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CYCLOTOMIC DISCRIMINANTAL ARRANGEMENTS

AND DIAGRAM AUTOMORPHISMS OF LIE ALGEBRAS

ALEXANDER VARCHENKO AND CHARLES YOUNG

Abstract. Recently a new class of quantum integrable models, the cyclotomic Gaudin models,
were described in [VY14a, VY14b]. Motivated by these, we identify a class of affine hyperplane
arrangements that we call cyclotomic discriminantal arrangements. We establish correspondences
between the flag and Aomoto complexes of such arrangements and chain complexes for nilpotent
subalgebras of Kac-Moody type Lie algebras with diagram automorphisms.

As a byproduct, we show that the Bethe vectors of cyclotomic Gaudin models associated to
diagram automorphisms are nonzero.
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1. Introduction and overview

It is known that the theory of Knizhnik-Zamolodchikov (KZ) equations and Gaudin models is
closely related with the theory of arrangements of hyperplanes. For example, KZ equations were
solved in multidimensional hypergeometric integrals associated with a family of discriminantal ar-
rangements [SV91]; the Kohno-Drinfeld theorem [Ko87, Dr90a, Dr90b], describing the monodromy
of KZ equations in terms of quantum groups, was given a geometric proof in [Var95], where the
homology groups of the complements to the discriminantal arrangements were described in terms
of quantum groups; the Bethe vectors in the Gaudin models were constructed in terms of the com-
binatorics of discriminantal arrangements and were labeled by critical points of master functions
associated with these arrangements [BF94, RV95, SV91].

The foundations for these relations were laid in [SV91]. In that paper, discriminantal arrange-
ments of hyperplanes were defined, and the geometric objects of those arrangements were related
to homology of nilpotent subalgebras of Kac-Moody type Lie bialgebras.

Recently a class of cyclotomic Gaudin models was introduced in [VY14a, VY14b]. We expect that
the cyclotomic models will also have close relations with the theory of arrangements of hyperplanes.
In this paper we take the first step in this direction. We identify a new class of arrangements of
hyperplanes that we call cyclotomic discriminantal arrangements, and establish correspondences
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2 ALEXANDER VARCHENKO AND CHARLES YOUNG

between the flag and Aomoto complexes of such arrangements and chain complexes for nilpotent
subalgebras of Kac-Moody type Lie algebras with diagram automorphisms. Let us describe our
results in detail.

1.1. Cyclotomic discriminantal arrangements. Let ω ∈ C× be a primitive root of unity of
order T ∈ Z≥1. Fix coordinates t1, . . . , tm on Cm and let C0,N ;m denote the arrangement (i.e.
collection of affine hyperplanes) in Cm consisting of:

kHi,j : ti − ωktj = 0, 1 ≤ i < j ≤ m, k ∈ ZT ,

kHj
i : ti − ωkzj = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ N, k ∈ ZT ,

H0
i : ti = 0, 1 ≤ i ≤ m,

where z1, . . . , zN ∈ C× areN ∈ Z≥0 nonzero points whose orbits under the action of the cyclic group
ωZ ∼= ZT := Z/TZ are pairwise disjoint. In the special case T = 1 such hyperplane arrangements are
called discriminantal arrangements. We shall call C0,N ;m a cyclotomic discriminantal arrangement.

Given any hyperplane arrangement C in Cm, one has the Orlik-Solomon algebra A •(C) =⊕m
p=0 A p(C): it can be defined as the C-algebra of differential forms generated by 1 and the

one-forms d log lH = dlH/lH , where, for each hyperplane H ∈ C, lH = 0 is an affine equation for H.
One has also the flag space F p(C), for p = 0, 1, . . . ,m. It is a certain quotient of the C-span of all
those flags L0 ⊃ · · · ⊃ Lp in which each Li is an edge (i.e. non-empty intersection of hyperplanes)
of C of codimension i. There are canonical isomorphisms F p(C)∗ ∼= A p(C) for each p. (See §2.)

The Poincare polynomial which encodes the dimensions of the flag spaces/Orlik-Solomon spaces
for the cyclotomic discriminantal arrangement C0,N ;m is given by

P (x) :=
m∑

p=0

xp dim(A p(C0,N ;m)) =
m−1∏

p=0

(
1 +

(
1 + (p+N)T

)
x
)
.

See Theorem 9.5. When N = 0 one recovers the arrangement of a complex reflection group, whose
Poincare polynomial is known from [OS80, §4].

There is a canonical differential d : F p(C) → F p+1(C), given by extending flags in all possible
ways. This gives the flag complex, (F •(C), d). Our first result gives an algebraic description of the
flag complex (F •(C0,N ;m), d) of the cyclotomic discriminantal arrangement. Let a denote the free

Lie algebra in generators kfi, i = 1, . . . ,m, k ∈ ZT , and let ā denote the fixed-point subalgebra
under the automorphism a → a defined by kfi 7→ (k+1mod T )fi. For any ā-module M we have the
standard chain complex (C•(ā,M), d) whose spaces are Cp(ā,M) :=

∧p
ā⊗M . Consider taking M

to be the module

M0,N := U(ā)⊗ U(a)⊗N ,

where U denotes universal envelope. Let (
∧p

ā⊗M0,N )[1m] denote the subspace spanned by terms
in which each ∗fi appears exactly once, for i = 1, . . . ,m. We show the following; see Theorem 4.2.

Theorem 1.1. There are linear isomorphisms

ψp :
(∧p

ā⊗M0,N

)
[1m]

→ F
m−p(C0,N ;m), 0 ≤ p ≤ m,

and they define an isomorphism of complexes

ψ• : (C•(ā,M0,N )[1m], d) → (Fm−•(C0,N ;m), d).

The way these isomorphisms work is best understood by inspecting Example 4.3.
(To prove the dimension formulas above, we construct dual bases of F p(C0,N ;m) and A p(C0,N ;m).

Pulling back, we get bases of (
∧p

ā⊗M0,N )[1m], and in particular of U(ā)[1m]. These bases are

labelled by “decorated” Lyndon words. See §9.2.)
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1.2. Symmetrization of flags. Now let n be the free Lie algebra over C in generators Fi, i =
1, . . . , R for some R ∈ Z≥1. For any permutation σ ∈ ΣR there is an automorphism σ : n → n

defined by σ(Fi) = Fσ(i). Let n
σ ⊂ n denote the fixed-point subalgebra. We have the nσ-module

M0,N := U(nσ)⊗ U(n)⊗N .

There is a “weight” gradation of the spaces
∧p

nσ ⊗M0,N of the chain complex (C•(n
σ,M0,N ), d),

given by counting the number of Fi from each σ-orbit. Fix any weight λ = (λ1, . . . , λr) ∈ Zr
≥0,

where r is the number of orbits. Let m = λ1 + · · · + λr and let T be the order of σ. We
construct a linear “cyclotomic symmetrization” map, s : (

∧p
nσ ⊗M0,N)λ → (

∧p
ā⊗M0,N )[1m].

(Example 6.3 illustrates how this map works.) Combining this with the theorem above we get an
identification between vectors in (

∧p
nσ ⊗M0,N)λ and certain “cyclotomically symmetrized” linear

combinations of flags in the flag space Fm−p(C0,N ;m) of the cyclotomic discriminantal arrangement.
More precisely, there is a finite group ΣZλ – a certain semi-direct product of symmetric and cyclic
groups – depending on the weight λ and also the automorphism σ. It acts naturally on the flag
spaces, and among the isotypical components for its action is one we label Fm−p(C0,N ;m)ΣZλ . We
establish the following in Theorem 6.7.

Theorem 1.2. There are linear isomorphisms

(ψp ◦ s) :
(∧p

nσ ⊗M0,N

)
λ
→ F

m−p(C0,N ;m)ΣZλ , p = 0, 1, . . . ,m.

They define an isomorphism of complexes

(ψ• ◦ s) : C•(n
σ,M0,N )λ → F

m−•(C0,N ;m)ΣZλ .

1.3. Main result: Shapovalov and geometric forms. Let R ∈ Z≥0. Suppose we fix the
following data:

(1) A finite-dimensional complex vector space h;
(2) A non-degenerate symmetric bilinear form (·, ·) : h× h → C;
(3) A collection α1, . . . , αR ∈ h∗ of linearly independent elements, called the simple roots.

This defines a symmetric R×R matrix B = ((αi, αj))i,j∈{1,...,R}.

To the data (1–3) is associated a Lie algebra g = g(B), which is roughly-speaking a “Kac-Moody
algebra without Serre relations”. See §7. One has g = n⊕ h⊕ n+, and g is generated by h together
with generators Ei ∈ n+ and Fi ∈ n, i = 1, . . . , R. Now we suppose we have, in addition to (1–3),

(4) a diagram automorphism of g;

namely, an automorphism σ : g → g such that σ(Ei) = Eσ(i) and σ(Fi) = Fσ(i), where σ ∈ ΣR is a

permutation such that (αi, αj) = (ασ(i), ασ(j)) for each i, j.
1

Let us also fix weights Λ0 ∈ (hσ)∗ and Λ1, . . . ,ΛN ∈ h∗ and let M(Λ) denote the tensor product
of Verma modules with these highest weights:

M(Λ) := Mσ(Λ0)⊗
N⊗

i=1

M(Λi),

the first factor over gσ, the rest over g. As nσ-modules, M(Λ) ∼= M0,N . So we are in the setting of
Theorem 1.2.

Now, the Cartan and weight data, i.e. the numbers

((αi, αj))i,j∈{1,...,R} and ((αi,Λj))i∈{1,...,R},j∈{0,1,...,N} (1.1)

1Cf. [Enr08, Bro12] where the automorphism is inner, i.e. fixes h pointwise.
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define a bilinear form, the Shapovalov form S, on the spaces
∧p

nσ ⊗M(Λ); see §7. This form
respects the weight decomposition, so it can be regarded as a linear map

Sp :
(∧p

nσ ⊗M(Λ)
)
λ
→
(∧p

nσ ⊗M(Λ)
)∗
λ

sending each weight subspace to its dual.
On the other hand, the numbers (1.1) also naturally define a weighting of the cyclotomic discrim-

inantal arrangement C0,N ;m; that is, an assignment to every hyperplane of a number, its weight.

For example the weights of the hyperplanes with equations ti − ωktj = 0 are given by the numbers

(αi, σ
kαj); see (7.7) and (7.20) for precise details. The weighting of the arrangement defines a bi-

linear form on the flag spaces, which we will call the geometric form, G; see §2. It can be regarded
as a linear map

Gm−p : F
m−p(C0,N ;m) → A

m−p(C0,N ;m)

from each flag space to its dual.
One of the main results of [SV91] was that, in the non-cyclotomic case (σ = id, ω = 1, T = 1)

the Shapovalov form S essentially coincides with the pull-back (ψ ◦ s)∗(G) of the geometric form
by the isomorphisms of Theorem 1.2. This statement does not hold in the cyclotomic setting
in general (though it does turn out to hold in some important special cases related to finite-
dimensional semisimple Lie algebras, as we discuss in §1.5). However, we do have the following
natural generalization, which is the main result of the present paper.

Theorem 1.3. There exists a central extension ġσ of the fixed-point subalgebra gσ, by a one-
dimensional centre Ck, such that if we let

Mσ(Λ0) := U(ġσ)⊗U(hσ⊕nσ+)⊕Ck Cv0

be the Verma module over this central extension ġσ (with kv0 := v0) then the Shapovalov form agrees
with the pull-pack of the geometric form. More precisely, then the following diagram commutes for
each p:

Cp(n
σ,M(Λ))λ Cp(n

σ ,M(Λ))∗λ

Fm−p(C0,N ;m)ΣZλ A m−p(C0,N ;m)ΣZλ ,

Sp

(−1)m−pT pGm−p

∼ψp ◦ s ∼(π ◦ ψ−1
p )∗

where Sp is defined with respect to ġσ.

(See Theorem 7.13, and §7.8–7.9 for the definition of Sp. The map π is the inverse of the
symmetrization-of-flags map s, up to a nonzero constant of proportionality; see Lemma 6.4.)

1.4. The definition of the extension ġσ and the cocycle Ω. Let us explain the key difference
between the usual and cyclotomic discriminantal arrangements which gives rise to this central
extension of the fixed-point subalgebra gσ. It is enough to consider the case p = 0 and N = 0, in
which case the isomorphism of Theorem 1.2 is a map

Mσ(Λ0)λ
∼−→ Fm(C0;m)ΣZλ

from a weight subspace of the Verma module Mσ(Λ0) ∼=nσ U(nσ) to the space of (suitably sym-
metrized) full flags in the arrangement C0;m in Cm consisting of only the hyperplanes kHi,j :

ti − ωktj = 0 and H0
i : ti = 0.

Suppose we set Λ0 = 0. Then (it is easy to show that) the Shapovalov form vanishes on every
weight subspace except the highest weight space Mσ(Λ0)0 = Cv0. So it is zero whenever m > 0.
(Recall m = λ1 + · · ·+ λr.)
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On the geometric side, setting Λ0 = 0 means assigning weight zero to the hyperplanes H0
i .

Nonetheless, the geometric form G is not always identically zero. Consider for example m = 2 and
the full flag

F =
(
C2 ⊃ (t1 = t2) ⊃ (t1 = t2 = 0)

)
.

By definition, §2.6, we have G(F,F ) =
∑

(H1,H2)
a(H1)a(H2) where the sum is over all unordered

pairs of hyperplanes of the arrangement such that F = (C2 ⊃ H1 ⊃ H1 ∩ H2) in F 2(C0;2), and
where a(H1), a(H2) are the weights of these hyperplanes. Clearly we must set H1 = 0H1,2. But

then H2 can be any of H0
1 , H

0
2 , or

kH1,2 for any k ∈ ZT \ {0}. Thus, when a(H0
1 ) = a(H0

2 ) = 0 we
still have

G(F,F ) = a(0H1,2)
∑

k∈ZT \{0}

a(kH1,2)

which is trivially zero if T = 1 (the non-cyclotomic situation) but not zero in general.
This observation suggests (what turns out to be) the correct definition of the central extension

ġσ. Namely, we define a certain skew-symmetric bilinear map Ω : gσ×gσ → C on the Lie algebra gσ

in terms of the geometric bilinear form for the flag space Fm(Cm) of full flags for the arrangement
consisting of only the hyperplanes kHi,j : ti − ωktj = 0. See §5.6-5.7 and §7.3. We prove that Ω is
in fact a cocycle. It is this cocycle which defines the extension ġσ of gσ. We go on to show that the
“extra” terms in the geometric form always organize themselves in such a way that Theorem 1.3
holds.

1.5. Special cases: finite-type, Kac-Moody, and Borcherds Lie algebras. Let g̃ := g/ kerSg
denote the quotient of g by the kernel of the (usual) Shapovalov form. When the matrix B is the
symmetrization of a symmetrizable generalized Cartan matrix then the quotient g̃ is the Kac-Moody
Lie algebra associated to B [Kac90].

With Theorem 1.3 in hand, we get a number of corollaries.
First, whenever the fixed-point subalgebra g̃σ of g̃ is finite-dimensional and semisimple then the

usual Shapovalov and geometric forms do coincide just as in the non-cyclotomic situation. (See
Corollary 8.2.) Indeed, our cocycle Ω defining the central extension ġσ vanishes on kerSg∩gσ ⊂ gσ

(Proposition 7.5). Therefore it defines a central extension of the quotient g̃σ too. But recall that
finite-dimensional semisimple Lie algebras do not admit non-trivial central extensions, because
Whitehead’s lemma states that every cocycle is coboundary. In fact (Proposition 8.1) whenever
our cocycle Ω is coboundary it is actually zero.

Thus, for example, our cocycle Ω vanishes for all foldings of simply-laced finite-type Dynkin
diagrams by diagram automorphisms.

Actually we prove a statement which shows that Ω = 0 whenever gσ “is a folding” in a looser
sense. Namely, there is always a subalgebra g(Bσ) ⊂ gσ generated by the projections of the
generators Ei, Fi, h of g. We show (Corollary 8.5) that whenever g(Bσ) = gσ then Ω = 0. (One can
ask how, in practice, the “extra” terms in the geometric form, as in §1.4, can fail to contribute in such
cases. In examples, one finds seemingly rather subtle cancellations coming from the symmetrization
of flags.)

The “typical” situation, though, is that the fixed-point subalgebra gσ is not even finitely gener-
ated, and (therefore) is not a Kac-Moody algebra. However it is always a generalized Kac-Moody
or Borcherds algebra [Bor88]: see Remark 8.7. So one can think of our construction as singling out
a certain preferred one-dimensional central extension of any Borcherds Lie algebra obtained as a
fixed-point subalgebra under a diagram automorphism.

1.6. Canonical element and weight function. In §9 we apply Theorem 1.3 to prove results
about the weight function and Bethe vectors for weighted cyclotomic discriminantal arrangements.
Let us describe these objects briefly.
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We construct, as mentioned above, a dual pair of bases for the flag spaces F p(C0,N ;m) and Orlik-
Solomon spaces A p(C0,N ;m), p = 0, 1, . . . ,m. In particular we get a dual pair of bases of Fm(C0,N ;m)
and A m(C0,N ;m), and hence an expression for the canonical element Θ ∈ Fm(C0,N ;m)⊗A m(C0,N ;m).

By the isomorphisms of Theorem 1.3 that gives an element of M(Λ)λ ⊗ A m(C0,N ;m)ΣZλ . From it,
one constructs a rational map Ψ : Cm → M(Λ)λ → L(Λ)λ, where L(Λ)λ := M(Λ)λ/ kerSp ∼=
G(Fm(C0,N ;m)ΣZλ), again by Theorem 1.3. This map Ψ : Cm → L(Λ)λ is the (cyclotomic) weight
function.

The weighting of the hyperplane arrangement C0,N ;m defines the master function Φ, (9.8). The
evaluation of the map Ψ at any critical point p of Φ is called the Bethe vector associated to that
critical point. Making use of results from [Var11] we show that the Bethe vectors corresponding to
isolated critical points are nonzero, under certain conditions. See Theorem 9.17.

In [VY14a, VY14b] a cyclotomic Gaudin model was constructed and solved by Bethe ansatz.
Our construction of the canonical element Θ here is chosen in such a way that the weight function
Ψ coincides with the weight function ψΓ of [VY14a]. So Theorem 9.17 establishes that the Bethe
vectors of [VY14a] corresponding to isolated solutions of the cyclotomic Bethe equations are nonzero
(in the case of diagram automorphisms, and if the conditions of Theorem 9.17 hold).

1.7. Structure of the paper. After recalling in §2 some facts from [SV91] about general hyper-
plane arrangements, in §3 we define the cyclotomic discriminantal arrangements and give their flag
relations explicitly. Then §4 and §5 are devoted to the situation “before symmetrization”: that
means working with a free Lie algebra in which each orbit, of the automorphism acting on the
generators, has the same length, T , and working only in the subspace of weight (1, . . . , 1). Finally
in §6 and §7 we can consider the general situation: in §6 we prove Theorem 1.2 and then in §7 we
prove Theorem 1.3. In §8 we prove properties (in particular vanishing properties) of the cocycle
Ω. Finally in §9 we apply the results of the paper to prove results about the weight function of
cyclotomic Gaudin models.

Acknowledgements. The research of AV is supported in part by NSF grant DMS-1362924 and the
Simons Foundation. AV thanks the Max Planck Institute, Bonn for hospitality during the prepa-
ration of this paper, and the School of Physics, Astronomy and Mathematics at the University of
Hertfordshire for hospitality during a visit in June 2015. CY thanks the Department of Mathematics
at UNC Chapel Hill for hospitality during his visit in August 2015.

2. Hyperplane arrangements

We recall some facts about hyperplane arrangements, Orlik-Solomon algebras and flag complexes
from [SV91]. Let m be a positive integer and let C be a finite collection of affine hyperplanes in
Cm. We call C an arrangement in Cm.

2.1. Edges, flags, and the flag complex. An edge of the arrangement C is a non-empty inter-
section of its hyperplanes. For k = 0, . . . ,m, let Flagk(C) denote the set of all flags

Cm = L0 ⊃ L1 ⊃ · · · ⊃ Lk

with each Lj an edge of C of codimension j. Let F k(C,Z) denote the quotient of the free abelian

group on Flagk(C) by the following relations. For every flag with a gap

F̂ = (L0 ⊃ L1 ⊃ Li−1 ⊃ Li+1 ⊃ · · · ⊃ Lk), i < k,

we impose ∑

F⊃F̂

F = 0 (2.1)

in F k(C,Z), where the sum is over all flags F = (L̃0 ⊃ L̃1 ⊃ . . . ⊃̃Lk) ∈ Flagk(C) such that L̃j = Lj

for all j 6= i.
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There is an “extension of flags” differential d : F k(C,Z) → F k+1(C,Z) defined by

d(L0 ⊃ L1 ⊃ · · · ⊃ Lk) =
∑

Lk+1

(L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ Lk+1),

where the sum is over all edges Lk+1 of C of codimension k + 1 contained in Lk. It follows from
(2.1) that d2 = 0. Thus we have a complex, the flag complex, (F •(C,Z), d).

2.2. Orlik-Solomon algebras. Define Abelian groups A k(C,Z), k = 0, 1, . . . ,m as follows. For
k = 0, set A 0(C,Z) = Z. For k ≥ 1, A k(C,Z) is generated by k-tuples (H1, . . . ,Hk) of hyperplanes
Hi ∈ C, subject to the relations:

- (H1, . . . ,Hk) = 0 if H1, . . . ,Hk are not in general position (i.e. if codimH1 ∩ · · · ∩Hk 6= k);
- (Hσ(1), . . . ,Hσ(k)) = (−1)|σ|(H1, . . . ,Hk) for every permutation σ ∈ Σk;
- for any k + 1 hyperplanes H1, . . . ,Hk+1 that have non-empty intersection, H1 ∩ · · · ∩Hk+1 6= ∅,
and that are not in general position,

k+1∑

p=1

(−1)p(H1, . . . , Ĥp, . . . ,Hk+1) = 0,

where Ĥp denotes omission.

The Orlik-Solomon algebra of the arrangement C is the direct sum A •(C,Z) =
⊕m

k=0 A k(C,Z)
endowed with the product given by (H1, . . . ,Hk) ∧ (H ′

1, . . . ,H
′
p) = (H1, . . . ,Hk,H

′
1, . . . ,H

′
p). It is

a graded skew-commutative algebra over Z.

2.3. Orlik-Solomon algebra as an algebra of differential forms. For each hyperplane H ∈ C,
pick a polynomial lH of degree one on Cm whose zero set is H, i.e. let lH = 0 be an affine equation
for H. Consider the logarithmic differential form

ι(H) := d log lH =
dlH
lH

on Cm. Note that ι(H) does not depend on the choice of lH but only on H. Let A
•
(C,Z) be

the Z-algebra of differential forms generated by 1 and ι(H), H ∈ C. The assignment H 7→ ι(H)

defines an isomorphism A (C,Z) ∼−→ A (C,Z) of graded algebras. Henceforth we shall not distinguish
between A and A .

2.4. The pairing of flags with forms. We say a k-tuple H̄ = (H1, . . . ,Hk), Hi ∈ C, of hyper-
planes is adjacent (with sign (−1)|s|) to a flag F = (L0 ⊃ L1 ⊃ . . . Lk) ∈ Flagk(C,Z) if there exists
a permutation s ∈ Σk such that Li = Hs(1) ∩ Hs(2) ∩ · · · ∩ Hs(i) for each i = 1, . . . , k. Such a
permutation is unique if it exists.

For each k = 1, . . . ,m, there is an isomorphism ϕk : A k(C,Z) ∼−→ F k(C,Z)∗ defined as follows.
If H̄ = (H1, . . . ,Hk) is adjacent with sign (−1)|s| to a flag F then the pairing ϕk(H1, . . . ,Hk)(F ) is

defined to be (−1)|s|. Otherwise ϕk(H1, . . . ,Hk)(F ) is defined to be zero. We shall use the notation

〈F,H1 ∧ · · · ∧Hk〉 := ϕk(H1, . . . ,Hk)(F )

for this pairing.

2.5. Framings and bases. A framing O of an arrangement C is a choice, for every edge L of C,
of a hyperplane H(L) containing L. Given a framing O, define Flagp(C,O) to be the set of those
flags (L0 ⊃ L1 ⊃ · · · ⊃ Lp) ∈ Flagp(C), such that Lk = H(L1) ∩ · · · ∩ H(Lk) for k = 1, . . . , p.
Equivalently it is the set of flags such that Lk 6⊂ H(Lk+1), k = 1, . . . , p− 1.



8 ALEXANDER VARCHENKO AND CHARLES YOUNG

Lemma 2.1. Given a flag (L0 ⊃ L1 ⊃ · · · ⊃ Lp) ∈ Flagp(C,O) and a permutation s ∈ Σp, consider

the flag F̃ = (L̃0 ⊃ L̃1 ⊃ · · · ⊃ L̃p) defined by L̃k := H(Ls(1)) ∩ · · · ∩H(Ls(k)), k = 1, . . . , p. If s is

not the identity then F̃ /∈ Flagp(C,O).

Proof. If s 6= id then we can let k ∈ {1, . . . , p} be the largest such that s(k) 6= k. Then k = s(l)

for some l ∈ {1, . . . , k − 1}, so L̃k−1 ⊂ H(Lk). And s({1, . . . , k}) = {1, . . . , k}, so L̃k = Lk. Thus

L̃k−1 ⊂ H(L̃k) and hence F̃ /∈ Flagp(C,O) as required. �

The next proposition is proved in [SV91], Theorems 1.6.5 and 2.9.2. 2

Proposition 2.2. For p = 1, . . . ,m:

(i) The group F p(C,Z) is free over Z, and admits Flagp(C,O) as a base.
(ii) The group A p(C,Z) is free over Z, and admits as a base the set

{(
H(L1),H(L2), . . . ,H(Lp)

)}
(L0⊃L1⊃···⊃Lp)∈Flagp(C,O)

.

�

We have F p(C,Z)∗ ∼= A p(C,Z) as in §2.4.
Proposition 2.3. The bases of (i) and (ii) are dual.

Proof. Let F = (L0 ⊃ L1 ⊃ · · · ⊃ Lp) ∈ Flagp(C,O). By definition, the pairing this flag F with(
H(L1),H(L2), . . . ,H(Lp)

)
is 1. It remains to show that if F̃ = (L̃0 ⊃ L̃1 ⊃ · · · ⊃ L̃p) ∈ Flagp(C)

is any other flag with which
(
H(L1),H(L2), . . . ,H(Lp)

)
has non-zero pairing, then F̃ does not

belong to the set Flagp(C,O) of basis flags. This is the content of Lemma 2.1. �

Corollary 2.4. For p = 1, . . . ,m, the canonical element of F p(C,Z)⊗ZF p(C,Z)∗ can be expressed
as ∑

(L0⊃L1⊃···⊃Lp)∈Flagp(C,O)

(
L0 ⊃ L1 ⊃ · · · ⊃ Lp

)
⊗
(
H(L1),H(L2), . . . ,H(Lp)

)
.

�

2.6. Weighted arrangements, the geometric form, and the master function. Let A k(C) :=
A k(C,Z) ⊗Z C and F k(C) := F k(C,Z)⊗Z C for each k.

A weighted arrangement of hyperplanes is an arrangement C together with an assignment, to
each hyperplane H ∈ C, of a number a(H) ∈ C, its weight. The weighting defines a symmetric
bilinear form Gk on F k(C), [SV91], given by

Gk(F,F ′) :=
∑

〈F,H1 ∧ · · · ∧Hk〉 〈F ′,H1 ∧ · · · ∧Hk〉 a(H1) . . . a(Hk),

where the sum is over the set of unordered k-tuples (H1, . . . ,Hk) of hyperplanes. The form Gk is
sometimes called the quasi-classical contravariant form of the arrangement C. We shall refer to it
simply as the geometric form. It defines a homomorphism,

Gk : F
k(C) → F

k(C)∗ ≃ A
k(C)

by Gk(F ) := Gk(F, ·). Explicitly,

Gk((L0 ⊃ · · · ⊃ Lk)) =
∑

a(H1) . . . a(Hk)H1 ∧ · · · ∧Hk (2.2)

where the sum is over all k-tuples (H1, . . . ,Hk) such that Hi ⊃ Li for all i.

2Let us remark that the definitions of Oi and hence F lj(O) in [SV91, §1.6] have misprints. Nevertheless the proofs
there go through for Flagp(C,O) as defined above. Namely, part (i) of the Proposition (2.2) follows from [SV91,
Corollary 2.9.1] and part (ii) is a corollary of [SV91, Lemma 1.5.2].
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The master function corresponding to this weighted arrangement is

Φ = ΦC,a :=
∑

H∈C

a(H) log lH

where each lH is an affine equation for the hyperplane H, as in §2.3. It is defined up to an additive
constant. Define a differential d = d(a) : A k(C) → A k+1(C) by the rule

dx = x ∧ dΦ = x ∧
(
∑

H∈C

a(H)H

)
.

It is clear that d2 = 0, so this makes (A •, d) into a complex, called the Aomoto complex.

Theorem 2.5. G• is a map of complexes

G• : (F •(C), d) → (A •(C), d).
Proof. See [FMTV00, Lemma 5.1] and [SV91, Lemma 3.2.5]. �

2.7. Functoriality of the geometric form on subarrangements. Suppose B ⊂ C is a subar-
rangement in Cm. There are obvious inclusions A k(B) →֒ A k(C) and hence F k(C) ≃ A k(C)∗ →
A k(B)∗ ≃ F k(B), for each k.
Lemma 2.6. Given a weighting a : B → C, suppose we extend it to a weighting of the arrangement
C by setting a(H) = 0 for every remaining hyperplane H ∈ C \ B. Then the following diagram
commutes:

F k(B) A k(B),

F k(C) A k(C).

G

G

�

3. Cyclotomic discriminantal arrangements

Let ω be a primitive root of unity of order T ∈ Z≥1. We let the cyclic group ZT := Z/TZ act on
C by multiplication by powers of ω, i.e. k.z := ωkz, k ∈ ZT , z ∈ C. Fix a tuple z = (z1, . . . , zN ),
N ∈ Z≥0, of non-zero complex numbers whose ZT -orbits are pairwise disjoint.

Fix coordinates t1, . . . , tm on Cm. We define the following hyperplanes in Cm:

kHi,j : ti − ωktj = 0, 1 ≤ i < j ≤ m, k ∈ ZT ,

kHj
i : ti − ωkzj = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ N, k ∈ ZT ,

H0
i : ti = 0, 1 ≤ i ≤ m.

Note that kHi,j =
−kHj,i, and

kHi,j ∩ lHi,j = H0
i ∩H0

j whenever k 6= l.

Let Cm denote the arrangement in Cm consisting of all the hyperplanes kHi,j.

Let C0;m denote the arrangement in Cm consisting of all the hyperplanes H0
i and kHi,j.

Let C0,N ;m denote the arrangement in Cm consisting of all the H0
i ,

kHj
i , and

kHi,j.
We have Cm ⊂ C0;m ⊂ C0,N ;m.
In the special case T = 1 we recover the discriminantal arrangements, [SV91]. More generally

we call such hyperplane arrangements cyclotomic discriminantal arrangements.

Remark 3.1. The arrangements Cm and C0;m are those of the complex reflection groups G(T, T,m)
and G(T, 1,m) respectively. See e.g. [LT09].
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3.1. Edges and flags of C0,N ;m. Given a a p-element subset I = {i1, . . . , ip} ⊂ {1, . . . ,m} with

1 ≤ p ≤ m, and a map k : {1, . . . ,m} → ZT , let
kLI denote the edge given by

kLI : ω
k(i1)ti1 = ωk(i2)ti2 = · · · = ωk(ip)tip . (3.1)

Note in particular the degenerate case kL{i} = Cm. For each i ∈ {1, . . . , N}, let kLi
I denote the

edge given by
kLi

I : ω
k(i1)ti1 = ωk(i2)ti2 = · · · = ωk(ip)tip = zi.

Let kL0
I = L0

I denote the edge given by

L0
I : ti1 = ti2 = · · · = tip = 0.

We have codim kLI = p− 1, codim kLi
I = p, and codim kL0

I = p.

Following [SV91, §5.6.4], let us think of edges of the form kLI as swimming islands, and edges of
the form kLi

I , i ∈ {0, 1, . . . , N}, as fixed islands. Every edge of C0,N ;m is of the form

kLi1
I1
∩ · · · ∩ kLir

Ir
∩ kLJ1 ∩ · · · ∩ kLJp . (3.2)

for some function k : {1, . . . ,m} → ZT , some collection of r ∈ Z≥0 distinct numbers i1, . . . , ir ∈
{0, 1, . . . , N} and some pairwise disjoint subsets I1, . . . , Ir, J1, . . . , Jp (p ∈ Z≥0) of {1, . . . ,m}. We

shall refer to the edge (3.2) as the archipelago consisting of the swimming islands kLJ1 , . . . ,
kLJp

and fixed islands kLi1
I1
, . . . , kLir

Ir
.

We will use kL•
I to denote any edge which is either the swimming island kLI or any one of the

fixed islands kLi
I .

We say kL•
I involves j ∈ {1, . . . ,m} if j ∈ I. Note that, in particular, the hyperplanes kHj,i,

kH i
j,

H0
j are islands which involve j.

Given any flag F = (L0 ⊃ L1 ⊃ · · · ⊃ Lp) ∈ Flagp(C0,N ;m), each edge Lt is some archipelago.
For t = 0, 1, . . . , p − 1, each successive archipelago Lt+1 is obtained from its predecessor Lt in one
of the following ways:

(1) A swimming island becomes fixed: that is, kLI is replaced by kLj
I for some j = 0, 1, . . . , N .

(2) Two swimming islands become joined: that is, kLJ ∩ kLI is replaced by kLJ∪I .

3.2. The flag relations of Fp(C0,N ;m). The defining relations, (2.1), in the flag space Fp(C0,N ;m)
are

0 =
W∑

w=1

(L0 · · · ⊃ Lt ⊃ Lt+1
w ⊃ Lt+2 ⊃ · · · ⊃ Lp)

for t ∈ {0, . . . , p− 2} and for archipelagos Lt, Lt+1
w , w = 1, . . . ,W , and Lt+2 of the following forms,

where in each case L denotes the remaining islands, if any:

(i) W = 2 and

Lt+1
1 = kLJ1∪J2 ∩ kLJ3 ∩ kLJ4 ∩ L,

Lt = kLJ1 ∩ kLJ2 ∩ kLJ3 ∩ kLJ4 ∩ L, Lt+2 = kLJ1∪J2 ∩ kLJ3∪J4 ∩ L,
Lt+1
2 = kLJ1 ∩ kLJ2 ∩ kLJ3∪J4 ∩ L.

(ii) W = 2 and

Lt+1
1 = kLJ1∪J2 ∩ kLI ∩ L,

Lt = kLJ1 ∩ kLJ2 ∩ kLI ∩ L, Lt+2 = kLJ1∪J2 ∩ kLj
I ∩ L,

Lt+1
2 = kLJ1 ∩ kLJ2 ∩ kLj

I ∩ L,
for some j ∈ {0, 1, . . . , N}.
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(iii) W = 2 and

Lt+1
1 = kLj1

J1
∩ kLJ2 ∩ L,

Lt = kLJ1 ∩ kLJ2 ∩ L, Lt+2 = kLj1
J1

∩ kLj2
J2

∩ L,
Lt+1
2 = kLJ1 ∩ kLj2

J2
∩ L,

for some j1, j2 ∈ {0, 1, . . . , N} with j1 6= j2.
(iv) W = 3 and

Lt+1
1 = kLJ1∪J2 ∩ kLJ3 ∩ L,

Lt = kLJ1 ∩ kLJ2 ∩ kLJ3 ∩ L, Lt+1
2 = kLJ2∪J3 ∩ kLJ1 ∩ L, Lt+2 = kLJ1∪J2∪J3 ∩ L,

Lt+1
3 = kLJ3∪J1 ∩ kLJ2 ∩ L.

(v) W = 3 and

Lt+1
1 = kLJ1∪J2 ∩ L,

Lt = kLJ1 ∩ kLJ2 ∩ L, Lt+1
2 = kLJ1 ∩ kLj

J2
∩ L, Lt+2 = kLj

J1∪J2
∩ L,

Lt+1
3 = kLj

J1
∩ kLJ2 ∩ L,

for some j ∈ {1, . . . , N}.
(vi) W = T + 2 and, for some (any) fixed choice of j1 ∈ J1, j2 ∈ J2 and for ℓ = 1, 2, . . . , T ,

Lt+1
1 =

(
kLJ1 ∩ kLJ2 ∩ 1Hj1,j2

)
∩ L,

Lt+1
2 =

(
kLJ1 ∩ kLJ2 ∩ 2Hj1,j2

)
∩ L,

...

Lt+1
T =

(
kLJ1 ∩ kLJ2 ∩ THj1,j2

)
∩ L,

Lt = kLJ1 ∩ kLJ2 ∩ L, Lt+1
T+1 =

kLJ1 ∩ L0
J2 ∩ L, Lt+2 = L0

J1∪J2 ∩ L,
Lt+1
T+2 = L0

J1 ∩ kLJ2 ∩ L.
Remark 3.2. Note especially the final relation. As a simple example, we have

(C2 ⊃ H0
1 ⊃ H0

1 ∩H0
2 ) + (C2 ⊃ H0

2 ⊃ H0
1 ∩H0

2 ) +
∑

k

(C2 ⊃ kH1,2 ⊃ H0
1 ∩H0

2 ) = 0.

The other relations are just as in the non-cyclotomic case of [SV91].

3.3. On flags with no zero ends. Let us say a flag F = (L0 ⊃ · · · ⊃ Lp) ∈ Flagp(C0,N ;m) has no
zero ends if Lp 6⊂ H0

i for all i ∈ {1, . . . ,m}. Otherwise we say F has zero ends. Thus, informally,
a flag has zero ends “if some ti is set equal to zero”.

Fix a flag F ∈ Flagp(C0,N ;m) with no zero ends, for some p ∈ {1, . . . ,m}.
The last edge Lp of F is of the form

Lp = kLi1
I1
∩ · · · ∩ kLir

Ir
∩ kLJ1 ∩ · · · ∩ kLJp .

for some map3 k : {1, . . . ,m} → ZT , some collection of r ∈ Z≥0 distinct non-zero numbers
i1, . . . , ir ∈ {1, . . . , N} and some pairwise disjoint subsets I1, . . . , Ir, J1, . . . , Jp (p ∈ Z≥0) of
{1, . . . ,m}. Define new coordinates

ťi := ωk(i)ti, i = 1, . . . ,m.

3unique if and only if p = m
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Let kCz;m ⊂ C0,N ;m be the arrangement consisting of the hyperplanes

Ȟij : ťi − ťj = 0, 1 ≤ i < j ≤ m,

Ȟj
i : ťi − zj = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ N. (3.3)

By construction, kCz;m is a discriminantal arrangement, in the sense of [SV91], and F ∈ Flagp(kCz;m).

Lemma 3.3. If a hyperplane H ∈ C0,N ;m contains the edge Lp, then H belongs to kCz;m. �

Corollary 3.4. If a tuple (H1, . . . ,Hp) of hyperplanes of C0,N ;m is adjacent to F , in the sense of

§2.4, then this tuple consists of hyperplanes belonging to the discriminantal arrangement kCz;m. �

Note that the condition that F had no zero ends was necessary, as the following example shows.

Example 3.5. Consider the full flag C2 ⊃ (t1 = t2) ⊃ (t1 = t2 = 0). This flag does have zero ends.
It is adjacent to the tuples of hyperplanes {(t1 = t2), (t1 = 0)} and {(t1 = t2), (t2 = 0)} but also
to the tuples {(t1 = t2), (t1 = ωkt2)} for each k ∈ ZT \ {0}. Thus there is no single discriminantal
arrangement such that all tuples adjacent to this flag consist of hyperplanes from that arrangement.

Suppose now that we have a weighting a : C0,N ;m → C of the arrangement C0,N ;m. It defines a

bilinear form Gp(·, ·) on F p(C0,N ;m) as in §2.6. Let ǎ : kCz;m be the restriction of this weighting a

to the arrangement kCz;m. It defines a bilinear form Ǧp(·, ·) on F p(kCz,m).
The next lemma is a consequence of Corollary 3.4. It will be an important source of simplifications

in what follows.

Lemma 3.6. Let F be a flag with no zero ends, and let kCz;m be the corresponding discriminantal
arrangement, as above. For all F ′ ∈ Flagp(C0,N ;m),

Gp(F,F ′) =

{
Ǧp(F,F ′) if F ′ ∈ Flagp(kCz;m)

0 otherwise.

�

4. Free Lie algebra with automorphism

Let ω ∈ C× be a primitive T th root of unity and ZT the cyclic group of order T , as above.
Let a denote the free Lie algebra over C with generators kfi, i = 1, . . . ,m, k ∈ ZT . There is an

automorphism τ : a → a defined by

τ : kfi → k+1fi,

where we understand that k + 1 means addition in ZT .
Let ā denote the Lie subalgebra of τ -invariant elements of a and let : a → ā denote the

surjective linear map given by

g :=
∑

j∈ZT

τ jg, g ∈ a. (4.1)

We sometimes write 0fi as fi, and hence kfi as τ
kfi.

There is a unique Zm
≥0-grading of a as a Lie algebra, a =

⊕
(r1,...,rm)∈Zm

≥0
a[r1,...,rm], such that

a[0,...,0,1

i

,0,...,0] := spanC(
kfi)k∈ZT

for each i = 1, . . . ,m. We call this the weight decomposition of a, and say a[r1, . . . , rm] is the
subspace of weight (r1, . . . , rm). We write wt(v) = (r1, . . . , rn) if v ∈ a[r1, . . . , rm].

In particular we have the weight decomposition of ā.
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We extend the weight decomposition additively over tensor products, i.e. wt(a⊗b) := wt a+wt b.
So we have the weight decompositions of the universal envelopes U(a) and U(ā), and of

M0,N := U(ā)⊗
N⊗

i=1

U(a). (4.2)

Note that M0,N is an ā-module, with the action given by

x.(m0 ⊗m1 ⊗ · · · ⊗mN )

:= (xm0)⊗m1 ⊗ · · · ⊗mN +m0 ⊗ (xm1)⊗m2 ⊗ · · · ⊗mN + · · ·+m0 ⊗m1 ⊗ · · · ⊗ (xmN ).

Let (C•(ā,M0,N ), d) denote the standard chain complex of ā with coefficients in M0,N . Namely,
for k ∈ Z≥0, define

Ck(ā,M0,N ) :=
∧k

ā⊗M0,N (4.3)

(where
∧k denotes the k-th exterior power), and let

d : Ck(ā,M0,N ) → Ck+1(ā,M0,N ) (4.4)

be the linear map defined by

d(gk ∧ gk−1 ∧ · · · ∧ g1 ⊗ x) =
k∑

i=1

(−1)i−1gk ∧ . . . ĝi ∧ · · · ∧ g1 ⊗ gi.x

+
∑

1≤i<j≤k

(−1)i+jgk ∧ · · · ∧ ĝi ∧ · · · ∧ ĝj ∧ · · · ∧ g1 ∧ [gj , gi]⊗ x (4.5)

for x ∈ M0,N , g1, . . . , gk ∈ ā, where ̂ denotes omission.
Recall the cyclotomic discriminantal arrangement C0,N ;m from §3. We have the flag complex

(F •(C0,N ;m), d) as in §2. Let us write
[1m] := [1, . . . , 1]︸ ︷︷ ︸

m

.

In this section we define (Theorem 4.2) a family of linear isomorphisms

ψk : (
∧k

ā⊗M0,N )[1m] → F
m−k(C0,N ;m),

such that d ◦ ψk = ψk−1 ◦ d.

4.1. Commutators and projected commutators. Let us say that an element g ∈ a is a com-
mutator if either

(1) g is one of the generators kfi of a, or
(2) g = [g1, g2] for commutators g1, g2 ∈ a.

For a given commutator g and generator kfi there is a well-defined notion of the number of times
kfi occurs in g. Let the length l(g) of a commutator g be the total number of generators that occur
in g, and the content of g the set {(k1, i1), . . . (kl(g), il(g))} of the labels of these generators.4

For example, [[ k1fi1 ,
k2fi2 ],

k3fi3 ] has length 3 and content {(k1, i1), (k2, i2), (k3, i3)}.
Whenever g is a commutator in a, we call the element g ∈ ā a projected commutator, cf. (4.1).

The Lie algebra ā is spanned by the set of all projected commutators g as g runs over the set of
commutators in a. (Indeed, the latter span a and : a → ā is a surjective linear map.)

4So each commutator lies in some weight subspace a[r1, . . . , rm] of a, determined by its content. In general the content
is a set with multiplicities. When working with C•(ā,M0,N )[1m] these multiplicities will be at most one.
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Remark 4.1. Suppose we are not in the degenerate cases m = 1 or T = 1. Then ā is not spanned
by commutators of the projected generators f i. For example [ pf1, qf2] ∈ ā, p 6= q, is not in the
span of [ f1, f2]. In fact ā is not finitely generated [Bry91, BP00].

We say an element x ∈ U(a) is a monomial if it is equal to a product of commutators, i.e. if
x = gp . . . g1 for commutators g1, . . . , gp ∈ a.

We say an element x ∈ U(ā) is a monomial if it is equal to a product of projected commutators,
i.e. if x = gp . . . g1 for commutators g1, . . . , gp ∈ a.

We say an element x ∈ ∧p
ā⊗M0,N is a monomial if

x = gp ∧ · · · ∧ g1 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN

for commutators g1, . . . , gp and monomials x0, x1, . . . , xN .

4.2. The maps ψp. Given any commutator g in a, with content say {(k1, i1), . . . , (kl, il)}, we shall
write Lg, L

j
g, j = 1, . . . , N , and L0

g for the edges of the arrangement C0,N ;m given by

Lg : ω
k1ti1 = · · · = ωkltil ,

Lj
g : ω

k1ti1 = · · · = ωkltil = zj ,

L0
g : ti1 = · · · = til = 0. (4.6)

(When g has length 1, Lg = Cm.)
Observe that Lg = Lτg.
Now we define linear maps ψp : (

∧p
ā ⊗ M0,N )[1m] → Fm−p(C0,N ;m) by induction on m − p as

follows.
For the base case p = m, we set ψm(f1∧· · ·∧fm⊗1⊗1⊗· · ·⊗1) to be the trivial flag, L0 = Cm.
For the inductive step, assume that ψp+1 has been defined in such a way that for any monomial

x = gp+1 ∧ · · · ∧ g1 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN ∈ (
∧p+1

ā ⊗M0,N )[1m], the image ψp+1(z) is of the form

(−1)sF for some sign (−1)s and some flag F = (L0 ⊃ · · · ⊃ Lm−p) ∈ Flagm−p(C0,N ;m).
Then we define ψp(x

′) := (−1)sF ′ for x′, F ′ as follows:

(A) If x′ = gp+1∧· · ·∧g2⊗x0⊗x1⊗· · ·⊗g1.xj⊗· · ·⊗xN then F ′ = (L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p∩Lj
g1).

(B) If x′ = gp+1 ∧ · · · ∧ g2 ⊗ g1.x0 ⊗ x1 ⊗ · · · ⊗ xN then F ′ = (L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ L0
g1).

(C) If x′ = gp+1∧· · ·∧g3∧[g1, g2]⊗x0⊗x1⊗· · ·⊗xN then F ′ = (L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p∩L[g1,g2]).

Theorem 4.2. These rules correctly define a family of linear isomorphisms

ψp :
(∧p

ā⊗M0,N

)
[1m]

→ F
m−p(C0,N ;m), 0 ≤ p ≤ m.

Moreover this gives an isomorphism of complexes

ψ• : (C•(ā,M0,N )[1m], d) → (Fm−•(C0,N ;m), d).
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Example 4.3. Consider m = 2 and N = 1. The monomials in
∧•(ā)⊗M0,N =

∧•(ā)⊗U(ā)⊗U(a),
and their images under ψ•, include:

f1 ∧ f2 ⊗ 1⊗ 1 (C2),

f1 ⊗ 1⊗ τkf2 (C2 ⊃ (ωkt2 = z)),

f2 ⊗ 1⊗ τkf1 −(C2 ⊃ (ωkt1 = z)),

1⊗ (τpf1)(τ
qf2) (C2 ⊃ (ωqt2 = z) ⊃ (ωqt2 = ωpt1 = z),

f1 ⊗ f2 ⊗ 1 (C2 ⊃ (t2 = 0)),

f2 ⊗ τkf1 (C2 ⊃ (t2 = 0) ⊃ (t2 = 0, ωkt1 = z))

= −(C2 ⊃ (ωkt1 = z) ⊃ (t2 = 0, ωkt1 = z)),

[τpf2, f1]⊗ 1⊗ 1 (C2 ⊃ (ωpt2 = t1)),

1⊗ τ q[τpf2, f1] (C2 ⊃ (ωpt2 = t1) ⊃ (ωp+qt2 = ωqt1 = z)),

[τpf2, f1]⊗ 1 (C2 ⊃ (ωpt2 = t1) ⊃ (t2 = t1 = 0)).

Proof of Theorem 4.2. By recursively applying the rules and using the skew-symmetry in the factors
of
∧p

ā, one can compute ψp on any monomial in (
∧p

ā ⊗ M0,N )[1m]. The first thing to check is
that the result well-defined, i.e. that it is independent of the order in which we choose to apply
the rules.

Consider x′′ = gp ∧ · · · ∧ g3 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ g1.xi ⊗ · · · ⊗ g2.xj ⊗ · · · ⊗ xN . Starting from

ψp(x) = (−1)s(L0 ⊃ · · · ⊃ Lm−p), we can compute ψp−2(x
′′) in two ways. On the one hand we

have

ψp−1(gp ∧ · · · ∧ g3 ∧ g2 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ g1.xi ⊗ · · · ⊗ xN ) = (−1)s(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩Li
g1)

and hence

ψp−2(x
′′) = (−1)s(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ Li

g1 ⊃ Lm−p ∩ Li
g1 ∩ Lj

g2). (4.7)

On the other hand we have

ψp−1(gp∧ · · · ∧ g3∧ g1⊗x0⊗x1⊗· · ·⊗ g2.xj ⊗· · ·⊗xN ) = −(−1)s(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p∩Lj
g2)

(note the extra sign, which comes from g2 ∧ g1 = −g1 ∧ g2) and hence

ψp−2(x
′′) = −(−1)s(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ Lj

g2 ⊃ Lm−p ∩ Li
g1 ∩ Lj

g2). (4.8)

And indeed (4.7) and (4.8) are equal in the flag space Fm−p+2(C0,N ;m), by virtue of the flag relations
(2.1). (Specifically, a relation of type (iii) in §3.2.)

Similarly, one checks that, starting from ψp(z) = (−1)sF , ψp−2 is well-defined on gp ∧ · · · ∧
g3 ⊗ g1.x0 ⊗ x1 ⊗ . . . g2.xi ⊗ · · · ⊗ xN , on gp ∧ · · · ∧ g4 ∧ [g3, g2]⊗ x0 ⊗ x1 ⊗ . . . g1.xi ⊗ · · · ⊗ xN , on

gp∧· · ·∧g4∧[g3, g2]⊗g1.x0⊗x1⊗· · ·⊗xN and finally on gp∧· · ·∧[g4, g3]∧[g2, g1]⊗x0⊗x1⊗· · ·⊗xN .

This establishes that ψp is well-defined as a map from the set of monomials in (
∧p

ā⊗M0,N )[1m]

into the flag space Fm−p(C0,N ;m).
Now we must check that this map can be extended by linearity to a linear map (

∧p
ā⊗M0,N )[1m] →

Fm−p(C0,N ;m). For this it is enough to check that

ψp−2(gp ∧ · · · ∧ g3 ⊗
(
(g1).(g2).x0 − (g2).(g1).x0 − [g1, g2].x0

)
⊗ x1 ⊗ · · · ⊗ xN ) = 0, (4.9)

ψp−2(gp∧· · ·∧g3⊗x0⊗x1⊗· · ·⊗
(
(τkg1).(τ

lg2).xj−(τ lg2).(τ
kg1).xj−[τkg1, τ

lg2].xj
)
⊗· · ·⊗xN ) = 0,

for each j = 1, . . . , N , and

ψp−2(gp ∧ · · · ∧ ([g3, [g2, g1]] + [g2, [g1, g3]] + [g1, [g3, g2]])⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN ) = 0.
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Again these follow from the relations in the flag spaces. Let us consider the first in detail. We have

ψp−2(gp ∧ · · · ∧ g3 ⊗ (g2).(g1).x0 ⊗ x1 ⊗ · · · ⊗ xN )

= (−1)s(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ L0
g1 ⊃ Lm−p ∩ L0

g1 ∩ L0
g2) (4.10)

and

ψp−2(gp ∧ · · · ∧ g3 ⊗ (g1).(g2).x0 ⊗ x1 ⊗ · · · ⊗ xN )

= −(−1)s(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ L0
g2 ⊃ Lm−p ∩ L0

g1 ∩ L0
g2) (4.11)

(the sign coming from g2 ∧ g1 = −g1 ∧ g2). Now, in the flag space Fm−p+2(C0,N ;m) we have, by
(2.1), the relation

0 = (L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ L0
g1 ⊃ Lm−p ∩ L0

g1 ∩ L0
g2)

+ (L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ L0
g2 ⊃ Lm−p ∩ L0

g1 ∩ L0
g2)

+
∑

k∈ZT

(L0 ⊃ · · · ⊃ Lm−p ⊃ Lm−p ∩ L[g1,τkg2] ⊃ Lm−p ∩ L0
g1 ∩ L0

g2) (4.12)

(which is of type (vi) in §3.2). The third line here is equal to
∑

k∈ZT

ψp−2(gp ∧ · · · ∧ g3 ⊗ ([g1, τkg2]).x0 ⊗ x1 ⊗ · · · ⊗ xN )

= (−1)sψp−2(gp ∧ · · · ∧ g3 ⊗ ([g1, g2]).x0 ⊗ x1 ⊗ · · · ⊗ xN )

= (−1)sψp−2(gp ∧ · · · ∧ g3 ⊗ [g1, g2].x0 ⊗ x1 ⊗ · · · ⊗ xN )

Therefore, in view of (4.10) and (4.11), the relation (4.12) yields the required identity, (4.9).
Thus ψp is a linear map (

∧p
ā ⊗ M0,N )[1m] → Fm−p(C0,N ;m). Now we show it is a linear

isomorphism. To do so we define the inverse linear map ψ−1
p , by induction on m− p.

For the base case p = m we set ψ−1
m (L0 = Cm) = f1 ∧ · · · ∧ fm ⊗ 1⊗ 1⊗ · · · ⊗ 1.

For the inductive step, pick any flag F = (L0 ⊃ · · · ⊃ Lm−p−1 ⊃ Lm−p) ∈ Flagm−p(C0,N ;m).
Inductively we may assume we have the monomial

gp+1 ∧ · · · ∧ g1 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN := ψ−1
p+1(L

0 ⊃ · · · ⊃ Lm−p−1).

Now consider the last step, Lm−p−1 ⊃ Lm−p, of the flag F :

First, suppose “ti and zj became linked”. Namely, suppose that for some i, j, k, we have kHj
i ⊃

Lm−p and hHj
i 6⊃ Lm−p−1 for every h ∈ ZT . By re-ordering the factors as necessary, using skew-

symmetry in
∧p+1

ā, we may assume that lfi appears in g1, for some l ∈ ZT . By the invariance
g1 = τg1 we may assume l = 0. That is, we may assume fi appears in g1. Then we set

ψ−1
p (F ) := gp+1 ∧ · · · ∧ g2 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ (τ−kg1).xj ⊗ · · · ⊗ xN .

Next, suppose that “ti and 0 became linked”. Namely, suppose that for some i, H0
i ⊃ Lm−p and

H0
i 6⊃ Lm−p−1. Again, we may assume that fi appears in g1. We set

ψ−1
p (F ) := gp+1 ∧ · · · ∧ g2 ⊗ (g1).x0 ⊗ x1 ⊗ · · · ⊗ xN .

Finally, suppose we are in neither of the above cases. Then it must be that “ti and tj became

linked”. That is, for some i, j, k, we have kHi,j ⊃ Lm−p and nHi,j 6⊃ Lm−p−1 for any n ∈ ZT . We
may suppose that fi appears in g2 and fj appears in g1. We define

ψ−1
p := gp+1 ∧ · · · ∧ g3 ∧ [τkg1, g2]⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN .

These definitions respect the relations in F •(C0,N ;m).
This completes the inductive step, and we have the inverse map ψ−1

p for each p = 0, . . . ,m.
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For the moreover part, one checks directly that d ◦ ψp = ψp−1 ◦ d for each p = 1, . . . ,m. �

Given a subset I ⊆ {1, . . . ,m}, let C0,N ;I ⊂ C0,N ;m denote the arrangement consisting of hyper-

planes kHi1,i2 ,
kHj

i1
, and H0

i1
with i1, i2 ∈ I, j ∈ {1, . . . , N}, k ∈ ZT . Let CI denote the arrangement

consisting of just the “diagonal” hyperplanes kHi1,i2 , i1, i2 ∈ I, k ∈ ZT .
Let [I] denote the tuple (r1, . . . , rm) with ri = 1 if i ∈ I and ri = 0 if i /∈ I. By an obvious

generalization of Theorem 4.2, we have linear isomorphisms

ψ = ψI
p : (

∧p
ā⊗M0,N )[I] → F

|I|−p(C0,N ;I), 0 ≤ p ≤ |I|. (4.13)

(We shall sometimes suppress the indices p and I from ψ.)
For any commutator c in a, define the flag

ψ(c) := ψ(c) := ψ(c⊗ 1⊗ 1N ). (4.14)

Note that ψ(c) = ψ(τkc) for all k ∈ ZT .

5. Bilinear form

We keep the conventions of section §4. Let us now fix a weighting a : C0,N ;m → C of the

arrangement C0,N ;m, in the sense of §2.6. Let b be the Lie algebra with generators kfi,
kei and

khi,
i = 1, . . . m, k ∈ ZT , subject to the following relations:

[ kei,
lfj] = δijδkl

khi,

[ khi,
lej ] =

{
a(l−kHi,j)

lej i 6= j

0 i = j
, [ khi,

lfj] =

{
−a(l−kHi,j)

lfj i 6= j

0 i = j
,

[ khi,
lhj ] = 0.

We sometimes write ei :=
0ei, fi :=

0fi, hi :=
0hi.

There is an automorphism τ : b → b given by τ(kxi) =
k+1xi where x ∈ {e, f, h} and k + 1 is

understood to mean addition modulo T . Let b̄ ⊂ b denote the subalgebra fixed by τ and : b → b̄

the surjective linear map x 7→ x :=
∑

j∈ZT
τ jx.

We have the obvious embedding of Lie algebras a →֒ b. Let b0 (resp. a+) denote the subalgebra
of b generated by the khi (resp.

kei). Then b = a⊕b0⊕a+ and hence U(b) ∼=C U(a)⊗U(b0)⊗U(a+).
Likewise b̄ = ā⊕ b̄0 ⊕ ā+ and hence U(b̄) ∼=C U(ā)⊗ U(b̄0)⊗ U(ā+).

Let Mi := U(b) ⊗U(b0⊕a+) Cvi, i = 1, . . . , N , denote the b-module generated by a vector vi
obeying the relations

a+.vi = 0, khj .vi = a(kH i
j)vi.

LetM0 := U(b̄)⊗U(b̄0⊕ā+)Cv0, denote the b̄-module generated by a vector v0 obeying the relations

ā+.v0 = 0,
1

T
hj.v0 = a(H0

j )v0.

There are isomorphisms Mi
∼=a U(a) and M0

∼=ā U(ā). Hence, with M0,N as in (4.2),

M0,N
∼=ā M0 ⊗

N⊗

i=1

Mi. (5.1)

Our choice of weighting a : C0,N ;m → C defines a symmetric bilinear form G• on F •(C0,N ;m) and
corresponding linear maps G• : F •(C0,N ;m) → F •(C0,N ;m)∗. (See §2.6.) Pulling back by the linear
isomorphism ψp of Theorem 4.2, we obtain a bilinear form ψ∗

p(G
m−p) on (

∧p
ā⊗M0,N )[1m], and a

linear map

(ψp)
−1 ◦ Gm−p ◦ ψp :

(∧p
ā⊗M0,N

)
[1m]

→
(∧p

ā⊗M0,N

)∗
[1m]

.
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In fact, for any subset I ⊆ {1, . . . ,m}, we have the linear isomorphism ψ = ψI
p of (4.13), and

therefore a bilinear form ψ∗
p(G

|I|−p) on (
∧p

ā⊗M0,N )[I] and linear map

(ψI
p)

−1 ◦ G|I|−p ◦ ψI
p :
(∧p

ā⊗M0,N

)
[I]

→
(∧p

ā⊗M0,N

)∗
[I]
.

When there is no ambiguity, we shall sometimes denote these linear maps (for any p and any I)
simply by G. Similarly we will sometimes use G to refer to the corresponding symmetric bilinear
forms.

In particular when p = 1 and we restrict to the subspace ā[I] ⊗ v0 ⊗ v1 ⊗ · · · ⊗ vN ∼= ā[I] we get a
linear map

G := ψ−1 ◦ G|I|−p ◦ ψ : ā[I] → ā∗[I],

cf. (4.14). And when p = 0 and we restrict to the subspace v0⊗· · ·⊗vi−1⊗(Mi)[I]⊗vi+1⊗ . . . vN ∼=
(Mi)[I] we get a linear map G : (Mi)[I] → (M∗

i )[I] for each i = 0, . . . , N .

5.1. Shapovalov form. Let ϕ : b → b be the anti-automorphism defined by

ϕ( kei) =
kfi, ϕ( kfi) =

kei, ϕ( khi) =
khi.

It restricts to an anti-automorphism of b̄. There is a unique bilinear form Si on Mi, i = 1, . . . , N ,
such that

Si(vi, vi) = 1, Si(X.v,w) = Si(v, ϕ(X).w).

There is a unique bilinear form Sa on a such that

Sa(
kfi,

lfj) = δklδij, Sa([X,Y ], Z) = −S(Y, [ϕ(X), Z]).

It restricts to a bilinear form on ā.
Define

MN :=

N⊗

i=1

Mi →֒ M0,N ; x1 ⊗ · · · ⊗ xN 7→ v0 ⊗ x1 ⊗ · · · ⊗ xN .

Let Sp be the bilinear form on the space
∧p

ā⊗MN , p = 0, 1, . . . ,m, defined by

Sp(ap ∧ · · · ∧ a1 ⊗ x1 ⊗ · · · ⊗ xN , bp ∧ · · · ∧ b1 ⊗ y1 ⊗ · · · ⊗ yN )

= det(Sa(ai, bj)1≤i,j≤p)
N∏

i=1

Si(xi, yi). (5.2)

By restriction, we get a bilinear form Sp on the weight subspace (
∧p

ā⊗MN )[1m].

5.2. The forms G and S coincide on flags with no zero ends. Recall from §3.3 the notion of
flags with no zero ends. By definition of the map ψp, a monomial in x ∈ (

∧p
ā⊗M0,N )[1m] belongs

to the subspace (
∧p

ā⊗MN )[1m] if and only if its image ψp(x) ∈ Fm−p(C0,N ;m) is a flag with no

zero ends.

Theorem 5.1. On
(∧m−p

ā⊗MN

)
[1m]

, we have the equality Sm−p = (−1)mTm−pψ∗
m−p(G

p) of

symmetric bilinear forms.

Proof. Suppose x,y are monomials in
(∧m−p

ā⊗MN

)
[1m]

, with corresponding flags

ψm−p(x) = F = (L0 ⊃ · · · ⊃ Lp), ψ(y) = F ′.

Let kCz;m be a discriminantal arrangement adapted to the last edge Lp of F as in §3.3. Define

f̌i :=
k(i)fi, ȟi :=

k(i)hi, ěi :=
k(i)ei, i = 1, . . . ,m. (5.3)



CYCLOTOMIC DISCRIMINANTAL ARRANGEMENTS 19

These generate a subalgebra b̌ = ǎ ⊕ b̌0 ⊕ ǎ+ of b = a ⊕ b0 ⊕ a+. Let M̌i := U(b̌) ⊗U(b̌0⊕ǎ+) Cvi,

i = 1, . . . , N , where we note that

ǎ+.vi = 0, ȟj .vi = a(Ȟji)vi,

with Ȟji as in (3.3). Set M̌6=0 :=
⊗N

i=1 M̌i.
It follows from the definition of the map ψm−p that the monomial x is of the form

x = gm−p ∧ · · · ∧ g1 ⊗ 1⊗ x1 ⊗ . . . xN

for some commutators g1, . . . , gm−p ∈ ǎ (i.e. commutators in the generators f̌i), and some monomial

x1 ⊗ · · · ⊗ xN ∈ M̌6=0.

We have subalgebras τkǎ ⊂ a, k ∈ ZT . They are mutually orthogonal with respect to the
Shapovalov form Sa on a. Therefore for any commutators g, g′ ∈ ǎ we have

Sa(g, g
′) = TSǎ(g, g

′),

where Sǎ denotes the Shapovalov form on ǎ. On the other hand if g is a commutator in ǎ and g′′ is a
commutator in a\ τZǎ then Sa(g, g

′′) = 0. Similar statements hold for the factors Mi, i = 1, . . . , N .
Hence Sm−p(x,y) is zero unless the monomial y can also be expressed in the form

y = g′m−p ∧ · · · ∧ g′1 ⊗ 1⊗ y1 ⊗ . . . yN (5.4)

for some commutators g′1, . . . , g
′
m−p ∈ ǎ and some monomial y1 ⊗ · · · ⊗ yN ∈ M̌6=0, and if y is of

this form then

Sp(x,y) = Tm−p det(Sǎ(gi, g
′
j)1≤i,j≤m−p)

N∏

i=1

Si(xi, yi). (5.5)

Now, up to the factor of Tm−p, the right-hand side is the usual Shapovalov form for
∧p

ǎ ⊗ M̌6=0.
Therefore we may apply [SV91, Theorem 6.6] and conclude that

Sp(x,y) = Tm−p(−1)mḠp(F,F ′),

where Ḡp(F,F ′) is the bilinear form of the discriminantal arrangement kCz;m.

At the same time, Lemma 3.6 states that Gp(F,F ′) is zero unless F ′ ∈ Flagp(kCz;m), in which

case Gp(F,F ′) = Ḡp(F,F ′). And F ′ ∈ Flagp(kCz;m) if and only if the monomial y can be expressed
in the form (5.4). Thus we have the result. �

It will be useful to note the following special case of this argument.

Corollary 5.2. On ā, we have the equality Sa = G of symmetric bilinear forms. In particular, for
all x ∈ ā, if x ∈ kerSa then x ∈ kerG. �

5.3. On the kernel of the geometric form.

Lemma 5.3. Given an element x := y1 ∧ · · · ∧ yp ⊗w0 ⊗w1 ⊗ · · · ⊗wN ∈ ∧p
ā⊗M0,N , if any one

of y1, . . . yp, w0, w1, . . .wN lies in the kernel of G, then x lies in the kernel of G.
Proof. By inspection of the definition of ψ and G. �

Lemma 5.4. If y ⊗ w0 ∈ ā⊗M0 lies in the kernel of G, then yw0 ∈M0 lies in the kernel of G.
Proof. This follows from Theorem 2.5. Indeed, we have ψ(y1w0) = dψ(y1 ⊗w0) and hence, by that
theorem, G(ψ(y1w0)) = G(ψ(y1 ⊗w0))∧

(∑
H∈C a(H)H

)
. By the previous lemma, this is zero if y1

lies in the kernel of G. �

Theorem 5.5. Suppose x ∈ (
∧p

ā⊗M0,N )[1m] is of the form

x := y1 ∧ · · · ∧ yp ⊗ (x1 . . . xi . . . xlv0)⊗w1 ⊗ · · · ⊗ wN ,

where x1, . . . , xi, . . . xl ∈ ā and wi ∈ Mi, i = 1, . . . , N. Assume that xi lies in the kernel of the
Shapovalov form Sa. Then x lies in the kernel of G.
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Proof. By Corollary 5.2, xi ∈ ker G. Lemma 5.3 (with N = 0) then implies that xi⊗(xi+1 . . . xlv0) ∈
ker G. Hence by Lemma 5.4, (xixi+1 . . . xlv0) ∈ kerG. Therefore by Lemma 5.3, xi−1⊗(xixi+1 . . . xlv0) ∈
ker G. By using Lemmas 5.4 and 5.3 repeatedly in this way, we conclude that (x1 . . . xi . . . xlv0) ∈
ker G. The result follows, by one final invocation of Lemma 5.3. �

5.4. Shortened flags and linking hyperplanes. Given a subset J ⊂ {1, . . . ,m} and an edge L

of the arrangement C0,N ;m, define the edge L|J as follows. Recall that we can write L = kLi1
I1
∩ · · ·∩

kLir
Ir
∩ kLJ1 ∩ · · · ∩ kLJp , as in (3.2). Let L|J := kLi1

I1∩J
∩ · · · ∩ kLir

Ir∩J
∩ kLJ1∩J ∩ · · · ∩ kLJp∩J . Now

given a flag F = (L0 ⊃ L1 ⊃ · · · ⊃ Lp) define the flag F |J := (L0|J ⊇ L1|J ⊇ · · · ⊇ Lp|J). Note
that F |J has at most p steps. Call F |J a shortened flag.

Example 5.6. If J = {1, 2, 4} ⊂ {1, 2, 3, 4} and F is the flag (t1 = t2) ⊃ (t1 = t2 = t3) ⊃ (t1 = t2 =
t3 = t4) then F |J is the flag (t1 = t2) ⊃ (t1 = t2 = t4).

Let I, J ⊂ {1, . . . ,m} be disjoint subsets. We say a hyperplane H̃ links I and J if H̃ is (ti = ωktj)

for some i ∈ I, j ∈ J , k ∈ ZT . (That is, if H̃ is one of the kHi,j with i ∈ I, j ∈ J .)

5.5. Commutator lemmas in non-cyclotomic case. In this subsection we let T = 1, i.e. we
consider the non-cyclotomic case.

Let I1, I2 ⊂ {1, . . . ,m} be disjoint non-empty subsets. Let b ∈ a be a commutator of weight
wt b = [I1 ⊔ I2]. The element ψ(b) ∈ F |I1|+|I2|−1(CI1⊔I2), cf. (4.14), is a flag multiplied by a certain
sign ±1,

ψ(b) = ±F, F = (L0 ⊃ L1 ⊃ · · · ⊃ L|I1|+|I2|−1) ∈ Flag|I1|+|I2|−1(CI1⊔I2).
For convenience we will refer such elements ±F simply as flags. We extend the notions of adjacency-
with-sign (§2.4) and shortening (§5.4) to such elements by linearity. In particular we have the
shortened flags

ψ(b)|I1 := ±F |I1 , ψ(b)|I2 := ±F |I2 .
Recall from §3.1 that we can regard each edge Lj of the flag ψ(b) as an archipelago of islands.

These islands are all swimming since b is a commutator. At each step Lj−1 ⊃ Lj two islands are
joined.

Let k be the smallest index such that the edge Lk is contained in some hyperplane which links
I1 and I2. That is, let k be smallest such that for some nonempty subsets J1 ⊂ I1 and J2 ⊂ I2, the
edge Lk has an island LJ1⊔J2 . Denote by

H = {(ti = tj) : i ∈ J1, j ∈ J2} (5.6)

the set of all hyperplanes linking J1 and J2.

Lemma 5.7. Let (H1, . . . ,H|I1|−1) be a tuple of hyperplanes in CI1 . Let (H ′
1, . . . ,H

′
|I2|−1) be a

tuple of hyperplanes in CI2. Let H̃ ∈ CI1⊔I2 be a hyperplane linking I1 and I2. Then the tuple

(H1, . . . ,H|I1|−1, H
′
1, . . . ,H

′
|I2|−1, H̃) is adjacent to ψ(b) if and only if (H1, . . . ,H|I1|−1) is adjacent

to ψ(b)|I1 , (H ′
1, . . . ,H

′
|I2|−1) is adjacent to ψ(b)|I2 , and H̃ links J1 and J2.

Proof. The “only if” direction is immediate from the definition of the shortened flags. For the “if”
direction, note that the step Lk−1 ⊃ Lk of the flag ψ(b) is the only one in which an island (see §3.1)
LJ1 with J1 ⊂ I1 is joined to an island LJ2 with J2 ⊂ I2. At this step we have Lk = Lk−1 ∩ H̃.
At every other step Lj−1 ⊃ Lj, j 6= k, we have Lj = Lj−1 ∩ H for some H ∈ CI1 or H ∈ CI2 .
By definition of the shortened flags, a suitable hyperplane H can always be drawn from the set
{H1, . . . ,H|I1|−1,H

′
1, . . . ,H

′
|I2|−1}. �
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Now let (H1, . . . ,H|I1|−1) be a tuple of hyperplanes in CI1 adjacent to ψ(b)|I1 . We associate

to any such hyperplanes a sign, c(H1, . . . ,H|I1|−1), defined as follows. Suppose H̃ ∈ H. Suppose

(H ′
1, . . . ,H

′
|I2|−1) is adjacent to the shortened flag ψ(b)|I2 , with sign say (−1)t. By Lemma 5.7, the

tuple (H1, . . . ,H|I1|−1, H
′
1, . . . ,H

′
|I2|−1, H̃) is adjacent to ψ(b) with some sign, say (−1)p.

Lemma 5.8. The sign (−1)p+t is independent of the choice of (H ′
1, . . . ,H

′
|I2|−1) and H̃. �

Proof. Call a step Lj−1 ⊃ Lj of the flag ψ(b) black, •, if Lj = Lj−1∩H for some H ∈ CI2 and white,

◦, otherwise. Reading the steps of the flag ψ(b) in order we obtain a tuple T ∈ {•, ◦}|I1|+|I2|−1 in
which each entry is • or ◦. There is a unique shuffle (i.e. a permutation which does not alter the
ordering of •’s or the ordering of ◦’s) which sends

(◦, . . . , ◦︸ ︷︷ ︸
|I1|−1

, •, . . . , •︸ ︷︷ ︸
|I2|−1

, ◦) → T.

Let (−1)v be the sign of this shuffle. Let (−1)u be the sign with which (H1, . . . ,H|I1|−1) is adjacent

to ψ(b)|I1 . Then we have (−1)p = (−1)u+v+t. Hence (−1)p+t = (−1)u+v, and written in this form

it is manifestly independent of the choice of (H ′
1, . . . ,H

′
|I2|−1) and H̃. �

Thus we may define the sign c(H1, . . . ,H|I1|−1) = (−1)p+t.

Proposition 5.9. Let a, b ∈ a be commutators such that wt a = [I1] and wt b = [I1 ⊔ I2]. Then

ψ([ϕ(a), b]) + ψ(b)|I2




∑

(H1,...,H|I1|−1)

c(H1, . . . ,H|I1|−1)a(H1) . . . a(H|I1|−1)



∑

H̃∈H

a(H̃) (5.7)

lies in the kernel of G. Here H is as in (5.6), and the first sum is over all tuples (H1, . . . ,H|I1|−1),
modulo reordering, of hyperplanes in CI1 adjacent to ψ(a) with sign +1 and adjacent to ψ(b)|I1 .
Proof. Let c be any commutator of weight wt c = [I2]. It is shown in [SV91] that G(ψ(·), ψ(·)) =
S(·, ·) as an equality of bilinear forms on a, where S is the Shapovalov form. By definition of the
latter, S([a, c], b) = −S(c, [ϕ(a), b]). Hence, we have

−G(ψ(c), ψ([ϕ(a), b]))

= G(ψ([a, c]), ψ(b))

=
∑

(H′
1,...,H

′
|I2|−1

)

∑

(H1,...,H|I1|−1)

∑

H̃∈H

(−1)pa(H1) . . . a(H|I1|−1)a(H
′
1) . . . a(H

′
|I2|−1)a(H̃),

where:

(1) the outer sum is over all tuples (H ′
1, . . . ,H

′
|I2|−1), modulo reordering, of hyperplanes in CI2

adjacent to ψ(c) with sign +1 and adjacent to ψ(b)|I2 ;
(2) the middle sum is over all tuples (H1, . . . ,H|I1|−1), modulo reordering, of hyperplanes in CI1

adjacent to ψ(a) with sign +1 and adjacent to ψ(b)|I1 ; and
(3) (−1)p is the sign with which the tuple (H1, . . . ,H|I1|−1,H

′
1, . . . ,H

′
|I2|−1, H̃) is adjacent to the

flag ψ(b).

Indeed, by definition of G, §2.6, we are to sum over all tuples, modulo reordering, of hyperplanes
adjacent to both flags ψ(b) and ψ([a, c]). By definition of ψ([a, c]), every tuple adjacent to to

ψ([a, c]) is of the form (H1, . . . ,H|I1|−1,H
′
1, . . . ,H

′
|I2|−1, H̃) for some H̃ linking I1 and I2, some

H1, . . . ,H|I1|−1 ∈ CI1 , and some H ′
1, . . . ,H

′
|I2|−1 ∈ CI2 . Lemma 5.7 then tells us which of these

tuples are also adjacent to ψ(b).
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Now, in view of Lemma 5.8, we may factor the expression above as



∑

(H′
1,...,H

′
|I2|−1

)

(−1)ta(H ′
1) . . . a(H

′
|I2|−1)




×




∑

(H1,...,H|I1|−1)

c(H1, . . . ,H|I1|−1)a(H1) . . . a(H|I1|−1)
∑

H̃∈H

a(H̃)




where (−1)t is the sign with which (H ′
1, . . . ,H

′
|I2|−1) is adjacent to ψ(b)|I2 . But now observe that

the left factor above is G(ψ(c), ψ(b)|I2 ). So we have shown that

−G(ψ(c), ψ([ϕ(a), b])) = G(ψ(c), ψ(b)|I2 )
∑

(H1,...,H|I1|−1)

c(H1, . . . ,H|I1|−1)a(H1) . . . a(H|I1|−1)
∑

H̃∈H

a(H̃).

Thus (5.7) lies in the kernel of G(ψ(c), ·), for any commutator c ∈ a[I2]. This suffices to show that
it lies in the kernel of G. �

5.6. Definition of G0. We return to the case of general T ∈ Z≥1, i.e. to the general cyclotomic
case.

Let I ⊂ {1, . . . m}. Recall that CI denotes the arrangement consisting of just the “diagonal”
hyperplanes kHi1,i2 , i1, i2 ∈ I, k ∈ ZT . Define a bilinear form on G0 on ā[I] by

G0(a, b) := GCI (ψ(av0), ψ(bv0)) (5.8)

where GCI is the bilinear form for the arrangement CI of “diagonal” hyperplanes.

Equivalently, but more explicitly, for two projected commutators a, b ∈ ā of equal weight [I],
define

G0(a, b) :=
∑

(H1,...,Hp+1)

(−1)sa(H1) . . . a(Hp+1)

where the sum is over all tuples (H1, . . . ,Hp+1), modulo reordering, of hyperplanes belonging to
the arrangement CI , such that

(1) (H1, . . . ,Hp+1) is adjacent to the flag ψ(av0), with sign +1,

(2) (H1, . . . ,Hp+1) is adjacent to the flag ψ(bv0), with sign say (−1)s.

Note that ψ(av0) is the flag ψ(a) completed by the last edge L0
I .

Example 5.10. For k, l ∈ ZT ,

G0([ 0f1, kf2], [ 0f1, lf2]) = a(kH1,2)


−a(lH1,2) + δkl

∑

p∈ZT

a(pH1,2)




Proposition 5.11. Let J ( I. For all a ∈ ā[J ], b ∈ ā[I] and c ∈ ā[I\J ],

G0(b, [c, a]) +G0(c, [ϕ(a), b]) +G0(a, [b, ϕ(c)]) = 0.

Proof. It is enough to consider the case that a, b, c are projected commutators. Then [c, a] =∑
k∈ZT

[c, τka] and we have

G0(b, [c, a]) =
∑

k∈ZT

G0(b, [c, τka]) =
∑

(H1,...,H|J|)

(H′
1,...,H

′
|I\J|

)

H•,H◦

(−1)pa(H1) . . . a(H|J |)a(H
′
1) . . . a(H

′
|I\J |)a(H•)a(H◦).

(5.9)
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Here the sum is over all tuples (H1, . . . ,H|J |), modulo reordering, of hyperplanes in CJ , all tuples
(H ′

1, . . . ,H
′
|I\J |), modulo reordering, of hyperplanes in CI\J , and all hyperplanes H•,H◦ ∈ CI , such

that:

(1) (H1, . . . ,H|J |,H
′
1, . . . ,H

′
|I\J |,H•) is adjacent to ψ([c, τ

ka]) for some k ∈ ZT , with sign +1,

(2) H1 ∩ · · · ∩H|J | ∩H ′
1 ∩ · · · ∩H ′

|I\J | ∩H• ∩H◦ = {0}
(3) (H1, . . . ,H|J |,H

′
1, . . . ,H

′
|I\J |,H•,H◦) is adjacent to the flag ψ(bv0), with sign say (−1)p.

Note that (1) implies in particular that the hyperplane H• links I \ J and J . The hyperplane H◦

is of one of three types:

(i) H◦ (also) links I \ J and J ,
(ii) H◦ belongs to the arrangement CI\J ,
(iii) H◦ belongs to the arrangement CJ .
Consider case (i). Then the sum also includes the term with H◦ and H• interchanged, and it

comes with the opposite sign. Indeed, (H1, . . . ,H|J |,H
′
1, . . . ,H

′
|I\J |,H◦) is adjacent to ψ([c, τka])

for some (different) value of k ∈ ZT , again with sign 1. Condition (2) still holds with H◦ and H•

interchanged. And so does condition (3), but with an additional factor of (−1). Therefore such
terms cancel pairwise in the sum.

In the remainder of the proof we shall show that the terms in the sum of the types (ii) and (iii)
cancel against G0(c, [ϕ(a), b]) and G0(a, [b, ϕ(c)]) respectively.

Consider G0(c, [ϕ(a), b)]). We have [ϕ(a), b] =
∑

k∈ZT
[ϕ(a), τkb]. Consider any one term

[ϕ(a), τkb] in this sum. If the content, in the sense of §4.1, of the commutator a is not a sub-
set of the content of τkb, then this term is evidently zero, since [ lej ,

kfi] is zero unless k = l and

i = j. So suppose that the content of a is a subset of the content of τkb. (This happens for at
most one value of k). As in §3.3, we may consider the (non-cyclotomic) discriminantal arrangement
adapted to the last edge of the flag ψ(b) = ψ(τkb) := ψ(b). Then by Proposition 7.11 we find that

ψ([ϕ(a), τkb]) + ψ(τkb)|I\J
∑

(H1,...,H|J|)
H•

(−1)p+ta(H1) . . . a(H|J |)a(H•) ∈ ker G (5.10)

where the sum is over all hyperplanes (H1, . . . ,H|J |), modulo reordering, of hyperplanes in CJ and
all hyperplanes H• that link I \ J and J , such that

(1) (H1, . . . ,H|J |) is adjacent to the flag ψ(a), with sign +1,

(2) for some hyperplanes H ′
1, . . . ,H

′
|I\J | in CI\J , the tuple (H1, . . . ,H|J |,H

′
1, . . . ,H

′
|I\J |,H•) is

adjacent to the flag ψ(τkb) = ψ(b), with sign say (−1)p.

The sign (−1)t is the sign of the permutation that puts these H ′
1, . . . ,H

′
|I\J | into the order in which

they appear in the flag ψ(b).
We have Lemmas 5.3 and 5.4 for the arrangement CI . Therefore (5.10) is sufficient to ensure

that

[ϕ(a), τkb] + ψ−1(ψ(τkb)|I\J
∑

(H1,...,H|J|)
H•

(−1)p+ta(H1) . . . a(H|J |)a(H•) (5.11)

lies in the kernel of G0(c, ·).
Now by definition of G0,

G0

(
c, ψ−1(ψ(b)|I\J )

)
=

∑

(H′
1,...,H

′
|I\J|

)

H◦

(−1)ta(H ′
1) . . . a(H

′
|I\J |)a(H◦) (5.12)
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where the sum is over all tuples (H ′
1, . . . ,H

′
|I\J |), modulo reordering, of hyperplanes in CI\J , and

all hyperplanes H◦ ∈ CI\J , such that

(1) (H ′
1, . . . ,H

′
|I\J |) is adjacent to the flag ψ(c), with sign +1,

(2) H ′
1 ∩ · · · ∩H ′

|I\J | ∩H◦ = {0},
(3) (H ′

1, . . . ,H
′
|I\J |,H◦) is adjacent to the flag ψ(bv0)|I\J , with sign say (−1)t.

Inspecting (5.11) and (5.12), one indeed sees that G0(c, [ϕ(a), b]) is equal and opposite to the
sum of terms of type (ii) in the expression (5.9) for G0(b, [c, a]).

The argument that terms of type (iii) cancel against G0(a, [b, ϕ(c)]) is similar. �

5.7. Definition of Ω≤1. Let a≤1 denote the subspace

a≤1 :=
⊕

I⊂{1,...,m}

a[I].

That is, a≤1 is the span of all commutators in which for each i ∈ {1, . . . ,m} at most one of
the generators kfi, k ∈ ZT , appears. Define (a+)≤1 similarly. Recall b = a ⊕ b0 ⊕ a+. Let
b≤1 := a≤1 ⊕ b0 ⊕ (a+)≤1.

Define a skew-symmetric bilinear form Ω≤1 : b̄≤1 × b̄≤1 → C as follows. For all I ⊂ {1, . . . ,m}
and all x ∈ (ā+)[I] and y ∈ ā[I], set

−Ω≤1(y, x) = Ω≤1(x, y) := G0(ϕ(x), y)).

On all other components in the weight decomposition of b̄≤1 × b̄≤1, set Ω≤1(x, y) = 0.

Proposition 5.12. Let x ∈ ā. If x ∈ kerSa then Ω≤1(x, y) = 0 for all y ∈ b̄.

Proof. If x ∈ kerSa then x ∈ ker G as in Corollary 5.2. Lemma 5.4 holds for the arrangement CI .
In view of the definition of G0, the result follows. �

Theorem 5.13. We have the equality

Ω≤1(x, [y, z]) + Ω≤1(y, [z, x]) + Ω≤1(z, [x, y]) = 0

for all x, y, z ∈ b̄≤1.

Proof. When x ∈ (ā+)[I], y ∈ ā[I] and z ∈ b̄0 the third term vanishes and the first two cancel.
Consider the case that x ∈ (ā+)[I], y ∈ ā[J ] and z ∈ ā[I\J ] where J ( I ⊂ {1, . . . ,m}. It is enough

to suppose that x, y, z are projected commutators. Say x = ϕ(b), y = c and z = a for commutators
a, b, c ∈ a. Then what has to be shown is that

0 = Ω≤1(ϕ(b), [c, a])− Ω≤1([a, ϕ(b)], c)− Ω≤1([ϕ(b), c], a)

= G0(b, [c, a])−G0(ϕ([a, ϕ(b)]), c)−G0(ϕ([ϕ(b), c]), a)

= G0(b, [c, a]) +G0([ϕ(a), b)], c) +G0([b, ϕ(c)], a)

= G0(b, [c, a]) +G0(c, [ϕ(a), b)]) +G0(a, [b, ϕ(c)]),

which is true, by Proposition 5.11. �

Remark 5.14. One “wants” to say that Ω≤1 is a cocycle, and then use it to define a central extension
of the Lie algebra b̄. We do not quite have that statement, because Ω≤1 is defined only on the
subspace b̄≤1. After symmetrization is introduced in §6, it will be possible to make such statements,
in §7.3. For now we proceed as follows.

Let b̄ ⊕ Ck denote the trivial extension of b̄ by a one-dimensional centre Ck. We make M0 into
a module over b̄ ⊕ Ck by declaring that k.v0 = v0. Define a “modified commutator”, namely a
bilinear map [·, ·]′ : (ā+)≤1 × ā≤1 → b̄⊕ Ck, by

[x, y]′ := [x, y] + Ω≤1(x, y)k.
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Define a “modified action” ⊲ of b̄≤1 on (M0)≤1 recursively as follows. For all x ∈ ā≤1 and w ∈
(M0)≤1, set x ⊲ w = xw. For all x ∈ (ā+)≤1, set x ⊲ v0 := 0 and

x ⊲ yw := [x, y]′ ⊲ w + y(x ⊲ w)

for all y ∈ ā≤1 and w ∈ (M0)≤1 such that yw ∈ (M0)≤1. Theorem 5.13 ensures that this is well-
defined, i.e. x⊲ [y1, y2]w = x⊲y1y2w−x⊲y2y1w, and respects the bracket in b̄≤1, i.e. [x1, x2]⊲w =
x1 ⊲ x2 ⊲ w − x2 ⊲ x1 ⊲ w whenever x1, x2, [x1, x2] ∈ b̄≤1. Let S0 be the corresponding “modified
Shapovalov form” on (M0)≤1. Namely, define a symmetric bilinear form S0 : (M0)≤1×(M0)≤1 → C

by S0(v0, v0) = 1 and then recursively,

S0(xv,w) := S0(v, ϕ(x) ⊲ w)

for all x ∈ ā≤1 and v,w ∈ (M0)≤1 such that xv ∈ (M0)≤1.

Example 5.15. We have ϕ([ 0f1, kf2]) = −[ 0e1, ke2] and hence

S0([ 0f1, kf2]v0, [ 0f1, lf2]v0)

= S0(v0,
[
[ 0e1, ke2] [ 0f1, lf2]

]′
v0)

= S0(v0,


δkl(h1 + h2)a(

kH1,2) + ka(kH1,2)


−a(lH1,2) + δkl

∑

p∈ZT

a(pH1,2)




 v0)

= −a(kH1,2)a(
lH1,2) + δkla(

kH1,2)


a(H0

1 ) + a(H0
2 ) +

∑

p∈ZT

a(pH1,2)


 .

Theorem 5.16. We have the equality S0 = G of bilinear forms on (M0)≤1.

Proof. Let I1, . . . , In ⊂ {1, . . . ,m} be pairwise disjoint subsets and let A1, . . . , An ∈ a be commuta-
tors such that wtAi = [Ii] for i = 1, . . . , n. Let J1, . . . , Jp ⊂ {1, . . . ,m} be pairwise disjoint subsets
and let B1, . . . , Bn ∈ a be commutators such that wtBi = [Ji] for i = 1, . . . , p. It is enough to show
that

G(A1 . . . Anv0, B1 . . . Bpv0) = S0(A1 . . . Anv0, B1 . . . Bpv0). (5.13)

We proceed by induction on n+ p. The equality (5.13) is true whenever n = 0 or p = 0.
Consider the inductive step. Suppose n, p ≥ 1. Let us assume that I1 ⊔ · · · ⊔ In = J1 ⊔ · · · ⊔ Jp.

(If not, both sides of (5.13) are zero and we are done.)
Observe that for any permutation s ∈ Σn, the difference

A1 . . . An −As(1) . . . As(n)

as an element of the universal enveloping algebra is a linear combination of products of < n projected

commutators. (For example A1A2 − A2A1 =
[
A1, A2

]
=
∑

k∈ZT
[A1, τkA2].) Therefore, by the

inductive assumption, we effectively have the freedom to permute the commutators A1, . . . , An at
will. The same applies to B1, . . . Bp.

We note the following lemma.

Lemma 5.17. Both G(A1 . . . Anv0, B1 . . . Bpv0) and S0(A1 . . . Anv0, B1 . . . Bpv0) are zero unless
the following condition holds:

There exists j ∈ {1, . . . , p} such that I1 ⊆ Jj or I1 ⊇ Jj. (5.14)

Proof. Suppose this condition does not hold. We must show that then both the geometric and
Shapovalov forms are zero.

For the Shapovalov form S0, it is enough to observe that, for each j, the supposition that I1 6⊆ Jj
and I1 6⊇ Jj implies [ϕ(A1), Bj ]

′ = 0.
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Consider the geometric form G. Let I := I1 ⊔ · · · ⊔ In = J1 ⊔ · · · ⊔ Jp. Inspecting the definition

of ψ in Theorem 4.2, we see that the flag ψ(A1 . . . Anv0) ∈ F |I|(C0,I) has last two edges

· · · ⊃ kLI1 ∩ L0
I\I1

⊃ L0
I ,

for some map k : {1, . . . ,m} → ZT . Indeed, the last step is the one in which the swimming island
(see §3.1) corresponding to A1 is fixed to zero.

To write the penultimate edge, kLI1 ∩ L0
I\I1

, as an intersection of hyperplanes requires |I \ I1|+
(|I1| − 1) = |I| − 1 hyperplanes, none of which can be from the following set

{kHi,j}i∈I1,j∈I\I1,k∈ZT
. (5.15)

So, by counting, any tuple of hyperplanes adjacent to the flag ψ(A1 . . . Anv0) ∈ F |I|(C0,I) contains
at most one hyperplane from the set in (5.15).

Therefore we are done if we can show that any tuple of hyperplanes adjacent to the flag
ψ(B1 . . . Bpv0) contains more than one element from the set in (5.15). By supposition, we may
pick i1, i2 ∈ I1 such that i1 ∈ Jj1 and i2 ∈ Jj2 , with j1 6= j2 and Jj1 , Jj2 6⊂ I1. Now, by choice
of the order in which we apply the rules, (A)–(C), of Theorem 4.2, we may suppose that the flag
ψ(B1 . . . Bpv0) contains the edge

k
′
LJ1 ∩ · · · ∩ k

′
LJp

for some map k′ : {1, . . . ,m} → ZT . (Informally, we may choose to “build all the swimming
islands first, before fixing any islands”, cf. §3.2.) Any tuple of hyperplanes adjacent ψ(B1 . . . Bpv0)

therefore contains some hyperplane linking Jj1 ∩ I1 to Jj1 \ I1 (to construct k′
LJj1

) and also some

hyperplane linking Jj2 ∩ I1 to Jj2 ∩ I1 (to construct k
′
LJj2

). Both of these two distinct hyperplanes

belong to {kHi,j}i∈I1,j∈I\I1,k∈ZT
. So we are done. �

Suppose therefore that the condition (5.14) does hold. By the freedom to permute the commu-
tators, and if necessary by renaming A ↔ B, I ↔ J , we may suppose that I1 ⊆ J1. By definition
of S0,

S0(A1A2 . . . Anv0, B1B2 . . . Bpv0) = S0(A2 . . . Anv0, [ϕ(A1), B1]
′B2 . . . Bpv0).

Therefore to complete the inductive step it is enough to establish the following.

Lemma 5.18.

G(A1A2 . . . Anv0, B1B2 . . . Bpv0) = G(A2 . . . Anv0, [ϕ(A1), B1]
′B2 . . . Bpv0).

Proof. There are two cases, I1 ( J1 and I1 = J1.
First suppose I1 ( J1. Then the lemma follows from Proposition 7.11 and the definition of G.

(Compare the proof of Proposition 5.11.)
Next suppose I1 = J1. By definition of G, we have

G(A1A2 . . . Anv0, B1B2 . . . Bpv0)

= G(A2 . . . Anv0, B2 . . . Bpv0)

×


G(A1, B1)

∑

i∈I1=J1


a(H0

i ) +
∑

j∈J2⊔···⊔Jp

∑

k∈ZT

a(kHi,j)


 +G0(A1, B1)


 .
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On the other hand we have, using Corollary 7.12 and G(A1, B1) = S(A1, B1),

[ϕ(A1), B1]
′B2 . . . Bpv0 =


G(A1, B1)

∑

i∈I1

1

T
hi +Ω≤1(ϕ(A1), B1)k


B2 . . . Bpv0

= B2 . . . Bpv0


G(A1, B1)

∑

i∈I1=J1


a(H0

i ) +
∑

j∈J2⊔···⊔Jp

∑

k∈ZT

a(kHi,j)


+G0(A1, B1)




The lemma follows. �

This completes the proof of Theorem 5.16 �

Putting together Theorem 5.16 and Theorem 5.1, we finally obtain the following. Let Sp be the
bilinear form on the space

∧p
ā⊗M0,N , p = 0, 1, . . . ,m, defined by

Sp(ap ∧ · · · ∧ a1 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN , bp ∧ · · · ∧ b1 ⊗ y0 ⊗ y1 ⊗ · · · ⊗ yN )

= det(Sa(ai, bj)1≤i,j≤p)S0(x0, y0)
N∏

i=1

Si(xi, yi). (5.16)

Let

Sp :
∧p

ā⊗M0,N → (
∧p

ā⊗M0,N )∗ (5.17)

denote the corresponding linear map.
Recall the isomorphism ψp : Cp(ā,M0,N )[1m] → Fm−p(C0,N ;m) of Theorem 4.2. It yields an

isomorphism of the dual spaces,

(ψ−1
p )∗ : Cp(ā,M0,N )∗[1m] → F

m−p(C0,N ;m)∗ ∼= A
m−p(C0,N ;m).

Theorem 5.19. On Cp(ā,M0,N )[1m] = (
∧p

ā⊗M0,N )[1m], we have the equality

Sp = (−1)m−pT pψ∗
p(G

m−p)

of symmetric bilinear forms. Equivalently, the following diagram commutes:

Cp(ā,M0,N )[1m] Cp(ā,M0,N )∗[1m],

Fm−p(C0,N ;m) A m−p(C0,N ;m).

Sp

T p(−G)m−p

∼ψp ∼(ψ−1
p )∗

�

6. Symmetrization

6.1. The Lie algebras n and nσ. Let n denote the free Lie algebra in generators Fi, i ∈ {1, . . . , R},
R ∈ Z≥1. For a permutation σ : {1, . . . , R} → {1, . . . , R}, define the automorphism σ : n → n by

σ(Fi) = Fσ(i), i ∈ {1, . . . , R}. (6.1)

Let T ∈ Z≥1 be the order of σ.
The set {1, . . . , R} is the union of some number r of disjoint cycles for the permutation σ. Pick

an injection ι : {1, . . . , r} → {1, . . . , R} which maps distinct elements into distinct cycles, so that
ι(i) is a representative of the ith cycle. Let Ti denote the length of the ith cycle, i.e. Ti := |σZι(i)|.
Each Ti divides T .
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By definition
∑r

i=1 Ti = R. Observe that

{σkFι(i) : k = 0, . . . , Ti − 1, i ∈ {1, . . . , r}} (6.2)

are the set of generators of n.
As with a above, we have a weight decomposition of n, namely the Zr

≥0-grading of n as a Lie
algebra,

n =
⊕

(n1,...,nr)∈Zr
≥0

n[n1,...,nr], (6.3a)

such that
n[0,...,0,1

i

,0,...,0] := spanC(σ
kFι(i))k=0,1,...,Ti−1, for each i ∈ {1, . . . , r}. (6.3b)

We have also the obvious refinement of this decomposition, namely the ZR
≥0-grading of n as a Lie

algebra

n =
⊕

(n1,...,nR)∈ZR
≥0

n(n1,...,nR), (6.4a)

such that
n(0,...,0,1

i

,0,...,0) := spanC(Fi), , for each i ∈ {1, . . . , R}. (6.4b)

Example 6.1. Suppose R = 3 and σ is the permutation (13). We have r = 2 and, say, ι(1) = 1,
ι(2) = 2. Then T1 = 2, T2 = 1, and

F1 = σ0Fι(1), F2 = σ0Fι(2), F3 = σ1Fι(1).

Thus n[1,0] = n(1,0,0) ⊕ n(0,0,1) = spanC(F1, F3) and n[0,1] = n(0,1,0) = spanC(F2).

Let nσ ⊂ n denote the subalgebra of σ-invariants. Define

M0,N := U(nσ)⊗
N⊗

i=1

U(n), (6.5)

cf. (4.2). We have the standard chain complex (C•(n
σ,M0,N ), d), cf. (4.5). The automorphism σ

respects the weight decomposition (6.3) (though not the decomposition (6.4) in general). Thus we
have also a weight decomposition of nσ, and thence of M0,N , Cp(n

σ ,M0,N ), etc.

6.2. The weight λ and symmetrization in C(ā,M0,N ). Now pick and fix an arbitrary weight

λ := (λ1, . . . , λr) ∈ Zr
≥0. Set m := |λ| :=∑r

i=1 λi. We have the free Lie algebra a in generators kfi,
k ∈ ZT , i = 1, . . . ,m, as in §4.

(Let us stress that m and a now depend on the choice of λ.)
It will be useful to introduce a notation for the elements of the set {1, . . . ,m}, adapted to the

composition m = λ1 + · · ·+ λr of m. To that end, we shall write

in :=
i−1∑

j=1

λj + n, n = 1, . . . , λi, i = 1, . . . , r, (6.6)

so that
{1, . . . ,m} = {11, . . . , 1λ1 , 21, . . . , 2λ2 , . . . , r1, . . . , rλr)}.

For i = 1, . . . , r, let ΣZλi
denote the wreath product, Σλi

≀ ZT/Ti
. That is, let

ΣZλi
:= Σλi

⋉
(
ZT/Ti

)λi ,

where the semi-direct product is

(s′, (k′n)1≤n≤λi
)(s, (kn)1≤n≤λi

) = (ss′, (kn + k′s(n))1≤n≤λi
).
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We let an element (s, (kn)1≤n≤λi
) ∈ ΣZλi

act on the generators kfip , k ∈ ZT , p ∈ {1, . . . , λi} by

(s, (kn)1≤n≤λi
). kfip := k+Tikpfis(p) ,

and let it act trivially on the remaining generators, kfjp, j 6= i, k ∈ ZT , p ∈ {1, . . . , λj}. This
defines an action by automorphisms of the group

ΣZλ := ΣZλ1 × · · · × ΣZλr
.

on the free Lie algebra a, and hence on U(a). The subalgebra ā is stable under this action. In this
way we have an action of ΣZλ on

∧•
ā⊗M0,N .

This action of ΣZλ on
∧•

ā⊗M0,N commutes with the projection
∧•

ā⊗M0,N → (
∧•

ā⊗M0,N )[1m]

to the weight (1, . . . , 1) ∈ Zm
≥0 subspace.

Recall the generators of n given in (6.2).

Proposition 6.2. There is a homomorphism of Lie algebras  : n → a defined by

 : σkFι(i) 7→
T/Ti−1∑

l=0

λi∑

n=1

k+Tilfin , k = 0, . . . , Ti − 1, i ∈ {1, . . . , r}.

It satisfies  ◦ σ = τ ◦ . Hence its restiction to nσ defines a homomorphism nσ → ā.

Proof. For k = 0, . . . , Ti − 2 it is immediate that

( ◦ σ)(σkFι(i)) =

T/Ti−1∑

l=0

λi∑

n=1

k+1+Tilfin = τ

T/Ti−1∑

l=0

λi∑

n=1

k+Tilfin = (τ ◦ )(σkFι(i)).

It remains to observe that

( ◦ σ)(σTi−1Fι(i)) = (σTiFι(i)) = (Fι(i)) =

T/Ti−1∑

l=0

λi∑

n=1

Tilfin

=

T/Ti−1∑

l=0

λi∑

n=1

Ti(l−1)fin = τ

T/Ti−1∑

l=0

λi∑

n=1

Ti−1+Tilfin = (τ ◦ )(σTi−1Fι(i)).

�

The homomorphism of Proposition (6.2) induces a homomorphism of complexes C•(n
σ,M0,N ) →

C•(ā,M0,N )ΣZλ . By composing this homomorphism with projection onto the [1m] weight space, we
get a homomorphism of complexes

s : C•(n
σ,M0,N )λ → C•(ā,M0,N )ΣZλ

[1m]. (6.7)

Example 6.3. We continue Example 6.1 above. For simplicity, take N = 1 and consider elements
in 1⊗ U(n) ⊂ ∧0

nσ ⊗ U(nσ)⊗ U(n) = C0(n
σ,M0,N ). Under the map s, we have

1⊗ F1 7→ 1⊗ 0f11 , 1⊗ F2 7→ 1⊗ ( 0f21 +
1f21), 1⊗ F3 7→ 1⊗ 1f11

and

1⊗ F1F1 7→ 1⊗ ( 0f11
0f12 +

0f12
0f11),

1⊗ F1F3 7→ 1⊗ ( 0f11
1f12 +

0f12
1f11)

1⊗ F1F2 7→ 1⊗ ( 0f11
0f21 +

0f11
1f21)

1⊗ F2F2 7→ 1⊗ ( 0f21
0f22 +

0f22
0f21 +

0f21
1f22 +

1f22
0f21

+ 1f21
0f22 +

0f22
1f21 +

1f21
1f22 +

1f22
1f21).
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In the other direction, there is a homomorphism of Lie algebras a → n defined by

kfin 7→ σkFι(i), k ∈ ZT , i = 1, . . . , r, n = 1, . . . , λi. (6.8)

This homomorphism induces a homomorphism C•(ā,M0,N )[1m] → C•(n
σ,M0,N )λ. Let π denote

the restriction of the latter to C•(ā,M0,N )ΣZλ

[1m],

π : C•(ā,M0,N )ΣZλ

[1m] → C•(n
σ,M0,N )λ. (6.9)

Lemma 6.4. The compositions π ◦ s and s ◦ π are equal to multiplication by

|ΣZλ| =
r∏

i=1

(T/Ti)
λiλi!. (6.10)

�

Corollary 6.5. The maps s and π are isomorphisms of complexes. �

6.3. Symmetrization of flags and forms. Define an action of ΣZλi
on the coordinate functions

of Cm by the following formula. For i = 1, . . . , r, let an element (s, (kn)1≤n≤λi
) ∈ ΣZλi

transform
the coordinate functions tip , p ∈ {1, . . . , λi}, on Cm according to

(s, (kn)1≤n≤λi
).tip := ωTikptis(p) (6.11)

and let it act trivially on the remaining coordinate functions tjn , j 6= i, n ∈ {1, . . . , λj}. This action
defines an action of ΣZλi

on Cm.
The action (6.11) gives rise to an action of the group ΣZλ on the set of hyperplanes of the

arrangement C0,N ;m. This yields a canonical action of ΣZλ on the spaces A p(C0,N ;m) and Fp(C0,N ;m).

Namely, for each i = 1, . . . , r, an element g = (s,~k) ∈ ΣZλi
acts on A p(C0,N ;m) according to

g.(H1 ∧ · · · ∧Hp) = (g.H1) ∧ · · · ∧ (g.Hp).

For hyperplanes H1, . . . ,Hp, let F (H1, . . . ,Hp) denote the flag H1 ⊃ H1∩H2 ⊃ · · · ⊃ H1∩· · ·∩Hp.

For each i = 1, . . . , r, we let an element g = (s,~k) ∈ ΣZλi
act on the set of flags as follows

g.F (H1, . . . ,Hp) = F ((g.H1), . . . , (g.Hp)).

These actions respect the pairing of §2.4, i.e. 〈g.F, g.(H1 ∧ · · · ∧Hp)〉 = 〈F, (H1 ∧ · · · ∧Hp)〉 .
For g = ((s1, ~k1), . . . , (sr, ~kr)) ∈ ΣZλ let us write

(−1)|g| := (−1)|s1| . . . (−1)|sr |. (6.12)

Proposition 6.6. The isomorphisms ψ• :
∧•

ā ⊗ M0,N → Fm−•(C0,N ;m) of Theorem 4.2 have
the following equivariance property with respect to these actions of ΣZλ. For all g ∈ ΣZλ and
m ∈ ∧•

ā⊗M0,N ,

ψ•(g.m) = (−1)|g|g.ψ•(m)

�

Let Fm−k(C0,N ;m)ΣZλ denote the subspace of Fm−k(C0,N ;m) spanned by flags F such that

(−1)|g|g.F = F . We arrive at the following.

Theorem 6.7. The map

ψk ◦ s : Ck(n
σ,M0,N )λ → F

m−k(C0,N ;m)ΣZλ (6.13)

is an isomorphism of complexes, for k = 0, 1, . . . ,m. �
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Example 6.8. In the setting of Example 6.3 above,

(ψ0 ◦ s)(1 ⊗ F2) = ψ0

(
1⊗ ( 0f21 +

1f21)
)
=
(
C2 ⊃ (t21 = z1)

)

+
(
C2 ⊃ (−t21 = z1)

)
.

and

(ψ0 ◦ s)(1⊗ F1F1) = ψ0

(
1⊗ ( 0f11

0f12 +
0f12

0f11)
)
=
(
C2 ⊃ (t12 = z1) ⊃ (t11 = t12 = z1)

)

−
(
C2 ⊃ (t11 = z1) ⊃ (t12 = t11 = z1)

)
,

(ψ0 ◦ s)(1⊗ F1F3) = ψ0

(
1⊗ ( 0f11

1f12 +
0f12

1f11)
)
=
(
C2 ⊃ (−t12 = z1) ⊃ (t11 = −t12 = z1)

)

−
(
C2 ⊃ (−t11 = z1) ⊃ (t12 = −t11 = z1)

)
.

7. Cartan data and diagram automorphism

7.1. Definitions of g and gσ. Suppose we are given the following data:

(1) A finite-dimensional complex vector space h;
(2) A non-degenerate symmetric bilinear form (·, ·) : h× h → C;
(3) A collection α1, . . . , αR ∈ h∗ of linearly independent elements, called the simple roots.

Let 〈·, ·〉 : h× h∗ → C denote the canonical pairing, 〈H,λ〉 := λ(H).
The form (·, ·) induces an isomorphism h∗ → h and a symmetric bilinear form on h∗ which we

also denote by (·, ·). Define Hi ∈ h, i ∈ {1, . . . , R}, to be the elements such that 〈Hi, ·〉 = (αi, ·).
Let B = (bij)i,j∈{1,...,R} be the symmetric matrix with elements bij := (αi, αj) = 〈Hi, αj〉 .

Let g = g(B) be the Lie algebra with generators Ei, Fi, i ∈ {1, . . . , R}, and H ∈ h, subject to
the defining relations

[Ei, Fj ] = δijHj, [H,Ei] = 〈H,αi〉Ei, [H,Fi] = −〈H,αi〉Fi, [H,H ′] = 0,

for all i, j ∈ {1, . . . , R} and all H,H ′ ∈ h. (Thus, g is a “Kac-Moody Lie algebra without Serre
relations”, and B is the symmetrized Cartan matrix of g; see Remark 7.7 below.)

We have the triangular decomposition

g = n⊕ h⊕ n+

of g where n (resp. n+) is the subalgebra generated by the Fi (resp. Ei), i ∈ {1, . . . , R}. The
subalgebras n and n+ are free Lie algebras.

Now suppose that in addition to (1–3) above we are given

(4) An automorphism of σ : g → g such that

σ(Fi) = Fσ(i), σ(Ei) = Eσ(i), σ(Hi) = Hσ(i) i ∈ {1, . . . , R}, (7.1)

for some permutation σ ∈ ΣR.

The fact that σ is an automorphism implies that the permutation σ must be such that

(αi, αj) = (ασ(i), ασ(j)), (7.2)

for all i, j ∈ {1, . . . , R}. Such automorphisms are called diagram automorphisms.

Remark 7.1. If B is a symmetrized Cartan matrix of finite type then {Hi}i∈{1,...,R} span h and the
conditions (7.1) completely define σ. More generally they define σ only on the derived subalgebra
[g, g] of g. See [FSS96].

Let T be the order of σ. Recall from §6 the definitions of the numbers Ti, i ∈ {1, . . . , R}, and
the injection ι : {1, . . . , r} → {1, . . . , R}.
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7.2. Symmetrized commutator lemmas. We have the weight decomposition (6.3) of n, and
similarly of n+:

n+ =
⊕

(n1,...,nr)∈Zr
≥0

(n+)[n1,...,nr], (7.3a)

with

(n+)[0,...,0,1

i

,0,...,0] := spanC(σ
kEι(i))k=0,1,...,Ti−1, for each i ∈ {1, . . . , r}. (7.3b)

Let λ = (λ1, . . . , λr) ∈ Zr
≥0 be a nonzero weight and let m := λ1 + · · ·+ λr. Define

s : nλ → a
ΣZλ

[1m] (7.4a)

to be the composition of the homomorphism  of Proposition 6.2 with projection onto to the weight
[1m] subspace. It is a linear isomorphism, cf. Lemma 6.4. Similarly (by replacing f → e, F → E
everywhere) we have a linear isomorphism

s : (n+)λ → (a+)
ΣZλ

[1m]. (7.4b)

These maps restrict to linear isomorphisms (nσ)λ → ā
ΣZλ

[1m] and (nσ+)λ → (ā+)
ΣZλ

[1m] respectively.

Suppose µ = (µ1, . . . , µr) ∈ Zr
≥0, µ 6= λ, is a nonzero weight dominated by λ. That is, µi ≤ λi

for each i = 1, . . . , r. For each i = 1, . . . , r, pick any subset Ii ⊂ {1, . . . , λi} of size µi. Having made
this choice, define a subset I ⊂ {1, . . . ,m} by, in the notation of (6.6),

I = {it : 1 ≤ i ≤ r, t ∈ Ii}. (7.5)

We have the corresponding weight [I], in the notation introduced before (4.13). Let sI denote the
composition of the homomorphism  of Proposition 6.2 with projection onto the weight [I] subspace.
We get a linear isomorphism

sI : nµ → a
ΣZµ

[I] .

Similarly we have a linear isomorphism

sI : (n+)µ → (a+)
ΣZµ

[I] .

Let I be the set of all subsets I ⊂ {1, . . . ,m} of the form (7.5), i.e. corresponding to all possible
choices of subsets Ii ⊂ {1, . . . , λi}, i = 1, . . . , r. Note that

|I| =
r∏

i=1

(
λi
µi

)
=

r∏

i=1

λi!

µi!(λi − µi)!
=

|Σλ|
|Σµ||Σλ−µ|

=
|ΣZλ|

|ΣZµ||ΣZλ−µ|
, (7.6)

since |ΣZλ| =
∏r

i=1(T/Ti)
λiλi!.

Lemma 7.2. Suppose a ∈ nµ and b ∈ nλ−µ. Then

s([a, b]) =
∑

I∈I

[
sI(a), s{1,...,m}\I(b)

]

as an equality in a
ΣZλ

[1m]. �

Recall that Cm denotes the arrangement in Cm whose hyperplanes are kHi,j : ti = ωktj with
i, j ∈ {1, . . . ,m}, k ∈ ZT . The Cartan data defines a weighting of this arrangement, in the sense of
§2.6, given by

a
(
kHin,i′

n′

)
:= (σkαι(i), αι(i′)), (7.7)

for i, i′ ∈ {1, . . . , r}, and n ∈ {1, . . . , λi}, n′ ∈ {1, . . . , λi′}.
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Note that [ k+Tilhin ,
pfjr ] = −(σp−k−Tilαi, αj)

pfjr = −(σp−kαi, αj)
pfjr whenever in 6= jr. Thus,

whenever in /∈ I ∈ I and d ∈ nµ, we have

T/Ti−1∑

l=0

[ k+Tilhin , sI(d)] = sI([σ
kHι(i), d])

T

Ti
, (7.8)

and hence
[hin , sI(d)] = sI([Hι(i), d]). (7.9)

Lemma 7.3. Suppose a ∈ (n+)µ and d ∈ nλ. Then
[
sI(a), s(d)

]
= s{1,...,m}\I([a, d]) |ΣZµ|

as an equality in a
ΣZλ−µ

[{1,...,m}\I].

Proof. By induction on |µ| := µ1 + · · ·+ µr.
For the base case, we may suppose that a = σkEι(i), i ∈ {1, . . . , r}, k ∈ {1, . . . , Ti}, and we have

I = {in} for some n ∈ {1, . . . , λi}. Thus sI(a) =
∑T/Ti−1

l=0
k+Tilein , and what must be shown is that

T/Ti−1∑

l=0

[ k+Tilein , s(d)] = s{1,...,m}\{in}([σ
kEι(i), d])

T

Ti
.

This is true by inspection, using (7.8) and the fact that


T/Ti−1∑

l=0

k+Tilein ,

T/Ti−1∑

l′=0

k′+Til
′
fin′


 =

{∑T/Ti−1
l=0

k+Tilhin n = n′ and k ≡ k′ mod Ti

0 otherwise.

For the inductive step, it is enough to establish the result when a is a commutator, a = [b, c],
since these span (n+)µ. Let ρ = (ρ1, . . . , ρr) ∈ Zr

≥0 be the weight of b. For each I ∈ I as in (7.5),
Lemma 7.2 yields

sI([b, c]) =
∑

J∈JI

[
sJ(b), sI\J (c)]

]

as an equality in a
ΣZµ

[I] , where JI is defined by analogy with I. Namely, let JI be the set of subsets

J ⊂ I such that J = {it : 1 ≤ i ≤ r, t ∈ Ji} for some subsets Ji ⊂ Ii with |Ji| = ρi. Hence, by the
Jacobi identity and the inductive assumption, we have

[sI([b, c]), s(d)] =
∑

J∈JI

[[
sJ(b), sI\J (c)]

]
, s(d)

]

=
∑

J∈JI

([
sJ(b),

[
sI\J(c), s(d)

]]
−
[
sI\J(c), [sJ(b), s(d)]

])

=
∑

J∈JI

([
sJ(b), s({1,...,m}\I)∪J ([c, d])

]
|ΣZµ−ρ| −

[
sI\J(c), s{1,...,m}\J ([b, d])

]
|ΣZρ|

)

=
∑

J∈JI

(
s{1,...,m}\I ([b, [c, d]]− [c, [b, d]])

)
|ΣZρ||ΣZµ−ρ|

= s{1,...,m}\I ([[b, c] , d]) |JI ||ΣZρ||ΣZµ−ρ|.

Now, |JI | = |Σµ|
|Σρ||Σµ−ρ|

=
|ΣZµ|

|ΣZρ||ΣZµ−ρ| , cf. (7.6). This completes the inductive step. �

Lemma 7.4. Let a, d ∈ nλ. Then 1
|ΣZλ|

Sa(s(a), s(d)) = Sg(a, d).

Proof. By induction on |λ|. (The argument is similar to that in the proof of Lemma 7.3, or of
Proposition 7.17 below.) �
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7.3. Definition of the cocycle Ω on gσ and central extension ġσ. Define a skew-symmetric
bilinear form Ω : gσ × gσ → C as follows. Recall the map Ω≤1 : b̄≤1 × b̄≤1 → C of §5.7. For any
nonzero weight λ = (λ1, . . . , λr) ∈ Zr

≥0, and any x ∈ (nσ)λ, y ∈ (nσ+)λ, set

−Ω(y, x) = Ω(x, y) :=
1

|ΣZλ|
Ω≤1(s(x), s(y)),

where s is the symmetrization map in (7.4). On all other components in the weight decomposition
of gσ × gσ, set Ω(·, ·) to zero.

Proposition 7.5. Let x ∈ gσ. If x ∈ kerSg then Ω(x, y) = 0 for all y ∈ gσ.

Proof. Suppose x ∈ nσλ for some λ ∈ Zr
≥0 (the argument is similar if x ∈ nσ+ and trivial if x ∈ h).

Then the result follows from Lemma 7.4 and Proposition 5.12. �

Theorem 7.6. Ω is a cocycle on gσ. That is, we have the equality

Ω(x, [y, z]) + Ω(y, [z, x]) + Ω(z, [x, y]) = 0

for all x, y, z ∈ gσ.

Proof. When x ∈ (nσ+)λ, y ∈ (nσ)λ and z ∈ hσ, for some nonzero λ ∈ Zr
≥0, the third term vanishes

and the first two cancel.
Let λ = (λ1, . . . , λr) ∈ Zr

≥0 and µ = (µ1, . . . , µr) ∈ Zr
≥0 be nonzero weights such that λ dominates

µ, as in §7.2. When x ∈ (nσ+)λ, y ∈ (nσ)µ and z ∈ (nσ)λ−µ, we have

Ω(x, [y, z])|ΣZλ| = Ω≤1(s(x), s([y, z]))

=
∑

I∈I

Ω≤1(s(x), [sI (y), s{1,...,m}\I(z)])

=
∑

I∈I

(
Ω≤1

([
s{1,...,m}\I(z), s(x)

]
, sI(y)

)
+Ω≤1

(
[s(x), sI(y)] , s{1,...,m}\I(z)

))

=
∑

I∈I

(
Ω≤1 (sI ([z, x]) , sI(y)) |ΣZλ−µ|

+Ω≤1

(
s{1,...,m}\I ([x, y]) , s{1,...,m}\I(z)

)
|ΣZµ|

)

=
∑

I∈I

(Ω ([z, x] , y) + Ω ([x, y] , z)) |ΣZµ||ΣZλ−µ|

Here we used Lemma 7.2, then Theorem 5.13, then Lemma 7.3 and the definition of Ω. Since
|I||ΣZµ||ΣZλ−µ| = |ΣZλ| as in (7.6), we indeed have the equality Ω(x, [y, z]) = Ω([z, x], y) +
Ω([x, y], z).

Up to obvious symmetries, these are the only non-trivial cases. �

Now let ġσ denote extension of gσ by a one-dimensional centre Ck defined by this cocycle Ω.
That is, ġσ ∼=C gσ ⊕ Ck as a vector space, with Lie bracket

[x, y]′ := [x, y] + Ω(x, y)k. (7.10)

(For clarity we will always use [·, ·]′ to denote the bracket on ġσ.)

7.4. The Cartan anti-involution ϕ. Let ϕ : g → g denote the involutive (ϕ2 = id) anti-
automorphism (ϕ([x, y]) = −[ϕ(x), ϕ(y)]) of g defined by

ϕ(H) = H, ϕ(Ei) = Fi, ϕ(Fi) = Ei

for all i ∈ {1, . . . , R} and all H ∈ h.
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Since σ is a diagram automorphism,

ϕ ◦ σ = σ ◦ ϕ. (7.11)

Hence, ϕ restricts to give an involutive anti-automorphism gσ → gσ. By definition of the cocycle Ω
(in terms of Ω≤1 and hence G0) we have that Ω(a, b) = −Ω(ϕ(a), ϕ(b)) for all a, b ∈ gσ. Therefore
if we define ϕ(k) = k then ϕ is also an involutive anti-automorphism ġσ → ġσ of the centrally
extended fixed point subalgebra ġσ.

7.5. The bilinear forms K and Sg on g. Let K(·, ·) : g× g → C be the bilinear form such that

(i) K coincides with (·, ·) on h; K is zero on n and n+; h and n⊕ n+ are orthogonal with respect
to K;

(ii) K(Fi, Ej) = K(Ei, Fj) = δij , i, j ∈ {1, . . . , R};
(iii) K is g-invariant, i.e. K([x, y], z) = K(x, [y, z]) for all x, y, z ∈ g.

Such a form exists, is unique, and is symmetric [Kac90, §2.2].
The form K is ϕ-invariant, i.e. K(ϕ(x), ϕ(y)) = K(x, y) for all x, y ∈ g. Define the bilinear form

Sg(·, ·) : g× g → C by

Sg(x, y) := −K(ϕ(x), y), x, y ∈ g.

It is symmetric, ϕ-invariant, and obeys

Sg([x, y], z) = −Sg(y, [ϕ(x), z])

for all x, y, z ∈ g. The subspaces h, n, and n+ are pairwise orthogonal with respect to Sg.
We have kerK = kerSg ⊂ g.

Remark 7.7. Whenever we have bii 6= 0 for each i ∈ {1, . . . , R}, we may define a matrix A =
(aij)i,j∈{1,...,R} by aij = 2bij/bii. By construction aii = 2 for each i ∈ {1, . . . , R}. If in addition
aij ∈ Z≤0 whenever i 6= j then A is a symmetrizable generalized Cartan matrix. In that case the
quotient g̃ := g/ kerK = g/ kerSg is the Kac-Moody Lie algebra associated with A, and the kernel

kerSg is generated by the Serre elements adF
−aij+1
i Ej , i 6= j.

Given (7.2), one sees that K is σ-invariant, i.e. K(σ(x), σ(y)) = K(x, y) for all x, y ∈ g. Hence,
in view of (7.11), so too is Sg, i.e. Sg(σ(x), σ(y)) = Sg(x, y) for all x, y ∈ g. Thus Sg restricts to
give a bilinear form on gσ. Also σ(kerSg) = kerSg.

Lemma 7.8. There are canonical Lie algebra isomorphisms
(
g
/
kerSg

)σ ∼= gσ
/
(kerSg)

σ ∼= gσ/ ker((Sg)|gσ).

Proof. We shall show that these are linear isomorphisms; it is then clear that the Lie algebra
structure coincide. Let Πk : g → g, k ∈ ZT , denote the projectors Πk := 1

T

∑
j∈ZT

ω−jkσj onto the

eigenspaces of σ. We have g = gσ⊕g⊥ where g⊥ =
⊕

k 6≡0Πkg. By σ-invariance of Sg, the subspaces

gσ and g⊥ are orthogonal with respect to Sg. Therefore if x ∈ gσ is such that Sg(x, y) = 0 for all
y ∈ gσ then in fact Sg(x, y) = 0 for all y ∈ g. Thus ker((Sg)|gσ ) ⊂ kerSg ∩ gσ = (kerSg)

σ . The
reverse containment, kerSg∩gσ ⊂ ker((Sg)|gσ), is obvious. This establishes the second isomorphism.
Consider the first isomorphism. Elements of (g/ kerSg)

σ are by definition cosets x+kerSg such that

σ(x+ kerSg) = x+ kerSg, or equivalently such that σx− x ∈ kerSg. We have x = xσ +
∑

k 6≡0 x
(k)

for unique xσ ∈ gσ and x(k) ∈ Πkg. Now σx− x ∈ kerSg implies that (ωk − 1)x(k) ∈ Πk kerS for

each k 6≡ 0. Hence x(k) ∈ kerS for each k 6≡ 0. Therefore in fact x + kerSg = xσ + kerSg, and
here the element xσ is defined up to addition of an element of (kerSg)

σ = kerSg ∩ gσ. Therefore
we have the first isomorphism. �
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Proposition 7.9. Suppose a, b ∈ n(m1,...,mR) for some (m1, . . . ,mR) ∈ ZR
≥0, cf. (6.3). Then

[ϕ(a), b] = Sg(a, b)
R∑

i=1

miHi

�

Proof. By induction on |∑imi|. The statement is true when |∑imi| = 1. For the inductive
step, by linearity and the Jacobi relations, we may suppose that a = [a′, Fi], for some i such that
mi ≥ 1. Then Sg(a, b) = Sg([a

′, Fi], b) = −Sg(Fi, [ϕ(a
′), b]). On weight grounds [ϕ(a′), b] ∼ Fi.

Since Sg(Fi, Fi) = 1, we must have −FiSg(a, b) = [ϕ(a′), b]. Hence

−HiSg(a, b) = [Ei, [ϕ(a
′), b]]

= [[Ei, ϕ(a
′)], b] + [ϕ(a′), [Ei, b]]

= [ϕ(a), b] + [ϕ(a′), [Ei, b]]. (7.12)

Inductively we have [ϕ(a′), [Ei, b]] = Sg(a
′, [Ei, b])(−Hi+

∑R
j=1mjHj) = Sg(a, b)(−Hi+

∑R
j=1mjHj).

Inserting this into (7.12) and rearranging, we find the required equality. �

Corollary 7.10. Suppose x, y ∈ nσ[λ1,...,λr]
for some λ = (λ1, . . . , λr) ∈ Zr

≥0, cf. (6.4). Then in gσ

we have the equality

[ϕ(x), y] =
1

T
Sg(x, y)

r∑

i=1

λiHι(i),

and hence in ġσ we have the equality

[ϕ(x), y]′ =
1

T
Sg(x, y)

r∑

i=1

λiHι(i) +Ω(x, y)k.

�

Proof. We may suppose that x = a, y = b for some commutators a, b ∈ n, since such projected
commutators span nσ. Since a and b are of the same gσ-weight, certainly b has the same length
(“total number of F ’s”) as a. Therefore, for every k ∈ ZT , if σ

kb and a have different g-weights
then [ϕ(a), σkb] = 0. Also Sg(a, σ

kb) = 0. Hence, if σkb and a have different g-weights for all

k ∈ ZT then both [ϕ(a), b] = 0 and Sg(a, b) = 0 and we are done.
Suppose therefore that σkb and a share the same g-weight for some k ∈ ZT . By choice of b we can

take k = 0 without loss of generality. So suppose a and b are both of g-weight (m1, . . . ,mR) ∈ ZR
≥0.

Then, using Proposition 7.11, we have

[ϕ(a), b] =
∑

k,p∈ZT

[ϕ(σka), σpb] =
∑

k,l∈ZT

σk[ϕ(a), σlb]

=
∑

k,l∈ZT

Sg(a, σ
lb)σk

R∑

i=1

miHi

= Sg(a, b)
R∑

i=1

miH i =
1

T
Sg(a, b)

R∑

i=1

miHi.

Now
R∑

i=1

miH i =
r∑

i=1

Ti∑

k=1

mσkι(i)Hσkι(i) =
r∑

i=1

(
Ti∑

k=1

mσkι(i)

)
Hι(i) =

r∑

i=1

λiHι(i)

and we are done. �
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The above proposition and corollary have their analogs in a and ā, as follows.

Proposition 7.11. Suppose a and b are commutators in a both of weight [I], for some I ⊂
{1, . . . ,m}. Then

[ϕ(a), b] = S(a, b)
∑

i∈I

hi

�

Corollary 7.12. Suppose x, y ∈ ā[I], for some I ⊂ {1, . . . ,m}. Then

[ϕ(x), y] = S(x, y)
∑

i∈I

1

T
hi,

and hence

[ϕ(x), y]′ = S(x, y)
∑

i∈I

1

T
hi +Ω≤1(x, y)k.

�

7.6. Verma and contragredient Verma modules over g. Given Λ ∈ h∗ we denote by M(Λ)
the induced g-module

M(Λ) := U(g)⊗U(h⊕n+) CvΛ (7.13)

where CvΛ is the one-dimensional (h ⊕ n+)-module generated by a vector vΛ obeying n+.vΛ = 0
and H.vΛ = vΛΛ(H) for all H ∈ h. Call M(Λ) the Verma module over the Lie algebra g. (One
should keep in mind that g has “no Serre relations”.) By the PBW basis theorem U(g) ∼=C

U(n)⊗C U(h⊕ n+). Hence there is an isomorphism of left U(n)-modules

M(Λ) ∼=n U(n)⊗C CvΛ ∼=n U(n).

The ZR
≥0-grading on n defined in (6.4) induces a ZR

≥0-grading on the envelope U(n),

U(n) =
⊕

(n1,...,nR)∈ZR
≥0

U(n)(n1,...,nR). (7.14)

Then we have M(Λ) =h

⊕
(λ1,...,λR)∈ZR

≥0
M(Λ)(λ1 ,...,λR) where M(Λ)(λ1,...,λR) := U(n)(λ1,...,λR).vΛ.

Equivalently,

M(Λ)(λ1,...,λR) :=



v ∈M(Λ) : H.v = v〈H,Λ−

R∑

p=1

λpαp〉 for all H ∈ h



 .

These weight subspaces M(Λ)(λ1,...,λR) are all of finite dimension. Let M∗(Λ) denote the restricted
dual space of M(Λ) with respect to this decomposition,

M∗(Λ) :=
⊕

(λ1,...,λR)∈ZR
≥0

(M(Λ)(λ1 ,...,λR))
∗.

The contragredient Verma module M∗(Λ) is by definition this restricted dual endowed with the
g-module structure given by (g.f)(v) := f(ϕ(g).v), for f ∈M(Λ)∗, v ∈M(Λ), g ∈ g.
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7.7. Verma and contragredient Verma modules over ġσ. Recall the definition of the centrally
extended Lie algebra ġσ ∼=C gσ ⊕ Ck from §7.3. Given Λ ∈ (hσ)∗ we denote by Mσ(Λ) the Verma
module over ġσ,

Mσ(Λ) := U(gσ)⊗U(hσ⊕nσ+⊕Ck) Cv
σ
Λ (7.15)

where CvσΛ is the one-dimensional (hσ⊕nσ+⊕Ck)-module generated by a vector vσΛ obeying nσ+.v
σ
Λ =

0, H.vσΛ = vσΛΛ(H) for all H ∈ hσ and k.vσΛ = vσΛ. As a module over nσ,

Mσ(Λ) ∼=nσ U(nσ)⊗C CvσΛ
∼=nσ U(nσ). (7.16)

We have the Zr
≥0-grading of U(nσ) induced by (6.3). ThenMσ(Λ) =

⊕
[λ1,...,λr]∈Zr

≥0
Mσ(Λ)[λ1,...,λr]

whereMσ(Λ)[λ1,...,λr ] := U(nσ)[λ1,...,λr].v
σ
Λ. The weight subspacesM

σ(Λ)[λ1,...,λr ] are of finite dimen-
sion. Let Mσ,∗(Λ) denote the restricted dual vector space endowed with the contragredient dual
ġσ-module structure.

7.8. Shapovalov form on Verma modules. For Λ ∈ h∗ (resp. Λ ∈ (hσ)∗) there is a unique
bilinear form S on the g-module M(Λ) (resp. the ġσ-module Mσ(Λ)) defined by

S(vΛ, vΛ) = 1, S(x.v, w) = S(v, ϕ(x).w),

for all x ∈ g (resp. x ∈ ġσ) and all v,w in M(Λ) (resp. in Mσ(Λ)). This form is symmetric and
the weight subspaces are pairwise orthogonal.

7.9. Shapovalov form on Cp(n
σ ,M(Λ)) :=

∧p
nσ ⊗M(Λ). Let us fix now weights Λ0 ∈ (hσ)∗

and Λ1, . . . ,ΛN ∈ h∗. We shall write Λ := (Λ0,Λ1, . . . ,ΛN ) and

M(Λ) := Mσ(Λ0)⊗
N⊗

i=1

M(Λi).

Note that M(Λ) is a module over nσ. With M0,N as in (6.5), we have

M(Λ) = M0,N .(v
σ
Λ0

⊗ vΛ1 ⊗ · · · ⊗ vΛN
), (7.17)

as an equality of vector spaces, and in fact of nσ-modules. There is a symmetric bilinear form Sp

on the space

Cp(n
σ ,M(Λ)) :=

∧p
nσ ⊗M(Λ), p = 0, 1, . . . ,

defined by

Sp(ap ∧ · · · ∧ a1 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xN , bp ∧ · · · ∧ b1 ⊗ y0 ⊗ y1 ⊗ · · · ⊗ yN )

= det(Sg(ai, bj)1≤i,j≤p)S(x0, y0)

N∏

i=1

S(xi, yi). (7.18)

It respects the weight decomposition. Let Sp denote the linear map defined by Sp,

Sp :
(∧p

nσ ⊗M(Λ)
)
λ
→
(∧p

nσ ⊗M(Λ)
)∗
λ
. (7.19)

Let Cp(n
σ,M(Λ)∗λ denote the restricted dual of Cp(n

σ,M(Λ) and

7.10. Main theorem. Fix any λ = (λ1, . . . , λr) ∈ Zr
≥0. Set m =

∑r
i=1 λi. Recall that the Cartan

matrix entries bij := (αi, αj) defined a weighting on the “diagonal” hyperplanes kHi,j, as in (7.7).
The choice of weights Λ = (Λ0; Λ1, . . . ,ΛN ) defines a weighting of the remaining hyperplanes of
the arrangement C0,N ;m. Namely,

a
(
kHj

in

)
:= −Ti

T
(σkαι(i),Λj), a

(
H0

in

)
:= −(αι(i),Λ0), (7.20)

for j ∈ {1, . . . , N}, i ∈ {1, . . . , r}, and n ∈ {1, . . . , λi}.
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Theorem 7.13. For each p ∈ Z≥0, the following diagram commutes:

Cp(n
σ,M(Λ))λ Cp(n

σ,M(Λ))∗λ

Cp(ā,M0,N )ΣZλ

[1m] (Cp(ā,M0,N )ΣZλ)∗[1m]

Fm−p(C0,N ;m)ΣZλ A m−p(C0,N ;m)ΣZλ .

Sp

Sp

(−1)m−pT pGm−p

∼s ∼π∗

∼ψp ∼(ψ−1
p )∗

The theorem is proved in §7.11 below.

Remark 7.14. The map Gm−• : Fm−•(C0,N ;m)ΣZλ → A m−•(C0,N ;m)ΣZλ is a map of complexes, cf.
Theorem 2.5. The isomorphisms on the left, s and ψp, are isomorphisms of complexes, as in Theorem
6.7. We may regard the isomorphisms on the right, π∗ and (ψ−1)∗, as defining the structure of a
differential complex on (Cp(ā,M0,N )ΣZλ)∗[1m] and Cp(n

σ,M(Λ))∗λ. It would be interesting to give

an intrinsic definition of the differentials on (Cp(ā,M0,N )ΣZλ)∗[1m] and Cp(n
σ ,M(Λ))∗λ in the spirit

of [SV91, §6.16].
Define L(Λi) :=M(Λi)/ ker S for i = 1, . . . , N , Lσ(Λ0) :=Mσ(Λ0)/ ker S, and L(Λ) := Lσ(Λ0)⊗⊗N
i=1 L(Λi). Define ñσ := nσ/(kerSg ∩ nσ).

Corollary 7.15. The maps ψ• ◦ s induce isomorphisms of complexes

C•(ñ
σ, L(Λ))λ

∼−→ G(Fm−•(C0,N ;m)ΣZλ)

�

7.11. Proof of Theorem 7.13. In view of Theorems 5.19 and 6.7, what remains to be established
is the commutativity of the upper square in Theorem 7.13. We will give the details of the proof for
the special case N = 0, p = 0, i.e. we will prove the commutativity of the square

Mσ(Λ0)λ Mσ(Λ0)
∗
λ

(M0)[1m] (M0)
∗
[1m].

S

S

s π∗

(7.21)

The general proof is similar.
We keep the conventions of §7.2. In particular, we suppose that λ dominates µ. We have, for

each I ∈ I, the symmetrization map

sI :M
σ(Λ0)µ → (M0)[I].

Proposition 7.16. Suppose x ∈ nσµ and w ∈Mσ(Λ0)λ. Then, for all I ∈ I,

s{1,...,m}\I(ϕ(x)w) =
1

|ΣZµ|
sI(ϕ(x)) ⊲ s(w)

as an equality in (M0)[{1,...,m}\I].
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Proof. By linearity, we may suppose that w = b1 . . . bpv0 for some commutators b1, . . . , bp ∈ n. We
must show that

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(b1 . . . bpv0) = s{1,...,m}\I(ϕ(x)b1 . . . bpv0).

We proceed by induction on p.
We have µ = wtx. Let ρ = wt b1. For the inductive step, there are four cases to consider:

(i) µ 6= ρ and neither dominates the other.
(ii) µ 6= ρ and ρ dominates µ;
(iii) µ 6= ρ and µ dominates ρ;
(iv) µ = ρ;

(For the base case p = 1 the argument is the same except that then ρ = λ, which dominates µ, so
we can only be in case (ii) or case (iv).)

For brevity, set y := b2 . . . bpv0 ∈Mσ(Λ0). By an obvious analog of Lemma 7.2, we have

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(b1y) =

1

|ΣZµ|
sI(ϕ(x)) ⊲

∑

J∈J

sJ(b1)s{1,...,m}\J (y), (7.22)

where J denotes the set of subsets J ⊂ {1, . . . ,m} such that J = {it : 1 ≤ i ≤ r, t ∈ Ji} for some
subsets Ji ⊂ {1, . . . , λi} with |Ji| = ρi.

Consider case (i). The fact that neither of µ and ρ dominates the other implies that, for every J
in the sum (7.22), neither of the sets I, J contains the other. It follows that [sI(ϕ(x)), sJ (b1)]

′ = 0. If
J∩I 6= ∅ then additionally sI(ϕ(x))⊲s{1,...,m}\J(y) = 0, and hence sI(ϕ(x))⊲sJ (b1)s{1,...,m}\J (y) = 0.
Thus the only contributions come from J such that J ∩ I = ∅, and we have

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(b1y) =

1

|ΣZµ|
∑

J∈J
J⊂{1,...,m}\I

sJ(b1)sI(ϕ(x)) ⊲ s{1,...,m}\J(y).

Using the inductive assumption, we see that this is equal to
∑

J∈J
J⊂{1,...,m}\I

sJ(b1)s{1,...,m}\J\I(ϕ(x)y) = s{1,...,m}\I(b1ϕ(x)y).

Since neither of µ, ρ dominates the other, [ϕ(x), b1] = 0, and so this last expression is equal to
s{1,...,m}\I(ϕ(x)b1y), as required.

Consider case (ii). Since ρ dominates µ, for every J in the sum (7.22) it must be that either
I ( J or neither of I, J contains the other. When I ( J we have sI(ϕ(x)) ⊲ s{1,...,m}\J(y) = 0 and

1

|ΣZµ|
[sI(ϕ(x)), sJ (b1)]

′ =
1

|ΣZµ|
[sI(ϕ(x)), sJ (b1)] = sJ\I([ϕ(x), b1])

by Lemma 7.3. The contribution from terms in the sum on J in (7.22) such that neither of I, J
contains the other is s{1,...,m}\I(b1ϕ(x)y), for the same reason as in case (i) above. Thus, in total,

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(b1y) =

∑

J∈J
J)I

sJ\I([ϕ(x), b1])s{1,...,m}\J (y) + s{1,...,m}\I(b1ϕ(x)y)

= s{1,...,m}\I([ϕ(x), b1]y) + s{1,...,m}\I(b1ϕ(x)y)

= s{1,...,m}\I(ϕ(x)b1y)

as required.
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Consider case (iii). Since µ dominates ρ, for every J in the sum (7.22) it must be that either
J ( I or neither of I, J contains the other. When J ( I we have sI(ϕ(x)) ⊲ s{1,...,m}\J(y) = 0 and

[sI(ϕ(x)), sJ (b1)]
′ = [sI(ϕ(x)), sJ (b1)] = ϕ

(
[sJ(ϕ(b1), sI(x)]

)

= |ΣZρ|ϕ
(
sI\J([ϕ(b1), x])

)
= |ΣZρ| sI\J([ϕ(x), b1])

by Lemma 7.3. The contribution from terms in the sum on J in (7.22) such that neither of I, J
contains the other is still s{1,...,m}\I(b1ϕ(x)y), as in case (i). Hence

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(b1y) =

|ΣZρ|
|ΣZµ|

∑

J⊂J
J(I

sI\J([ϕ(x), b1]) ⊲ s{1,...,m}\J(y) + s{1,...,m}\I(b1ϕ(x)y).

In every term in the sum on J here, the inductive assumption allows us to re-write the summand
in a form independent of J :

sI\J([ϕ(x), b1]) ⊲ s{1,...,m}\J (y) = |ΣZµ−ρ| s{1,...,m}\I([ϕ(x), b1]y) (7.23)

The number of terms in the sum is
|ΣZµ|

|ΣZρ||ΣZµ−ρ|
, cf. (7.6). Therefore the combinatorial factors cancel

and we find

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(b1y) = s{1,...,m}\I([ϕ(x), b1]y) + s{1,...,m}\I(b1ϕ(x)y) = s{1,...,m}\I(ϕ(x)b1y)

as required.
Finally, consider case (iv). Since µ = ρ, for every J in the sum (7.22) either J = I or neither of

I, J contains the other. The contribution from the latter class of terms is still s{1,...,m}\I(b1ϕ(x)y).
Consider the J = I term in the sum. What we must show is that

1

|ΣZµ|
[sI(ϕ(x)), sI (b1)]

′
s{1,...,m}\I(y) = s{1,...,m}\I([ϕ(x), b1]y),

as an equality in s(Mσ(Λ0)λ) = (M0){1,...,m}\I . And indeed, using Corollary 7.10 and (7.9), we have

s{1,...,m}\I([ϕ(x), b1]y) = s{1,...,m}\I

(
1

T
Sg(x, b1)

r∑

i=1

µiHι(i)y +Ω(ϕ(x), b1)ky

)

=

(
1

T
Sg(x, b1)

∑

i∈I

hi +Ω(ϕ(x), b1)k

)
s{1,...,m}\I(y)

By Lemma 7.4 and the definition of Ω, this is equal to

1

|ΣZµ|

(
1

T
S(sI(x), sI(b1))

∑

i∈I

hi +Ω≤1(sI(ϕ(x)), sI (b1))k

)
s{1,...,m}\I(y)

=
1

|ΣZµ|
[
sI(x), sI(b1)

]′
s{1,...,m}\I(b1) (7.24)

as required. �

Proposition 7.17. Let v,w ∈Mσ(Λ0)λ. Then 1
|ΣZλ|

S(s(v), s(w)) = S(v,w).

Proof. By complete induction on |λ| = λ1 + · · · + λr. The result is true for |λ| = 0. For the
inductive step, suppose v = xu for some x ∈ nσµ and u ∈Mσ(Λ0)λ−µ. Then, by definition of S and
the inductive assumption, we have

S(xu,w) = S(u, ϕ(x)w) =
1

|I|
∑

I∈I

1

|ΣZλ−µ|
S(s{1,...,m}\I(u), s{1,...,m}\I(ϕ(x)w)).
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Therefore

S(xu,w) =
1

|I|
∑

I∈I

1

|ΣZλ−µ|
S(s{1,...,m}\I(u),

1

|ΣZµ|
sI(ϕ(x)) ⊲ s(w))

=
1

|I||ΣZµ||ΣZλ−µ|
∑

I∈I

S(sI(x)s{1,...,m}\I(u), s(w))

=
1

|ΣZλ|
S(s(xu), s(w)),

where we used Proposition 7.16 and (7.6). This completes the inductive step. �

Recall that s ◦ π = π ◦ s = |ΣZλ|id, as in Lemma 6.4. Therefore Proposition 7.17 is equivalent to
the statement that

S(v, π(·)) = S(s(v), ·), for all v ∈Mσ(Λ0)λ,

as an equality in (M0)
∗
[1m]. Thus the square in (7.21) is indeed commutative.

8. Properties of the cocycle Ω

We keep the conventions of §7. We have the quotient Lie algebra g̃ := g/ kerSg, and its Lie
subalgebra of σ-invariants,

g̃σ := (g/ ker Sg)
σ ∼= gσ/ ker((Sg)|gσ ),

as in Lemma 7.8. In §7.3 we defined a cocycle Ω on gσ. According to Proposition 7.5, Ω vanishes
on kerSg ⊂ gσ. Therefore Ω descends to a well-defined cocycle on the quotient g̃σ.

Proposition 8.1. If Ω is coboundary then it is zero.

Proof. Suppose that Ω is coboundary, i.e. that

Ω(x, y) = α([x, y])

for some linear map α : g̃σ → C. What we must show is that α = 0. Let ñσ := nσ/ ker Sg and
ñσ+ := nσ+/ kerSg. Suppose x ∈ ñσλ and y ∈ (ñσ+)µ. By definition Ω(x, y) = 0 unless µ = λ, in which
case [x, y] ∈ hσ. Thus α is non-zero at most on hσ ∩ [gσ, gσ]. The space hσ ∩ [gσ, gσ] spanned by
the elements Hι(i) = [Eι(i), F ι(i)], i = 1, . . . , r. So to show that α = 0 it is enough to check that

Ω(Eι(i), F ι(i)) = 0 for i = 1, . . . , r. And indeed this is manifestly true: for any given i, we have the

flag ψ(s{i}(F ι(i)v0)) = ψ(f iv0) = (C1 ⊃ {0}), and we are to compute the inner product of this flag

with itself with respect to the arrangement in C1 consisting of only the “diagonal” hyperplanes –
but in C1 this is the arrangement with no hyperplanes at all. �

Corollary 8.2. If g̃σ is semisimple and of finite dimension, then Ω = 0.

Proof. Recall that when g̃σ is semisimple and of finite dimension, Whitehead’s lemma states that
H2(g̃σ,C) = 0 (e.g. [Jac79, Lemma 6, Ch. 3]). That is, every (2-)cocycle on g̃σ is a coboundary. �

The Lie algebra g̃σ is finite-dimensional and semisimple in particular in the following situations:

(i) g̃σ is the folding of a simply-laced finite-dimensional simple Lie algebra by an admissible
diagram automorphism [Kac90, §7.9]. That is, the pair (B,T ) is one of

(Dℓ+1, 2), (A2ℓ−1, 2), (E6, 2), or (D4, 3)

and g̃σ is the finite-dimensional simple Lie algebra of type Bℓ,Cℓ,F4 or G2 respectively.
(ii) A is the direct sum of T copies of a Cartan matrix A′ of finite type. Then g̃σ is the finite-

dimensional semisimple Lie algebra of type A′, g̃ is the direct sum of T copies of g̃σ, and σ is
the automorphism which cyclically permutes these copies.
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Now define a matrix Bσ = (bσij)i,j∈{1,...,r} by

bσij :=
∑

k∈ZT

bι(i),σkι(j).

Observe that Bσ is symmetric.

Proposition 8.3. There is an embedding of Lie algebras g(Bσ) →֒ gσ.

Proof. We have

[Eι(i), F ι(j)] =

T−1∑

k,l=0

[Eσkι(i), Fσlι(j)] = δi,j
T 2

T 2
i

Ti−1∑

k,l=0

[Eσkι(i), Fσlι(i)]

= δi,j
T 2

T 2
i

Ti−1∑

k=0

Hσkι(i) = δi,j
T 2

T 2
i

Ti
T

T−1∑

k=0

Hσkι(i) = δi,j
T

Ti
Hι(i) (8.1)

and

[Hι(i), Eι(j)] =
T−1∑

k,l=0

[Hσkι(i), Eσlι(j)] =
T−1∑

k,l=0

bσkι(i),σlι(j)Eσlι(j)

=

T−1∑

k,l=0

bι(i),σl−kι(j)Eσlι(j) =

T−1∑

k,l=0

bι(i),σkι(j)Eσlι(j) = bσi,jEι(j). (8.2)

and similarly for [Hι(i), F ι(j)]. Therefore Eι(i),
Ti

T F ι(i) and Hι(i), i ∈ {1, . . . , r}, generate a copy of
g(Bσ) inside gσ. �

Proposition 8.4. Suppose x ∈ g(Bσ) →֒ gσ. Then Ω(y, x) = 0 for all y ∈ gσ.

Proof. It is enough to consider x ∈ n(Bσ). (The case x ∈ n+(B
σ) follows, while x ∈ h(Bσ) is

immediate.) Consider the flag ψ(s(xv0)). To say that x ∈ n(Bσ) is to say that x is a linear
combination of commutators in the F ι(i), i = 1, . . . , r. By expanding commutators we can express

xv0 as a linear combination of monomials of the form F ι(i1) . . . F ι(ik)v0, i1, . . . , ik ∈ {1, . . . , r}. Now
ψ(s(F ι(i1) . . . F ι(ik)v0)) is a linear combination of flags each of which has a first step of the form

Cm ⊃ (tp = 0) ⊃ . . . (8.3)

for some p. No such flag is adjacent to any tuple of hyperplanes from the arrangement CI of
“diagonal” hyperplanes kHi,j. Therefore by definition Ω(y, x) is zero, cf. (5.8). �

Corollary 8.5. If g(Bσ) = gσ then Ω = 0. �

The next example shows that the embedding g(Bσ) →֒ gσ is not always an isomorphism, and
that Ω is not always zero.

Example 8.6. Suppose g̃ = g̃(B) is the untwisted affine Kac-Moody Lie algebra of type D
(1)
4 . Let

us label the nodes of the Dynkin diagram as follows:

0

2

3

1

4

.
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Let σ be the diagram automorphism (1234). Set ι(0) = 0, ι(1) = 1. Then

Bσ =

(
8 −4
−4 2

)
=

(
4

1

)(
2 −1
−4 2

)
.

Thus g̃(Bσ) is the twisted affine Kac-Moody Lie algebra of type A
(2)
2 , whose Dynkin diagram is

0 1
.

In g(Bσ) →֒ gσ the subspace n(Bσ)[1,2] has dimension one: it is spanned by
[
[F 0, F 1], F 1

]
. But

nσ[1,2] has dimension strictly greater than one. Indeed, already in the quotient ñσ ⊂ g̃σ, the subspace

ñσ[1,2] has dimension two: it is spanned by the elements
[
[F 0, F 1], F 1

]
and5

[
[F0, F1], F2

]
=
[
[F0, F1], F2

]
+
[
[F0, F2], F3

]
+
[
[F0, F3], F4

]
+
[
[F0, F4], F1

]
.

Hence g(Bσ) 6∼= gσ.
Now we shall show that

Ω(
[
[E0, E1], E2

]
,
[
[F0, F1], F2

]
) = −16.

Let ω =
√
−1. We have coordinates t0, t11 , t12 on C3. Let6

X := ψ(s(
[
[F0, F1], F2

]
v0))

=
∑

s∈Σ2

∑

k∈Z4

ψ(
[
[−kf0, 0f1s(1) ],

1f1s(2)
]
v0)

=
∑

s∈Σ2

∑

k∈Z4

(−1)|s|
(
C3 ⊃ (t0 = ωkt1s(1))

⊃ (t0 = ωkt1s(1) = ωk+1t1s(2)) ⊃ (t0 = t11 = t12 = 0)
)
.

We are to evaluate the inner product GC0,11 ,12
(X,X). The hyperplanes of the arrangement C0,11,12

are

• kH0,1p = (t0 = ωkt1p), k ∈ Z4, p ∈ {1, 2}, of weight −1,

• 0H1,2 = (t11 = t12), of weight 2, and

• kH1,2 = (t11 = ωkt12), k ∈ Z4 \ {0}, of weight 0.
We may ignore the last of these since they have weight 0. Therefore the only unordered tuples of
hyperplanes we need consider are those of the form (kH0,1s(1) ,

k+1H0,1s(2) , x) for some hyperplane x.
Note that for any k ∈ Z4, s ∈ Σ2,

〈X, kH0,1s(1) ∧ k+1H0,1s(2) ∧ k+2H0,1s(1)〉 = 1− 1 = 0.

5Note that in ñσ, [F1, F2] = 0 and hence
[
[F0, F2], F1

]
= −

[
[F0, F1], F2

]
by the Jacobi identity.

6Here we choose the sign convention in which ψ(f12
∧ f11

∧ f0 ⊗ v0) = +(C3).
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Thus we get, as claimed,

GC0,11,12
(X,X) =

∑

s∈Σ2

∑

k∈Z4

(
〈X, kH0,1s(1) ∧ k+1H0,1s(2) ∧ 0H1s(1),1s(2)〉 2 × (−1)(−1)(2)

+ 〈X, kH0,1s(1) ∧ k+1H0,1s(2) ∧ k+1H0,1s(1)〉 2 × (−1)(−1)(−1)

+ 〈X, kH0,1s(1) ∧ k+1H0,1s(2) ∧ k−1H0,1s(1)〉 2 × (−1)(−1)(−1)

+ 〈X, kH0,1s(1) ∧ k+1H0,1s(2) ∧ k+2H0,1s(2)〉 2 × (−1)(−1)(−1)

+ 〈X, kH0,1s(1) ∧ k+1H0,1s(2) ∧ k−2H0,1s(2)〉 2 × (−1)(−1)(−1)
)

=
∑

s∈Σ2

∑

k∈Z4

(2− 1− 1− 1− 1) = 2× 4× (−2) = −16.

Remark 8.7. Suppose B is a symmetrized generalized Cartan matrix, as in Remark 7.7, so that g̃
is a Kac-Moody Lie algebra. Then the fixed-point subalgebra g̃σ is not a Kac-Moody algebra in
general. However it does belong to the larger class of Borcherds algebras [Bor88]. More generally,
in fact, g̃σ is a Borcherds algebra whenever g̃ is a Borcherds algebra [Bor88, Theorem 5.1]. Note
also that every central extension of a Borcherds algebra is isomorphic to some quotient of the
corresponding universal Borcherds algebra; see [Bor91].

9. Canonical element, dimension formulas, and weight function

9.1. Bases of flags spaces. We have the Orlik-Solomon algebra A •(C0,N ;m) ∼=C F •(C0,N ;m)∗,
cf. §2.2, for the cyclotomic discriminantal arrangement of §3. We will now define a dual pair
of bases of Fm(C0,N ;m) and A m(C0,N ;m), and hence an expression for the canonical element in
Fm(C0,N ;m)⊗ A m(C0,N ;m).

For each p = 1, . . . ,m, let us construct a set of preferred flags Flagp(C0,N ;m,O) in Flagp(C0,N ;m).
It will be a disjoint union

Flagp(C0,N ;m,O) =
⊔

I

Flagp(C0,N ;m,O)I

over the set of p-element subsets I ⊂ {1, . . . ,m}. First, we must set

Flag0(C0,N ;m,O) = Flag0(C0,N ;m,O){} := Flag0(C0,N ;m) = {(L0 = Cm)}.
Then we proceed recursively: for p = 0, 1, . . . ,m− 1 and for 1 ≤ i < i1 < i2 < · · · < ip ≤ m,

Flagp+1(C0,N ;m,O){i,i1,...,ip}

=

{(
L0 ⊃ · · · ⊃ Lp ⊃ Lp ∩H

)
: (L0 ⊃ · · · ⊃ Lp) ∈ Flagp(C0,N ;m,O){i1,...,ip},

H ∈
{
kHj,i

}
1≤j<i;k∈ZT

∪
{
kHj

i

}
1≤j≤N ;k∈ZT

∪
{
H0

i

}}
. (9.1)

Proposition 9.1. |Flagp(C0,N ;m,O)I | =
∏

i∈I (1 + (i− 1 +N)T ).

Proof. According to the recursion (9.1), the set of preferred flags Flagp+1(C0,N ;m,O){i,i1,...,ip} is

obtained by taking each of the preferred flags F = (L0 ⊃ · · · ⊃ Lp) ∈ Flagp(C0,N ;m,O){i1,...,ip} in
turn, and extending it in every one of the following 1 +NT + (i− 1)T different ways:

(1) “setting ti to zero”: that is, letting Lp+1 = Lp ∩H0
i ;

(2) “setting ti = ωkzj”: that is, letting L
p+1 = Lp ∩ kHj

i , for k ∈ ZT and j = 1, . . . , N ;

(3) “setting ti = ωktj”: that is, letting L
p+1 = Lp ∩ −kHj,i, for k ∈ ZT and j = 1, . . . , i− 1.

The result follows by induction. �
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Example 9.2. Suppose T = 1 and N = 1, and take m = 2. So we have coordinates t1, t2. We have

Flag1(C0,z;2,O){1} = {C2 ⊃ (t1 = z),C2 ⊃ (t1 = 0)}.

Note that this set does not include the flag C2 ⊃ (t1 = t2). This flag does appear in

Flag1(C0,z;2,O){2} = {C2 ⊃ (t2 = t1),C
2 ⊃ (t2 = 0),C2 ⊃ (t2 = z)}.

From Flag1(C0,z;2,O){2} we compute

Flag2(C0;2,O){1,2} = {C2 ⊃ (t2 = t1) ⊃ (t2 = t1 = 0),C2 ⊃ (t2 = t1) ⊃ (t2 = t1 = z),

C2 ⊃ (t2 = 0) ⊃ (t2 = 0, t1 = z),C2 ⊃ (t2 = 0) ⊃ (t2 = 0 = t1),

C2 ⊃ (t2 = z) ⊃ (t2 = z = t1),C
2 ⊃ (t2 = z) ⊃ (t2 = z, t1 = 0)}.

Note that Flag2(C0,z;2,O) does not contain, for example, the flag C2 ⊃ (t1 = z) ⊃ (t2 = t1 = z).

As the notation indicates, Flagp(C0,N ;m,O) corresponds to a framingO of the arrangement C0,N ;m

in the sense of §2.5, i.e. to a choice of hyperplane H(L) for every edge L. Indeed, this framing O
is as follows. Given any edge L of C0,N ;m, let j be smallest such that L is contained in either: kHi,j

for some i < j and k ∈ ZT , or
kH i

j for some i ∈ {1, . . . , N} and k ∈ ZT , or H
0
j . Then for that j,

(1) if L ⊂ H0
j , let H(L) = H0

j ;

(2) if L ⊂ kH i
j, let H(L) = kH i

j;

(3) otherwise, let H(L) = kHi,j for i as small as possible.

Example 9.3. With m = 3 and N = 1 we have for instance

H({t2 = t1, t3 = ωz1}) = {t2 = t1} = 0H1,2, H({t3 = t1, t2 = ωz1}) = {t2 = ωz1} = 1H1
2 .

Consequently, by the results of §2.5, we have the following.

Theorem 9.4.

(i) Flagp(C0,N ;m,O) is a basis of F p(C0,N ;m);
(ii) the dual basis of F p(C0,N ;m)∗ ∼= A p(C0,N ;m) is

{
H(L1) ∧H(L2) ∧ · · · ∧H(Lp)

}
(L0⊃L1⊃···⊃Lp)∈Flagp(C0,N;m,O)

.

�

Combining this with Proposition 9.1, we obtain the dimensions of the flag spaces of the cyclotomic
discriminantal arrangements, as follows.

Theorem 9.5. The Poincare polynomial P (x) :=
∑m

p=0 x
p dim(F p(C0,N ;m)) of the arrangement

C0,N ;m is given by

P (x) =
m−1∏

p=0

(
1 +

(
1 + (p+N)T

)
x
)
.

�

Moreover it follows from our recursive definition of Flagm(C0,N ;m) above that the canonical
element in Fm(C0,N ;m)⊗A m(C0,N ;m) itself has a simple recursive definition. For p = 0, . . . ,m− 1
we define a linear map

θm−p : F
p(C0,N ;m)⊗ A

p(C0,N ;m) → F
p+1(C0,N ;m)⊗ A

p+1(C0,N ;m)
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by

θm−p((L
0 ⊃ · · · ⊃ Lp)⊗ λ)

=

m−p−1∑

j=1

∑

k∈ZT

(L0 ⊃ · · · ⊃ Lp ⊃ Lp ∩ kHj,m−p)⊗ (λ ∧ kHj,m−p)

+ (L0 ⊃ · · · ⊃ Lp ⊃ Lp ∩H0
m−p)⊗ (λ ∧H0

m−p)

+

N∑

j=1

∑

k∈ZT

(L0 ⊃ · · · ⊃ Lp ⊃ Lp ∩ kHj
m−p)⊗ (λ ∧ kHj

m−p) (9.2)

Define Θ := θ1(θ2(. . . θm(L0 ⊗ 1) . . . )). In view of Corollary 2.4 we have the following.

Proposition 9.6. Θ is the canonical element of Fm(C0,N ;m)⊗ A m(C0,N ;m). �

By Theorem 4.2, we have an isomorphism ψ−1
m from Fm(C0,N ;m) to the subspace (M0,N )[1m] of

M0,N = U(ā)⊗⊗N
i=1 U(a). Hence we get a canonical element

(ψ−1
m ⊗ id)(Θ) ∈ (M0,N )[1m] ⊗ A

m(C0,N ;m), (9.3)

where we can regard A m(C0,N ;m) as the space of logarithmic differentialm-forms of the arrangement
C0,N ;m, as in §2.3.
Example 9.7. Consider the case N = 0 – i.e. no non-zero marked points zi – and m = 3. We have
logarithmic differential forms ι(H0

i ) = dti/ti and ι(
kHi,j) = d(ti − ωktj)/(ti − ωktj). The element

(ψ−1
m ⊗ id)(Θ) is given by

(ψ−1
m ⊗ id)(Θ) = f1f2f3 ⊗

dt3
t3

∧ dt2
t2

∧ dt1
t1

+
∑

q∈ZT

[ qf2, f1] f3 ⊗
dt3
t3

∧ d(ωqt2 − t1)

ωqt2 − t1
∧ dt1
t1

+
∑

p∈ZT

[ pf3, f1] f2 ⊗
d(ωpt3 − t1)

ωpt3 − t1
∧ dt2
t2

∧ dt1
t1

+
∑

p∈ZT

f1 [ pf3, f2]⊗
d(ωpt3 − t2)

ωpt3 − t2
∧ dt2
t2

∧ dt1
t1

+
∑

p,q∈ZT

[ qf2, [ pf3, f1]]⊗
d(ωpt3 − t1)

ωpt3 − t1
∧ d(ωqt2 − t1)

ωqt2 − t1
∧ dt1
t1

+
∑

p,q∈ZT

[[ p+qf3, qf2], f1]⊗
d(ωpt3 − t2)

ωpt3 − t2
∧ d(ωqt2 − t1)

ωqt2 − t1
∧ dt1
t1
. (9.4)

Combining Theorem 4.2 and Theorem 9.4(i) we obtain a basis,

ψ−1
m (Flagm(C0,N ;m,O)), (9.5)

of the subspace (M0,N )[1m] of M0,N = U(ā)⊗⊗N
i=1 U(a).

Corollary 9.8. We have dim(M0,N )[1m] = dimFm(C0,N ;m) =
∏m−1

k=1 (1+(k+N)T ). In particular,

dimU(ā)[1m] = dimFm(C0;m) =
∏m−1

k=1 (1 + kT ).

Proof. Follows from Theorem 9.5. �
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9.2. The case T = 1 and Lyndon words. Let us consider in passing the special case T = 1, i.e.
the non-cyclotomic case. Then ā = a and we have the weight [1, . . . , 1] component U(a)[1m] of the
universal envelope U(a) of the free Lie algebra a in generators f1, . . . , fm. Corollary 9.8 reduces to
the statement that

dimU(a)[1m] = (1 + 1)(1 + 2) . . . (1 + (m− 1)) = m!.

An obvious basis of U(a)[1m] is given by monomials fs(1)...fs(m) labelled by permutations s ∈ Σm.
Let us describe explicitly the basis of U(a)[1m] constructed in (9.5).

Recall that given any ordered alphabet there is the reverse7 lexicographical total ordering on the
set of words in that alphabet: if w1 = ak . . . a3a2a1 and w2 = bℓ . . . b3b2b1 are distinct words then
w1 < w2 if and only if ai < bi for the smallest i such that ai 6= bi.

A word w is called a Lyndon word if w < vu for every splitting w = uv of w into (non-empty)
words u and v. Note that if ak . . . a3a2a1 has no repeated letters, then it is a Lyndon word if and
only if a1 is least among its letters.

Free Lie algebras are known to admit bases labelled by Lyndon words [CFL58, Shi58, Hall50]
(see e.g. [BCL13] for recent work with extensive bibliography). Indeed, given an ordered alphabet
A, let W (A) denote the set of Lyndon words in A and L(A) the free complex Lie algebra in
generators (fa)a∈A. Define a map γ : W (A) → L(A) recursively as follows. For each letter a ∈ A,
set γ(a) := fa ∈ L(A). For any Lyndon word w of length > 1, there is is a unique way to write
w = uv for (non-empty) words Lyndon words u and v such that u is as long8 as possible. Set
γ(w) := [γ(u), γ(v)]. Then the image γ(W (A)) is a basis of L(A). The reverse lexicographical
ordering among Lyndon words makes this into an ordered basis, and so we can apply the PBW
theorem to get a basis of the envelope U(L(A)).

In our case, let P denote the set of all m! words in the ordered alphabet 1, 2, . . . ,m in which each
letter is used exactly once. Every word w ∈ P can be uniquely factored into a product of Lyndon
words such that these Lyndon words are ordered (reverse lexicographically) when read from left to
right. (The factors are, in an obvious sense, the maximal Lyndon words occurring in w.) Applying
the map γ factor by factor, we arrive an element of U(a)[1m]. Doing this for each word w ∈ P in
turn, we produce a basis of U(a)[1m].

Proposition 9.9. This basis of U(a)[1m] coincides with the basis (9.5), for N = 0 and T = 1.

Proof. By inspection. �

Example 9.10. When m = 5 we have for example the following factorizations of words in P into
reverse-lexicographically ordered products of Lyndon words

54321 = (54321), 41235 = (41)(2)(3)(5), 24531 = (24531), 12345 = (1)(2)(3)(4)(5).

Applying γ we get the following elements of U(a)[1m], which indeed belong to our basis above:

[[[
[f5, f4], f3

]
, f2

]
, f1

]
, [f4, f1]f2f3f5,

[
f2,
[[
f4, [f5, f3]

]
, f1

]]
, f1f2f3f4f5.

Remark 9.11. When T > 1, the basis (9.5) of U(ā)[1m] consists of “decorated” Lyndon words. For
example, the element [f2, f1]f3 of the Lyndon basis for m = 3, T = 1 corresponds to T elements

[ qf2, f1] f3 labelled by q ∈ ZT if T > 1.

7To match our conventions above it is convenient to use reverse lexicographical ordering.
8Again, note our convention here.
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9.3. Symmetrized canonical element and the weight function. Let now λ = (λ1, . . . , λr) ∈
Zr
≥0 with m = λ1 + · · ·+ λr. As in §6.3, the finite group

ΣZλ = ΣZλ1 × · · · × ΣZλr

acts linearly on the flag spaces F p(C0,N ;m) and their duals, A p(C0,N ;m) ∼= F p(C0,N ;m)∗.
Let Fm(C0,N ;m) =

⊕
dWd be the canonical decomposition of the space of full flags into its

isotypical components with respect to this action. Let A m(C0,N ;m) =
⊕

dW
∗
d be the corresponding

decomposition of its dual. Then the canonical element Θ decomposes as Θ =
⊕

dΘd where Θd is
the canonical element of Wd ⊗W ∗

d . In particular, let

ΘΣZλ ∈ F
m(C0,N ;m)ΣZλ ⊗ A

m(C0,N ;m)ΣZλ .

where Fm(C0,N ;m)ΣZλ denotes the isotypical component of Fm(C0,N ;m) spanned by flags F such

that (−1)|g|g.F = F , as in §6.3, and where A m(C0,N ;m)ΣZλ denotes the isotypical component of

A m(C0,N ;m) spanned by forms ω such that (−1)|g|g.ω = ω. Observe that ΘΣZλ can be obtained
from Θ by projecting either tensor factor.

Let χi : ΣZλi
→ C× be the one-dimensional representation of ΣZλi

given by χ((s, (k1, . . . , kλi
))) =

ω(k1+···+kλi)Ti . Then χ := χ1 . . . χr is a one-dimensional representation of ΣZλ. For later use, observe
that the Jacobian of the linear map Cm → Cm; p 7→ g−1.p is

Jg := det

(
∂t(g−1.p)i
∂tj(p)

)

1≤i,j≤m

= det

(
∂(g.t)i(p)

∂tj(p)

)

1≤i,j≤m

= χ(g)(−1)|g| (9.6)

where (−1)|g| is as in (6.12).
An element η ∈ A m(C0,N ;m) is a top-degree form, so it can be written uniquely as

η = u dt1 ∧ · · · ∧ dtm
for some rational function u regular on Cm \⋃H∈C0,N;m

H. We have

(−1)|g|g.η = (g.u)χ(g) dt1 ∧ · · · ∧ dtm.
Example 9.12. Suppose r = 1, λ1 = m = 2 and T = 1. Then ΣZλ = Σ2. Suppose η = d log(t1−z)∧
d log(t2 − z) = 1

t1−z
1

t2−zdt1 ∧ dt2. By definition (−1)|(12)|(12).η = −d log(t2 − z) ∧ d log(t1 − z) = η

and indeed χ = 1 and u(t) = 1
t1−z1

1
t2−z1

is invariant under t1 ↔ t2.

Example 9.13. Suppose r = 1, λ1 = m = 1 and T = 3, T1 = 1. Then ΣZλ = Z3. Suppose
η = d log(t1 − z) = 1

t1−zdt1. Then k.η = d log(ωkt1 − z) = 1
ωkt1−z

ωkdt1.

It follows that η ∈ A m(C0,N ;m)ΣZλ if and only if u = χ(g)g.u for all g ∈ ΣZλ. That is, if and only

if u(p) = u(g−1.p)χ(g) for all g ∈ ΣZλ. Hence the projector A m(C0,N ;m) → A m(C0,N ;m)ΣZλ can be
written as

u dt1 ∧ · · · ∧ dtm 7→ 1

|ΣZλ|
∑

g∈ΣZλ

u(g−1.p)χ(g)dt1 ∧ · · · ∧ dtm.

In particular, the canonical element Θ is of the form

Θ = θ dx1 ∧ . . . dtm,
for a unique rational map θ : Cm → Fm(C0,N ;m), regular on Cm\⋃H∈C0,N;m

H. Recall that to obtain

the component ΘΣZλ ∈ Fm(C0,N ;m)ΣZλ ⊗ A m(C0,N ;m)ΣZλ from Θ ∈ Fm(C0,N ;m) ⊗ A m(C0,N ;m) it

is enough to apply the projector A m(C0,N ;m) → A m(C0,N ;m)ΣZλ to the second factor. Thus ΘΣZλ

is given by

ΘΣZλ = θΣZλ dx1 ∧ . . . dtm
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where θΣZλ : Cm → Fm(C0,N ;m)ΣZλ is the rational map, regular on Cm \⋃H∈C0,N;m
H, given by

θΣZλ =
1

|ΣZλ|
∑

g∈ΣZλ

θ(g−1.p)χ(g). (9.7)

Definition 9.14. The weight function Ψ is the rational map Cm → L(Λ)λ given by

Ψ : Cm θΣZλ−−−→ F
m(C0,N ;m)ΣZλ

∼−→M(Λ)λ → L(Λ)λ

where the isomorphism M(Λ)λ ∼= Fm(C0,N ;m)ΣZλ is that of Theorem 6.7.

Equivalently (given Theorem 7.13 and Corollary 7.15)

Ψ : Cm θΣZλ−−−→ F
m(C0,N ;m)ΣZλ

G−→ G(Fm(C0,N ;m)ΣZλ)
∼−→ L(Λ)λ

Example 9.15. Let B be the Cartan matrix of type A3 and σ the diagram automorphism, σ = (13).
Let λ = (1, 0). Let the number of non-zero marked points be N = 1. The weight function is

Ψ =
v0 ⊗ F1v1
t1 − z

+
v0 ⊗ F3v1
t1 + z

+
(F1 + F3)v0 ⊗ v1

t1
∈ L(Λ).

The weight function is regular at least on Cm\⋃H∈C0,N;m
H. The following proposition establishes

that it is also regular on any hyperplane H ∈ C0,N ;m whose weight is zero, a(H) = 0.

Proposition 9.16.

(1) Suppose (αι(i), σ
kαι(j)) = 0. Then the weight function Ψ is regular on the hyperplanes

kHin,jp, n = 1, . . . , λi, p = 1, . . . , λj .

(2) Let v ∈ {1, . . . , N} (resp. v = 0). If (αι(i), σ
kΛv) = 0 then the weight function Ψ is regular

on the hyperplanes kHv
in

(resp. the hyperplane H0
in
) for n = 1, . . . , λi.

Proof. The proof is given in Appendix A. �

Recall the definition of the master function Φ from §2.6. In the case of the cyclotomic discrim-
inantal arrangement C0,N ;m with the weighting defined in (7.7) and (7.20), Φ is given explicitly
by

Φ = −
r∑

i=1

λi∑

n=1

(
αi,Λ0

)
log tin −

∑

k∈ZT

N∑

i=1

r∑

j=1

λj∑

n=1

(
αj, σ

kΛi

)
log(tjn − ωkzi)

+
∑

k∈ZT

∑

1≤i<j≤r

λi∑

n=1

λj∑

p=1

(
αi, σ

kαj

)
log(tin − ωktjp) +

∑

k∈ZT

r∑

i=1

∑

1≤n<p≤λi

(
αi, σ

kαi

)
log(tin − ωktip).

(9.8)

Given a point p ∈ Cm, let Stab(p) ⊂ ΣZλ denote the stabilizer subgroup of p. Define a number
η(p) ∈ C by

η(p) :=
∑

h∈Stab(p)

χ(h).

Whenever p ∈ Cm \⋃H∈C0,N;m
then Stab(p) is trivial and hence η(p) = 1.

Let now B0,N ;m ⊂ C0,N ;m be the subarrangement consisting of all the hyperplanes of C0,N ;m of
nonzero weight. Proposition 9.16 shows that Ψ is regular on the complement Cm \⋃H∈B0,N;m

H of

this subarrangement. A point p ∈ Cm \⋃H∈B0,N;m
H in this complement is called a critical point

if dΦ|p = 0. The Bethe vector corresponding to a critical point p is the vector Ψ(p) ∈ L(Λ)λ.
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Theorem 9.17. Suppose p ∈ Cm \⋃H∈B0,N;m
H is an isolated critical point of the master function

Φ. The Bethe vector Ψ(p) is nonzero if and only if η(p) 6= 0.
In particular the Bethe vector Ψ(p) is nonzero whenever the stabilizer Stab(p) ⊂ ΣZλ is trivial.

Proof. By Lemma 2.6, we may work with the geometric form of the subarrangement B0,N ;m.
We use results from [Var11]. Consider first the rational map

Ψ̃ : Cm θ−→ F
m(C0,N ;m) ։ G(Fm(C0,N ;m)) ⊂ A

m(C0,N ;m).

Suppose p is an isolated critical point of Φ. It follows from Theorem 9.13 in [Var11] that Ψ̃(p)
(denoted there [E](p)) is nonzero.

Indeed, in [Var11] a linear map αp : Ap → Fm(C0,N ;m)/ ker G ∼= G(Fm(C0,N ;m)) is defined, where
Ap is the local algebra of the critical point p. The local algebra is the quotient of the algebra of germs
at p of holomorphic functions by the ideal generated by the partial derivatives (∂Φ/∂ti)1≤i≤m. It
comes equipped with a canonically defined non-degenerate bilinear form, the Grothendieck form.
Theorem 9.13 of [Var11] says that αp is an injection and that under this injection the Grothendieck
form on Ap is identified with the geometric form G on Fm(C0,N ;m)/ ker G. There is a preferred
element of Ap, the Hessian determinant

Hess := det(∂2Φ/∂ti∂tj)1≤i,j≤m.

It is known that Hess 6= 0 in Ap. (Let us stress that this is true even if p is a degenerate critical
point, i.e. even if Hess|p = 0.) It is shown in [Var11] that the image of Hess under the injection αp

is Ψ̃(p), up to a nonzero multiplicative constant.
Now consider the ΣZλ-orbit of p.
Let us first consider the case that p ∈ Cm \ ⋃H∈C0,N;m

H. Then the orbit consists of |ΣZλ|
isolated critical points, and ΣZλ acts freely on it. To each point g.p is associated its local algebra
Ag.p. Theorem 9.14 from [Var11] says that the images of the corresponding injections αg.p : Ag.p →
Fm(C0,N ;m)/ ker G are orthogonal with respect to the (nondegenerate, on this quotient) bilinear

form G. Hence a linear combination of the form
∑

g∈ΣZλ
c(g)Ψ̃(g−1.p) is non-zero whenever any of

the coefficients c(g) are nonzero. In particular the sum

1

|ΣZλ|
∑

g∈ΣZλ

χ(g)Ψ̃(g−1.p) (9.9)

is nonzero. In view of (9.7), it follows that the Bethe vector Ψ(p) is non-zero.
In the case when p lies on a hyperplane H ∈ C0,N ;m of zero weight, the stabilizer subgroup

Stab(p) ⊂ ΣZλ may be non-trivial. The sum (9.9) is nonzero if and only if
∑

g∈Stab(p) χ(g) = η(p)
is nonzero. �

For critical points that are not only isolated but non-degenerate, i.e. such that Hess|p 6= 0, we
have also the following.

Proposition 9.18. Suppose p ∈ Cm \ ⋃H∈B0,N;m
H is a critical point of the master function Φ.

Then the norm of the Bethe vector is given by S(Ψ(p),Ψ(p)) = η(p)
|ΣZλ|

Hess|p.
In particular, if p is a non-degenerate critical point with η(p) 6= 0 then the Bethe vector Ψ(p) has

nonzero norm.
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Proof. First observe that, since (g.ti)(g.p) = ti(p) for all g ∈ ΣZλ,

Hess|g−1.p = det

(
∂2Φ

∂ti∂tj

)

1≤i,j≤m

∣∣∣∣∣
g−1.p

= det

(
∂2Φ

∂(g−1.ti)∂(g−1.tj)

)

1≤i,j≤m

∣∣∣∣∣
g−1.p

det

(
∂(g−1.ti)

∂tj

)2

1≤i,j≤m

= det

(
∂2Φ

∂ti∂tj

)

1≤i,j≤m

∣∣∣∣∣
p

J2
g−1 = Hess|pχ(g)−2, (9.10)

cf. (9.6). Let Ψ̃ be as in the previous proof. It is shown in [Var06, Theorem 5.2] that for any

non-degenerate critical point p, S(Ψ̃(p), Ψ̃(p)) = Hess|p, and moreover that if p, q are distinct

non-degenerate critical points then S(Ψ̃(p), Ψ̃(q)) = 0. Thus, given (9.7) and (9.10), we have

S(Ψ(p),Ψ(p)) =
1

|ΣZλ|2
∑

a,b∈ΣZλ

χ(a)χ(b)S(Ψ̃(a−1.p), Ψ̃(b−1.p))

=
1

|ΣZλ|2
∑

a∈ΣZλ

∑

b∈aStab(p)

χ(a)χ(b)S(Ψ̃(a−1.p), Ψ̃(a−1.p))

=
1

|ΣZλ|


 ∑

h∈Stab(p)

χ(h)


Hess|p (9.11)

as required. �

9.4. On the Bethe vectors of the cyclotomic Gaudin model. In [VY14a] a cyclotomic Gaudin
model was constructed and solved by Bethe ansatz. The data defining the model include a triple
(g, σ, T ) where g is a finite-dimensional semisimple Lie algebra and σ is an automorphism of g

whose order divides T ∈ Z≥0.
Consider the special case when σ is a diagram automorphism of order T . Then we are in the

setting of the present paper. Choose the matrix B = (αi, αj)i,j=1,...,R above to be the symmetrized
Cartan matrix of g.

Proposition 9.19. The image in L(Λ) of the cyclotomic weight function ψΓ ∈M(Λ) of [VY14a]
coincides with Ψ as defined here. �

This is so because the recursive definition of the canonical element Θ given after Theorem 9.4
coincides (by construction) with the recursive definition of the weight function via “swapping” given
in [VY14a] following [FFR94].

Consequently, the results of the preceding subsection apply to the weight function of [VY14a].
We should remark on the following subtlety. In the present paper the highest weight Λ0 ∈ (hσ)∗

of the module Mσ(Λ0) determines the weighting of the hyperplanes H0
i defined by the equations

(ti = 0) simply by

a(H0
in) =

(
αi,Λ0

)
. (9.12)

In [VY14a] the relationship is in general less trivial. Namely,

a(H0
in) =

(
αi,Λ0 + λ0

)
−

T−1∑

k=1

(
αi, σ

kαi

)

1− ωk
(9.13)
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where λ0 ∈ (hσ)∗ is a weight defined as follows.9 Let ∆+ denote the set of positive roots of g. The
Cartan decomposition can be chosen such that, for each α ∈ ∆+, we have σEα = ταEσ(α) and

σFα = τ−1
α Fσ(α) for some root of unity τα. Let

λ0 :=

T−1∑

k=1

1

1− ωk

∑

α∈∆+

σk(α)=α




k−1∏

p=0

τ−1
σp(α)


α.

Lemma 9.20. The definitions (9.12) and (9.13) do coincide whenever σ is a diagram automor-
phism.

Proof. If T = 1 there is nothing to prove. If T > 1 but σ = id is the trivial automorphism
then τα = 1 for all α ∈ ∆+ and the result follows from the identity

(
αi, αi

)
= 2

(
αi, ρ

)
where

ρ = 1
2

∑
α∈∆+ α is the Weyl vector. So suppose σ is a non-trivial diagram automorphism and T is a

multiple of the order of σ. To say that σ is a diagram automorphism is to say that ταi
= 1 for each

simple root αi. Then τα ∈ {+1,−1} for all α ∈ ∆+. Now we proceed by case-by-case inspection
of the non-trivial diagram automorphisms of the finite-type Dynkin diagrams. Define a sign ε to
be −1 in type A2n and +1 otherwise. One finds that τα = ε for all α ∈ ∆+ such that σ(α) = α.
Moreover for each simple root αi,

(
αi, σαi

)
= ε

∑

α∈∆+

σ(α)=α

(
αi, α

)
.

This implies the result. �

Appendix A. Proof that Ψ is regular on hyperplanes of weight zero.

In this appendix we give the proof of Proposition 9.16. Consider part (i). Recall our basis
Flagm(C0,N ;m,O) and its dual from Theorem 9.4. The canonical element is the sum

Θ =
∑

F∈Flagm(C0,N;m,O)

F ⊗ ωF ,

where ωF ∈ A m(C0,N ;m) is the basis vector dual to the flag F , for each flag F ∈ Flagm(C0,N ;m,O).
Let uF be the rational function defined by ωF = uFdt1 ∧ · · · ∧ dtm.

Fix i, j, k such that (αι(i), σ
kαι(j)) = 0. Fix n ∈ {1, . . . , λi} and p ∈ {1, . . . , λj}. We must show

that ∑

F∈Flagm(C0,N;m,O)

G(F )uF

is regular on kHin,jp.
There is an equivalence relation on the set Flagm(C0,N ;m,O) of basis flags in which two flags are

equivalent if and only if “they are the same when we equate tin and ωktjp”. That is, F = (L0 ⊃
· · · ⊃ Lm) and F̃ = (L̃0 ⊃ · · · ⊃ L̃m) are equivalent if Lr ∩ kHin,jp = L̃r ∩ kHin,jp for each r. Let
[F ] ⊂ Flagm(C0,N ;m,O) denote the equivalence class of a flag F . We shall now show that, for every
basis flag F , ∑

F̃∈[F ]

G(F̃ )uF̃ (A.1)

is regular on kHin,jp. Since the classes partition Flagm(C0,N ;m,O), this suffices to prove the propo-
sition.

9Strictly speaking, [VY14a] considered only the case Λ0 = 0, but the generalization is straightforward.
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Suppose that F is any basis flag such that the function uF is singular on kHin,jp . This happens

if and only if uF contains a factor (tin − ωktjp)
−1. In view of Theorem 9.4 part (ii), that means

H(Lr) = kHin,jp for some edge Lr, r ∈ {1, . . . ,m}, of the flag F .

Observe that the difference uF − uF̃ is regular on kHin,jp for all F̃ ∈ [F ]. (Indeed, uF =

(tin −ωktjp)
−1f and uF̃ = (tin −ωktjp)

−1f̃ for rational functions f, f̃ regular and equal on kHin,jp.)
So for the purposes of computing the singular part of (A.1) we can replace uF̃ by uF in the sum.
Therefore it is enough to show that ∑

F̃∈[F ]

F̃ ∈ kerG.

Recall that in our recursive definition of the basis flags, we first “set tm equal to something”, then
tm−1, then tm−2, and so on, until at the rth step we get to tmax(in,jp). Thus r = m+1−max(in, jp).
There is a unique nonnegative integer s < r and unique integers h1, . . . , hs with m ≥ h1 > · · · >
hs > max(in, jp) such that: for every flag F̃ = (L̃0 ⊃ · · · ⊃ L̃m) in the class [F ], each of the

hyperplanes H(L̃m+1−hu), u = 1, . . . , s, involves one or other of in or jp, while the remainder of

the first r − 1 hyperplanes H(L̃1), . . . ,H(L̃r−1) do not. (Intuitively speaking, th1 , . . . , ths
are the

coordinates which got equated to a multiple of tin or tjp before either of the latter got set equal to
something.)

Note that for all F̃ = (L̃0 ⊃ · · · ⊃ L̃m) ∈ [F ], Ls = L̃s for r ≤ s ≤ m. Consider the edge Lr of
F . It is an archipelago of islands in the sense of §3.1. One of these islands is a swimming island
involving precisely the elements of J = {h1, . . . , hs} ∪ {in, jp}. Recall the notion of shortened flags

from §5.4. By inspection, it is enough to consider the shortened flags F̃ |J and to show that
∑

F̃∈[F ]

F̃ |J ∈ kerG. (A.2)

Observe that a(kHin,jp) = (αι(i), σ
kαι(j)) = 0 implies ψ([ kfjp , fin ]) ∈ ker G and hence

C := ψ([ qsfhs
, [ qs−1fhs−1 , . . . , [

q1fh1 , [
kfjp, fin ] . . . ]]]) ∈ kerG.

Now we claim that (for suitable q1, . . . , qs ∈ ZT ), C is the sum of flags in (A.2). Indeed, consider
the following procedure. Here we simplify notation by letting u := qufhu

and i := fin , j := kfjp .
First distribute 1 over [j, i] using the Jacobi identity in the form

[1, [j, i]] = [[1, j], i] + [j, [1, i]].

Then distribute 2 over the result:
[
2, [1, [j, i]

]
=
[
2, [[1, j], i] + [j, [1, i]]

]

=
[
[2, [1, j]], i

]
+
[
[1, j], [2, i]

]
+
[
[2, j], [1, i]

]
+
[
j, [2, [1, i]]

]
,

and so on. In general, at the uth step we have a sum of terms of the form [s, . . . , [u+1, [u, [X,Y ]] . . . ]]
for some commutators X,Y and we re-write such terms as follows:

[
s, . . . ,

[
u+ 1, [u, [X,Y ]]

]
. . .
]
=
[
s, . . . ,

[
u+ 1, [[u,X], Y ] + [X, [u, Y ]]

]
. . .
]
.

With the isomorphisms of Theorem 4.2 in mind, one sees that this indeed coincides with the
recursive procedure given above to construct the basis flags. Thus we have the equality (A.2), as
required.

We turn now to part (ii). The argument is similar to the one above. We shall consider for
definiteness the case of (αι(i),Λ0) = 0. There is an equivalence relation among basis flags in which

F = (L0 ⊃ · · · ⊃ Lm) and F̃ = (L̃0 ⊃ · · · ⊃ L̃m) are equivalent if Lr ∩H0
in

= L̃r ∩H0
in

for every r.

As before one checks that uF − uF̃ is regular on H0
in for all F̃ ∈ [F ] so that it is enough to show

that for each equivalence class [F ],
∑

F̃∈[F ] F̃ ∈ ker G.
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Pick a basis flag F = (L0 ⊃ · · · ⊃ Lm) such that uF is singular. Let r be the unique number such
that H(Lr) = H0

in . There is a unique s < r and unique integers h1, . . . , hs with m ≥ h1 > · · · >
hs > in such that: for every flag F̃ = (L̃0 ⊃ · · · ⊃ L̃m) in the class [F ], each of the hyperplanes

H(L̃m+1−hu), u = 1, . . . , s, either involves in or else is H0
hu
, while the remainder of the first r − 1

hyperplanes H(L̃1), . . . ,H(L̃r−1) are not of either of these types. Let J = {h1, . . . , hs, in}. The
edge Lr of F includes the fixed island L0

J .

Now the fact that a(H0
in) = (αι(i),Λ0) = 0 implies that ψ(f inv0) ∈ ker G and hence that

A := ψ(fhs
fhs−1 . . . fh1)finv0 ∈ kerG.

Once more we conclude by observing that A =
∑

F̃∈[F ] F̃ |J . Indeed, this follows from repeatedly

rewriting using the identity

fht
Xy = X fht

y +
∑

k∈ZT

[ kfht
,X]y (A.3)

for t = 1, . . . , s in turn, where X is a commutator including fin and y is a monomial of the form
fh∗

. . . fh∗
v0 (compare Example 9.7).
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