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6 AFFINE G2 CENTRALIZER ALGEBRAS

LILIT MARTIROSYAN AND HANS WENZL

Abstract. We show that EndU(Vλ ⊗ V
⊗n) is generated by the affine braid group ABn

where U = Uqg(G2), V is its 7-dimensional irreducible representation and Vλ is an arbitrary
irreducible representation.

It is well-known that the famous Schur-Weyl duality between the general linear group
Gl(N) and the symmetric group Sn extends to a duality between quantum groups of classical
Lie types and the braid group Bn, acting on tensor powers of the vector representations
(see [7], [18]). More recently, this has also been shown for the 7-dimensional representation
V of Lie type G2. More precisely, if U = Uqg(G2) is the Drinfeld-Jimbo quantum group,
then EndU(V ⊗n) is generated by the image of the braid group Bn acting on V ⊗n via R-
matrices; this was shown by Lehrer and Zhang [13] and Morrison [16], using earlier results
by Kuperberg [10], [11] and Schwarz [19]. If V is the smallest nontrivial representation of
Lie type EN , N = 6, 7, a similar results holds as well; one only needs to add one additional
generator in the (N − 1)st tensor power to the R-matrices, see [24].

In the current paper we consider the decomposition of tensor powers Vλ ⊗ V ⊗n, where
Vλ is an arbitrary irreducible representation of Uqg(G2). It is well-known that the R-matrix
formalism now allows a representation of the affine braid group ABn into EndU(Vλ ⊗ V ⊗n);
here ABn is the braid group for the Coxeter graph Bn. The main result of this paper is to
show that this map is surjective. In particular, we retrieve the aforementioned results in the
special case where Vλ is the trivial representation. Besides its intrinsic interest, these results
should also be useful for categorifying the Lie algebra of type G2. We learned about this from
Catharina Stroppel, who suggested working on these questions.

Our approach is quite different from the ones in the previously mentioned papers. It is
based on the well-known (quantum) Jucys-Murphy approach and its generalizations in [12]
and [24]. We expect that it might be useful also for studying at least parts of tensor powers
of adjoint representations of exceptional Lie types.

In more detail, we review necessary tools from the study of quantum groups in the first
section. We then study the case involving the 7-dimensional representation of G2 in the second
section. In particular, we prove the result mentioned in the abstract. In the third section,
we use our approach to calculate certain structure coefficients in some of the relations in our
algebra. We then close with a discussion of using the approach in this paper for other Lie
types.
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1. Quantum groups

1.1. Littelmann paths. Let g be a semisimple Lie algebra, and let U = Uqg be the corre-
sponding Drinfeld-Jimbo quantum group. The reader not familiar with Uqg should be able
to read this section by just replacing Uqg by g. Let λ be a dominant integral highest weight
of g, and let Vλ be the corresponding simple representation of Uqg. We also assume that V
is a simple representation of U all of whose weights have multiplicity 1. This allows us to
give a fairly simple description of EndU(Vλ ⊗ V ⊗n) via paths. This can be viewed as a slight
variation of a special case of Littelmann paths (see [14]); the latter formalism could be used
to give similar descriptions for arbitrary V . The simpler version here has been known much
longer, see e.g. [20] and references there.

For given dominant integral weight λ and n ∈ N, we define the set P(n, λ) to be the set of
all paths

t : λ = λ(0) = t(0) → λ(1) = t(1) → ... → λ(n−1) = t(n− 1) → λ(n) = t(n),

where the λ(i)’s are dominant integral weights such that

Vλ(i+1) ⊂ Vλ(i) ⊗ V.

Note that by our assumptions on V , the module Vλ(i+1) appears at most with multiplicity

one in Vλ(i) ⊗ V . If V contains the zero weight, two consecutive weights λ(i) and λ(i+1) may
coincide. The following theorem is well-known, and it can be easily proved by induction on
n.

Theorem 1.1. We have a direct sum decomposition of U-modules given by

Vλ ⊗ V ⊗n =
⊕

µ

m(µ, n)Vµ,

where the multiplicity m(µ, n) is given by the number of paths in P(n, λ) which end in µ. In
particular, we have

C(n, λ) = EndU(Vλ ⊗ V ⊗n) ∼=
⊕

µ

Mm(µ,n),

where Mk are the k × k matrices.

Remark 1.2. Let t ∈ P(n, λ). Then we denote by t′ the path in P(λ, n − 1) obtained by

removing λ(n)

Corollary 1.3. There exists an assignment t ∈ P(n, λ) 7→ pt ∈ C(n, λ) = EndU(Vλ ⊗ V ⊗n)
such that ptV

⊗n is an irreducible g-module with highest weight t(n), and such that ptps = δtspt.
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The idempotents pt are uniquely defined by the properties above and the following one: If
s ∈ P(n− 1, λ), we have

ps =
∑

t, t′=s

pt.

One checks easily that z
(n)
µ =

∑
t∈P(n,λ)(µ) pt is a central idempotent in C(n, λ) = EndU(Vλ⊗

V ⊗n). Consider the subalgebra C(n−1, λ)⊗1 ⊂ C(n, λ); if no confusion arises we will usually

denote the latter algebra only by C(n − 1, λ). Let W
(n)
ν be a simple C(n, λ)-module labeled

by the dominant weight ν. Then we have the following isomorphism of C(n− 1, λ)-modules:

(1.1) W (n)
ν

∼= ⊕µW
(n−1)
µ ,

where µ runs through all highest weights in V ⊗(n−1) such that Vν ⊂ Vµ ⊗ V . Keeping with
the notation of Section 1.1, we may also refer to this situation as ν being connected with µ
by a path of length 1.

By definition, we can define a basis (vt)t∈P(n,λ)ν for the simple C(n, λ)ν -moduleW
(n)
ν labeled

by all paths of length n in P(n, λ) which end in ν. here the vector vt spans the image of pt for
each t ∈ P(n, λ)(ν) and it is uniquely determined up to scalar multiples. Let δ, ν be dominant
weights for which Vδ ⊂ V ⊗n−k and Vν ⊂ V ⊗n, and let Pk(δ, ν) be the set of all paths of length
k from δ to µ, with paths as defined in Section 1.1. Let W (δ, ν) be the vector space spanned
by these paths. Then we obtain a representation of C(k, λ) = EndU(Vλ ⊗V ⊗k) on W (δ, ν) by

(1.2) a ∈ End(V ⊗k) 7→ (pt ⊗ a)z(n)ν ;

here we used the obvious bijection between elements s ∈ Pk(δ, ν) and paths s̃ ∈ Pn(ν) for
which s̃|[0,n−k] = t.

1.2. Generating EndU(Vλ ⊗ V ⊗n). In order to find a generating set for EndU(Vλ ⊗ V ⊗n)
we will use a simple lemma as follows. Fix a dominant weight ν such that Vν ⊂ Vλ ⊗ V ⊗n.

Let µ1, µ2 be dominant weights such that W
(n−1)
µi ⊂ W

(n)
ν for i = 1, 2, with notations as in

Eq 1.1. We say that µ1 is equivalent to µ2 if there exists a dominant integral weight δ such
that Vµi

⊂ Vδ ⊗ V for i = 1, 2 and Vδ ⊂ V ⊗n−2, and an element a ∈ EndU(V ⊗2) such that all
the matrix coefficients of a, acting on the path space labeled by the elements of P2(δ, ν) are
nonzero.

Lemma 1.4. Assume that for given W
(n)
ν all the dominant weights µ in Eq 1.1 are equivalent

in the sense just defined. Then the algebra C′
n generated by Cn−1 and 1Vλ⊗V ⊗n−2 ⊗EndU(V ⊗2)

acts irreducibly on W
(n)
ν . In particular, if this holds for all ν for which Vν ⊂ Vλ ⊗ V ⊗n, then

the algebra C′
n coincides with Cn.

Proof. AssumeW is a nonzero C′
n submodule of W

(n)
ν . Then it suffices to show that it must

coincide with the right hand side of Eq 1.1 if viewed as a Cn−1 module. Assume to the contrary

that there exists a µ1 such that W
(n−1)
µ1 6⊂ W . As µ1 is equivalent to any C′

n−1 submodule

of W , by assumption, we can find a µ2 such that W
(n−1)
µ2 ⊂ W , a dominant weight δ and an
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a ∈ EndU(V ⊗2) which satisfy the conditions of equivalence, as stated at the beginning of this

section. But then, in particular, 1Vλ⊗V ⊗n−2 ⊗ a does not map W
(n−1)
µ2 into W ; just apply it

to a basis vector vt for which t(n − 1) = µ1 and t(n − 2) = δ. Hence W is not a C′
n-module.

This proves the first claim of the statement. This also implies the second statement, as we

have a faithful representation of Cn on the direct sum of all W
(n)
ν labeled by the νs for which

Vν ⊂ Vλ ⊗ V ⊗n.

1.3. Quantum groups. We assume as ground ring the field Q(q) of rational functions in the
variable q; most of the results hold in greater generality (e.g. if q is a complex number not
equal to a root of unity or 0). It is well-known that in our setting the category Rep(U) of
integrable representations of U is semisimple, and it has the same Grothendieck semiring as
the original Lie algebra. Moreover, Rep(U) is a braided tensor category. This implies that for
U-modules V , W , there are natural braiding isomorphisms RVW : V ⊗W → W ⊗ V which
satisfy

(1.3) RU,V⊗W = (1V ⊗RUW )(RUV ⊗ 1W ),

where U, V,W are U-modules; a similar formula holds for RU⊗V,W . Let Bn be Artin’s braid
groups, given by generators σi, 1 ≤ i ≤ n − 1 and relations σiσi+1σi = σi+1σiσi+1 as well as
σiσj = σjσi for |i− j| ≥ 2. Moreover, let ABn be the affine braid group, where we add to the
generators of Bn the additional generator τ , and the additional relations

σ1τσ1τ = τσ1τσ1 and σiτ = τσi, for i > 1.

Equivalently, ABn is the braid group of Dynkin type Bn; we shall not use this notation again,
so Bn will denote the braid group in the rest of this paper. We obtain, for any U-module V ,
a representation of Artin’s braid group Bn in End(V ⊗n) by the map

σi 7→ Ri = 1i−1 ⊗RV V ⊗ 1n−1−i ∈ Cn = EndU(V ⊗n),

where 1j is the identity map on V ⊗j. Similarly, if Vλ is a simple highest weight module
of U, we can extend the just defined representation of Bn to a representation of ABn in
EndU(Vλ ⊗ V ⊗n) by

τ 7→ RV,Vλ
Rvλ,V ⊗ 1n−1 ∈ EndU(Vλ ⊗ V ⊗n),

and where the action of the σ′
is is given by the previously defined representation with the

obvious embedding of EndU(V ⊗n) into EndU(Vλ ⊗ V ⊗n).
As we also have a faithful representation of C(n, λ) with respect to the basis (vt), with

t ∈ P(n, λ), we also obtain a representation of ABn on this path basis. In particular, we
obtain matrices Ai such that

(1.4) σi 7→ Ai : t →
∑

s

a
(i)
st s.

If t ∈ P(n, λ)(µ), then so are the paths s in the equation above. Moreover, it follows from
Eq. 1.2 that the paths s differ from t only in the interval [i − 1, i + 1]. Because of this we
shall often only consider spaces Wi(λ, ν) with a basis consisting of paths of length 2 from
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λ = t(i − 1) to ν = t(i + 1). Equation 1.4 induces an obvious action of Ai on Wi(λ, ν). We
will call the corresponding matrix block Ai(λ, ν). If there is no danger of confusion, we will
often suppress the index i in Wi(λ, ν) and Ai(λ, ν). We shall also need the following theorem,
due to Drinfeld [5].

Proposition 1.5. Let Vλ, Vµ, VΛ = V be simple U-modules with highest weights λ, µ,Λ re-
spectively, and such that Vµ is a submodule of Vλ ⊗ VΛ. Then

(RVλVΛ
RVΛVλ

)|Vµ
= qcµ−cλ−cΛ1Vµ ,

where for any weight γ the quantity cγ is given by 〈γ + 2ρ, γ〉.

1.4. Representations of AB2. In the following we consider representations of the affine
braid group AB2 on a finite dimensional vector space W . In more detail, we consider matrices
A and T which act on W and which satisfy the following conditions:

a) They satisfy the braid relation ATAT = TATA,
b) The matrix A satisfies the relation A − A−1 = (q − q−1)(1 − mP ), where m = (r −

r−1)/(q − q−1), and where P is a rank 1 eigenprojection of A.
c) The central element TATA acts as the identity on W .

d) We assume that T is a diagonal matrix with eigenvalues qe(t) where t runs through a
labeling set for a basis of W .

Proposition 1.6. (a) The matrix entries of A and P are related by the equation

(1− qe(t)+e(s))ats = (q − q−1)δts − (r − r−1 + q − q−1)pts.

(b) The diagonal entry ds = pss is equal to zero only if e(s) = ±1.

Proof. The proofs of these statements are variations of the proofs of [24] Lemma 4.1 and
Lemma 4.3. For (a), just observe that by our assumption (c) we have A−1 = TAT . The claim
now follows by plugging this expression for A−1 into assumption (b).

To prove part (b), we write the rank 1 idempotent P in the form P = vwT for appropriate
column vectors v and w. Multiplying the equation in assumption (b) by P , we deduce that the
eigenvalue corresponding to P is equal to r−1. It follows that Av = r−1v and wTA = r−1wT .
If pss = 0 for some index s, it follows that the s-th row or the s-th column of P is equal to
zero. The same applies to A except for the diagonal entry ass, by (a). But then ass must be
an eigenvalue of A. If ass = q, we deduce from (a) that e(s) = −1. Similarly, ass = −q−1

implies that e(s) = 1. Finally, if ass = r−1, then the s-th standard basis vector would be a
left eigenvector (or its transpose a right eigenvector) of A which would be different from v
resp. w. This would contradict the fact that the eigenvalue r−1 has multiplicity 1.

Corollary 1.7. Assume that the eigenvalues qe(t) of T are mutually distinct, and none of
them is equal to q±1. Then the representation of AB2 on W is indecomposable.
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Proof. It suffices to show that A and T generate the full matrix algebra over W . We get
the diagonal matrix entries Ess as eigenprojections of T , and the off-diagonal matrix entries
Est as

1
pst

EssPEtt. As P is a rank 1 idempotent, its entries pst and pts are nonzero because

pstpts = pssptt 6= 0.

Lemma 1.8. (q-Murphy-Jucys approach) Assume now that AB2 acts on a two-dimensional
vector space W on which A satisfies the relation A − A−1 = (q − q−1)1. Moreover, T has

the two distinct eigenvalues q±e(t) such that TATA = 1. Then A has non-zero off-diagonal
matrix entries, except possibly if T = 1.

Proof. It follows as in the proof of Proposition 1.6 that

(1− qe(t)+e(s))ats = (q − q−1)δts.

By assumption, we have e(s) + e(t) = 0 for the two basis paths s and t, and e(s) 6= 0. It

follows that ass = (q − q−1)/(1 − q2e(s)). A similar formula also holds for att. If P now is
the eigenprojection of A for, say, q, we have P = (A+ q−11)/(q + q−1). We deduce from this
that the diagonal entries of P are nonzero and, as P is a rank 1 idempotent, so are also its
off-diagonal entries. As A = qP − (q + q−1)1, the same also holds for the off-diagonal entries
of A.

1.5. Let now U = Uqg be a Drinfeld-Jimbo quantum group, and let V , Vλ be simple Uqg-
modules, with λ being the highest weight for Vλ. We would like to apply the results from
the previous section for certain representations of AB2 appearing in EndU(Vλ ⊗ V ⊗2). More
precisely, let Vν ⊂ Vλ⊗V ⊗2 be an irreducible Uqg module. Observe that W = HomU(Vν , Vλ⊗
V ⊗2) is a vector space whose dimension is equal to the multiplicity of Vν in Vλ ⊗ V ⊗2. Using
notations of Section 1.3, we can make W into an AB2-module by mapping

A 7→ α−1(1⊗RV,V ), T 7→ γ(RV,Vλ
RVλ,V ⊗ 1),

acting via concatenation of morphisms on W ; here α and γ are scalars which will be fixed
below as follows:

1. We assume that ν is such that A has at most three distinct eigenvalues. Moreover, α is
chosen such that two of these eigenvalues are q and −q−1. The third eigenvalue, denoted by
r−1 has multiplicity 1 in W .

To check this in practice, assume V ⊗2 = ⊕κVκ. Then, for a fixed κ, the eigenprojection of
A corresponding to κ has multiplicity 1 on W if and only if Vν appears with multiplicity 1 in
Vλ ⊗ Vκ ⊂ Vλ ⊗ V ⊗2.

2. We assume γ is chosen such that TATA = 1.

Lemma 1.9. Let Vλ ⊗ V =
⊕

t Vµt , and fix a dominant weight ν such that Vν ⊂ Vλ ⊗ V ⊗2.
Then there exist scalars α and γ such that the assumptions above are satisfied, and such that
the eigenvalues of T are given by qe(t), where

2e(t) = 2cµt − cλ − cν + 2eα;
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here eα is given by α = qeα, and cκ is given by

cκ = (κ+ 2ρ, κ)

for any weight κ, with ρ being half the sum of the positive roots of g.

Proof. This is a straightforward consequence of properties of R-matrices. Let A′ = 1⊗RV,V

and T ′ = RV,Vλ
RVλ,V ⊗ 1, acting on Vλ ⊗ V ⊗2. By Prop 1.5, T ′ acts on the vector vt

corresponding to the path t : δ → µt → ν by the scalar qc(t)−cV −cδ , where c(t) and cV are
the values of the Casimir for Vµt and V . By the braiding axiom 1.3 the element A′T ′A′ =

RV ⊗2,Vλ
RVλ,V ⊗2 acts on Vν ⊂ Vµt ⊗ V ⊂ Vλ ⊗ V ⊗2 by the scalar qcν−c(t)−cV . It follows that

T ′A′T ′A′ acts by the scalar qcν−cλ−2cV . So if A = q−eαA′ and T = qeα+cV +(cδ−cν)/2T ′, we get
the desired identity TATA = 1. The values of the eigenvalues of T follow from the formulas
in this proof.

1.6. Rough gradation of tensor products. We assume V to be a self-dual representation
of a quantum group. Using semisimplicity of our representation category, we decompose the
tensor product Vλ ⊗ V ⊗n as

Vλ ⊗ V ⊗n = (Vλ ⊗ V ⊗n)old ⊕ (Vλ ⊗ V ⊗n)recent ⊕ (Vλ ⊗ V ⊗n)new;

here (Vλ ⊗ V ⊗n)new is the maximum direct sum of simple representations which have not
appeared in any lower tensor product, (Vλ ⊗ V ⊗n)recent is the maximum direct sum of simple
representations which have appeared in the Vλ⊗V ⊗n−1 for the first time, and (Vλ⊗V ⊗n)old is
the maximum direct sum of simple representations which have already appeared in Vλ ⊗ V ⊗k

for k < n− 1. We have the following result (see e.g. [24], Prop. 4.10; the proof there for the
case λ = 0 works as well in this more general setting):

Proposition 1.10. The algebra EndU(Vλ ⊗ V ⊗n)old is generated by the restrictions to (Vλ ⊗
V ⊗n)old of EndU(Vλ ⊗ V ⊗n−1) ⊗ 1 and 1Vλ⊗V ⊗n−2 ⊗ Q, where Q is the projection onto the

trivial representation 1 ⊂ V ⊗2.

Remark 1.11. The proof uses Lemma 1.4 by showing that the matrix coefficients of the pro-
jection Q for suitable path bases are nonzero.

2. The example G2

2.1. Example. We will be particularly interested in the case with g = g(G2) and V its simple
7-dimensional representation. We first recall some basic facts about its roots and weights.

With respect to the orthonormal unit vectors ε1, ε2, ε3 of R3, the roots of g can be written
Φ = ±{ε1−ε2, ε2−ε3, ε1−ε3, 2ε1−ε2−ε3, 2ε2−ε1−ε3, 2ε3−ε1−ε2}. The base can be chosen
Π = {α1 = ε1 − ε2, α2 = −ε1 + 2ε2 − ε3}. The Weyl vector is given by ρ = 2ε1 + ε2 − 3ε3
and the Weyl group is D6. The fundamental dominant weights are given by ∆ = {Λ1 =
ε1 − ε3,Λ2 = ε1 + ε2 − 2ε3}.

The following is the Weyl chamber:
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Weyl Chambre for g

2Λ1

3Λ1

4Λ1

5Λ1

6Λ1

7Λ1

2Λ1 + Λ2

3Λ1 + Λ2

4Λ1 + Λ2

5Λ1 + Λ2

2Λ1 + 2Λ2

3Λ1 + 2Λ2

2Λ2

3Λ2

Λ1 + 2Λ2

Λ1 + 3Λ2

0

Λ2

Λ1

Λ1 + Λ2

We have, for any g-module M , and for any simple g-module Vδ that

multM⊗V Vδ =
∑

µ

multM Vµ,

where the sum is over all µ such that Vδ ⊂ Vµ ⊗ V with V = VΛ1 . We will use this simple
observation for M = Vλ ⊗ V ⊗n−1 or M = V ⊗n−1.

Proposition 2.1. We have Vδ ⊂ Vµ ⊗ V if δ = µ + ω, where ω 6= 0 is a short root (nonzero
weight) of g or if δ = µ such that δ = aΛ1 + bΛ2 with a ≥ 1.

Remark 2.2. The tensor product rules can be easily visualized as follows: Consider the hexagon
centered at µ and with corners µ + ω, with ω running through the short roots of g. If this
hexagon is contained in the dominant Weyl chamber C, then Vµ ⊗ V decomposes into the
direct sum of irreducibles g-modules whose highst weights are given by the corners and the
center of the hexagon. If it is not contained in C, leave out all the corners of the hexagon
which are not in C; moreover, if µ = bω2, also leave out µ itself.

Using the proposition, we can draw the Bratteli diagram for V ⊗n.
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Bratteli diagram for V ⊗n

0

Λ1V

V
⊗2

V
⊗3

V
⊗4

0

0

0

Λ1

Λ1

Λ1

Λ2

Λ2

Λ2

2Λ1

2Λ1

2Λ1

Λ1 + Λ2

Λ1 + Λ2

3Λ1

3Λ1 2Λ2 2Λ1 + Λ2 4Λ1

Example 2.3. We let V be the 7-dimensional irreducible representation, V = VΛ1 with Λ1

being the first fundamental weight. We then get

V ⊗2 ∼= (1⊕ V2Λ1)⊕ (V ⊕ VΛ2).

Here the first two summands span the symmetrization, and the third and fourth summand
span the antisymmetrization of V ⊗2. We normalize the invariant product on the weight
lattice such that (Λ1,Λ1) = 2 and (Λ2,Λ2) = 6. With these conventions we get the val-
ues cν = 0, 28, 12, 24 for ν = 0, 2Λ1,Λ1,Λ2. Hence the eigenvalues of RV,V are given by
q−12, q2,−q−6 and −1. So if α = q, A = α−1RV,V has the desired eigenvalues q and −q−1

for the representations V2Λ1 and VΛ2 . As we shall see in a moment, it will be convenient
to associate with P the eigenprojection of A projecting onto V = VΛ1 ⊂ V ⊗2, which corre-
sponds to the eigenvalue −q−7. Indeed, let W = HomU(Vν , Vλ ⊗ V ⊗2) be as in Section 1.5
for U = Uqg(G2). Then P is the projection onto the subspace HomU(Vν , Vλ ⊗ VΛ1) of W ,
given by the embedding V ⊂ V ⊗2. As all weights of V have multiplicity 1, the projection P
has at most rank 1 in its action on W . Moreover, if ν 6= λ,

Vν 6⊂ Vλ ⊗ 1 ⊂ Vλ ⊗ V ⊗2.

This shows that the second condition in Section 1.4 is satisfied.

2.2. New and recent modules. In the following, we assume V to be as in the last section.
Moreover, let n(ν) be the smallest integer n for which Vν ⊂ Vλ ⊗ V ⊗n, for any dominant
integral weight λ. The following example will be important for the general case.
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Example 2.4. The dominant integral weights for G2 are given by ν = (ν1, ν2, ν3) with the νi
being integers satisfying ν1 ≥ ν2 ≥ 0 ≥ ν3 and ν1 + ν2 + ν3 = 0. Then n(ν) = ν1 + ν2, if Vλ is
the trivial representation. Indeed, the sum of the first two coordinates of a weight of V is at
most 1; hence the sum of the first two coordinates of a weight in V ⊗n is at most n. On the
other hand, it is easy to prove by induction on n and the tensor product rule, see Remark 2.2
and the proposition just before it, that if ν1 + ν2 = n for an integral dominant weight ν, then
Vν appears in V ⊗n.

Lemma 2.5. Let n0(ν) be the number as in Example 2.4, for Vλ being the trivial representa-
tion. Then the number n(ν) for the general case is given by n(ν) = n0(w(ν − λ)), where w is
the element of the Weyl group which maps ν − λ into the dominant Weyl chamber.

Proof. Let ω1 = (1, 0,−1) and ω2 = (0, 1,−1). Then ν = ν1ω1 + ν2ω2. The result of the
Example 2.4 can now be phrased as follows: There exists a path t from 0 to ν such that
t(i + 1) − t(i) ∈ {ω1, ω2} and Vt(i+1) ⊂ Vt(i) ⊗ V . For general λ, the same approach works
if ν − λ is in the dominant Weyl chamber by just shifting the path from 0 to ν − λ by λ.
If ν − λ is not dominant, we first build the path from λ to λ + w(ν − λ), with w as in the
statement. We then get the desired path from λ to ν by replacing the line segments ω1 and ω2

by w−1(ω1) and w−1(ω2), i.e. we reflect the path by w, with the fixed point of the reflection
group shifted to λ. This shows that n(ν) ≤ n(λ+w(ν − λ)). On the other hand, if there was
a shorter path from λ to ν, we could reflect it back to a shorter path from λ to w(ν − λ),
contradicting the result already established in this case.

2.3. Surjectivity. We can now prove one of the main results of this paper. We will first
need the following technical lemma.

Lemma 2.6. The quantity e(t) as in Lemma 1.9 is not equal to ±1 if δ 6= ν and if there is
more than one path from δ to ν.

Proof. Let Vν ⊂ Vδ ⊗ V ⊗2 be a simple subrepresentation, and let t be the path

t : δ → µt → ν, with βt = µt − λ, β̃t = ν − µt.

By Lemma 1.9 and Example 2.3 we have

e(t) = cµt −
1

2
(cδ + cν) + 1.

It follows from a straightforward calculation that this can also be expressed as

e(t) = (λ+ ρ, βt − β̃t)− (βt, β̃t) +
1

2
((βt, βt)− (β̃t, β̃t)) + 1.

In analyzing this, we will use the following observations:
(A) If β̃t 6= ±βt and both βt and β̃t are not equal to 0, then βt− β̃t is a (short or long) root.

Depending on whether this root is positive or negative, both (ρ, βt − β̃t) and (δ + ρ, βt − β̃t)
have the same sign (including 0), for any dominant weight δ. If δ 6= ν, we are left with the
following cases:
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Case 1: βt 6= 0 6= β̃t and βt + β̃t is a short root. In this case (βt, β̃t) = −1, βt − β̃t is a long
root and the formula for e(t) simplifies to

e(t) = (δ + ρ, βt − β̃t) + 2.

We check easily that (ρ, α) ∈ {±3,±6,±9}, for α a long root. Hence the only possibility for

e(t) = ±1 would come if (δ+ρ, βt− β̃t) = −3. By observation (A), this forces (ρ, βt− β̃t) = −3

and (λ, βt − β̃t) = 0. We deduce from this that βt − β̃t = (1,−2, 1) and hence either βt =

(1,−1, 0), β̃t = (0, 1,−1), or β̃t = (−1, 1, 0), βt = (0,−1, 1). Moreover,

0 = (δ, βt − β̃t) = δ1 − 2δ2 + δ3 = −3δ2.

But if δ2 = 0, δ + βt would not be a dominant weight in both cases.
Case 2: βt 6= 0 6= β̃t and βt + β̃t is a long root. In this case (βt, β̃t) = 1, βt − β̃t is a short

root and the formula for e(t) simplifies to

e(t) = (δ + ρ, βt − β̃t).

We check easily that (ρ, α) ∈ {±1,±4,±5}, for α a short root. Again, using observation (A),

it follows that (ρ, βt − β̃t) = ±1, and (δ, βt − β̃t) = 0. It follows that βt− β̃t = ±(1,−1, 0) and
δ1 = δ2. But then there is only one path from δ to ν, see e.g. Remark 2.2

Remaining cases: If one of the weights βt or β̃t is equal to 0, the formula for e(t) again
simplifies to one of the two versions in the two previous cases. The claim can be proven by
similar arguments as before. We leave this to the reader.

Theorem 2.7. Let V be the 7-dimensional irreducible representation of G2, and let Vλ be
an irreducible representation with highest weight λ. Then the image of the affine braid group
ABn generates EndU(Vλ ⊗ V ⊗n) for all n ∈ N.

Proof. The proof goes by induction on n. For n = 1, we need to show that T generates
EndU(Vλ⊗V ). By Prop. 1.5, T acts via the scalar q2cµ−cλ−cV on the submodule Vµ ⊂ Vλ⊗V .
The claim follows as soon as we can show that cµ1 6= cµ2 for µ1 6= µ2. Observe that if
Vµi

⊂ Vλ ⊗ V , we can write µi = λ+ ωi for suitable weights ωi of V , for i = 1, 2. Now

cµ1 − cµ2 = 2(λ+ ρ, ω1 − ω2) + (ω1, ω1)− (ω2, ω2).

If both ω1 and ω2 are nonzero, the second and third summands on the right hand side cancel.
The claim now follows from the fact that ω1 − ω2 is a root. One similarly shows the claim if
one of the ωi’s is equal to 0, except possibly when λ1 = λ2. But in this case Vλ 6⊂ Vλ ⊗ V , so
there is no second path for which T would have the same eigenvalue. This proves the claim
for n = 1.

Observe that for the induction step, it suffices to show for each module W
(n)
ν that the

conditions of Lemma 1.4 are satisfied. Using notations just in front of that lemma, this means
we have to show that µi’s are equivalent for any dominant weight µi for which Vµi

⊂ Vλ⊗V ⊗n−1

and for which Vν ⊂ Vµi
⊗ V .

In view of Prop. 1.10, it suffices to show this for the recent and new part of the tensor
product. Let Vν be an irreducible representation in that part, and let Vδ be any irreducible in
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Vλ ⊗ V ⊗n−2. Then δ 6= ν, as otherwise n(ν) = n(δ) ≤ n− 2, contradicting our assumption on
Vν . It remains to deal with the following two cases, as in the proof of Lemma 2.6. In order to
simplify notation, let us first assume that ν − λ is in the dominant Weyl chamber.

Case 1: Vν is in the recent part, i.e. n(ν) = n − 1. The idea is to show that the matrix
entries of P are non-zero using Proposition 1.6. We have

W (n)
ν

∼=
⊕

µ

W (n−1)
µ ,

where µ ranges over all dominant weights with n(µ) ≤ n−1 such that Vν ⊂ Vµ⊗V . It is easy
to check, using Example 2.4, that µ is contained in the set

{ν, ν ± (ω1 − ω2), ν − ω1, ν − ω2},

where ω1 and ω2 are as in the proof of Lemma 2.5. Geometrically, µ is either the center, or
one of the corners in the lower half (including the separating line ν + t(ω1 − ω2), t ∈ R) of
the hexagon centered at ν. Taking δ = ν − ω1, we get the equivalence (in the sense used in
Lemma 1.4) of the weights ν, ν−ω1, ν−ω2 and ν−ω1+ω2, by Prop. 1.6 and Lemma 2.6. The
equivalence of ν + ω1 − ω2 with these weights is established in the same way, for δ = ν − ω2.
If ν is close to the boundary of the dominant Weyl chamber, some of these µ’s may not exist.
However, the criteria for the remaining paths would still be satisfied.

Case 2: If n(ν) = n, we can only take the subset of µ’s from case 1 for which n(µ) = n− 1.
These would be µ = ν−ω1 and µ = ν−ω2, which forces δ = ν−ω1 −ω2. Then we can again
use Lemma 1.4 together with Lemma 1.8 and Lemma 2.6.

General case: Let Wλ be the reflection group generated by the hyperplanes going through
λ which are orthogonal to the roots. Obviously, Wλ

∼= W , the Weyl group. Moreover, let
w ∈ Wλ be such that w(ν) is in the dominant Weyl chamber, shifted by λ. Then the discussion
in Cases 1 and 2 does apply to w(ν). Moreover, by Lemma 2.5 we have n(ν) = n(w(ν)). The

combinatorics about the decomposition of W
(n)
ν can hence be deduced from the one of W

(n)
w(ν).

Essentially, the only difference is that we take the half of the hexagon centered at ν which is
closest to λ, in case 1. All the other steps in the proof will be the same. Similar reasoning
also works in the much easier case 2.

3. Structure Coefficients

There exists an attractive graphical description of EndU(V ⊗n) in terms of spiders, see
[11]. At this point, we do not have a similarly satisfactory description of EndU(Vλ ⊗ V ⊗n).
However, as a consequence of our approach, we are able to calculate certain relations such as
e.g. the one in Prop. 3.1, (c).

3.1. Graphical Calculus. We are going to use graphical calculus as in e.g. [17], [21] or
[9]. Here R-matrices are, as usual, given by crossing strands, and the element T is given by
wrapping a string labeled by V around a string labeled by Vλ. We also describe the mappings
i : V → V ⊗2 and d : V ⊗2 → V by the following trivalent graphs
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i= d=

which are normalized such that d ◦ i = −([7] − 1) 1V = −(q2 + q−2)(q + 1 + q−1)1V .

Proposition 3.1. We have the following relations:
(a) The eigenvalue of T for Vλ+ω ⊂ Vλ ⊗ V , with ω a weight of V , is given by q2(λ+ρ,ω)−10

for ω 6= 0, and by q−12 for ω = 0.
(b) The endomorphism of Vλ given by the picture

is given by the following scalar, where the summation goes over the elements of the Weyl group

d =

∑
w ε(w)q(λ+ρ,w(Λ1+ρ))

∑
w ε(w)q(λ+ρ,w(ρ))

.

(c) The eigenvalue of the endomorphism (1 ⊗ d)(RV,Vλ
RVλ,V ⊗ 1)(1 ⊗ i) of Vλ ⊗ V for

Vν ⊂ Vλ ⊗ V , ν 6= λ, given by the picture below is equal to c(λ, ν), as in Lemma 3.3.

Proof. Claim (a) follows from Prop. 1.5. Statement (b) is well-known in quantum topology.
See e.g. [21], [17] and for an explicit calculation of the entries of the S-matrix e.g. [22].
Statement (c) will follow from Lemma 3.3, which will be proved in the following sections.

3.2. Matrix coefficients of P . We consider representations of the affine braid group AB2

as in Section 1.4. In particular, we denote by P the rank 1 eigenprojection belonging to the
third eigenvalue r−1 = −q−7 of A, and T is given as a diagonal matrix T = diag(qe(t)), with
e(t) as in the proof of Lemma 2.6; this differs from the values in Prop. 3.1 by a constant
factor for each representation W = Wν = Hom(Vν , Vλ ⊗ V ⊗2). However, this does not have
any effect on the result we need. The following lemma can be considered a version of [24],
Prop 5.7.

Lemma 3.2. Let ds be the diagonal entry of P with respect to the path s. Assume that∏
t q

e(t) = −rq−1. Then ds is given by

ds =
[e(s) + 1]

1− [7]

∏

t6=s

[(e(s) + e(t))/2]

[(e(s) − e(t))/2]
.
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Proof. One proceeds as in the proof of [24], Prop 5.7. Basically, we express the coefficients
of A in terms of the ones of P , see Prop. 1.6, and plug this into the equation AP = r−1P ,
where r = −q7, see Example 2.3. We only have to make the following adjustment: It was
claimed there that

∏
qe(t) = rq. However, looking at the proof more carefully, one sees that

there is a second possibility, namely
∏

t q
e(t) = −rq−1 (indeed, the equation ds − d̄s = 0 gives

a quadratic equation for
∏

t q
e(t) with two solutions). Proceeding under this assumption as in

that proof, we obtain the formula for ds as claimed in the statement.

3.3. G2-representations. We now apply the results from the previous section to the repre-
sentations in connection with G2. Let β, β1 and β2 be nonzero weights of the 7-dimensional
representation V such that β1 + β2 = β. If we set ν = λ + β, we have four paths of length
2 from β to ν, with the middle weight µt running through λ, λ + β1, λ + β2 and λ + β. We
define the scalar c(λ, β) by (1− [7]) PTP = c(λ, β)P . As T = diag(qf(t)), with f(t) as given
in Prop. 3.1,(a),

c(λ, ν) = (1− [7])
∑

t

qf(t)dt.

Lemma 3.3. The coefficient c(λ, ν) is given by

c(λ, ν) = q−5 [(q + q−1)(q2(λ+ρ,β1) + q2(λ+ρ,β2)) + q2(λ+ρ,β)+1 + q−1].

P roof. Using the second formula for e(t) in the proof of Lemma 2.6, one checks that∑
e(t) = 6; indeed, it suffices to observe that interchanging βt with β̃t describes another path

in that sum. Using this and r = −q7, it follows from Lemma 3.2 that

(1− [7])
∑

s

qe(s)ds =
∑

s

qe(s)[e(s) + 1]
∏

t6=s

[(e(s) + e(t))/2]

[(e(s)− e(t))/2]
.

We obtain, aided by computer software, that this is equal to

q7
∑

t

[e(t)].

Observe that by Prop 1.5 or Prop. 3.1,(a), the eigenvalues qf(t) of T are given by f(t) =
cµt − cλ − cV . Hence, in order to get c(λ, ν), we have to multiply the expression above by

qf(t)−e(t) = q(cν−cλ)/2−cV −1 = q(λ+ρ,β)−12. We obtain the claimed result after simplifying the
sum, using the second formula for e(t) in the proof of Lemma 2.6.

Remark 3.4. We can express all the constants in the relations in this section as rational
functions in q, r1 and r2, where ri = qλi , i = 1, 2. This can be seen either by interpolating
the formulas for integral dominant weights λ, or doing the same calculations for arbitrary
weights λ with Vλ being the Verma module for that weight. It would be desirable to define a
generic quotient of the affine braid group just in terms of relations involving these variables,
independently of λ.
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3.4. General discussion. Our method was based on the fact that braid representations for
which the generators only have three distinct eigenvalues can be studied via an extension of
the Jucys-Murphy approach. So under suitable conditions the tensor product rules essentially
determine the braid representation. We give here a brief informal discussion how this can be
used for other exceptional Lie types:

(a) The EN series in [24]. Here the module V was chosen to be the fundamental module
corresponding to the vertex in the Dynkin diagram EN furthest from the triple point for
N > 5, N 6= 9. Path representations of braid groups were defined for a combinatorially
defined summand V ⊗n

new ⊂ V ⊗n. For N < 9 this indeed corresponds to the part of the
tensor product as defined in this paper. One can deduce from this a two-parameter family of
braid representations which contain the Hecke algebra and BMW -algebra representations as
quotients. As an application, it was shown that for N = 6, 7 the image of the braid group Bn

and one additional element generate EndU(V ⊗n), with U = Uqg(EN ).
(b) We have made additional studies regarding representations of F4. If V is the represen-

tation of dimension 26, one can show that the braid representation into EndU(V ⊗n
new) factors

through the BMW -algebra quotient for the vector representation of the symplectic quantum
group Uqg(C3) (see [1], [15] and [23]). If one takes for V the adjoint representation, one
again obtains braid representations into EndU(V ⊗n

new) for which the generators only have three
eigenvalues. They seem to be related to the EN -series, but more complicated.

(c) One of the motivations for this study was the proposed exceptional series of Vogel and
Deligne. These authors observed a certain uniform behavior for the decomposition of small
tensor powers of the adjoint representations of Lie algebras of exceptional Lie type. Here
again the braid representations in the new part of these tensor powers have the property that
the braid generators satisfy a cubic equation. We expect that techniques in [24] and in this
paper should be useful to establish a uniform behavior for a significant part of arbitrarily
large tensor powers.
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