[T volf(sustu) € K2+ au < |Fi(sus 1) 2™/% < by}

(2

wWENp
- H Vw,i(bw _aw) - ( H Vw’i> vol C.
wWENp wedoo

In like manner, letting V,, s := vol{s € K, : |s|, <1} < 00 and
Vip.s2412 = vol{(s,t) € K2 . |s2 + t2|w < 1},

we observe that V,, ;2,2 is finite if w is a real place and

vol & 1(C) = ( H Vw7s> -vol C,

wWEN
vol @5,179,,(0) = (H Vis2412 H Vw,s> -vol C.
welY we)!

This shows that the pushforward measures ®;.(vol), @y .(vol), ®q qr «(vol) are constant
multiples of the Lebesgue measure on [0,00)%=. Let s#(T) be given by

{(a:w)wegOO : Ty = 1 for all w and H Ty < T}.

wWEN oo
Then vol s (T) = I,(T), 9¥(Z) = &, (#(Z%%)), 25(Z) = ;1 (H(Z)), as well as
D n(Z) = 5,19,, (#(Z)), from which the lemma flows immediately. O

)
Fori<i<n 1<Z;<Zyand X >1 let
. | Hy(Sws tw)|, =1 Yw e Qy YH,, € I,
Bi(X; 21, Z9) = (s,t) e X'/ P . .

Zy < N(F(s,t) < Z»
Lemma 4.9. Denoting |Qu| by ¢ we have

X(1y(Z2) = Ii(21))  ofdi=1
1,(Z2%) — 1,(Z2%)  ifd; > 3.

If d; = 2, let Q' be the set of real w € Qu for which F; is irreducible over K, and define
O = Qo Q. Then vol Z;(X; Z1, Z3) is bounded by

< jthKw Ywe” (IQ(Z2 H |tw|;mw)_Iq<Zl H ‘tw‘;mw)> H dtw

[tw],, =1 Ywe we’ weN we’
Proof. We deploy Lemma A8 throughout the proof. Assume first that d; > 3. Then
Vol (X Z1, Z2) < ol 2} (Za) \ D (Z0)) = eilLy(25™) = 1,(Z7™)).

Next, assume that d; = 1. Since F; is not proportional to ¢, the linear transformation
L: K? — K? given by L(s,t) = (Fj(s,t),t) is invertible and provides us with the estimate

vol (X5 Z1, Za) < vol{(s,t) € K2 : |swl, =1, |twl, < XY™ vw and Z; < N(s) < Zo}
< Xvol(Z2(Zo) ~ T2(71)) < X(1,(Z2) — 1,(Z0)).

Vol %Zi(X; 71, Z9) < {
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We are left with the case d; = 2. For each w € €, there is a linear transformation
Ly : K2 — K2 such that F;(Ly(s,t)) = s> + 2. For w € Q", we have F;, = G, ,H;,, for
linear forms Gy, Hi . € #,,. The linear map K2 — K2, (s,t) = (Giw(s,t), Hiw(s,t)) has
an inverse L,, because F; is separable. We combine all these linear maps to an invertible
R-linear map L = (Ly)weq,, : K2 — K2, which we apply to obtain

‘s —i—t‘ > 1 for all we

"
Vol Zi(X; Z1, Z5) < vol X (s,t) e K2 [l » [bwl,, = 1 for all w e €

< H ’S%U +ti‘:w H |Swtw|;nw < 7y

we)! weN

= LweKw wecy VO (@;;,,Q,,(ZQ [T ltwl™) ~ 28 on(Z1 1] \tw|;mw)> [T dtw.

[tw ‘w>1 Ywe” weN)”’ weN)’ we)’

Lemma 4.10. For each v € {0,1}" we have
wh(X;(1,...,1)) = X*vol(2) + O (X7 VM 4+ x3/2¥e),
Proof. Let us begin by observing that

X% vol(2) —wih (X5 (1,..., 1) < > > vol P, ( )+iv0192i(x;1,\/?mm)

W Hue My i=1
< XPUm 4N Vol (X3 1,4/ YiM,).
i=1
We now use Lemma and Lemma [L7] to estimate the vol %Z;(X; 1,/ Y;NW;). If d; =
then vol Z;(X; 1,/ Y;NW;) < XY < X322 while, if d; > 3, we acquire

vol Z;(X;1,A/YiN0;) < V;/4te < xl+e,

In the remaining case, d; = 2, we get

\/}714-&‘
vol Z;(X;1,4/Y;790;) < e [ [ dtw < VY T < xe

twEKyw Ywe)’ tw
1<|tw],, <VY: YweQ [uweor [twlw weQ”

O

For a function w : R" — R and 1 < i < n, we write Ajw(v) := w(v + €;) — w(Vv), where e;
is the i-th vector in the standard basis of R™.

Lemma 4.11. Let ¢ € {0,1}", 1 < i < n and v € R" be given such that v; € [0,00) for all
J # 1. Then wqp(X v), considered as a functzon of vi, is non-increasing and satisfies
) X3 ifd; =1,
Ajwy(X;v) « XIS 2 (4.14)
d; .
vt otherwise,

2

in the interval 1 < v; < /Y, with the implied constant independent of v and X .
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Proof. Monotonicity is obvious. Let us prove the estimate [14). If ¢; = 0, then wy,(X;v)
is constant in v;. Let ¢; = 1, then

|y (X5 v + @) — wy (X5 V)| < Zi(X;5 1/ YiW,v5, / ViAW, (v; + 1)).

Using Lemma, and the mean value theorem to bound the latter quantity, we obtain in the
case d; = 1 that, for some v; € [v;, v; + 1],

A (X3v) < = (X1, (/YW V)) v - UI<X\/7 (qu(log(\/?mﬁnm)> Vs,
< X3/2+E.

When d; > 3, we get

\F ViR,V s, < ¥ LR B (2, log(vYR0,V))]y —i

Ajwy (X;v) < v

0
6V

< X1+€ ~2/d

When d; = 2, the quantity Ain,(X;V) is

< jtweKw VweQ” Io(VY:NW; (v; + 1) H [twly, ™) = I (/Y NW,v; H [twl ™) H dty,.

[tw ‘w>1 Ywe) weN)’ we)’ weN)’

The integrand is zero, unless | [,cor [twly” < VYi0NW;(v; + 1). In that case, the mean value
theorem allows us to find for any (¢, ), a number 0; € (v;,v; + 1), such that the integrand is

( VYWV [T ltwly,™) ) v s

weN

- = (fsmnv [T ltwly™ Pyllog(v/ YV [T [tul,™) )!vﬁ;i

we)’ we)’

<\/?;X€ H |tw|;mw <X1+€ H |tw|;mw‘

weN! weN!
This shows that Ajwy, (X;v) < X 1+¢ which concludes our proof. O

4.6. The ending moves towards Theorem We are now ready to estimate the sum
My, that was introduced in ([@I12).

Lemma 4.12. Let § := maxj<ij<n{4 + 8mdeg F;}. For any 0 < i < n, there are functions
v(@, 59, ceey 61(.2) € Z%, and a positive constant p\9, such that

' pl(Cl)lé(i)<C1) Pi(ci)lé(i)(ci)
My =p00) Y et S T (G (e e 1))
Nep <Y1 ! Ne; <VY; ’
1 +0W=0k Ci+c1c—100W=0f
+ O, (Mos X 2710+, (4.15)

Proof. For i = n our lemma holds with vanishing error term by the definition of g in (ZI0).
We proceed by backward induction from i to 7 — 1. Lemma provides the existence of
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@ > 0 and vV € 2% such that, for all U > 1,
Z pi(€i) 10 (ci)
Ne;<U Nei
citc1ci_100=0K

where A = 1 4+ 2mdeg F;. Indeed, the hypotheses of Lemma are satisfied by Lemma
and Hensel’s lemma, once we ensure that 20Jy, and hence 20, is divisible by enough small
prime ideals.

We write w(f) = wy,(X; (Neq,...,Me—1,0,1,...,1)). Assume first that degF; = 1. In
this case, the bounds ([{.I4]) and ([£.10) allow us to apply Lemma 27l with A = 1/(2)), B = 0,

M <. MN(cp---¢_10)°X° and Q <. X3/2+€’

= 5@ 1 (c1-+-¢10) + Oc(M(ey -+ - Ci_la)eUfl/@)‘)Jrs), (4.16)

thus leading to
pi(ci) L0 (;)
‘ﬁci

2

Ne; <VY;

CiFcpc_10W=0K

w(Me;) = BYL oy (61 10w (1)

+0. <‘J’I(c1 . ci,la)EXH/WHf) : (4.17)
If deg F; > 2, we use Lemma 27 with the same bounds for M, A and
Q< X', B=1-2/(degF)
to obtain an estimate identical to (4I7)). Injecting this in ([A.I3]) proves our claim for i—1. [

The case i = 0 of the last lemma shows that .#,;, = /L(O)l,y(o) (0) vol 2X?% 4+ O (M= X 2~1/0+e),
Conjuring up ([@I3]) and Lemmal4.2lcompletes the undertaking of validating Theorem .21
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