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Abstract. The Fourier coefficients of powers of the Dedekind eta func-
tion can be studied simultaneously. The vanishing of the coefficients
varies from super lacunary (Euler, Jacobi identities) and lacunary (CM
forms), to non-vanishing (Lehmer conjecture for the Ramanujan num-
bers). We study polynomials of degree n, whose roots control the van-
ishing of the n-th Fourier coefficients of such powers. We prove that
every root of unity appearing as any root of these polynomials has to
be of order 2.

1. Introduction

In his celebrated paper [7], Serre proved that even powers of the Dedekind
eta function η(τ)k are lacunary if and only if

k ∈ {2, 4, 6, 8, 10, 14, 26} .

The Dedekind eta function is a modular form and directly related with
infinite products studied by Euler.

η(τ) := q
1
24

∞∏
n=1

(1− qn) ,
(
q := e2πiτ , Im(τ) > 0

)
.

Euler and Jacobi proved that (see also [5], [2])

∞∏
m=1

(1− qm) =
∞∑

m=−∞
(−1)m q

3m2+m
2 ,(1)

∞∏
m=1

(1− qm)3 =
∞∑
m=0

(−1)m (2m+ 1) q
m2+m

2 .(2)

Which shows that for k = 1 and k = 3 many Fourier coefficients are van-
ishing, actually in the k odd case, η(τ)k is superlacunary [5] if and only if
k = 1 or k = 3. Not much is known in the general case, different from the
exponents considered by Euler, Jacobi, and Serre. We refer to [1] for an
overview.
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In this paper we study the Fourier coefficients simultaneous for all powers
of the Dedekind eta function. We define a family of polynomials Pm(X) for
m ∈ N0 with interesting properties. Consider the identity

(3)

∞∑
m=0

Pm(z) qm =
∏
m≥1

(1− qm)−z (z ∈ C) .

The roots of these polynomials dictate the vanishing properties of Fourier
coefficients. These polynomials have degree m and Am(X) := m!Pm(X) ∈
Z[X] is normalized. It follows also from the definition that Pm(X) are
integer-valued polynomials.

For example, let m = 6. Then

P6(X) = X (X + 1) (X + 10)R(X),

where R(x) is irreducible over Q. Hence the 6-th Fourier coefficients of η0,
η and η10 are zero. All 6-th Fourier coeffients for other integral powers are
not zero. Note, due to the Lehmer conjecture the factor (X + 24) should
never appear. The factors (X + 1) and (X + 3) appear infinitely times (see
formulae (1) and (2)).

The polynomials can be defined also recursively. We put P0(X) := 1 and
define

(4) Pm(X) =
X

m

(
m∑
k=1

σ(k)Pm−k(X)

)
, m ≥ 1.

Here, σ(k) denotes the sum of the divisors of k. The first ten polynomials
appeared the first time in the work of Newman [3] and Serre [7]. The integral
roots of Pm(x) for (1 ≤ m ≤ 10) had been determined and used by Serre
to prove the lacunary result. To illustrate the complexity of the topic let us
record the first ten polynomials.
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P1 (X) = X;
2!P2 (X) = X2 + 3X = X (X + 3) ;
3!P3 (X) = X

(
X2 + 9X + 8

)
= X (X + 8) (X + 1) ;

4!P4 (X) = X
(
X3 + 18X2 + 59X + 42

)
= X (X + 14) (3 +X) (X + 1) ;

5!P5 (X) = X
(
X4 + 30X3 + 215X2 + 450X + 144

)
= X (3 +X) (X + 6)

(
X2 + 21X + 8

)
;

6!P6 (X) = X
(
X5 + 45X4 + 565X3 + 2475X2 + 3394X + 1440

)
= X (X + 10) (X + 1)

(
X3 + 34X2 + 181X + 144

)
;

7!P7 (X) = X(X6 + 63X5 + 1225X4 + 9345X3

+28294X2 + 30912X + 5760)
= X (X + 8) (3 +X) (X + 2)

(
X3 + 50X2 + 529X + 120

)
;

8!P8 (X) = X(X7 + 84X6 + 2338X5 + 27720X4 + 147889X3

+340116X2 + 293292X + 75600)
= X (X + 6) (3 +X) (X + 1)(

X4 + 74X3 + 1571X2 + 9994X + 4200
)

;
9!P9 (X) = X9 + 108X8 + 4074X7 + 69552X6 + 579369X5

+2341332X4 + 4335596X3 + 3032208X2 + 524160X
= (X + 14) (X + 26) (X + 4) (3 +X) (X + 1)(

X3 + 60X2 + 491X + 120
)

;
10!P10 (X) = X10 + 135X9 + 6630X8 + 154350X7 + 1857513X6

+11744775X5 + 38049920X4 + 57773700X3

+36290736X2 + 6531840X
= X (X + 1) R(X).

Here R(X) is an irreducible polynomial given by

R(x) = X8 + 134X7 + 6496X6 + 147854X5 + 1709659X4

+10035116X3 + 28014804X2 + 29758896X + 6531840.

In the papers of Newman [3] and Serre [7] it is already mentioned, that the
polynomials Pm(X) are completely reducible over Q for m ≤ 4. This is also
true over R for m ≤ 9, but not for m = 10, 12, 14, 15, 18 as we have checked.
Hence, it is likely that polynomials Pm(X) have complex nonreal roots for
large values of m and it becomes natural to ask about their distribution in
the complex plane.

The initial motivation for this work was the following question:

Does there exist any m ∈ N, such that Pm(i) = 0?

This is equivalent to the existence of polynomials Pm(X), such that

(5) (X2 + 1) |Pm(X).

Considering i as a root of unity, what about the values Pm(ζ) for roots of
unity ζ of general order N? Note that in the case N = 2 due to Euler we
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already have that

(X + 1) |Pm(X) for infinitely many m.

Let N be a natural number. Let ΦN (X) be the N -th cyclotomic polyno-
mial:

ΦN (X) :=
∏

1≤k≤N
(k,N)=1

(X − e2πik/N )

The degree of ΦN (X) is given by the value of the Euler totient function
ϕ(N). It is known that this is irreducible. See [8] as a reference for basic
properties of cyclotomic polynomials and their splitting fields. Our main
result is the following:

Theorem 1. There is no pair of positive integers (N,m) with N ≥ 3 such
that ΦN (X) | Pm(X).

The theorem is equivalent to Pm(ζ) 6= 0 for any root of unity ζ of order
N ≥ 3.

It is maybe worth to mention, that although the proof does not reveal
much about the distribution of the roots of Pm(X) in the complex plane, it
reveals a very interesting property of these roots modulo p for every prime
number p. Namely, it shows that if m = p` + r, where ` = bm/pc and
r = m− pbm/pc ∈ {0, 1, . . . , p− 1}, then

Am(X) ≡ Qr,p(X)(X(Xp−1 − 1))` (mod p),

where Qr,p(X) is a polynomial of degree r. In particular, the roots of Am(X)
modulo p are always among the roots of

X(Xp−1 − 1)
∏

1≤r≤p−1
Qr(X)

a polynomial of bounded degree p(p+ 1)/2. Furthermore, the splitting field
of Am(X) over the finite field Fp with p elements is of degree at most p− 1
no matter how large m is. This is certainly a very surprising phenomenon
and we do not have an explanation for such regularity.

The polynomials Qr,p(X) play an important role in our proof. Our proof
proceeds to show that if there is N ≥ 3 such that Pm(ζ) = 0 for some
root of unity ζ of order N , then N must be even. Then a multiple of 3.
Then of 5. And so on, which of course is impossible. The proof proceeds by
induction. For the induction step, we need to show that if p is a prime and
q | N for all primes p < q, then also p | N . For this, we show that none of
the polynomials Qr,p(X) (mod p) has an irreducible factor of degree d such

that pd − 1 is a multiple of N . When p is small (p ≤ 11), we show this
by computing all polynomials Qr,p(X) and their irreducible factors modulo
p. For p ≥ 13, we appeal to general methods of analytic number theory
(for p ≥ 5× 109). For example we involve results of Rosser and Schoenfeld
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[6] on certain Chebyshev functions. Finally a computation for p in the
intermediary range [13, 5 · 109] proves our theorem.

2. Preliminary results

From now on, N ≥ 3 is an integer and ζ is a root of unity of order N .
Throughout the paper p and q are prime numbers (except for q := e2πiτ in
the first part of the introduction).

Lemma 1. Let Q(X) ∈ Z[X]. Let p be a prime and ζ be a root of unity
of order N ≥ 3. Assume that p, k, a,M1, . . . ,Mk are positive integers, such
that:

(i) p - N ;
(ii) N -Mi for i = 1, . . . , k;
(iii) Modulo p we have Q(X) |

(
X(XM1 − 1) · · · (XMk − 1)

)a
.

Then, Q(ζ) 6= 0.

Proof. Condition (iii) tells us that

(6)
(
X(XM1 − 1) · · · (XMk − 1)

)a
= Q(X)R(X) + pS(X)

for some polynomials R(X), S(X) ∈ Z[X]. Assuming that Q(ζ) = 0, we
evaluate equation (6) in X = ζ getting

(7) (ζ(ζM1 − 1) · · · (ζMk − 1))a = pS(ζ).

The algebraic integer ζi := ζMi is a root of unity of order

Ni = N/ gcd(N,Mi) > 1

for i = 1, . . . , k by condition (ii). Taking norms over K = Q(ζ), we get

(8) (NK/Q(ζ))a
k∏
i=1

(NK/Q(ζi − 1))a = NK/Q(pS(ζ)).

In the left–hand side of (8), we have NK/Q(ζ) = ±1, and

NK/Q(ζi − 1) = ±(ΦNi(1))ϕ(N)/ϕ(Ni), for i = 1, . . . , k.

Hence, we get

(9) ±
k∏
i=1

ΦNi(1)ai = pϕ(N)S,

where ai = aϕ(N)/ϕ(Ni) for i = 1, . . . , k and S = NK/Q(S(ζ)) is an integer.
The above relation is impossible since the left–hand side is divisible only by
primes dividing Ni for i = 1, . . . , k; hence, N , whereas by (i), p is not a factor
of N . Here, we used the well-known fact that for every integer m > 1, Φm(1)
is an integer whose prime factors divide m. �

Further we need the following fact.
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Lemma 2. If p ≥ 2 is prime, then

Ap(X) ≡ X(Xp−1 − 1) (mod p).

Proof. Note that Pm(x) is an integer valued polynomial. Hence,

p!Pp(k) ≡ 0 (mod p)

for all k ∈ Z. It follows that the polynomial Ap(X) has roots modulo p at all
positive integers k. Hence, all residue classes modulo p are roots of Ap(X).
Since Ap(X) is monic of degree p, it follows that

Ap(X) ≡
p−1∏
k=0

(X − k) ≡ X(Xp−1 − 1) (mod p).

�

3. The strategy of the proof

Let Am(X) = m!Pm(X), then A0(X) = 1, A1(X) = X, and

Am(X) = X

(
m∑
k=1

σ(k)(m− 1) · · · (m− k + 1)Am−k(X)

)
, m ≥ 2.

In particular, Am(X) ∈ Z[X]. Let us look at Am(X) modulo 2. Since
σ(2) = 3 ≡ 1 (mod 2) and 2 | m(m − 1) for all m ≥ 1, we only have the
recurrence

Am(X) ≡ X (Am−1(X) + (m− 1)Am−2(X)) for all m ≥ 1.

In particular, if m is odd then 2 | m− 1 and

Am(X) ≡ XAm−1(X) (mod 2),

while if m is even then

Am(X) ≡ X(Am−1(X) +Am−2(X)) ≡ X(X − 1)Am−2(X) (mod 2).

In particular, writing m = 2`+ r, ` = bm/2c, r = m− 2bm/2c, and putting
Q0(X) := 1, Q1(X) := X, we get that

Am(X) ≡ A2`+r(X) ≡ Qr(X)A2`(X)

≡ Qr(X)(X(X − 1))A2(`−1)(X) ≡ · · ·

≡ Qr(X)(X(X − 1))`A0(X) ≡ Xr+bm/2c(X − 1)bm/2c (mod 2).

Assume now that Pm(ζ) = 0 for some root of unity ζ of order N > 1. Then
Am(ζ) = 0. Assuming that N is odd, we have that N ≥ 3. Lemma 1 with
Q(X) = Am(X), p = 2, a = r+bm/2c, k = 1, M1 = 1 gives a contradiction.
Hence, 2 | N .

Let us record this.

Lemma 3. If Pm(ζ) = 0 for some m ≥ 1 and root of unity ζ of order
N ≥ 3, then N is even.
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There is nothing special about the prime p = 2 in the above argument.
Let’s try the prime p = 3. That is, we reduce the recurrence for the sequence
of general term Am(X) modulo 3. Since 3 = σ(2), and 3 | (m−1)(m−2)(m−
3) for all m ≥ 3, we get that

Am(X) ≡ X(Am−1(X) + 4(m− 1)(m− 2)Am−3(X)) (mod 3), m ≥ 2.

In particular,

Am(X) ≡
{

XAm−1(X) (mod 3) if m 6≡ 0 (mod 3),
X(Am−1(X) + 2Am−3(X)) (mod 3) if m ≡ 0 (mod 3).

We then get

A3`+1(X) ≡ XA3`(X) (mod 3),

A3`+2(X) ≡ XA3`+1(X) ≡ X2A3`(X) (mod 3),

A3`+3(X) ≡ X(A3`+2(X) + 2A3`(X)) (mod 3)

≡ X(X2 − 1)A3`(X) (mod 3).

Recursively, we get that if we put Q0(X) := 1, Q1(X) := X, Q2(X) := X2,
m = 3`+ r, ` = bm/3c, r = m− 3bm/3c ∈ {0, 1, 2}, then

Am(X) ≡ Qr(X)A3`(X) ≡ Qr(X)(X(X2 − 1))2A3`−3(X) ≡ · · ·
≡ Qr(X)(X(X2 − 1))` (mod 3).

Hence,

(10) Am(X) ≡ Xr+bm/3c(X2 − 1)bm/3c (mod 3).

Assume now that Pm(ζ) = 0 for some root of unity ζ of order N . Then
Am(ζ) = 0. Assume 3 - N . Lemma 1 with Q(X) = Am(X), p = 3, a =
r+ bm/3c, k = 1, M1 = 2 gives a contradiction. Note that N -M1 because
N ≥ 4 (since N ≥ 3 is even). This contradiction shows that 3 | N .

Let us record what we proved.

Lemma 4. If Pm(ζ) = 0 for some m ≥ 1 and root of unity ζ of order
N ≥ 3, then 3 | N .

Let us continue for a few more steps. We now take p = 5 and consider
the recurrence for Am(X) modulo 5. As before, we obtain the recursion
formula:

Am (X) ≡ X (Am−1 (X) + 3 (m− 1)Am−2 (X)

+4 (m− 1) (m− 2)Am−3 (X)

+7 (m− 1) (m− 2) (m− 3)Am−4 (X)

+ 6 (m− 1) (m− 2) (m− 3) (m− 4)Am−5 (X)) (mod 5).
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Treating the cases m = 5`+ r, r ∈ {1, 2, 3, 4, 5}, we get

A5`+1 (X) ≡ XA5`(X) (mod 5);
A5`+2 (X) ≡

(
X2 + 3X

)
A5`(X) ≡ X (X + 3)A5`(X) (mod 5);

A5`+3 (X) ≡ X
(
X3 + 4X2 + 3X

)
A5`(X)

≡ X (X + 1) (X + 3)A5`(X) (mod 5);
A5`+4 (X) ≡ X

(
X3 + 3X2 + 4X + 2

)
A5`(X)

≡ X (X + 1) (X + 3) (X + 4)A5`(X) (mod 5);
A5`+5 (X) ≡

(
X
(
X4 − 1

))
A5`(X) (mod 5).

Thus, putting

Q0(X) = 1, Q1(X) = X, Q2(X) = X(X + 3),

Q3(X) = X(X + 1)(X + 3), Q4(X) = X(X + 1)(X + 3)(X + 4),

we have that if we write

r = m− 5bm/5c ∈ {0, 1, 2, 3, 4},
then

Am(X) ≡ Qr(X)(X(X4 − 1))bm/5c (mod 5).

Note that Qr(X) | X(X4 − 1). Assume now that 5 - N . We then apply
Lemma 1 with Q(X) = Am(X), p = 5, a = bm/5c+ 1, k = 1, M1 = 4 and
note that N -M1 since N ≥ 6 (because N is a multiple of 6), and we obtain
a contradiction.

Let us record what we proved.

Lemma 5. If Pm(ζ) = 0 for some m ≥ 1 and root of unity ζ of order N ,
then 5 | N .

We apply the same program for p = 7. We skip the details and only show
the results. For r ∈ {0, 1, 2, 3, 4, 5, 6}, we get

Q0(X) = 1, Q1(X) = X, Q2(X) = X(X + 3), Q3(X) = X(X + 1)2,

Q4(X) = X2(X + 1)(X + 3), Q5(X) = X(X + 3)(X + 6)(X2 + 1),

Q6(X) = X(X + 1)(X + 3)(X3 + 6X2 + 6X + 4),

where the factors shown above are irreducible modulo 7. SinceX2+1 | X4−1

and X3+6X2+6X+4 | X73−1−1, and every root of Qr(X) is of multiplicity
at most 2, it follows that

Qr(X) |
(
X(X6 − 1)(X4 − 1)(X342 − 1)

)2
.

Further, writing m = 7`+ r, where ` = bm/7c and r = m− 7bm/7c, we get
that

Am(X) ≡ Qr(X)
(
X(X6 − 1)

)bm/7c
(mod 7).

Thus, modulo 7,

Am(X) |
(
X(X4 − 1)(X6 − 1)(X342 − 1)

)a
,

where a = bm/7c + 2. Assume now that 7 - N . We apply Lemma 1 with
Q(X) = Am(X), p = 7, a = bm/7c+2, k = 3, M1 = 4, M2 = 6, M3 = 342.
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Since 30 | N , it follows that N - Mi for i = 1, 2, 3. Lemma 1 gives a
contradiction.

Thus, we proved the following.

Lemma 6. If Pm(ζ) = 0 for some m ≥ 1 and root of unity ζ of order
N ≥ 3, then 7 | N .

For p = 11, we have

Q0(X) = 1, Q1(X) = X, Q2(X) = X(X + 3),

Q3(X) = X(X + 1)(X + 8),

Q4(X) = X(X + 1)(X + 3)2,

Q5(X) = X(X + 3)(X + 6)(X2 + 10X + 8),

Q6(X) = X(X + 1)(X + 10)(X3 +X2 + 5X + 1),

Q7(X) = X(X + 2)(X + 3)(X + 8)(X + 9)(X2 + 8X + 6),

Q8(X) = X(X + 1)(X + 3)(X + 6)(X + 10)(X3 + 9X2 + 7X + 2),

Q9(X) = X(X + 1)(X + 3)2(X + 4)2(X + 10)(X2 + 6X + 1),

Q10(X) = X(X + 1)(X + 8)(X7 + 5X6 + 10X5 + 6X3 + 10X2 +X + 5).

All factors shown are irreducible modulo 11. We note that the multiplicity
of any root of Qr(X) is at most 2. Further, the irreducible factors of the
above polynomials which are not linear are of of degrees 2, 3, or 7 over F11.

Hence,

Qr(X) |
(
X(X11−1 − 1)(X112−1 − 1)(X113−1 − 1)(X117−1 − 1)

)2
.

Writing m = 11`+ r with r ∈ {0, 1, . . . , 10}, where ` = bm/11c, we get that

Am(X) ≡ Qr(X)
(
X(X10 − 1)

)bm/11c
(mod 11),

so modulo 11, Am(X) divides(
X(X10 − 1)(X112−1 − 1)(X113−1 − 1)(X117−1 − 1)

)a
,

where a = bm/11c + 2. Assume now that 11 - N . Then we apply Lemma
1 with Q(X) = Am(X), p = 11, a = bm/11c + 2, k = 4, M1 = 11 − 1 =
10, M2 = 112 − 1 = 120, M3 = 113 − 1 = 1330, M4 = 117 − 1 = 19487170.
Since 2 · 3 · 5 · 7 | N , we get that N - Mi for i = 1, 2, 3, 4. Now Lemma 1
yields to a contradiction.

Thus, we record what we proved.

Lemma 7. If Pm(ζ) = 0 for some m ≥ 1 and root of unity ζ of order
N ≥ 3, then 11 | N .

4. The case of the general prime p

Assume now that p ≥ 13 and that we proved that q | N holds for all
primes q < p. Recall that N ≥ 3 is the order of a root of unity ζ which is
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also a root of Pm(X) for some m ≥ 1. We would like to prove that p | N .
For this, we compute for r ∈ {0, . . . , p− 1},

Qr(X) ≡
sr∏
i=1

Qr,i(X)αr,i (mod p),

where Qr,i(X) are distinct irreducible factors of Qr(X) modulo p. Assume
Qr,i(X) is of degree dr,i. Let

Dp = {dr,i : 1 ≤ i ≤ sr, 1 ≤ r ≤ p− 1} .

Let α = max{αr,i : 1 ≤ i ≤ sr, 1 ≤ r ≤ p− 1}.
Then, writing m = p`+ r with r ∈ {0, 1, . . . , p− 1}, we have

Am(X) ≡ Qr(X) (Ap (X))` (mod p).

This follows by induction from the recursion formula

Ap`+r (X) ≡ X

(
r∑

k=1

σ (k) (p`+ r − 1) · · · (p`+ r − k + 1)Ap`+r−k (X)

)

≡ X

(
r∑

k=1

σ (k) (r − 1) · · · (r − k + 1)Ar−k (X)

)
(Ap (X))`

≡ Ar (X) (Ap (X))` (mod p).

By using Lemma 2 we thus get that

Am(X) ≡ Qr(X)
(
X(Xp−1 − 1)

)bm/pc
(mod p).

Hence modulo p, Am(X) dividesX ∏
d∈Dp

(Xpd−1 − 1)

a

,

where we can take a := bm/pc+ α.
Assume that p - N . We can then apply Lemma 1 with Q(X) = Am(X),

the prime p, the number a, k = #Dp and Mj = pdj − 1 for j = 1, . . . , k,
where Dp = {d1, . . . , dk}. We need to ensure that N -Mj for all j = 1, . . . , k.
We know that

∏
q<p q | N . Thus, it suffices to show that

∏
q<p q is not

a divisor of Mj for any j = 1, . . . , k. Until now, namely for the primes
p ∈ {2, 3, 5, 7, 11}, we checked that this was case by case. To complete the
induction, it suffices to show the following lemma.

Lemma 8. If p ≥ 13, there does not exist a positive integer 1 ≤ d ≤ p − 1
such that

pd − 1 ≡ 0 (mod
∏
q<p

q).
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Assume that we proved the lemma. The above argument shows that if
q | N for all q < p and p ≥ 13, then p | N . Replacing p by the following
prime, we get, by induction, that N is divisible by all possible primes, which
is a contradiction.

So, it suffices to prove Lemma 8. This will be proven by analytic methods.

5. The case of the large prime p

Assume p ≥ 13 and for some d ≤ p− 1, we have q | pd − 1 for all primes
q < p. Then d is divisible by the oq(p), which is the order of p modulo q.
We split q < p into two subsets:

Q1 = {q < p : oq(p) ≤ p1/2}, Q2 = {q < p : oq(p) > p1/2}.

For Q1, we have ∏
q∈Q1

q
∣∣∣ ∏

e|d
e≤p1/2

(pe − 1).

The above leads to∑
q∈Q1

log q <
∑
e|d

e≤p1/2

log(pe − 1) < log p
∑
e|d

e≤p1/2

e ≤ p1/2τ1(d) log p.

Here and in what follows we use τ1(d) for the number of divisors of d which

are ≤ p1/2. For Q2, let e | d with e > p1/2 and assume that q ≤ p− 1 is such
that op(q) = e. Then e | q − 1. Thus, q ≡ 1 (mod e). Since q ≤ p − 1, it
then follows, by counting the number of positive integers less than or equal
to p−1 which are larger than 1 in the arithmetic progression 1 (mod e) and
even ignoring the information that they should also be prime, it follows that
the number of choices for such q is at most (p− 1)/e < p1/2. This was for a

fixed divisor e of d which exceeds p1/2. Thus,

∑
q∈Q2

log q ≤ p1/2

 ∑
e|d

e>p1/2

1

 log p < p1/2τ2(d) log p,

where τ2(d) is the number of divisors of d which are > p1/2. Thus letting θ
be the Chebyshev function defined for a positive real number x by

θ(x) :=
∑
q≤x

log q,

we get

θ(p) =
∑
q≤p

log q ≤ (p1/2τ(d) + 1) log p,
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where τ(d) = τ1(d) + τ2(d) is the total number of divisors of d. Assume now
that p > 109. Theorem 6 in [6] shows that

θ(p) > 0.99 p.

Further,

τ(d)

d1/3
=
∏
qαq‖d

(
αq + 1

qαq/3

)
.

The factors on the right above are all < 1 if q ≥ 11, just because in that
case qα ≥ 11α ≥ (α + 1)3 for all α ≥ 1. For q ∈ {2, 3, 5, 7} and positive
integers α, we have that

α+ 1

2α/3
≤ 2,

α+ 1

3α/3
< 1.45,

α+ 1

5α/3
< 1.17,

α+ 1

7α/3
< 1.05.

This analysis and the fact that 2× 1.45× 1.17× 1.05 < 1.79 shows that

τ(d) < 1.79 d1/3 < 1.79 p1/3.

We thus get that

0.99 p <
∑
q≤p

log q ≤ (p1/2τ(d) + 1) log p < (1.79p5/6 + 1) log p,

an inequality which implies that p < 5 · 109. Finally we obtain the desired
result.

Lemma 9. Lemma 8 holds for p > 5 · 109.

It remains to cover the range [13, 5 · 109] for p. In a few minutes with
Mathematica we compute for all p ∈ [13, 30000], that

lcm[op(q) : q < p] > p,

so we may assume that p > 30000. In the interval [100, 1000] there are 27
primes numbers q such that 2q + 1 is also prime. They are the following:

{113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431,

443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953} .

Let p > 30000 and consider one of the primes 2q+ 1 with q in the above set.
The order of p modulo 2q+ 1 is a divisor of 2q, so it is 1, 2 or a multiple of
q. If it is 1 or 2, then q divides p− 1 or p+ 1. Since q > 100 and p < 1010,
there are at most four values of q for which it can be a divisor of p− 1 and
at most four values of q for which it can be a divisor of p + 1. Thus, there
are at least 19 values of q for which the order of p modulo q is a multiple of
q. Hence,

lcm[op(q) : q < p] > 10019 = 1038 > 1010 > p,

which finishes the proof.
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