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Abstract

We give a characterization of modular curves by a single symmetry of Hecke
type. In the proof, we use the theorem of André, which characterizes modular
curves in terms of special points.
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1 Introduction and the main results

In [1], André gives a criterion for an irreducible algebraic curve in C2 to be a modular
curve in terms of special points. The aim of the present paper is to give a criterion for
an effective divisor in C2 to be modular in terms of a single symmetry of Hecke type.

To be more precise, let j(E) denote the j-invariant of an elliptic curve E. A complex
number x is said to be special if an elliptic curve E with j(E) = x has complex multipli-
cation. A point (x1, x2) in C2 is said to be special if both x1 and x2 are special. An isogeny
ϕ between elliptic curves is called a cyclic isogeny of degree m if Ker(ϕ) is a cyclic group
of order m. For a positive integer N, let Y0(N) = Γ0(N)\H be the (open) modular
curve of level N classifying cyclic isogenies of degree N between elliptic curves. The
map (ϕ : E → E′) 7→ (j(E), j(E′)) sends Y0(N) to an irreducible algebraic curve in C2.
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Then the theorem of André ([1]) is stated as follows; see also [6] for another proof
assuming Generalized Riemann Hypothesis (GRH).

Theorem 1.1. Let C be an irreducible algebraic curve in C2 such that neither of its pro-
jections to C is constant. If C contains infinitely many special points, then C is the image of
Y0(N) in C2 for some positive integer N.

This theorem is a special case of the André-Oort conjecture, which says that the
irreducible components of the Zariski closure of any set of special points in a Shimura
variety are special subvarieties. The conjecture has been proven under GRH in [11]
and [9]; for an excellent review of the André-Oort conjecture, see [7].

Our original motivation was to relate Theorem 1.1 to symmetries of Hecke type
introduced in [8] (see Remark 1.8). To define symmetries of Hecke type, for a positive
integer m, let Tm be the correspondence on C that sends j(E) to the sum (as a divisor)
of j(E/G), where G runs over the cyclic subgroups of E of order m. The graph in C2

corresponding to Tm is the image of Y0(m) in C2 and is given by{(
j(τ), j

(
aτ + b

d

))
| τ ∈ H, (a, b, d) ∈ Λ(m)

}
,

where j(τ) := j(C/(Z + τZ)) for τ ∈ H and

Λ(m) :=
{
(a, b, d) ∈ (Z≥0)

3 | ad = m, 0 ≤ b < d, gcd(a, b, d) = 1
}

.

Note that the definition of Tm here is different from the usual one (defined as j(E) 7→
the sum of j(E/G), where G runs over all subgroups of E of order m) (see [6], page
320). We define the product X ◦ Y of correspondences X and Y on C as in [10], Section
7.2. Recall that

Tm ◦ Tn = Tmn if gcd(m, n) = 1, (1.1)

Tp ◦ Tpk = Tpk+1 + (p + δk,1) Tpk−1 for a prime number p and k ≥ 1, (1.2)

where δk,1 is the Kronecker symbol. The correspondences Tm (m ≥ 1) generate a
commuative subring of the algebra of correspondences on C, which we call the algebra
of Hecke correspondences.

Let D be an effective divisor in C2. By definition, D = ∑r
i=1 eiCi is a formal finite

sum of (not necessarily smooth) irreducible algebraic curves Ci in C2 with ei ∈ Z>0.
We set

T↑
m(D) = (Tm × 1)D, T↓

m(D) = (1 × Tm)D.

Note that both T↑
m(D) and T↓

m(D) are effective divisors in C2, and that T↑
m and T↓

m′

commute with each other for m, m′ ≥ 1. We denote by supp(D) the union of the
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irreducible components C1, . . . , Cr. Often our notation does not distinguish between
an effective divisor and its support if the meaning is clear.

Remark 1.2. Let C be an irreducible algebraic curve in C2 such that neither of its
projections to C is constant. We consider C as a correspondence on C. Then T↑

m(C)
(respectively T↓

m(C)) is the effective divisor in C2 corresponding to the product Tm ◦ C
(respectively C ◦ Tm).

We give another description of T↑
m(D) and T↓

m(D) when D is the divisor of a poly-
nomial F ∈ C[X, Y]. It is easily verified that there exist polynomials T ↑

m (F) and T ↓
m (F)

in C[X, Y] satisfying

T ↑
m (F)

(
j(τ), j(τ′)

)
= ∏

(a, b, d)∈Λ(m)

F
(

j
(

aτ + b
d

)
, j(τ′)

)
,

T ↓
m (F)

(
j(τ), j(τ′)

)
= ∏

(a, b, d)∈Λ(m)

F
(

j(τ), j
(

aτ′ + b
d

))

for τ, τ′ ∈ H. Then T↑
m(D) and T↓

m(D) are the divisors of T ↑
m (F) and T ↓

m (F) respectively.
Define Φ1(X, Y) := X − Y and Φm(X, Y) := T ↓

m (Φ1)(X, Y) for m ≥ 2. Note that
T ↑

m (Φ1)(X, Y) = ±Φm(X, Y). We see that Φm(X, Y) is the modular polynomial of order
m (for example, see Section 11.B in [5]).

We say that an effective divisor D = ∑r
i=1 eiCi in C2 is modular if every irreducible

component Ci (i = 1, . . . , r) is the graph of Tmi for some positive integer mi. The next
result follows immediately from Remark 1.2 and the commutativity of the algebra of
Hecke correspondences.

Lemma 1.3. Let D be a modular divisor in C2. Then

T↑
m(D) = T↓

m(D) (1.3)

holds for every m ≥ 1.

One of the results of [8] essentially shows that the converse of Lemma 1.3 holds for
effective divisors.

Theorem 1.4 ([8],Theorem 8.1). Let D be an effective divisor in C2 and suppose that (1.3)
holds for any m ≥ 1. Then D is modular.

Remark 1.5. Theorem 8.1 in [8] is stated as a characterization of modular equations
(or holomorphic Borcherds products on O(2, 2)) by symmetries. The proof in [8] is
analytic and uses the theory of Borcherds products on O(2, 2). We also note that a
characterization of holomorphic Borcherds products on O(2, n) (n ≥ 2) by symmetries
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of Hecke type is given in [8] (for Borcherds products, see [2], [3] and [4]). It would be
interesting to study relations between symmetries for automorphic forms on O(2, n)
and the André-Oort conjecture for Shimura varieties attached to O(2, n).

The aim of the present paper is to show the following improved version of Theorem
1.4 saying that only one single symmetry is needed for D to be modular.

Theorem 1.6. Let D be an effective divisor in C2 and assume that T↑
p (D) = T↓

p (D) holds
for some prime number p. Then D is modular.

As a direct consequence of Theorem 1.6, we have the following result:

Corollary 1.7. Let F(X, Y) be a nonzero polynomial in C[X, Y] such that T ↑
p (F) is a

constant multiple of T ↓
p (F) for some prime number p. Then

F(X, Y) = c
r

∏
i=1

ΦNi(X, Y)ei ,

where c ∈ C×, Ni’s are distinct positive integers and ei ∈ Z>0 (i = 1, . . . , r).

The proof of Theorem 1.6 is algebro-geometric and is an application of the theorem
of André.

Remark 1.8. Let C be an irreducible algebraic curve in C2. The symmetry T↑
m(C) =

T↓
m(C) implies the inclusion

C ⊂ (Tm × Tm)C, (1.4)

since

(Tm × Tm)C = (Tm × 1)(1 × Tm)C = (Tm × 1)(Tm × 1)C = ((Tm ◦ Tm)× 1)C

and Tm ◦ Tm = ∑k≥1 akTk (a finite sum) with ak ∈ Z≥0 and a1 > 0. Edixhoven showed
without GRH ([6], Theorem 6.1) that C is modular if (1.5) holds for a sufficiently large
square free integer m. It is unclear to the authors whether Edixhoven’s proof can be
modified to work for effective divisors respectively without the assumption on m. The
generality of effective divisors is important for applying the theorem to divisors of
holomorphic automorphic forms on O(2, 2) to get a characterization of holomorphic
Borcherds products or modular equations (Corollary 1.7).

2 The proof of Theorem 1.6

Throughout this section, we let D = ∑r
i=1 eiCi be an effective divisor in C2 and assume

that T↑
p (D) = T↓

p (D) holds for some prime number p. The equality (1.2) implies that
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there exists a polynomial Gn(t) of degree n such that T↑
pn = Gn(T

↑
p ) and T↓

pn = Gn(T
↓
p ).

It follows that
T↑

pn(D) = T↓
pn(D) (2.1)

holds for any n ≥ 1.

Lemma 2.1. The divisor D has no irreducible component of the type {x0}×C or C × {y0}
with x0, y0 ∈ C.

Proof. Let C0 = {x0} × C with x0 ∈ C. Take τ0 ∈ H such that j(τ0) = x0. Then

T↑
pn(C0) = ∑

(a,b,d)∈Λ(pn)

({xa,b,d} × C) and T↓
pn(C0) = (pn + pn−1)C0,

where xa,b,d = j
(

aτ0 + b
d

)
∈ C. Since the number of distinct points in {xa,b,d}(a,b,d)∈Λ(pn)

goes to infinity as n → ∞, D has no component of the type C0. In a similar way, we can
show that D has no component of the type C × {y0}, which proves the lemma.

Let E, E′ be elliptic curves and m a positive integer. We write E
m-cyclic−→ E′ if there

exists a cyclic isogeny ϕ : E → E′ of degree m. Observe that, for an irreducible algebraic
curve C,

T↑
m(C) =

{
(x, y) ∈ C2 | there exists x′ ∈ C with (x′, y) ∈ C and Ex

m-cyclic−→ Ex′

}
,

T↓
m(C) =

{
(x, y) ∈ C2 | there exists y′ ∈ C with (x, y′) ∈ C and Ey

m-cyclic−→ Ey′

}
.

Here, for x ∈ C, we choose and fix an elliptic curve Ex with j(Ex) = x.
We say that an elliptic curve E satisfies the condition (A) if there exist endomor-

phisms ϕj of E with Ker(ϕj) ≃ Z/pmjZ, where m1 < m2 < · · · is an infinite increasing
sequence of positive integers. Note that x ∈ C is special if Ex satisfies (A).

Lemma 2.2. There exist infinitely many x ∈ C such that Ex satisfies (A).

Proof. There exist infinitely many imaginary quadratic fields Kj such that p splits in

the integer ring Lj of Kj: p = pjpj. Let p
hj
j = πjLj, where πj ∈ Lj and hj is the class

number of Kj. The elliptic curve C/Lj has cyclic endomorphisms of degree phjm given
by z 7→ πm

j z for m ≥ 1, which implies that C/Lj satisfies (A). This completes the proof
of the lemma.

Proposition 2.3. Let (x, y) ∈ C2 be a closed point of supp(D). If Ex satisfies (A), then Ey

also satisfies (A).
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Proof. Let (x, y) ∈ supp(D) and suppose that Ex satisfies (A). Then there exists an

infinite increasing sequence m1 < m2 < · · · with Ex
pmj -cyclic−→ Ex. We thus have (x, y) ∈

T↑
pmj (D) = T↓

pmj (D) by the symmetries (2.1). This implies that there exist y1, y2, . . . ∈ C

with (x, yi) ∈ supp(D) and Ey
pmj -cyclic−→ Eyj . In view of Lemma 2.1, taking a suitable

subsequence of {yj}, we may (and do) assume that y1 = y2 = · · · , for which we
write y′. Then there exists a cyclic isogeny ϕj : Ey → Ey′ of degree pmj for any j ≥ 1.
Define φj := ϕ∗

1 ◦ ϕj ∈ End(Ey), where ϕ∗
1 denotes the dual of ϕ1. Note that ϕ∗

1 is
also a cyclic isogeny of Ey of degree pm1 . We decompose φj into the composition of
the multiplication-by-pkj endomorphism of Ey and a cyclic endomorphism ψj of Ey of
degree plj . Since Ker(φj) is an extension of Z/pm1Z by Z/pmjZ, we have Ker(φj) ∼=
Z/pκjZ × Z/pµjZ with κj ≤ min(m1, mj) = m1 and µj ≥ max(m1, mj) = mj. Thus we
have k j = κj ≤ m1 for j ≥ 1. This implies that limj→∞ lj = ∞, which shows that Ey

satisfies (A).

We now prove Theorem 1.6. By Lemma 2.1, neither of the two projections of Ci to C

is constant for every i. By Lemma 2.2, there exist infinitely many closed points (xn, yn)

of supp(D) such that Exn satisfies (A). Then Eyn also satisfies (A) by Proposition 2.3.
It follows that the points (xn, yn) are special and hence that, for some i, Ci contains
infinitely many special points. By the theorem of André (Theorem 1.1), Ci is the image
of Y0(N) for some positive integer N. Since D′ = D − eiCi also satisfies the symmetry
T↑

p (D′) = T↓
p (D′) by Lemma 1.3, the proof of the theorem is completed by induction

on r.
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