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Abstract. We obtain upper and lower bounds for Steklov eigen-
values of submanifolds with prescribed boundary in Euclidean space.
A very general upper bound is proved, which depends only on the
geometry of the fixed boundary and on the measure of the interior.
Sharp lower bounds are given for hypersurfaces of revolution with
connected boundary: we prove that each eigenvalue is uniquely
minimized by the ball. We also observe that each surface of revo-
lution with connected boundary is isospectral to the disk.

1. Introduction

The Steklov eigenvalues of a smooth, compact, connected Riemann-
ian manifold (M, g) of dimension n ≥ 2 with boundary Σ are the
real numbers σ for which there exists a nonzero harmonic function
f : M → R which satisfies ∂νf = σf on the boundary Σ. Here and in
what follows, ∂ν is the outward normal derivative on Σ. The Steklov
eigenvalues form a discrete sequence 0 = σ0 < σ1 ≤ σ2 ≤ · · · ↗ ∞,
where each eigenvalue is repeated according to its multiplicity.

Several recent papers have investigated the effects of the geometry
near the boundary on the Steklov eigenvalues, for instance [5, 7, 13, 21,
22]. In particular, in [7] the authors investigated the situation where
the Riemannian metric g is prescribed on the boundary Σ. On any
manifold of dimension n ≥ 3 they proved that conformal perturbations
ω2g with ω ≡ 1 on Σ can make σ1 arbitrarily large, as well as arbitrarily
small. Hence the prescription of g on the boundary does not constrain
the spectrum very much.

In the present paper, we study upper and lower bounds for Steklov
eigenvalues in an even more rigid situation, where a closed (possibly
not connected) submanifold Σ ⊂ Rm of dimension n − 1 is given, and
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where we consider the Steklov spectrum of submanifolds M ⊂ Rm with
prescribed boundary Σ.

Regarding upper bounds in this setting, our first result shows that
it is possible to control each eigenvalue σk by simply controlling the
volume of M .

Theorem 1.1. Let Σ be a fixed (n− 1)-dimensional compact, smooth
submanifold in Rm. There exists a constant A depending on Σ such
that any compact n-dimensional submanifold M of Rm with boundary
Σ satisfies

σk(M) ≤ A|M |k2/(n−1).

Remark 1.2. The dependance of the constant A on the geometry of Σ
is described in Section 4.2. It involves the volume of Σ, a lower bound
on its Ricci curvature and an upper bound on its diameter. It also
depends on the number of connected components of Σ as well as their
maximal distortion (See formula (11) for the definition of distortion).

Remark 1.3. In the specific case of σ1, a similar result was proved by
Ilias and Makhoul [17, Theorem 1.2]. Their bounds are in terms of the
r-th mean curvatures Hr of Σ in the ambient space Rm, and in terms
of the measure |M |.

Remark 1.4. In the abstract Riemannian setting, there exist situations
where |Σ| = 1, |M | ≤ 2 and σ1 is arbitrarily large (See [5, Proposition
6.2]). By the Nash isometric embedding theorem, we can realize these
examples as submanifolds in Rm. The constant A must therefore depend
on Σ.

In the situation where Σ bounds a domain Ω in a linear subspace of
dimension n, it is possible to obtain an upper bound which depends
only on |Ω|, |M | and the dimension. In particular, it does not involve
the Ricci curvature and diameter of Σ.

Theorem 1.5. Let Σ be an (n − 1)-dimensional, connected, smooth
hypersurface in Rn × {0} ⊂ Rm and Ω ⊂ Rn × {0} denote the domain
with boundary Σ = ∂Ω. Let M ⊂ Rm be an n-dimensional hypersurface
with boundary ∂M = Σ. Then, for each k ≥ 1,

σk(M) ≤ A(n)
|M |

|Ω|(n+1)/n
k2/(n−1), (1)

where A(n) is a constant depending only on the dimension n.

Remark 1.6. The control of the volume |Ω| in (1) is necessary. Indeed,
it was proved in [4, Section 5] that there exists a sequence of compact
hypersurfaces Σ` ⊂ Rn×{0} of volume |Σ`| = 1 such that λ1(Σ`)→∞.
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It follows from [6] that Σ` bounds a domain Ω` with |Ω`| → 0 as `→∞.
Now, consider M` ⊂ Rn+1 an n-dimensional manifold with connected
boundary ∂M` = Σ`, uniformly bounded volume |M`| and such that a
neighborhood of the boundary is isometric to the cylinder Σ` × [0, 1).
Then, from the Dirichlet-Neumann bracketing (3) and Lemma 2.1 (see
Section 2), it follows that σ1(M`)→∞.

Remark 1.7. Given a fixed submanifold Σ ⊂ Rm of dimension n− 1,
we do not know if there exists a sequence Mj ⊂ Rm of n-dimensional
submanifolds with boundary Σ such that limj→∞ σ1(Mj) = ∞. The
above theorems show that if such a sequence exists, then the volumes
|Mj| must also tend to infinity. Note that in the Riemannian setting,
there exists an example of a compact manifold M with connected bound-
ary Σ and a sequence of Riemannian metrics gj such that the gj coin-
cide on Σ while σ1(M, gj) → ∞ as j → ∞ and the volume of (M, gj)
is bounded. See [2].

Regarding lower bounds, we first note that there are only a few
known results. A general lower bound was obtained by Jammes [18],
in terms of the Cheeger constant h(M) of M and of a new Cheeger-

type constant j(M). He proved that σ1(M) ≥ h(M)j(M)
4

. However, it is
easy to construct examples where σ1 is bounded away from zero while
h(M)j(M) becomes small. See also [11] for a related lower bound and
[16] for lower bounds on σk, k ≥ 1. Antoine Métras has recently con-
structed an example of a sequence Mj ⊂ Rm with prescribed boundary
Σ such that limj→∞ σ1(Mj) = 0. This example and its developments
will be published elsewhere.

Nevertheless, in the particular context of hypersurfaces of revolution
(see Section 3.1 for the precise definition), it is not difficult to obtain
lower and upper bounds because a neighborhood of the boundary is
quasi-isometric to a cylinder (see Section 3.1). By working directly
with the Min-Max characterization of eigenvalues and using Fourier
decomposition, it is possible to obtain sharp lower bounds.

Theorem 1.8. For each k ≥ 1, any hypersurface of revolution M ⊂
Rn+1 with boundary Sn−1×{0} satisfies σk(M) ≥ σk(Bn), with equality
if and only if M = Bn × {0}.

Remark 1.9. Let Σ be an (n − 1)-dimensional, connected, smooth
hypersurface in Rn bounding a domain Ω. It is not true in general
that σk(Ω) ≤ σk(M) for each compact manifold M with Σ = ∂M .
The domain Ω which is shown on the left side of Figure 1 has a thin
passage in its complement. One can consider a surface M containing
the passage and with ∂M = ∂Ω. This could for instance be obtained by
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Figure 1. A domain with a thin passage in its comple-
ment

gluing a spherical cap to the domain on the right of the figure. If the
passage is thin enough, any eigenvalue σk(M) will be arbitrarily small.
See [15, Section 4.1].

Remark 1.10. In the situation where n = 2, we will prove that each
surface of revolution M ⊂ R3 with boundary S1 ⊂ R2 × {0} has the
same spectrum as the unit disk: σk(M) = σk(D) for each k ∈ N. It is
possible to deduce this from the Osgood-Phillips-Sarnak uniformization
theorem [20], but we give a direct simple proof in Appendix A. As far as
the authors are aware, this is the first time that this isopectrality result
appears in the literature. In dimension at least 3, it is not difficult
to construct examples of hypersurfaces of revolution where σk(M) >
σk(Bn). See Example 2.2.

Similar methods can also be applied to hypersurfaces of revolution
with two boundary components that are located in Rn×{0} and Rn×
{d} respectively.

Theorem 1.11. Let M ⊂ Rn+1 be a hypersurface of revolution with
boundary Sn−1 × {0} ∪ Sn−1 × {d} ⊂ Rn+1. Let L > 0 be the intrinsic
distance between these two components. If L ≥ 2, then for each k ≥ 1,

σk(M) ≥ σk(Bn t Bn),

with equality if and only if M = Bn t Bn. In particular, for d ≥ 2 this
is always true.

Remark 1.12. The lower bounds that we have obtained for hypersur-
faces of revolution do not require any control of the curvature. This
also holds for the upper bounds that we obtain in Section 3.1. This is
in contrast to the more general results given above and should also be
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compared with many of the known results (See [21, 11, 19]). In addi-
tion, our results for hypersurfaces of revolution do not depend on the
volume of M , as opposed to those in [5]. Note also that for surfaces, the
general bounds given by Theorem 1.1 and Theorem 1.5 do not depend
on the genus, as opposed to those presented in [12, 14].

Plan of the paper. In Section 2 we will recall some general facts
about the Steklov problem and properties of its spectrum. In Section 3
the proofs of Theorem 1.8, and Theorem 1.11 will be presented. They
are based on Fourier decomposition and comparison arguments. The
proofs of Theorem 1.1 and Theorem 1.5 are more involved, and they are
based on a method that was introduced in [9]. They will be presented in
Section 4. Finally, the isospectrality of compact surfaces of revolution
with connected boundary will be presented in an appendix.

2. Some general facts about Steklov and mixed problems

The Steklov eigenvalues of (M, g) can be characterized by the fol-
lowing variational formula.

σj(M) = min
E∈Hj

max
06=u∈E

RM(u), (2)

where Hj is the set of all j-dimensional subspaces in the Sobolev space
H1(M) which are orthogonal to constants on Σ, and

RM(u) =

´
M
|∇u|2dVM´

Σ
|u|2dVΣ

is the Rayleigh quotient.
In order to obtain upper or lower bounds for the spectrum, it is

often convenient to compare the Steklov spectrum with the spectrum
of mixed Steklov-Dirichlet or Steklov-Neumann problems on domains
A ⊂ M such that Σ ⊂ A. We denote by ∂IA the interior boundary
of A (that is the intersection of the boundary of A with the interior of
M) and we suppose that it is smooth.

The mixed Steklov-Neumann problem on A is the eigenvalue problem

∆f = 0 in A,

∂νf = σf on Σ, ∂νf = 0 on ∂IA,

where ν denotes the outward normal to ∂A. The eigenvalues of this
mixed problem form a discrete sequence

0 = σN0 (A) ≤ σN1 (A) ≤ σN2 (A) ≤ · · · ↗ ∞,
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and for each j ≥ 1 the j-th eigenvalue is given by

σNj (A) = min
E∈Hj(A)

max
06=u∈E

´
M
|∇u|2 dVM´

Σ
|u|2 dVΣ

,

where Hj(A) is the set of all j-dimensional subspaces in the Sobolev
space H1(A) which are orthogonal to constants on Σ.

The mixed Steklov-Dirichlet problem on A is the eigenvalue problem

∆f = 0 in A,

∂νf = σf on Σ, f = 0 on ∂IA.

The eigenvalues of this mixed problem form a discrete sequence

0 < σD0 (A) ≤ σD1 (A) ≤ · · · ↗ ∞,
and the j-th eigenvalue is given by

σDj (A) = min
E∈Hj,0(A)

max
06=u∈E

´
A
|∇u|2 dVM´
Σ
|u|2 dVΣ

,

where Hj,0(A) is the set of all (j + 1)-dimensional subspaces in the
Sobolev space H1

0 (A) = {u ∈ H1(A) : u = 0 on ∂IA}.
Comparisons with the Rayleigh quotient give the following bracket-

ing for each j ∈ N:

σNj (A) ≤ σj(M) ≤ σDj (A). (3)

Note in particular that for j = 0 this simply confirms that σN0 (A) =
0 ≤ σ0(A) < σD0 (A).

In the particular case where A is a cylinder, separation of variables
leads to the following which is similar to [5, Lemma 6.1].

Lemma 2.1. Let Σ be a closed, connected Riemannian manifold, and
let

0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ ∞
be the spectrum of the Laplace operator ∆Σ on Σ. Let (uk) be an or-
thonormal basis of L2(Σ) such that

∆Σuk = λkuk.

Consider the cylinder CL = Σ× [0, L] of length L > 0.

(1) The Steklov eigenvalues of CL are

0, 2/L,
√
λk tanh(

√
λkL/2),

√
λk coth(

√
λkL/2), for k ≥ 2.

The corresponding eigenfunctions are 1, and r − L/2, as well
as

uk(p) cosh
(√

λk(r − L/2)
)
, uk(p) sinh

(√
λk(r − L/2)

)
, k ≥ 2.
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(2) The Steklov-Neumann (i.e. sloshing) eigenvalues on CL are

σNk (L) :=
√
λk tanh(

√
λkL), k ≥ 0.

with corresponding eigenfunctions

uk(p)
cosh(

√
λk(L− r))

cosh(
√
λkL)

.

In particular σN0 (L) = 0, with constant eigenfunction.
(3) The Steklov-Dirichlet eigenvalues on CL are σD1 (L) = 1/L with

corresponding eigenfunction 1− r/L and for each k ≥ 2,

σDk (L) =
√
λk coth(

√
λkL).

with corresponding eigenfunctions

uk(p)
sinh(

√
λk(L− r))

sinh(
√
λkL)

.

Example 2.2. Given L ≥ 0 let ML be a compact manifold with con-
nected boundary such that a neighborhood of the boundary is isometric
to Sn−1 × [0, L]. It follows from Inequality (3) that

σNk (Sn−1 × [0, L]) ≤ σk(M) ≤ σDk (Sn−1 × [0, L]).

As above, we have for k ≥ 1 that

σDk (Sn−1 × [0, L]) =
√
λk coth(

√
λkL)

σNk (Sn−1 × [0, L]) =
√
λk tanh(

√
λkL).

In particular, when L→∞,

σk(ML) =
√
λk + o(1).

For n = 2, one has σk(ML) =
√
λk since all surfaces of revolution with

connected boundary are Steklov isospectral (see Appendix A). For n ≥ 3
this proves that σk(ML) 6= σk(Bn). Indeed the Steklov spectrum of Bn is
the sequence of all positive integers (see [15, Example 1.3.2]), but the
eigenvalues of the Laplacian on the sphere Sn−1 are not perfect squares
(see [1, Chapter III. C]).

In Section 3.1 we will also need to compare the eigenvalues of quasi-
isometric cylinders.

Observation 2.3. Let M be a compact manifold of dimension n, with
smooth boundary Σ and let g1, g2 be two Riemannian metrics on M
which coincide on the boundary Σ and which are quasi-isometric with
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ratio A ≥ 1, which means that for each x ∈ M and 0 6= v ∈ TxM we
have

1

A
≤ g1(x)(v, v)

g2(x)(v, v)
≤ A.

Then the Steklov eigenvalues with respect to g1 and g2 satisfy the fol-
lowing inequality:

1

A
n
2

+1
≤ σk(M, g1)

σk(M, g2)
≤ A

n
2

+1.

The same conclusion holds for the mixed eigenvalues σNk and σDk .

This follows directly from the Min-Max characterization (2) (see [8,
Proposition 32] and [10] for related statements).

3. Bounds for hypersurfaces of revolution

3.1. Hypersurfaces of revolution. By hypersurface of revolution we
mean there is a parametrisation ψ : Sn−1 × [0, L] → Rn+1 of M given
by

ψ(p, r) = h(r)p+ z(r)en+1,

where Sn−1 ⊂ Rn is the unit sphere, and the smooth functions h, z ∈
C∞([0, L]) satisfy h(0) = 1 and h(r) > 0 for 0 < r < L. The curve

r 7→ h(r)p+ z(r)en+1

is assumed to be parametrized by its arc-length, so that h′2 + z′2 ≡ 1.
It follows that |h′| ≤ 1 on [0, L], and integration leads to the following
inequalities. For each r ∈ (0, L),

1− r ≤ h(r) ≤ 1 + r, (4)

h(L)− r ≤ h(L− r) ≤ h(L) + r. (5)

In the coordinates given by the map ψ, the induced Riemannian metric
g on [0, L]× Sn−1 has the form

g = dr2 + h(r)2g0,

where g0 is the usual canonical metric on Sn−1. In particular, the
situation where M = Bn × {0} corresponds to h(r) = 1 − r. We note
that the restriction of g to Sn−1 × [0, L/2] is quasi-isometric to the
product metric dr2 + g0 with ratio (1− L/2)−2.

Proposition 3.1. Let M ⊂ Rn+1 be a hypersurface of revolution with
connected boundary. Then,

1

4
n
2

+1
σNk (1/2) ≤ σk(M, g) ≤ 4

n
2

+1σDk (1/2), (6)
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where σNk (1/2), σDk (1/2) are the eigenvalues of mixed Steklov-Neumann
and Steklov-Dirichlet problems on the cylinder Sn−1 × [0, 1/2]. In par-
ticular, there are constants b(n) ≥ a(n) > 0 such that

a(n)k1/(n−1) ≤ σk(M, g) ≤ b(n)k1/(n−1) ∀k ≥ 1. (7)

Proof of 3.1. It follows from (4) that on [0, 1/2]× Sn−1 the metric g =
dr2 + h(r)2g0 is quasi-isometric to dr2 + g0 with ratio 4. Together with
the comparison inequality (3) and Observation 2.3, this leads to (6).
Inequality (7) follows from Weyl’s law for the eigenvalues λk of the
Laplacian on Sn−1 and Lemma 2.1, since tanh(r) = 1 + o(r−∞) and
coth(r) = 1 + o(r−∞) as r →∞. �

Remark 3.2. The above construction shows that our bound has no
reason to be sharp. In particular, we could use a cylinder of different
length to match the problem better. It is an open problem to find the
maximum of σk among hypersurfaces of revolution.

We will also obtain an upper bound for hypersurfaces of revolution
with two boundary components, which will be proved using Fourier
decomposition of a function f ∈ C∞(Sn−1× [0, L]). See Proposition 3.3
below. Note that these computations will also be useful in the proof of
the sharp lower bounds from Theorem 1.8 and Theorem 1.11.

Let 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ +∞ be the spectrum of the Lapla-
cian on Sn−1 and consider (Sj)j∈N a corresponding orthonormal basis
of L2(Sn−1). Any smooth function u on M admits a Fourier series
expansion

u(r, p) =
∞∑
j=0

aj(r)Sj(p).

We also normalize the function u by
´

Σ
u(r, p)2 dVΣ = 1 so that∑∞

j=1 aj(0)2 = 1. We have that

du(r, p) =
∞∑
j=0

(a′j(r)Sj(p)dr + aj(r)dSj(p)),

hence

‖du(r, p)‖2
g =

∞∑
j=0

ˆ L

0

(
a′j(r)

2 +
aj(r)

2λj(Sn−1)

h(r)2

)
h(r)n−1 dr (8)

=
∞∑
j=0

ˆ L

0

(a′j(r)
2h(r)n−1 + aj(r)

2h(r)n−3λj(Sn−1)) dr.



10 BRUNO COLBOIS, ALEXANDRE GIROUARD, AND KATIE GITTINS

Proposition 3.3. Let M ⊂ Rn+1 be a hypersurface of revolution with
dimension n ≥ 3 and boundary Sn−1 × {0} ∪ Sn−1 × {d} ⊂ Rn+1. Let
L > 0 be the intrinsic distance between these two components. For each
k ∈ N,

σk(M) ≤ (1 + L)n−1σk([0, L]× Sn−1),

where the right-hand side tends to 0 when L→ 0.

Proof of Proposition 3.3. Let u be a solution of the Steklov problem
on the cylinder CL = [0, L] × Sn−1, normalized by

´
∂CL

u2 = 1. The

Dirichlet energy of u for the metric g = dr2 + h(r)2g0 is given by
formula (8), and it follows from h(r) < 1 + r ≤ 1 + L and n ≥ 3 that

‖du(r, p)‖2 ≤
∞∑
j=0

ˆ L

0

(a′j(r)
2(1 + L)n−1 + aj(r)

2(1 + L)n−3λj(Sn−1)) dr

≤ (1 + L)n−1

∞∑
j=0

ˆ L

0

(a′j(r)
2 + aj(r)

2λj(Sn−1)) dr

= (1 + L)n−1σk(CL).

Using the Min-Max characterization (2) completes the proof. �

3.2. Lower bounds for revolution hypersurfaces with connected
boundary. The goal of this section is to prove Theorem 1.8. The idea
is to transplant a function of M to a function on the unit ball and to
take it as a test function for the Steklov operator. However, this func-
tion is in general not continuous at the origin, but it is in the Sobolev
space H1(Bn) because the capacity of a point is 0.

Lemma 3.4. If f ∈ C∞(Bn\{0}) is bounded and satisfies ‖∇f‖L2(Bn) <
∞, then f ∈ H1(Bn).

Proof of Theorem 1.8. We use the fact that n ≥ 3, because, as men-
tioned above, all hypersurfaces of revolution with connected boundary
are isospectral to the disk.

Recall that h is defined on M = [0, L]× Sn−1 and we have h(0) = 1,
|h′(r)| ≤ 1, h(L) = 0 and L ≥ 1 since the revolution manifold M has
connected boundary. Recall from (4) that this implies that on [0, 1], we
have h(r) ≥ 1 − r. Substituting this into (8), using

∑∞
j=1 aj(0)2 = 1,

and the fact that n ≥ 3 leads to

σk(M) = ‖du(r, p)‖2
g (9)

≥
∞∑
j=0

ˆ 1

0

(a′j(r)
2(1− r)n−1 + aj(r)

2(1− r)n−3λj(Sn−1)) dr.
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Consider the first k normalized eigenfunctions u1, ..., uk of M corre-
sponding to the first k positive Steklov eigenvalues σ1(M), . . . , σk(M).
To each of them associate a function on the unit ball which is orthog-
onal to the constant functions on Sn−1 = ∂M simply by taking the
restriction to the ball (r ∈ [0, 1]). Despite not being continuous at
r = 1, it follows from Lemma 3.4 that these functions can be consid-
ered as test functions for the Steklov operator on the ball. It follows
from the Min-Max principle (2) that

σk(Bn) = min
E∈Hk

max
{u∈E,u 6=0}

RBn(u).

As a specific vector space, we choose the space E0 given by the restric-
tion of the first k eigenfunctions u1, ..., uk of M to the ball Bn. Then
we have

σk(Bn) ≤ max
{u∈E0,u6=0}

RBn(u),

and by (9), for each u ∈ {u1, ..., uk},

RM(u) ≥ RBn(u
∣∣
Bn).

The proof is completed by observing that

σk(M) = max
{u∈{u1,...,uk}}

RM(u) ≥ max
{u∈E0,u6=0}

RBn(u) ≥ σk(Bn).

In the case of equality, we must have L = 1 and h(r) = 1 − r which
corresponds to the unit ball Bn. �

3.3. Lower bounds for hypersurface of revolution with two
boundary components. The goal of this section is to prove The-
orem 1.11. The proof is similar to the proof of Theorem 1.8.

Proof of Theorem 1.11. We proceed by comparison with the metric
dr2 +(1−r)2g0 for r ∈ [0, 1], as well as with the metric dr2 +(r−L+1)2

for r ∈ [L− 1, L].
Let λj = λj(Sn−1) be the eigenvalues of Laplace operator on the

sphere Sn−1. For k ∈ N, let {aj(r)}j∈N be such that
∑∞

j=1 aj(0)2 = 1
and

σk(M) =
∞∑
j=1

ˆ L

0

(a′j(r)
2h(r)n−1 + aj(r)

2h(r)n−3λj) dr.
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By (4) and (5), and since L ≥ 2,

σk(M) ≥
∞∑
j=1

ˆ 1

0

(a′j(r)
2(1− r)n−1 + aj(r)

2(1− r)n−3λj) dr (10)

+
∞∑
j=1

ˆ L

L−1

(a′j(r)
2(r − L+ 1)n−1 + aj(r)

2(r − L+ 1)n−3λj) dr.

Let u1, . . . , uk be the normalized Steklov eigenfunctions corresponding
to σ1(M), . . . , σk(M). These give rise to k test functions on BntBn by
restricting r to [0, 1]t[L−1, L]. These test functions are not continuous
at the centers of these balls, but Lemma 3.4 shows that this is not a
problem. Call this collection of functions E0. Then, by (10) and the
Min-Max characterization (2), it follows that

σk(Bn t Bn) ≤ max
u∈E0

RBntBn(u)

≤ max
u∈E0

RM(u) = σk(M).

In the case of equality, we must have L = 2 and h(r) = 1 − r which
corresponds to the case of Bn t Bn. �

4. Upper bounds for general submanifolds

4.1. Some metric geometry. The method we will use to obtain up-
per bounds for Steklov eigenvalues is to construct disjointly supported
test functions for the Rayleigh quotient. These functions are obtained
by constructing disjoint domains that are both “heavy enough” and
far enough away from each other. The test function associated to one
domain takes the value 1 on it, and 0 outside a convenient neighbour-
hood. Our main task is therefore to construct such domains. This is
the goal of the next Lemma.

Lemma 4.1. Let (X, d, µ) be a complete, locally compact metric mea-
sured space, where µ is a non-atomic finite measure. Assume that for
all r > 0, there exists an integer C such that each ball of radius r can
be covered by C balls of radius r/2. Let K > 0. If there exists a radius
r > 0 such that, for each x ∈ X

µ(B(x, r)) ≤ µ(X)

4C2K
,

then, there exist µ-measurable subsets A1, ..., AK of X such that, ∀i ≤
K, µ(Ai) ≥ µ(X)

2CK
and, for i 6= j, d(Ai, Aj) ≥ 3r.

This result was developed in [9, Lemma 2.2 and Corollary 2.3]. The
version given above is inspired by that of [6, Lemma 2.1], with a further
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simplification. Indeed, the original statement involves a numberN(r) ∈
N which depends on the radius rather than a packing constant C. In
our present setting, because the ambient space is X = Rn with its
usual Euclidean distance, it is clear that the packing constant C does
not depend on the radius. In fact, C = C(n) := 32n is a good choice.
Note also that these ideas are explained with more details in [3].

The measure µ will be the measure associated to the fixed subman-
ifold Σ. That is, for a Borelian subset O of Rm, we take (as in [6])
µ(O) =

´
Σ∩O dVΣ. In particular, µ(Σ) is the usual volume |Σ| of Σ.

The number K is related to the number of eigenvalues we want to esti-
mate. In order to estimate σk, it turns out that we need to begin with
the construction of (2k+ 2) test functions, so we will take K = 2k+ 2.

The proof of Theorem 1.1 will be an application of Lemma 4.1. The
proof of Theorem 1.5 is more tricky: we will first construct a family of
disjoint balls, following the approach used in [6], and only in a further
step, we will use Lemma 4.1 in order to solve a particular case.

4.2. Proof of the upper bound for general submanifolds. The
goal of this section is to prove Theorem 1.1. The constant A which
appears in its statement will depend on the distortion of a connected
submanifold N ⊂ Rm:

disto(N) := sup
x 6=y∈N

dN(x, y)

‖x− y‖
, (11)

where dN is the usual geodesic distance on N and ‖ · ‖ is the usual
Euclidean norm.

Proof. Let Σ1, · · · ,Σb be the connected components of Σ. Because Σ
is compact, the number

γ := max
1≤i≤b

disto(Σi)

is finite. It follows that for any r > 0, any x ∈ Σ and each i ∈
{1, · · · , b},

BRm(x, r) ∩ Σ ⊂ ∪bi=1BΣi
(x, γr).

Here and further BRm(x, r) is the usual Euclidean ball of radius r cen-
tered at x, and BΣi

(x, γr) is an intrinsic geodesic ball in Σi. Note that
for x ∈ Rm the ball BRm(x, r) is of µ-measure 0 if and only if it does
not intersect any of the boundary components Σi. Therefore, in the
situation where it intersects Σi, there exists a point yi ∈ Σi such that

BRm(x, r) ∩ Σi ⊂ BRm(yi, 2r) ∩ Σi ⊂ BΣi
(yi, 2γr).
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The compactness of Σ also implies a lower bound on the Ricci cur-
vature. Hence it follows from the Bishop-Gromov theorem that there
exists η > 0 such that any ball BΣ(r) of radius r in Σ satisfies

|BΣ(r)| ≤ ηrn−1.

In fact, η may be bounded above in terms of the lower bound on the
Ricci curvature and an upper bound for the diameter of Σ. Together
with the above, this implies that

µ(BRm(x, r)) ≤ bη(2γr)n−1 = δrn−1,

where δ = bη(2γ)n−1.
We apply Lemma 4.1 with K = 2k + 2 and

r = rk =

(
|Σ|

8C(m)2(k + 1)δ

)1/(n−1)

,

so that the inequality

µ(B(x, r)) ≤ µ(Σ)

4C(m)2(2k + 2)

is satisfied.

We get 2k + 2 subsets A1, ..., A2k+2 in Rm such that

µ(Ai) ≥
|Σ|

4C(m)(k + 1)
for each i

and, if i 6= j, d(Ai, Aj) ≥ 3rk.

For each i ∈ {1, . . . , 2k + 2}, define the rk-neighborhood of Ai as

Arki = {x ∈ Ω : d(x,Ai) < rk} ⊂ Rn+1.

Since Ark1 , . . . , A
rk
2k+2 are disjoint, there exist k + 1 of them, say

Ark1 , . . . , A
rk
k+1, such that, for i ∈ {1, . . . , k + 1}, we have

|M ∩ Arki | ≤
|M |
k + 1

.

Similarly to [9], for each i ∈ {1, . . . , k+1}, we construct a test function
gi with support in Arki as follows. For each x ∈ Arki ,

gi(x) := 1− d(Ai, x)

rk
.

Then |∇gi|2 ≤ 1
r2
k

almost everywhere in Arki . So we have that, for each

i ∈ {1, . . . , k + 1},ˆ
M

|∇gi|2 dVM =

ˆ
M∩Ark

i

|∇gi|2 dVM ≤
|M ∩ Arki |

r2
k

≤ |M |
(k + 1)r2

k

.
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The Rayleigh quotient R(gi) =
´
M |∇gi|

2 dVM´
Σ g

2
i dVΣ

of gi becomes

R(gi) ≤
|M |

(k + 1)r2
k

1

µ(Ak)

=
|M |

(k + 1)

4C(m)(k + 1)

|Σ|

(
8C(m)2(k + 1)δ

|Σ|

)2/(n−1)

,

which leads to

σk(M) ≤ A(n,m, δ)
|M |
|Σ|

(
k

|Σ|

)2/(n−1)

.

�

4.3. Proof of the upper bound for general submanifolds con-
tained as a hypersurface in a linear subspace. The goal of this
section is to prove Theorem 1.5

The idea is to apply the method that was developed in [6] and we
recall it for the convenience of the reader, following closely what was
done in [6] . We cover Σ with a family of disjointly supported sets
in Rn. As M ⊂ Rm, we will replace each of these sets A ⊂ Rn by
A × Rm−n in order to have disjointly supported domains in Rm. We
then construct test functions on these sets to obtain upper bounds for
the Steklov eigenvalues of M .

In the first step of the proof of Theorem 1.5, the volume |Ω| of Ω
(the subset of Rn determined by Σ) enters into the game as it did in
[6]. The proof is divided into four steps. In the first two steps, we
only work with Σ ⊂ Rn and its relationship to Ω. These first two steps
are very close to the method in [6]. In the third and fourth steps, we
also have to take the volume |M | of M into account. This explains the

presence of the ratio |M |
|Ω|(n+1)/n in the statement of Theorem 1.5.

Proof of Theorem 1.5.

First step. Fix k ∈ N. Our first goal is to show that Σ cannot be
covered by 2(k + 1) balls in Rn each of radius 4rk, where

rk =

(
nω

1/n
n

4n+1ρn−1(k + 1)

)1/(n−1)

|Ω|1/n (12)

and where ωn denotes the volume of the Euclidean unit ball Bn, and
ρn−1 the volume of the unit sphere Sn−1 ⊂ Rn.
Let x1, x2, . . . , x2k+2 be arbitrary points in Ω, and define

Ω0 = Ω \ ∪2k+2
j=1 B(xj, 4rk),
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and

Σ0 = Σ \ ∪2k+2
j=1 B(xj, 4rk).

Since B(xj, 4rk) ⊂ Rn for j ∈ {1, 2, . . . , 2k+ 2}, we have |B(xj, 4rk)| <
2ωn(4rk)

n and |∂B(xj, 4rk)| < 2ρn−1(4rk)
n−1. So

2k+2∑
j=1

|B(xj, 4rk)| < 4(k + 1)ωn(4rk)
n, (13)

and

(4rk)
n = 4n

(
nω

1/n
n

4n+1ρn−1(k + 1)

)n/(n−1)

|Ω|

<
|Ω|

16(k + 1)

(
nω

1/n
n

ρn−1

)n/(n−1)

=
|Ω|

16ωn(k + 1)
. (14)

By (13) and (14), we have that

2k+2∑
j=1

|B(xj, 4rk)| <
|Ω|
4
,

which implies that

|Ω0| ≥ |Ω| −
2k+2∑
j=1

|B(xj, 4rk)| >
3

4
|Ω| (15)

i.e. the union of the balls does not cover Ω.
Now ∂Ω0 is the union of Σ0 and parts of the boundaries of the balls

{B(xj, 4rk) : j = 1, 2, . . . , 2k + 2}. Hence

|∂Ω0| ≤ |Σ0|+
2k+2∑
j=1

|∂B(xj, 4rk)|

< |Σ0|+ 4(k + 1)ρn−1(4rk)
n−1

= |Σ0|+
nω

1/n
n

4
|Ω|(n−1)/n. (16)

It follows from the classical Isoperimetric Inequality in Rn and from
Inequality (15) that

|∂Ω0| ≥ nω1/n
n |Ω0|(n−1)/n ≥ nω1/n

n

(
3

4

)(n−1)/n

|Ω|(n−1)/n. (17)
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Figure 2. The domain Ω0 is obtained by removing balls
from Ω

So, by (16) and (17), we obtain that

|Σ0| > nω1/n
n

((
3

4

)(n−1)/n

−1

4

)
|Ω|(n−1)/n ≥ nω

1/n
n

2
|Ω|(n−1)/n > 0. (18)

This means that the union of the balls B(xj, 4rk) does not cover Σ and
we are done with the first step of the proof.

Second step. Our goal is to construct balls B(x1, rk), . . . , B(x2k+2, rk)
in Rn with the following properties:

(1) The balls B(x1, 2rk), . . . , B(x2k+2, 2rk) are mutually disjoint;

(2) µ(B(x1, rk)) ≥ µ(B(x2, rk)) ≥ · · · ≥ µ(B(x2k+2, rk));

(3) For all x ∈ Ω0 = Ω \ ∪2k+2
j=1 B(xj, 4rk);

µ(B(x, rk)) ≤ µ(B(x2k+2, rk)).

Since Σ cannot be covered by 2k+ 2 balls each of radius 4rk, we can
construct the collection of 2k+2 balls B(x1, rk), . . . , B(x2k+2, rk) in Rn

inductively as follows:

µ(B(x1, rk)) = sup
x∈Ω

µ(B(x, rk)),

and, for j ∈ {2, . . . , 2k + 2},

µ(B(xj, rk)) = sup{µ(B(x, rk)) : x ∈ Ω \ ∪j−1
i=1B(xi, 4rk)}.

By construction, the balls B(x1, rk), B(x2, rk), . . . , B(x2k+2, rk) have
non-empty intersection with Σ, and µ(B(xi, rk)) is a monotone decreas-
ing function of i.

In the sequel, we will consider the two situations

µ(B(x2k+2, rk)) ≥
nω

1/n
n

16C(n)2(k + 1)
|Ω|(n−1)/n (19)
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and

µ(B(x2k+2, rk)) ≤
nω

1/n
n

16C(n)2(k + 1)
|Ω|(n−1)/n (20)

where we recall that C(n) is the packing constant N(r) of Rn which
appears in Lemma 4.1.

The theorem will be proved independently in each case. In the sit-
uation where Inequality (19) holds, each of the balls B(xi, rk) will be
heavy enough to allow the construction of test functions supported
close to these balls. This is done in the third step below. In the situa-
tion where Inequality (20) holds, it will be necessary to use Lemma 4.1
to obtain k + 1 disjoint sets and proceed with the construction of ap-
propriate test functions. This will be the fourth and final step of the
proof.

Third step. We suppose that Inequality (19) holds.
For each j ∈ {1, 2, . . . , 2k + 2}, define the cylinder

B̄(xj, 2rk) = B(xj, 2rk)× Rm−n ⊂ Rm.

Since the underlying balls are disjoint, the cylinders B̄(x1, rk), . . . , B̄(x2k+2, rk)
are disjoint in Rm. Then there exist k+1 of them, say B̄(x1, rk), . . . , B̄(xk+1, rk),
such that for j ∈ {1, . . . , k + 1}, we have

|M ∩ B̄(xj, 2rk)| ≤
|M |
k + 1

.

For each j ∈ {1, . . . , k + 1} and each x ∈ B̄(xj, 2rk), define a test
function fj supported on B̄(xj, 2rk) as follows:

fj(x) := min

{
1, 2− 1

rk
d(xj × Rm−n, x)

}
.

Since |∇fj|2 ≤ 1
r2
k

almost everywhere in B̄(xj, 2rk), we have that

ˆ
M

|∇fj|2 dVM =

ˆ
M∩B̄(xj ,2rk)

|∇fj|2 dVM

≤ |M ∩ B̄(xj, 2rk)|
r2
k

≤ |M |
(k + 1)r2

k

. (21)
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We also have thatˆ
Σ

|fj|2 dVΣ =

ˆ
Σ∩B̄(xj ,2rk)

|fj|2 dVΣ

=

ˆ
Σ∩B(xj ,2rk)

|fj|2 dVΣ

≥
ˆ

Σ∩B(xj ,rk)

dVΣ

= µ(B(xj, rk)) ≥
nω

1/n
n

16C(n)2(k + 1)
|Ω|(n−1)/n. (22)

Hence, by (21) and (22), using the explicit value of rk given in (12) we
have that the Rayleigh quotient of fj is

R(fj) =

´
M
|∇fj|2 dVM´

Σ
|fj|2 dVΣ

≤ |M |
r2
k

16C(n)2

nω
1/n
n |Ω|(n−1)/n

≤ C1(n)
|M |

|Ω|(n+1)/n
(k + 1)2/(n−1),

for some constant C1(n). It follows that

σk(Σ) ≤ C1(n)
|M |

|Ω|(n+1)/n
(k + 1)2/(n−1). (23)

Fourth step. Now suppose that Inequality (20) holds.
By construction of the balls, for all x ∈ Ω0 = Ω \ ∪2k+2

j=1 B(xj, 4rk),
we have by (18) that

µ(B(x, rk)) ≤ µ(B(x2k+2, rk))

≤ nω
1/n
n

16C(n)2(k + 1)
|Ω|(n−1)/n ≤ |Σ0|

8C(n)2(k + 1)
.

This implies that

4C(n)2µ(B(x, rk)) ≤
µ(Σ0)

2k + 2
. (24)

With this in mind, we would like to make use of Lemma 4.1. Consider
the metric measured space (Rn, d, µ0) where d is the Euclidean distance
and the measure µ0 is the restriction of the measure µ to Σ0. That is,
for any Borel set U ⊂ Rn, µ0(U) = µ(U ∩ Σ0) so µ0(Rn) = µ(Σ0) =
|Σ0| < +∞.

Choose K = 2k + 2 and r = rk. Then (24) becomes

4C(n)2µ(B(x, rk)) ≤
µ0(Σ0)

2k + 2
.
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Hence, by Lemma 4.1, there exist 2k+2 measurable setsA1, . . . , A2k+2 ⊂
Rn such that

(1) µ(Ai) ≥ |Σ0|
4C(n)(k+1)

for each i ∈ {1, . . . , 2k + 2}.

(2) d(Ai, Aj) ≥ 3rk for i 6= j.

We then proceed exactly as in the proof of Theorem 1.1. For each
i ∈ {1, . . . , 2k + 2}, define the rk-neighborhood of Ai as

Arki = {x ∈ Ω : d(x,Ai) < rk} ⊂ Rn,

and the cylinder
Ārki = Arki × Rm−n ⊂ Rm.

Since Ārk1 , . . . , Ā
rk
2k+2 are disjoint, there exist k+1 of them, say Ārk1 , . . . , Ā

rk
k+1,

such that, for i ∈ {1, . . . , k + 1}, we have

|M ∩ Ārki | ≤
|M |
k + 1

.

Similarly to [9], for each i ∈ {1, . . . , k+ 1}, construct a test function gi
with support in Ārki as follows. For each x ∈ Ārki ,

gi(x) := 1− d(Ai × Rm−n, x)

rk
.

Then |∇gi|2 ≤ 1
r2
k

almost everywhere in Ārki . So we have that, for each

i ∈ {1, . . . , k + 1},ˆ
M

|∇gi|2 dVM =

ˆ
M∩Ārk

i

|∇gi|2 dVM ≤
|M ∩ Ārki |

r2
k

≤ |M |
(k + 1)r2

k

, (25)

and ˆ
Σ

|gi|2 dVΣ =

ˆ
Σ∩Ārk

i

|gi|2 dVΣ =

ˆ
Σ∩Ark

i

|gi|2 dVΣ

≥
ˆ

Σ∩Ai

dVΣ = µ0(Ai) ≥
|Σ0|

4C(n)(k + 1)
. (26)

Hence, by (25) and (26), we have that the Rayleigh quotient of gi is

R(gi) =

´
M
|∇gi|2 dVM´

Σ
|gi|2 dVΣ

≤ |M |
r2
k

4C(n)

|Σ0|
<

8C(n)

nω
1/n
n r2

k

|M |
|Ω|(n−1)/n

≤ C2(n)
|M |

|Ω|(n+1)/n
(k + 1)2/(n−1),

for some constant C2(n). This implies that

σk(Σ) ≤ C2(n)
|M |

|Ω|(n+1)/n
(k + 1)2/(n−1). (27)
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Conclusion of the proof. It follows from Inequality (23) and In-
equality (27) that

σk(Σ) ≤ max{C1(n), C2(n)} |M |
|Ω|(n+1)/n

(k + 1)2/(n−1)

≤ A(n)
|M |

|Ω|(n+1)/n
k2/(n−1),

where A(n) = 4 max{C1(n), C2(n)}.
�

Appendix A. Surfaces of revolution with one boundary
component are Steklov isospectral

Let S1 be the unit circle. Let M ⊂ R3 be the surface of revolution
with connected boundary ∂M = S1 ⊂ R2 × {0}.

Proposition A.1. The surface M is Steklov isospectral to the disk:
for each k ∈ N,

σk(M) = σk(D).

In fact, the Dirichlet-to-Neumann map Λ : C∞(S1)→ C∞(S1) is the
same for both surfaces.

Proof. Let γ : [0, L] → R3 be a unit-speed curve γ(r) = (h(r), 0, z(r))
such that M is obtained by rotation around the z-axis, with r = 0
corresponding to the boundary. In particular, the functions h and z
satisfy h′2 + z′2 = 1 from which it follows that

h(0) = 1, z(0) = 0, h(L) = 0, z′(L) = 0, h′(L) = −1.

The corresponding metric on the cylinder M = [0, L]×S1 is of the form

g = dr2 + h(r)2g0

where g0 = dθ2 is the standard metric on the circle S1. The Laplacian
of f ∈ C∞(M) is then given by

∆f =
1

h

{
(hfr)r + (h−1fθ)θ

}
.

Given T ∈ {cos, sin} and n ∈ N, let Tn(θ) = T (nθ). The Laplacian
applied to the product f(r, θ) = a(r)Tn(θ) is

∆f =
1

h

{
(ha′)′Tn + ah−1((Tn)θθ)

}
=

1

h

(
(ha′)′ − n2ah−1

)
Tn.

This implies that the function f(r, θ) = a(r)Tn(θ) is harmonic if and
only if the function a satisfies

(ha′)′ − n2h−1a = 0. (28)
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Note that in order for the function f(r, θ) = a(r)Tn(θ) to represent
a continuous function on the surface of revolution M , it must also
satisfy the condition a(L) = 0. Together with an initial value a(0) this
completely determines the function a.

Lemma A.2. Given n ∈ N, and c ∈ R the unique function a : [0, L]→
R which satisfies{

(ha′)′ − n2h−1a = 0 in (0, L);

a(0) = c and a(L) = 0

is given by a(r) = ce−nτ(r) where τ(r) =
´ r

0
1

h(s)
ds.

It follows from Lemma A.2 that the function f : M → R which is
defined by f(r, θ) = a(r)Tn(θ) satisfies

∂νf = −a′(0)Tn(θ) = nce−nτ(0)τ ′(0)Tn(θ) = nf on ∂M.

�

Proof of Lemma A.2. In order to solve this equation, define τ : [0, L)→
R by

τ(r) =

ˆ r

0

1

h(s)
ds.

Let us first prove that τ(L) = +∞. Indeed, it follows from h(L) = 0
and h′(L) = −1 that

h(L− t) = h(L) + h′(L)(−t) + o(t) = t+ o(t).

Hence for small enough t > 0,

1

h(L− t)
=

1

t+ o(t)
=

1

t

(
1

1 + o(1)

)
>

1

2t
,

which implies our claim that τ(L) = +∞.
Therefore the function τ : [0, L) → [0,∞) is a bijection. Let r :

[0,∞) → [0, L) be its inverse. Let us prove that the function α :
[0,∞)→ R defined by α(τ) = a(r(τ)) satisfies

α′′ = n2α on (0,∞).

Indeed, let’s compute

α′(τ) = a′(r(τ))r′(τ) = a′(r(τ))h(r(τ)) = a′h(r(τ)).
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Differentiating one more time leads to

α′′(τ) = (a′h(r(τ)))′

= (a′h)′(r(τ))r′(τ)

= n2h−1a(r(τ))h(r(τ))

= n2a(r(τ)) = n2α(τ),

as we claimed. It follows that there are two constants A,B ∈ R such
that

a(r(τ)) = α(τ)

= Aenτ +Be−nτ .

From the condition a(L) = 0, it follows that

lim
τ→τ(L)=∞

α(τ) = 0.

This amounts to A = 0. The boundary condition a(0) = c leads to
B = c and so α(τ) = ce−nτ . �
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Argand 11, CH-2000 Neuchâtel, Switzerland

E-mail address: bruno.colbois@unine.ch
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