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Abstract

Given a locally finite leafless tree T , various algebraic groups over local fields might appear
as closed subgroups of Aut(T ). We show that the set of closed cocompact subgroups of Aut(T )
that are isomorphic to a quasi-split simple algebraic group is a closed subset of the Chabauty
space of Aut(T ). This is done via a study of the integral Bruhat–Tits model of SL2 and

SU
L/K
3

, that we carry on over arbitrary local fields, without any restriction on the (residue)
characteristic. In particular, we show that in residue characteristic 2, the Tits index of simple
algebraic subgroups of Aut(T ) is not always preserved under Chabauty limits.
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1 Introduction

Ta vague monte avec la rumeur d’un prodige

C’est ici ta limite. Arrête-toi, te dis-je.

(Victor Hugo, L’année terrible, 1872)

According to well-known rigidity results of J. Tits (see [Tit74, Theorem 5.8], together with
[Tit86, Théorème 2] or [Wei09, Theorem 27.6]), a Bruhat–Tits building of rank ≥ 2 determines
uniquely the simple algebraic group and the underlying ground field to which it is associated.
In particular, two simply connected absolutely simple algebraic groups of relative rank ≥ 2 over
a local field have isomorphic Bruhat–Tits buildings if and only if they are isomorphic as locally
compact groups. This contrasts drastically with the rank 1 case, where infinitely many pairwise
non-isomorphic simple algebraic groups of relative rank 1 can have the same Bruhat–Tits tree.
Therefore, given a locally finite leafless tree T, the set Sub(Aut(T )) of closed subgroups of the
locally compact group Aut(T ) may contain infinitely many pairwise non-isomorphic algebraic
groups. For example, the Bruhat–Tits tree of the split group SL2(K) is completely determined
by the order of the residue field of K, while the isomorphism type of SL2(K) depends on the
isomorphism type of the local field K. Since Sub(Aut(T )) carries a natural compact Hausdorff
topology, namely the Chabauty topology, we are naturally led to the following question: what are
the Chabauty limits of algebraic groups in Sub(Aut(T ))? The goal of this paper is to initiate the
study of that problem. In particular, we provide a complete solution in the case of quasi-split
groups.

In order to be more precise, for T a tree, let us define a topologically simple algebraic group
acting on T to be a locally compact group isomorphic to H(K)/Z, whereK is a local field, H is an
absolutely simple, simply connected, algebraic group over K of relative rank 1 whose Bruhat–Tits
tree is isomorphic to T , and Z is the centre of H(K).

The first thing to observe is that, given a topologically simple algebraic group G acting on T ,
the action homomorphism G → Aut(T ) is not canonical, but depends on some choices. There is
however a natural way to resolve this issue of canonicity, explained in [CR16]. Following that paper,
we shall denote by ST the space of (topological) isomorphism classes of topologically simple closed
subgroups of Aut(T ) acting 2-transitively on the set of ends. According to [CR16, Theorem 1.2],
the space ST endowed with the quotient topology induced from the Chabauty space Sub(Aut(T ))
is compact Hausdorff.

We can therefore reformulate the question mentioned above as follows. Let Salg
T be the set of

isomorphism classes of topologically simple algebraic groups acting on T . What are the accumu-
lation points in ST of the elements of Salg

T ? It seems reasonable to conjecture that Salg
T is closed

in ST . Our main theorem is a partial result in this direction.

Theorem 1.1. Let T be a locally finite leafless tree, and let Sqs-alg
T be the set of isomorphism

classes of topologically simple algebraic groups acting on T that are furthermore quasi-split. Then
Sqs-alg
T is closed in ST .
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As recalled in Section 2.1, absolutely simple, simply connected, quasi-split algebraic groups

over K of relative rank 1 are of the form SL2(K) or SU
L/K
3 (K) (see Lemma 2.3). So that in effect,

the main goal of the paper is only to dispose of those two “types” of groups.

Since the Bruhat–Tits tree of SL2(K) or SU
L/K
3 (K) for L a ramified extension of K (respec-

tively SU
L/K
3 (K) for L an unramified extension of K) is isomorphic to the (pn + 1)-regular tree

(respectively the semiregular tree of bidegree (p3n+1; pn+1)), where pn is the order of the residue

field of K, the space Sqs-alg
T is empty unless T is one of those trees.

It should also be noted that for some trees T , every algebraic group having T as Bruhat–Tits
tree is actually quasi-split. According to the classification tables in [Tit79, 4.2 and 4.3], this is
the case if and only if T is the regular tree of degree p + 1 or the semiregular tree of bidegree
(p3n + 1; pn + 1). Combining this observation with Theorem 1.1, we get the following corollary.

Corollary 1.2. Let p be a prime number, and let T be the (p+1)-regular tree, or the (p3n+1; pn+1)-

semiregular tree. Then the set Salg
T coincides with Sqs-alg

T , so that it is closed in ST .

In fact, our method yields an explicit description of the topological space Sqs-alg
T . To ease the

statement of the explicit form of the main theorem, let us introduce some terminology. Recall that
a countable totally disconnected topological space X is classified by two invariants (see [MS20,

Théorème 1]). More precisely, let N̂ be the one point compactification of N (or in other words, a
topological space homeomorphic to {1, 12 , 13 , . . . , 0} ⊂ R). If X(k) is the last non-empty Cantor-

Bendixson derivative of X , and if X(k) has n connected components, then X is homeomorphic to

N̂
k×{1, . . . , n}. In the statement of the following theorems, we use the notation K for the residue

field of a local field K, and for any group G, we write G/Z as a shorthand for the group G modulo
its centre (so that the same letter Z stands for the centre of various groups). We also make a slight
abuse of notation: we represent a point in ST , which is an isomorphism class, by a representative
of that class. This abuse should not cause any confusion, and will simplify notations throughout
the rest of the paper.

Theorem 1.3. Let p be an odd prime number, and let T be the (pn + 1)-regular tree. Consider

the following subsets of Sqs-alg
T :

SSL2
= {SL2(K)/Z | K a local field with K ∼= Fpn}

Sram
SU3

= {SUL/K
3 (K)/Z | K a local field with K ∼= Fpn and L/K (separable) quadratic ramified}

Then Sqs-alg
T = SSL2

⊔Sram
SU3

is a countable set. Furthermore, SSL2
(respectively Sram

SU3
) is a clopen

subset of Sqs-alg
T which is homeomorphic to N̂, the accumulation point being SL2(Fpn((X)))/Z

(respectively SU
L0/Fpn ((X))
3 (Fpn((X)))/Z, where L0 is a (separable) quadratic ramified extension of

Fpn((X))).

Let us summarise Theorem 1.3 informally. For p an odd prime and T the (pn+1)-regular tree,

the set Sqs-alg
T inside Sub(Aut(T )) can be pictured as follows:

groups of type SL2(K)

char(K) = 0, K ∼= Fpn

SL2(Fpn((X)))

groups of type SU
L/K
3 (K)

char(K) = 0, K ∼= Fpn , L/K ramified

SU
L0/Fpn((X))
3 (Fpn((X)))

L0/Fpn((X)) ramified

Illustration of Theorem 1.3
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The case of SU
L/K
3 for L/K an unramified extension presents a similar behaviour.

Theorem 1.4. Let p be any prime number, and let T be the (p3n + 1; pn + 1)-semiregular tree.

Then Sqs-alg
T is homeomorphic to N̂. More precisely, the countable set

Sqs-alg
T = {SUL/K

3 (K)/Z | K a local field with K ∼= Fpn

and L (separable) quadratic unramified}

has a unique accumulation point, namely SU
L/Fpn((X))
3 (Fpn((X)))/Z, where L is the (separable)

quadratic unramified extension of Fpn((X)).

Let us summarise Theorem 1.4 informally. For p any prime and T the (p3n + 1; pn + 1)-

semiregular tree, the set Sqs-alg
T inside Sub(Aut(T )) can be pictured as follows:

groups of type SU
L/K
3 (K)

char(K) = 0, K ∼= Fpn , L/K unramified

SU
F

p2n
((X))/Fpn((X))

3 (Fpn((X)))

Illustration of Theorem 1.4

The only remaining case when Sqs-alg
T is not empty is the case of the regular tree of degree

(2n + 1). In this case, the topological space Sqs-alg
T cannot be cut into two copies of N̂. Indeed, it

exhibits a much richer structure.

Theorem 1.5. Let T be the (2n + 1)-regular tree. Then Sqs-alg
T is homeomorphic to N̂

2
. More

precisely,

Sqs-alg
T = {SL2(K)/Z | K a local field with K ∼= F2n}
∪ {SUL/K

3 (K)/Z | K a local field with K ∼= F2n and L separable quadratic ramified}

is a countable set. The first Cantor-Bendixson derivative of Sqs-alg
T is

{SUL/F2n((X))
3 (F2n((X)))/Z | L is separable quadratic ramified} ∪ {SL2(F2n((X)))/Z}

while its second Cantor-Bendixson derivative contains the single element SL2(F2n((X)))/Z. Also,

the subset {SL2(K)/Z | K a local field with K ∼= F2n} is closed in Sqs-alg
T , homeomorphic to N̂

and with accumulation point SL2(F2n((X)))/Z.

We also draw a picture illustrating Theorem 1.5. Let T be the (2n + 1)-regular tree. The set

Sqs-alg
T inside Sub(Aut(T )) can be pictured as follows:
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groups of type SL2(K)

char(K) = 0, K ∼= F2n

SL2(F2n((X)))

groups of type SU
L/K
3 (K)

char(K) = 0, K ∼= F2n , L/K ramified

groups of type SU
L/F2n ((X))
3 (F2n((X)))

L/F2n((X)) separable ramified

Illustration of Theorem 1.5

It is also important to note that in the statement of Theorem 1.3, Theorem 1.4 and Theorem 1.5,
we do not describe precisely Sqs-alg

T as a set. Indeed, we do not give the criterion allowing one
to know when two equivalence classes are the same, or in other words when two given groups
appearing in those theorems are topologically isomorphic. A precise criterion could be easily
stated using the work of J. Tits on abstract homomorphism of algebraic groups (this is discussed
in more details in the proof of those theorems). For example, let L and L′ be the two quadratic
ramified extensions of Fpn((T )) for p an odd prime. Then the pairs of fields (Fpn((T )), L) and
(Fpn((T )), L′) are isomorphic (in the sense of Definition 6.24, see also Remark 6.27). This explains

why in Theorem 1.3, the accumulation point SU
L0/Fpn ((T ))
3 (Fpn((T ))) is represented by any (of the

two) quadratic ramified extension L0 of Fpn((T )).
As one can see from Theorem 1.5, we face a more complex situation in residue characteristic

2. Indeed, this theorem implies that the split group SL2(F2n((X)))/Z is a limit of unitary groups,
thereby illustrating the fact that the Tits index need not be preserved under Chabauty limits in
residue characteristic 2. In other words, the map associating to an isomorphism class in Salg

T its
Tits index is not continuous. The specific features of Chabauty limits in residue characteristic 2
highlight the complexity of the aforementioned conjecture, which will be addressed in full generality
in a forthcoming paper, but with different methods.

Despite the fact that Sqs-alg
T depends very much on T , the strategy to prove our results is the

same for all T and for all algebraic groups under consideration (i.e. SL2 or SU3). Let us outline
it in the SL2 case (our notational conventions for local fields are spelled out at the beginning of
Section 2).

1. In Definition 3.1 and Section 4.1, we recall the definition of the Bruhat–Tits tree:

I = SL2(K)×R/∼

2. In Lemma 4.20, we observe that after renormalising the valuation so that ω(πK) = 1, the
ball around 0 of radius r in I is:

B0(r) = {[(g, x)] ∈ I | g ∈ SL2(OK), x ∈ [−ω(πr
K), ω(πr

K)] ⊂ R}

3. In Definition 4.11, we define a local version (around 0 and of radius r) of the Bruhat–Tits
tree:

I0,r = SL2(OK/m
r
K)× [−ω(πr

K), ω(πr
K)]/∼0,r

and we show in Theorem 4.22 that the homomorphism SL2(OK) → SL2(OK/m
r
K) induces

an (SL2(OK) → SL2(OK/m
r
K))-equivariant bijection B0(r) → I0,r.

4. Following an idea dating back to M. Krasner (see [Del84] for references, this idea is also
used in e.g. [Kaz86]), we define a metric d on the space K of (isomorphism classes of)
local fields by declaring that for r ∈ N and K1,K2 ∈ K, d(K1;K2) ≤ 1

2r if and only if
OK1

/mr
K1

∼= OK2
/mr

K2
(see Lemma 4.27). We observe in Proposition 4.30 that the space

Kpn of (isomorphism classes of) local fields having residue field Fpn is homeomorphic to N̂.

5. Points 1 to 3 imply that if K1 and K2 are close to each other in Kpn , then SL2(OK1
) and

SL2(OK2
) are close to each other in the Chabauty space of Aut(Tpn+1) (where Tpn+1 is the

(pn + 1)-regular tree). Indeed, up to isomorphism, they act in the same way on a large ball
centred at 0. This is the key step in the proof of Theorem 4.33.
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6. We are then able to conclude effortlessly, using a rigidity argument, that the map Kpn →
Salg
Tpn+1

:K 7→ SL2(K)/Z is a homeomorphism onto its image.

In light of this outline, it seems natural to consider Theorem 4.22 (together with its variants
for other types of groups) as the central result of this paper.

A key tool to implement our strategy is the existence of good functors from OK-algebras
(such as OK/m

r
K) to groups (like SL2(OK/m

r
K)). The integral model provided by Bruhat–Tits

theory plays the role of this good functor. In the SL2 case, this is just the algebraic group SL2

considered over OK . But a description of the integral model is not always so straightforward, and

an important feature of this article is an explicit computation of Bruhat–Tits models for SU
L/K
3 ,

especially in the more delicate case when the residue characteristic is 2 and L is ramified.

The complexity of the integral model of SU
L/K
3 when the residue characteristic is 2 and L

is ramified also explains why we get a different behaviour for regular trees of degree 2n + 1
in Theorem 1.5. As often in the theory of algebraic groups, the characteristic 2 case is more
involved to work out (and in our situation, it is again because of the presence of orthogonal groups
in characteristic 2 lurking in the background, see Remark 6.16). However, one should always
make the effort of including this case, if only to avoid the wrath of J. Tits (see for example the
introduction of [KMRT98]).

It also appears that studying convergence of groups isomorphic to SL2(D)/Z (where D is a
finite dimensional central division algebra over a local field K) can be done in parallel to the
SL2(K) case. Hence we decided to treat this case as well in this paper. We stress that this is
only an opportunistic choice, and that the other cases should be settled by first considering similar
questions in arbitrary rank for quasi-split groups, and then by applying a descent method.

Nevertheless, thanks to this treatment, we get the following results as well.

Theorem 1.6. Let T be a locally finite leafless tree, and let SSL2(D)
T be the set of isomorphism

classes of topologically simple algebraic groups acting on T that are furthermore isomorphic to

SL2(D)/Z for some central division algebra D. Then SSL2(D)
T is closed in ST .

Hence, for the reasons explained before Corollary 1.2 and according to the tables in [Tit79, 4.2
and 4.3], we obtain the following strengthening of Corollary 1.2.

Corollary 1.7. Let p be a prime number, and let T be the (pn + 1)-regular tree where n is

not divisible by 3, or the (p3n + 1; pn + 1)-semiregular tree. Then the set Salg
T coincides with

Sqs-alg
T ∪ SSL2(D)

T , so that it is closed in ST .

Again, just as for the quasi-split case, we are actually able to describe explicitly the topological

space SSL2(D)
T and all the convergences in this space. In the following theorem, D denotes the

residue field of a finite dimensional central division algebra D over K. We also make the same
abuse of notations than in the previous theorems (in particular, the same letter Z denotes the
centre of various groups).

Theorem 1.8. Let T be the (pn + 1)-regular tree.

1. The topological space SSL2(D)
T is homeomorphic to N̂ × {1, . . . , ⌈n+1

2 ⌉}. The first Cantor-

Bendixson derivative of SSL2(D)
T is the set

{SL2(D)/Z | D ∼= Fpn and D is of characteristic p} ⊂ ST ,

which contains ⌈n+1
2 ⌉ elements.

2. For i ∈ N, let Di (respectively D) be a finite dimensional central division algebra over Ki

(respectively K) having residue field of cardinality pn. Let di (respectively d) be the degree of
Di (respectively D), so that |Ki|di= pn = |K|d, where Ki (respectively K) denotes the residue
field of Ki (respectively K). Let ri (respectively r) be the Hasse invariant of Di (respectively
D), as in Definition B.2. If (SL2(Di)/Z)i∈N converges to SL2(D)/Z in the Chabauty space
Sub(Aut(T )), then for all i large enough, ri = ±r and di = d, so that |Ki|= |K| as well.

6



We conclude this introduction by mentioning the recent work of M. de la Salle and R. Tessera
[dlST15], who used independently closely related ideas in their study of the space of Bruhat–Tits
buildings of type Ãn (with n > 2) endowed with the Gromov–Hausdorff topology.
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2 Definitions of the algebraic groups under consideration

For the rest of the paper, K will denote a local field (all our local fields are assumed to be non-
archimedean), and D will denote a finite dimensional central simple division algebra over K. Let
us spell out our notational conventions for the objects associated with K (respectively D): the
ring of integers is denoted OK (respectively OD), its maximal ideal by mK (respectively mD),
a uniformiser by πK (respectively πD) and K (respectively D) denotes the residue field. The
valuation of K (respectively D), and also its unique extension to any finite extension of K, is
denoted by ω. We use the notation Qpn for the unique (up to isomorphism) unramified extension
of Qp of degree n.

Also, in order to avoid the repetition of long lists of adjectives, in this section, by an algebraic
group, we mean an absolutely simple, simply connected algebraic group over an arbitrary field k
(in this paper, we only work in the case when k is a local field, but nevertheless, we prefer to state
Lemma 2.3 over an arbitrary base field).

2.1 Quasi-split groups of relative rank 1

As mentioned in the introduction, the Bruhat–Tits building of an algebraic group G over a local
field is a tree if and only if G is of relative rank 1. Instead of giving the general definition of
quasi-split algebraic groups, and then specialising to those that are of relative rank 1, we take
a practical approach and give an explicit description of those groups, the result being that they
are all of the form SL2 or SU3 (and this is the case over any field). We begin by recalling the
definition of SU3. It is customary to choose a presentation of SU3 using the transposition along
the anti-diagonal, that we denote S(.) so that explicitly, if g is a 3-by-3 matrix , (Sg)−j,−i = gij ,
for i, j ∈ {−1, 0, 1}.

Definition 2.1. Let k be a field, let l be a separable quadratic extension of k, and let σ be the
nontrivial element of Aut(l/k), whose action by conjugation on l is denoted x 7→ x̄. We define

SU
l/k
3 (k) = {g ∈ SL3(l) | S ḡg = Id}

We denote SU
l/k
3 (or simply SU3 when the pair of field (k, l) is arbitrary or understood from the

context) the corresponding algebraic group over k. Note that the equations det(g)−1 and S ḡg−Id

(together with the embedding l →֒ M2(k)) realise SU
l/k
3 as a closed subspace of the affine space

An
k , where n = 4× 32. Using this, it is readily seen that SU3 is an algebraic group over k.

7



Remark 2.2. The group SU3 defined above is the special unitary group with respect to the
following hermitian form of l3:

((x−1, x0, x1), (y−1, y0, y1)) 7→ x−1y1 + x0y0 + x1y−1

The advantage of taking this peculiar hermitian form is that the associated involution preserves
the group of upper triangular matrices. As Lemma 2.3 shows, up to isomorphism, there is only
one “type” of non-split, quasi-split algebraic group of relative rank 1 (and this is the case over any
base field). Hence, choosing the above hermitian form is in fact not restrictive.

We can now describe quasi-split algebraic groups of relative rank 1 (recall that by the convention
of this section, all our algebraic groups are absolutely simple, simply connected, algebraic groups
over a field k).

Lemma 2.3. Let k be a field and let G be a quasi-split algebraic group of relative rank 1 over k.
Then G is one of the following groups:

1. SL2 over k.

2. SU
l/k
3 , where l is as in Definition 2.1.

Proof. If G is quasi-split, then by definition, its anisotropic kernel is trivial. Hence, by [Tit66, 2.7.1,
Theorem 2], G is entirely determined (up to k-isomorphism) by its Dynkin diagram together with
the ∗-action on it (or in other words, G is determined by its index). Also note that the number
of orbit under this ∗-action is the relative rank, so that according to [Tit66, Table II], the only
possibilities for the index are

or

The first index is the index of the quasi-split group SU
l/k
3 , where l is any separable quadratic

extension of k, while the second index is the index of the split group SL2.

2.2 Definition of the algebraic group SL2(D)

As outlined in the introduction, treating the case of the group SL2(D) (where D is a finite dimen-
sional central division algebra) is very close to treating the case of SL2(K), so that we decided to
include this case as well. Let us recall the definition of the group SL2(D).

Definition 2.4. Let D be a finite dimensional central division algebra over K, and consider
D2 as a right D-vector space. We define the group SL2(D) = {u ∈ EndD(D2) | Nrd(u) = 1},
where Nrd(u) stands for the reduced norm of u (we recall the definition of the reduced norm in
Definition B.4).

Let us stress again that the case of main interest is the case of quasi-split groups, and that
SL2(D) is quasi-split if and only if D = K. We advice the reader to consider only this case in
a first reading, and to encourage this attitude, the facts needed when D 6= K are relegated to
Appendix B and Appendix C.

When D = K, the group SL2(K) is the group of rational points of a closed subspace SL2 of
the affine space A4

K defined by the polynomial equation det−1. It is then straightforward to check
that SL2 is indeed an algebraic group over K.

For arbitrary D, it is well-known that SL2(D) can be seen as the group of rational point of an
algebraic group over K. We recall in Appendix B the standard facts about division algebras, and
we also discuss in Appendix C the representation of SL2(D) as an algebraic group over K.
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3 The Bruhat–Tits tree of a group

In their fundamental paper [BT72], F. Bruhat and J. Tits show how to construct an affine building
given a group G with a valued root datum, see especially [BT72, 7.4.1 and 7.4.2]. In rank one, this
affine building is a tree, and their construction only uses a collection {(Px)x∈R, N} of subgroups
of G together with a homomorphism ν:N → Aff(R), which are carefully constructed using the
valued root datum on G. Since this construction is the central object of this paper, we begin by
recalling it. We use the same notations than in loc. cit., except for P̂x that we denote Px instead.

Definition 3.1 ([BT72, 7.4.1 and 7.4.2]). Let G be a group with a valued root datum of rank one,
and let {(Px)x∈R, N} be a collection of subgroups of G and ν:N → Aff(R) be a homomorphism.
Assume that they are obtained from the valued root datum as prescribed in [BT72, §6 and §7].
Define an equivalence relation on G×R as follows: (g, x) ∼ (h, y) if and only if there exists n ∈ N
such that y = ν(n)(x) and g−1hn ∈ Px. The Bruhat–Tits tree of G is I = G ×R/∼. We write
[(g, x)] for the equivalence class of (g, x) in I. The group G acts on I by multiplication on the
first component.

In this paper, we take a practical approach bypassing the valued root datum. In each case
that we need it, we construct the Bruhat–Tits tree by giving directly the groups (Px)x∈R, N
and the homomorphism ν:N → Aff(R). We can fortunately easily ensure that the given groups
(together with the homomorphism ν) are indeed obtained from a valued root datum as prescribed
in [BT72, §6 and §7] thanks to the explicit computations made in [BT72, §10].

Remark 3.2. For g ∈ G, the map fg:R → I:x 7→ g.[(Id, x)] is injective, by the discussion in
[BT72], below Definition 7.4.2. An apartment of I is a subset of the form fg(R) for some g ∈ G,
and we can endow I with a metric which gives the usual metric on R when restricted to any
apartment. The action of G on its Bruhat–Tits tree preserves such a metric. Furthermore, in view
of [BT72, Proposition 7.4.4], Px is in fact the stabiliser of [(Id, x)] ∈ I.

Remark 3.3. Note that in Definition 3.1, it is equivalent to say that (g, x) ∼ (h, y) if and only
if for all ñ ∈ N such that ν(ñ)(x) = y, we have g−1hñ ∈ Px. Indeed, if there exists n ∈ N
such that ν(n)(x) = y and g−1hn ∈ Px, let ñ be any element of N such that ν(ñ)(x) = y. Then
g−1hñ = g−1hnn−1ñ. But n−1ñ stabilises [(Id, x)], and hence belongs to Px by Remark 3.2. Thus,
g−1hnn−1ñ belongs to Px as well, as wanted.

We end this section by recalling two facts about Bruhat–Tits trees that will be needed later
on.

Lemma 3.4. Let g, h ∈ P0, and let x, y ∈ R. If (g, x) ∼ (h, y), there exists n ∈ N ∩ P0 such that
ν(n)(x) = y

Proof. Recall that P0 is the stabiliser of [(Id, 0)] ∈ I in G (see Remark 3.2). Since G acts by
isometries on I, and since g, h ∈ P0, we have

|x| = dI([(Id, x)]; [(Id, 0)]) = dI([(g, x)]; [(Id, 0)])

|y| = dI([(Id, y)]; [(Id, 0)]) = dI([(h, y)]; [(Id, 0)])

where dI denotes the distance in the metric space I (see Remark 3.2). But if (g, x) ∼ (h, y),
we have in particular dI([(g, x)]; [(Id, 0)]) = dI([(h, y)]; [(Id, 0)]), and hence |x|= |y|. Thus, the
existence of n ∈ N∩P0 such that ν(n)(x) = y follows from the fact that ν(N∩P0) is the (spherical)
Weyl group of G.

Remark 3.5. Again, we only use this proposition when G is a group of the form SL2(D) or

SU
L/K
3 . In each case, we will see explicitly that there exists an element n in N ∩ P0 such that

ν(n):R → R:x 7→ −x.

Lemma 3.6. Let G be a group having a valued root datum of rank one and let I be the corre-
sponding Bruhat–Tits tree. Then I = {[(g, x)] ∈ I | g ∈ P0}

9



Proof. Let [(g, x)] ∈ I. Since G acts strongly transitively on I ([BT72, Corollaire 7.4.9]), there
exists h ∈ P0 such that h.[(g, x)] = [(Id, y)], for some y ∈ R. Hence, [(g, x)] = [(h−1, y)] and
h−1 ∈ P0, as wanted.

4 Convergence of groups of type SL2(D)

We recall the reader that our notational conventions for local fields and their finite dimensional
central division algebras have been spelled out at the beginning of Section 2.

4.1 Construction of the Bruhat–Tits tree

The aim of this section is to give a streamlined definition of the Bruhat–Tits tree associated with
SL2(D), together with the action on it. As outlined in the introduction, our definition of the
Bruhat–Tits tree follows [BT72, §7].

In order to be as efficient as possible, we only describe concretely the objects needed, and give
unmotivated definitions. Our description is easily obtained from the explicit description given in
[BT72, §10], and we give in Appendix A more details about the connection with [BT72].

Recall from Definition 3.1 that the Bruhat–Tits tree I of SL2(D) should be isomorphic to
SL2(D) ×R/∼. For x ∈ R, we define a group Px ≤ SL2(D) which will eventually turn out to be
the stabiliser of [(Id, x)] ∈ I (see Remark 3.2).

Definition 4.1. Let D be any valued division algebra with valuation ω, and let g be a n × n
matrix with coefficients in D. Given a n× n matrix m with coefficients in R, we say that g has a
valuation greater than m if ω(gij) ≥ mij (for all i, j ∈ {1, . . . , n}), and we denote it by ω(g) ≥ m.

Definition 4.2. For x ∈ R, we define

Px = {g ∈ SL2(D) | ω(g) ≥
(

0 −x
x 0

)

}

Definition 4.3. Consider the following subsets

• T = {
(

x 0
0 x−1

)

| x ∈ D×} < SL2(D)

• M = {
( 0 −x
x−1 0

)

| x ∈ D×} ⊂ SL2(D)

and let N = T ⊔M .

Definition 4.4. Let ν:N → Aff(R) be defined as follows: for m =
( 0 −x
x−1 0

)

∈ M , ν(m) is the

reflection through −ω(x), while for t =
(

x 0
0 x−1

)

∈ T , ν(t) is the translation by −2ω(x).

Then the Bruhat–Tits tree I of SL2(D) is the one obtained by applying Definition 3.1 to the
collection of subgroups {(Px)x∈R, N} appearing in Definition 4.2 and Definition 4.3, together with
the homomorphism ν:N → Aff(R) of Definition 4.4. We discuss in Appendix A why our groups
Px and N coincide with the groups P̂x and N appearing in the definition of the Bruhat–Tits
building in [BT72, 7.4.1 and 7.4.2]. We also check in Appendix A that ν:N → Aff(R) coincides
with [BT72]. Hence, the given data is indeed obtained from a valued root datum of rank one on
G, so that the above construction does indeed give rise to the Bruhat–Tits tree of SL2(D).

Remark 4.5. Note that the construction of the Bruhat–Tits tree of SL2(D) depends on D. When
needed, we keep track of this dependence by adding the subscript D to the objects involved. This
gives rise to the notations (Px)D, TD, MD, ND, νD and ID.

Remark 4.6. The Bruhat–Tits tree of SL2(D) is actually the regular tree of degree |D|+1. Indeed,
this follows from the fact that our definition of I agrees with the one given in [BT72, 7.4.1 and
7.4.2], and from the tables in [Tit79, 4.2 and 4.3].

10



4.2 Local model of the Bruhat–Tits tree

We now aim to give a local description of balls of the Bruhat–Tits tree, together with the group
action on it. Recall that the ball of radius 1 around [(Id, 0)] ∈ I (together with the action of
P0 on it), is in some sense encoded in P0 considered over the residue field, i.e. over OK/mK (or
more precisely in the reductive quotient of this group, see [BT84a, Théorème 4.6.33] for a precise
meaning). It is then natural to think that more generally, the ball of radius r around [(Id, 0)] ∈ I
(together with the action of P0 on it) is encoded in P0 considered over the ring OK/m

r
K . We

give all the definitions in this section, and we then prove in the next section that those definitions
behave as expected (see Theorem 4.22).

Our techniques only allow to describe balls or radius rd, where d is the degree of D over K
(note that d = 1 when D = K). We just mimic the definition of the Bruhat–Tits tree, except that
the coefficients of all groups under consideration are now taken in the ring OD/m

rd
D . All groups

defined in this section are adorned by the superscript 0, rd to reflect the fact that they are local
version around 0 of radius rd.

Let us introduce some notations for the following definition of local stabilisers. In the rest of
the paper, d denotes the degree of D over its centre K. The valuation ω on D induces a well-
defined map on OD/m

rd
D , that we still denote ω. Finally, recall that πD denotes a uniformiser of

D.

Definition 4.7. Let r ∈ N and x ∈ [−ω(πrd
D ), ω(πrd

D )]. We set

P 0,rd
x = {g ∈ SL2(OD/m

rd
D ) | ω(g) ≥

(

0 −x
x 0

)

}.

Remark 4.8. See Definition C.2 for the definition of SL2(OD/m
rd
D ). When D = K, we obtain

the group SL2(OK/m
r
K) in its usual meaning, i.e. the group of 2× 2 matrices with coefficients in

OK/m
r
K having determinant 1. We remark that Definition 4.7 parallels Definition 4.2.

We also need the local version of the subgroup N .

Definition 4.9. We define

• H0,rd = {
(

x 0
0 x−1

)

∈ SL2(OD/m
rd
D ) | ω(x) = 0}

• M0,rd = {
( 0 −x
x−1 0

)

∈ SL2(OD/m
rd
D ) | ω(x) = 0}

And we set N0,rd = H0,rd ⊔M0,rd

We can also easily define an action of N0,rd by affine isometries on R.

Definition 4.10. We let H0,rd act trivially on R, and we let all elements of M0,rd act as a
reflection through 0 ∈ R. This gives an affine action of N0,rd on R, and we denote again the
resulting map N0,rd → Aff(R) by ν.

We are now able to give a definition of the ball of radius rd around [(Id, 0)] ∈ I which only
depends on the ring OD/m

rd
D , and not on the whole division algebra D.

Definition 4.11. Let r ∈ N. We define an rd-local equivalence on P 0,rd
0 × [−ω(πrd

D ), ω(πrd
D )] as

follows. For g, h ∈ P 0,rd
0 and x, y ∈ [−ω(πrd

D ), ω(πrd
D )]

(g, x) ∼0,rd (h, y) ⇔ there exists n ∈ N0,rd such that ν(n)(x) = y and g−1hn ∈ P 0,rd
x

The resulting space I0,rd = P 0,rd
0 × [−ω(πrd

D ), ω(πrd
D )]/∼0,rd is called the local Bruhat–Tits tree of

radius rd around 0, and [(g, x)]0,rd stands for the equivalence class of (g, x) in I0,rd. The group

P 0,rd
0 acts on I0,rd by multiplication on the first component.

Remark 4.12. Note that the construction of the local Bruhat–Tits tree of SL2(D) depends on
D. When needed, we keep track of this dependence by adding the subscript D to the objects
involved. This gives rise to the notations (P 0,rd

x )D, H0,rd
D , M0,rd

D , N0,rd
D and I0,rd

D .
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Remark 4.13. Note that as for Definition 3.1, it is equivalent to say that (g, x) ∼0,rd (h, y) if
and only if for all ñ ∈ N0,rd such that ν(ñ)(x) = y, we have g−1hñ ∈ P 0,rd

x . Indeed, if there exists
n ∈ N0,rd such that ν(n)(x) = y and g−1hn ∈ P 0,rd

x , let ñ be any element of N0,rd such that
ν(ñ)(x) = y. We have g−1hñ = g−1hnn−1ñ, and a case-by-case analysis shows that n−1ñ ∈ P 0,rd

x .
Hence g−1hnn−1ñ belongs to P 0,rd

x as well, as wanted.

4.3 Integral model

We have just defined the space I0,rd, (recall that throughout this section, d is the degree of D). In
order to show that it encodes the ball of radius rd together with the action of P0 on it (as will be
done in Theorem 4.22), we need to prove that the projection OD → OD/m

rd
D induces a surjective

homomorphism P0 → P 0,rd
0 .

We solve this problem by defining a smooth OK-scheme SL2,D such that SL2,D(OK) ∼= P0

and SL2,D(OK/m
r
K) ∼= P 0,rd

0 . Then the desired surjectivity follows by an application of Hensel’s
lemma for smooth schemes (that we recall in Theorem 4.17).

This smooth OK-scheme is in fact the Bruhat–Tits integral model Ĝϕ associated with a stan-
dard valuation ϕ (see [BT84a, 4.6.26]), and in this case, it is just the straightforward model one
would consider.

Definition 4.14. When D = K, the integral model SL2,D is the group SL2 considered over
OK . Concretely, this is the OK-scheme which is the spectrum of the OK-algebra OK [SL2] =
OK [X11, X12, X21, X22]/(X11X22−X12X21−1). In the case of a central division algebra of degree
d > 1 over K, the integral model SL2,D over OK is defined in the appendix (see Definition C.3).

Theorem 4.15. SL2,D is a smooth OK-scheme.

Proof. When D = K, smoothness of SL2,D over OK (and in fact of the algebraic group SLn over
any ring) is easily checked using the infinitesimal lifting criterion (see [TS16, Tag 02H6]). The
case of an arbitrary D is relegated to the appendix (see Theorem C.4).

We now spell out what the group SL2,D(OK/m
r
K) is, along with the homomorphism prd:P0 →

P 0,rd
0 .

Lemma 4.16. SL2,D(OK) ∼= P0 and SL2,D(OK/m
r
K) ∼= P 0,rd

0 . Following the identifications

SL2,D(OK) SL2(OD) = P0
∼=

SL2,D(OK/m
r
K) SL2(OD/m

rd
D ) = P 0,rd

0
∼=

the homomorphism prd:P0 → P 0,rd
0 is the one induced by the projection of the coefficients OD →

OD/m
rd
D .

Proof. When D = K, by definition, SL2(OK) = MorOK
(OK [SL2],OK), which is clearly iso-

morphic to SL2(OK). Furthermore, SL2,D(OK/m
r
K) = MorOK

(OK [SL2,D],OK/m
r
K), which is

clearly isomorphic to SL2(OK/m
r
K), as wanted. The general case is treated in the appendix (see

Lemma C.5).

The fact that SL2,D is a smooth scheme over OK allows us to deduce the surjectivity of

P0 → P 0,rd
0 . For this, we use a well-known generalised version of Hensel’s lemma for smooth

schemes, that we now recall.

Theorem 4.17 (Hensel’s lemma for smooth schemes). Let X be a smooth OK-scheme, and let
r ∈ N. The map X(OK) → X(OK/m

r
K) is surjective.
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Proof. For r = 1, this is [Gro67, Théorème 18.5.17]. For r > 1, note that as remarked below
[Gro67, Définition 18.5.5], (S, S0) is a Henselian couple if and only if (Sred, (S0)red) is so. We
deduce that (SpecOK , SpecOK/m

r
K) is a Henselian couple. Thus the proof of Théorème 18.5.17

applies verbatim to our situation, upon making one change: replace the reference to 18.5.11(b) to a
reference to 18.5.4(b) (taking S = SpecOK and S0 = SpecOK/m

r
K in the notations of 18.5.4).

Corollary 4.18. The homomorphism prd:P0 → P 0,rd
0 is surjective, for all r ∈ N.

Proof. This is a direct consequence of the commutative square involving P0 → P 0,rd
0 given in

Lemma 4.16, together with the fact that the integral model is smooth by Theorem 4.15, so that
Theorem 4.17 applies to the left hand side of the diagram.

Along with the surjectivity of the restriction map prd:P0 → P 0,rd
0 , one of the key result in our

local description of the ball of radius rd is that prd is also somehow injective enough. This result
can be seen as a natural generalisation of [BT84a, Corollaire 4.6.8].

Lemma 4.19. Let r ∈ N and let x ∈ [−ω(πrd
D ), ω(πrd

D )]. Then p−1
rd (P

0,rd
x ) ⊂ Px.

Proof. Belonging to p−1
rd (P

0,rd
x ) implies that the valuation of the off diagonal entries are big enough.

Hence, the result follows directly from Definition 4.2.

We finally arrive at our main result: the ball of radius rd together with the action of SL2(OD)

is encoded in P 0,rd
0 . We first need an adequate description of the ball of radius rd around 0 in I.

Lemma 4.20. Renormalise the distance on R so that dR(0;ω(πD)) = 1, and put the metric dI on
I arising from the distance dR (see Remark 3.2). Let B0(rd) = {p ∈ I | dI([(Id, 0)]; p) ≤ rd} be the
ball of radius rd around 0 in I. Let B̃0(rd) = {[(g, x)] ∈ I | g ∈ P0, x ∈ [−ω(πrd

D ), ω(πrd
D )] ⊂ R}.

Then B0(rd) = B̃0(rd).

Proof. If [(g, x)] ∈ B̃0(rd), then dR(0;x) ≤ rd by our normalisation of the distance on R. So we
get rd ≥ dR(0;x) = dI([(Id, 0)]; [(Id, x)]) = dI([(Id, 0)]; [(g, x)]), where the last equality follows
from the fact that G acts by isometries on I. Conversely, assume dI([(Id, 0)]; [(g, x)]) ≤ rd. By
Lemma 3.6, there exist h ∈ P0 and y ∈ R such that [(g, x)] = [(h, y)]. But dI([(Id, 0)]; [(g, x)]) =
dI([(Id, 0)]; [(h, y)]) = dI([(Id, 0)]; [(Id, y)]) = dR(0; y). Hence [(h, y)] ∈ B̃0(rd), as wanted.

Remark 4.21. The distance dI that we introduced in Lemma 4.20 is also the combinatorial
distance on the tree. Indeed, looking at when Py is inside Px for x, y ∈ R, we see that [(Id, x)]
is a vertex of I if and only if x ∈ ω(πD)Z (note that this argument uses the fact that a simple
algebraic group acts on a tree without edge inversion).

Theorem 4.22. Let r ∈ N. The map B0(rd) → I0,rd: [(g, x)] 7→ [(prd(g), x)]
0,rd is a (prd:P0 →

P 0,rd
0 )-equivariant bijection.

Proof. The map is well-defined by Lemma 3.4.

• Injectivity: let [(g, x)], [(h, y)] ∈ B0(rd) be such that they have the same image in I0,rd. By
Remark 4.13, it means that for all ñ ∈ N0,rd such that ν(ñ)(x) = y, prd(g)

−1prd(h)ñ ∈ P 0,rd
x .

So, we can assume that ñ is either equal to Id, or is of the form
(

0 1
−1 0

)

. Hence, there

exists n ∈ N such that prd(n) = ñ. But ν(n)(x) = y, and g−1hn ∈ p−1
rd (P

0,rd
x ) ⊂ Px by

Lemma 4.19. Hence, [(g, x)] = [(h, y)], as wanted.

• Surjectivity: follows directly from the surjectivity of prd:P0 → P 0,rd
0 (Corollary 4.18).

• Equivariance: h.[(g, x)] = [(hg, x)] 7→ [(prd(hg), x)]
0,rd = prd(h).[(prd(g), x)]

0,rd.
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Remark 4.23. Theorem 4.22 shows that the ball of radius rd in the Bruhat–Tits tree of SL2(D)
only depends on OD/m

rd
D . This result alone could be obtained more easily using the description of

Bruhat–Tits buildings as (admissible) lattices, see [AN02]. Using precisely this strategy, the fact
that the ball of radius rd in the Bruhat–Tits tree of SL2(D) only depends on OD/m

rd
D is obtained

by M. de la Salle and R. Tessera in [dlST15, Corollary 2.2]. However, for our purpose, we need to
control the local action, and in particular we crucially rely on Corollary 4.18 to study Chabauty
convergences (see the proof of Theorem 4.33). Hence, we believe that an approach relying on
lattices would not spare the need for a smooth integral model.

4.4 Arithmetic convergence

Definition 4.24. Let K be the set of local fields up to isomorphism. Let D be the set of finite
dimensional division algebras D over their centre Z(D) and such that Z(D) is a local field. We
also consider this set up to isomorphism. We set Kpn = {K ∈ K | |K|= pn} and Dpn = {D ∈
D | |D|= pn}.

Note that K can naturally be seen as a subset of D, so that Kpn ⊂ Dpn . Following an idea
dating back to Krasner (see [Del84] for references, this idea is also used in e.g. [Kaz86]), we define
a metric on the space D.

Definition 4.25. Let D1, D2 ∈ D. We say that D1 is r-close to D2 if and only if there exists an
isomorphism OD1

/mr
D1

∼= OD2
/mr

D2
.

Remark 4.26. Note that being r-close is an equivalence relation, and that if r ≥ l and D1 is
r-close to D2, then D1 is l-close to D2.

Observe that this notion of closeness induces a non-archimedean metric on D. Let

d:D ×D → R≥0: d(D1;D2) = inf{ 1

2r
| D1 is r-close to D2}

Lemma 4.27. d(· ; ·) is a non-archimedean metric on D.

Proof. If d(D1;D2) = 0, then OD1
and OD2

are isomorphic. Hence, their field of fraction are
isomorphic, so that D1 = D2 in D, as wanted. The fact that this distance is non-archimedean is
a consequence of Remark 4.26.

A crucial fact about the space Dpn (for a fixed prime power pn, as in Definition 4.24) is that

it is a compact space. This is one of the key observation to prove that SSL2(D)
T is closed in ST . In

fact, it is even possible to give an explicit description of the metric space Dpn . The corner stone
in this description is Theorem 4.28 which is certainly well known to experts (this is for example
used implicitly in [Kaz86]). While working on this paper, we learnt that it had also been obtained
and used independently in [dlST15, Lemma 1.3]. Given its importance, we decide nevertheless to
include our own proof.

Theorem 4.28. Let K be a totally ramified extension of degree k of Qpn . The distance between
K and Fpn((X)) is 1

2k
. More explicitly, let {ax}x∈Fpn

⊂ OK ∩ Qpn be a set of representative of

K. Then the bijection

ϕπK
:OK → Fpn [[X ]]

∞
∑

i=0

axi
πi
K 7→

∞
∑

i=0

xiX
i

(which depends on a choice of uniformiser of K) induces an isomorphism of rings

ϕπK
:OK/m

k
K → Fpn [[X ]]/(Xk)
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Proof. Let {ax}x∈Fpn
⊂ OK be a set of representative of K. Since Qpn ≤ K is totally ramified,

we can and do choose the ax’s so that they all lie in Qpn . Now, we have ax + ay − ax+y ∈ (p) and
axay−axy ∈ (p). Furthermore, since K is totally ramified, (p) = m

k
K . Hence, this implies that the

map ϕπK
(which is always a bijection, by the general theory of local fields) is a homomorphism

modulo m
k
K and (Xk).

To conclude that K and Fpn((X)) are at distance 1
2k
, it suffices to observe that OK/m

k+1
K is not

isomorphic to Fpn [[X ]]/(Xk+1). But this is clear, since p /∈ m
k+1
K , hence

p
∑

i=1

1 6= 0 in OK/m
k+1
K .

We need to transpose the situation of Theorem 4.28 to division algebras.

Lemma 4.29. Let D1 ∈ D be the cyclic algebra (E1/K1, σ
r1 , πK1

) (respectively D2 ∈ D be the
cyclic algebra (E2/K2, σ

r2 , πK2
)). Assume that D1 and D2 are of the same degree d over their

respective centre, that r1 = r2 = r ∈ (Z/dZ)×, and that K1 is e-close to K2. Then D1 is ed-close
to D2

Proof. Note that the isomorphism type of Di does not depend on the choice of the uniformiser
πKi

, so that we can and do assume that the given isomorphism OK1
/me

K1

∼= OK2
/me

K2
maps

πK1
to πK2

. The (non-commutative) ring ODi
/med

Di
is actually isomorphic to the cyclic algebra

((OEi
/me

Ei
)/(OKi

/me
Ki

), σr, πKi
), so that the result follows.

It is then quite straightforward to work out the homeomorphism type of Dpn . As in the

introduction, let N̂ denote the one point compactification of N.

Proposition 4.30. Let p be a prime number. Then Dpn is homeomorphic to N̂ × {1, 2, . . . , n},
and Kpn ⊂ Dpn is a clopen subset homeomorphic to N̂.

Proof.

Claim 1. Let K be a local field. If |K|= pn, then K is a totally ramified extension of Qpn , or it
is isomorphic to Fpn((X)).

Proof of the claim: By the classification of local fields, K is either a finite extension of Qp, or

isomorphic to Fpn((X)) for some prime power pn. Since Fpn((X)) = Fpn , the latter case is clear.
For the first case, K = Fpn if and only if the maximal unramified subextension of K is Qpn . �

Claim 2. Let Kk and Kl be totally ramified extension of Qpn such that [Kk : Qpn ] = k < [Kl :
Qpn ] = l. Then d(Kk;Kl) =

1
2k
.

Proof of the claim: We observed in Lemma 4.27 that D is a non-archimedean metric space, and
hence every triangle is isosceles. Thus, the distance between Kk and Kl is either

1
2k

or 1
2l

(taking
in each case Fpn((T )) as a comparison point, and using Theorem 4.28). But in the latter case,
since being l-close is an equivalence relation, we would conclude that Kk is l-close to Fpn((X)),
which would contradict Theorem 4.28. �

Claim 3. There are only finitely many totally ramified extension of degree ≤ k of a local field of
characteristic 0.

Proof of the claim: This is just a well-known corollary of the so called Krasner’s Lemma. A proof
of Claim 3 can be found in [Lan94, Chapter II, §5, Proposition 14]. �

Claim 4. Let D ∈ Dpn . If D is of characteristic 0, it is isolated in Dpn .
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Proof of the claim: D is isomorphic to the cyclic algebra (E/K, σr, πK) (see Definition B.1), where
[E : K] = d divides n, r ∈ (Z/dZ)× and |K|= p

n
d . Let D1 = (E1/K1, σ

r1 , πK1
) (respectively

D2 = (E2/K2, σ
r2 , πK2

)) be of degree d1 (respectively d2). Using the explicit description of cyclic
algebras, it is easily seen that if D1 is 2-close to D2, then d1 = d2, |K1|= |K2| and r1 = r2.
Furthermore, if D1 is ed1-close to D2 for some e ∈ N, then K1 is e-close to K2, since OKi

/(πe
Ki

)

is the centre of ODi
/(πedi

Di
). Hence, the result follows from Claim 2 and Claim 3. �

Claim 5. Dpn is a countable space.

Proof of the claim: By Claim 3 and the classification of division algebras over local fields, there
are only countably many division algebras of characteristic 0 in Dpn . Furthermore, the number of
division algebras of characteristic p in Dpn is finite. �

We are now able to deduce the homeomorphism type of Dpn : division algebras of characteris-
tic 0 are isolated by Claim 4, and every division algebra of positive characteristic is an accumulation
point in Dpn by Theorem 4.28 and Lemma 4.29. Hence, by [MS20, Théorème 1], Dpn is homeomor-

phic to x disjoint copies of N̂, where x is the number of division algebras of positive characteristic
in Dpn , i.e. x =

∑

d|n|(Z/dZ)×|= n. The subspace Kpn ⊂ Dpn consists of division algebras of

degree 1, and hence accounts for one copy of N̂.

4.5 Continuity from division algebras to subgroups of Aut(T )

In this section, we start to vary the division algebraD, and look at the variation it produces on the
Bruhat–Tits tree of SL2(D). Recall that we introduced a notation to keep track of the dependence
on D of many of the definitions we made in this section (see Remark 4.5 and Remark 4.12).

Proposition 4.31. Let D1 and D2 be two elements in D, with respective degree d1 and d2. Assume
that D1 is rd1-close to D2, with rd1 ≥ 2. Then d1 = d2 = d, (P 0,rd

0 )D1
∼= (P 0,rd

0 )D2
and I0,rd

D1
is

equivariantly in bijection with I0,rd
D2

.

Proof. The isomorphism OD1
/mrd

D1

∼= OD2
/mrd

D2
induces a group isomorphism ϕ: (P 0,rd

0 )D1
=

SL2(OD1
/mrd

D1
) ∼= SL2(OD2

/mrd
D2

) = (P 0,rd
0 )D2

. Define a linear map f :R → R:x 7→ x
ω(πD2

)

ω(πD1
) . It

is clear that for all x ∈ [−ω(πrd
D1

), ω(πrd
D1

)], ϕ restricts to an isomorphism (P 0,rd
x )D1

∼= (P 0,rd
f(x))D2

.

Furthermore,

ϕ(T 0,rd)D1
= (T 0,rd)D2

ϕ(M0,rd)D1
= (M0,rd)D2

and for all n ∈ N0,rd, f(n.x) = ϕ(n).f(x). Hence, the map I0,rd
D1

→ I0,rd
D2

: [(g, x)]0,rd 7→
[(ϕ(g), f(x))]0,rd is a ϕ-equivariant bijection.

We can finally go back to our original problem, which is to study convergence of algebraic groups
in the Chabauty space of Aut(T ). We first discuss the homomorphism SL2(D) → Aut(ID).

Proposition 4.32. Let I = ID be the Bruhat–Tits tree of SL2(D). The homomorphism given by
the action of SL2(D) on its Bruhat–Tits building ˆ : SL2(D) → Aut(I) is continuous with closed
image, and the kernel is equal to the centre of SL2(D).

Proof. In each case, the group Px is really the stabiliser of [(Id, x)] ∈ I (see Remark 3.2). Since a
basic identity neighbourhood in Aut(I) is given by intersecting finitely many vertices stabilisers,
the continuity follows. The fact that the image is closed follows from the general argument in
[BM96, Lemma 5.3]. Finally, the kernel can also be seen directly from the explicit description of
Px. Indeed, if g is in the intersection

⋂

x∈R

Px, then g is diagonal. But also, the conjugation action

of g on root groups needs to be trivial, so that g is in the centre of SL2(D). Conversely, the centre
of SL2(D) clearly acts trivially on I, which concludes the proof.
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The convergence is then a more or less direct consequence of Theorem 4.22.

Theorem 4.33. Let (Di)i∈N be a sequence in D which converges to D, and let Gi = SL2(Di)
(respectively G = SL2(D)). For N big enough and for all i ≥ N , there exist isomorphisms
IDi

∼= ID such that the induced embeddings Ĝi →֒ Aut(ID) make (Ĝi)i≥N converge to Ĝ in the
Chabauty topology of Aut(ID).

Remark 4.34. The convergence depends on a choice of specific isomorphisms IDi
∼= ID, or in

other words it depends on choosing how Ĝi sits in Aut(ID). This dependence is not problematic
since for two isomorphic closed subgroups H,H ′ of Aut(ID) both acting 2-transitively on ∂ID,
there exists g in the fixator of e0 such that gHg−1 = H ′, where e0 is any edge of ID (see
[Rad15, Proposition A.1], and recall also that H acts transitively on the edges of ID). Hence, for
other choices of embeddings, the sequence converges to a conjugate of Ĝ in Aut(ID). Recall also
that we introduced the space ST in the introduction precisely to avoid this dependence.

The main step of the proof is to establish that the sequence of stabilisers ((P̂0)Di
)i≥N converges

to the stabiliser (P̂0)D in Aut(ID). From there, we can conclude that (Ĝi)i≥N converges to Ĝ
from general theory.

Proof. The Bruhat–Tits tree IDi
is the regular tree of degree pn + 1 if and only if Di belongs to

Dpn . Hence there exists N such that for all i ≥ N , IDi
∼= ID.

Passing to a subsequence, we can assume that Di is (di)-close to D, where d is the degree of
D over its centre. Hence, for i ≥ 2, Di is also of degree d over its centre. We now define an
explicit isomorphism fi: IDi

→ ID (for i ≥ 2) as follows: let I0,di
Di

∼= I0,di
D be the isomorphism

given by Proposition 4.31. By Theorem 4.22, this gives an isomorphism on balls of radius di:
IDi

⊃ B0(di) ∼= B0(di) ⊂ ID (recall that by Lemma 4.20, B0(di) is really the ball of radius di on
the tree ID). As IDi

is a regular tree of the same degree than ID, we can extend this isomorphism
of balls to an isomorphism fi: IDi

→ ID (this extension is of course not unique, but we choose
one such). By means of fi, we get an embedding Ĝi →֒ Aut(ID).

We claim that ((P̂0)Di
)i∈N converges to (P̂0)D. According to [CR16, Lemma 2.1], there are

two things to verify.

1. Let (ĥi) be a sequence such that ĥi ∈ (P̂0)Di
, and assume that ĥi converges to ĥ in Aut(ID).

We have to show that ĥ ∈ (P̂0)D. For all i, let hi ∈ (P0)Di
be an inverse image of ĥi

underˆ:Gi → Aut(ID). Let h̄i = pdi(hi) ∈ (P 0,di
0 )Di

. Let ϕdi: (P
0,di
0 )Di

∼= (P 0,di
0 )D be the

isomorphism given in Proposition 4.31. By Corollary 4.18, there exists h̃i ∈ (P0)D which is

an inverse image of ϕdi(h̄i) under pdi: (P0)D → (P 0,di
0 )D. Now, because all the identifications

were equivariant, the action of h̃i on the ball of radius di around 0 is the same than the action

of ĥi on this ball. Hence, (
ˆ̃
hi) converges to ĥ as well. But (P̂0)D is a closed subgroup of

Aut(ID) (by Proposition 4.32), hence ĥ ∈ (P̂0)D, as wanted.

2. Conversely, given an element ĥ ∈ (P̂0)D, we have to find a sequence (ĥi) of elements in (P̂0)Di

such that (ĥi) converges to ĥ in Aut(ID). It suffices to follow the path of identifications in

reverse: let h be an inverse image of ĥ underˆ:G → Aut(ID). Let h̄i = pdi(h) ∈ (P 0,di
0 )D,

and let ϕdi: (P
0,di
0 )D ∼= (P 0,di

0 )Di
be the isomorphism given in Proposition 4.31. For all

i, let hi be an inverse image of ϕdi(h̄i) under pdi : (P0)Di
→ (P 0,di

0 )Di
, which exists by

Corollary 4.18. Now, because all the identifications were equivariant, the action of hi on the
ball of radius di around 0 is the same than the action of h on this ball. Hence, (ĥi) converges

to ĥ, as wanted.

Finally, from the convergence of ((P̂0)Di
)i≥N to (P̂0)D, we can formally deduce the convergence

of (Ĝi)i≥N to Ĝ. Indeed, (Ĝi)i≥N subconverges to a topologically simple group H , by [CR16,

Theorem 1.2]. But since ((P̂0)Di
)i≥N converges to (P̂0)D, H has an open compact subgroup

isomorphic to (P̂0)D. Hence, by [CS15, Corollary 1.3], H is algebraic. And hence, by [Pin98,
Corollary 0.3], H ∼= G. Since by the same argument, any subsequence of (Ĝi)i≥N subconverges to

Ĝ, we conclude that (Ĝi)i≥N converges to Ĝ.
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We then deduce the proof of the main theorem announced in the introduction for groups of
type SL2(D). To shorten the notations, we set GD = SL2(D) in the following proof.

Proof of Theorem 1.8. Let T be a regular tree and let DT = {D ∈ D | the Bruhat–Tits tree of
GD is isomorphic to T }. By Remark 4.6 and Proposition 4.30, DT is a compact space. Now, by
Theorem 4.33, the map DT → ST :D 7→ ĜD is continuous. Let D1 and D2 be central division
algebras over K1 and K2 respectively, with respective degree d1, d2 and Hasse invariant r1, r2 (as
defined in Definition B.2). We claim that ĜD1

= ĜD2
if and only if K1

∼= K2, d1 = d2 and
r1 = ±r2. Indeed, if ĜD1

is abstractly isomorphic to ĜD2
, then by [BT73, Corollaire 8.13], the

corresponding adjoint algebraic groups AdG1 and AdG2 are algebraically isomorphic over an
isomorphism of fields K1

∼= K2. Now, according to [KMRT98, Remark 26.11], this is only possible
if D1

∼= D2 or D1
∼= Dop

2 , which is equivalent to the conditions we gave.
To summarise, let DT /∼op be the space DT modulo the equivalence relation D1 ∼op D2 if and

only if D1
∼= D2 or D1

∼= Dop
2 . We proved that DT /∼op→ ST :D 7→ ĜD is an injective continuous

map whose source is a compact space, hence it is a homeomorphism onto its image. Now, the
explicit description given in Theorem 1.8 follows from Remark 4.6 and Proposition 4.30.

To be able to conclude that for T the (pn + 1)-regular tree, SSL2(D)
T is homeomorphic to

N̂×{1, . . . , ⌈n+1
2 ⌉}, one has to count the number of division algebras in DT /∼op of characteristic p.

But there is only one such division algebra in DT /∼op of degree 1 over its centre, one such division
algebra in DT /∼op of degree 2 over its centre if 2 divides n, and for all 3 ≤ d dividing n, there

are ϕ(d)
2 such division algebras in DT /∼op of degree d over their centre (where ϕ denotes Euler’s

totient function). Hence, if n is even (respectively odd), we have 2 +
∑

d|n,d≥3
ϕ(d)
2 (respectively

1 +
∑

d|n,d≥3
ϕ(d)
2 ) division algebras of characteristic p in DT /∼op. Using that

∑

d|n ϕ(d) = n, we
readily get the conclusion.

5 Convergence of groups of type SU
L/K
3 , L unramified

We keep our notations for local fields (see Section 2). Furthermore, throughout this section, L
is an unramified quadratic extension of the base local field K. Note that such an extension is
automatically separable. Also note that πK is equally well a uniformiser of L. We carry out the

same program than in Section 4, replacing all occurrences of SL2(D) by SU
L/K
3 . The comments

made all along Section 4 also apply here, but we do not repeat them to not lengthen too much
the paper.

5.1 Construction of the Bruhat–Tits tree

In the following definition of point stabilisers, we again use the notation introduced in Defini-
tion 4.1.

Definition 5.1. For x ∈ R, we define Px = {g ∈ SU
L/K
3 (K) | ω(g) ≥

(

0 − x
2

−x
x
2

0 − x
2

x x
2

0

)

}

Definition 5.2. Consider the following subsets

• T = {
(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

| x ∈ L×} < SU
L/K
3 (K)

• M = {
(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

| x ∈ L×} ⊂ SU
L/K
3 (K)

and let N = T ⊔M .

Definition 5.3. Let ν:N → Aff(R) be defined as follows: for m =

(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

∈M , ν(m) is

the reflection through −ω(x), while for t =

(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

∈ T , ν(t) is the translation by −2ω(x).
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Then the Bruhat–Tits tree I of SU
L/K
3 (recall that in this section, L is unramified) is the one

obtained by applying Definition 3.1 to the collection of subgroups {(Px)x∈R, N} appearing in Def-
inition 5.1 and Definition 5.2, together with the homomorphism ν:N → Aff(R) of Definition 5.3.
We show in Appendix A that our definitions agree with [BT72, 7.4.1 and 7.4.2], so that the given
data is indeed obtained from a valued root datum of rank one on G

Remark 5.4. Note that the construction of the Bruhat–Tits tree of SU
L/K
3 depends on the pair

(K,L). When needed, we keep track of this dependence by adding the subscript (K,L) to the
objects involved. This gives rise to the notations (Px)(K,L), T(K,L), M(K,L), N(K,L), ν(K,L) and
I(K,L).

Remark 5.5. The Bruhat–Tits tree of SU
L/K
3 is actually the (|K|3+1; |K|+1)-semiregular tree.

Indeed, this follows from the fact that our definition of I agrees with the one given in [BT72, 7.4.1
and 7.4.2], and from the tables in [Tit79, 4.2 and 4.3].

5.2 Local model of the Bruhat–Tits tree

We now proceed to define a local model for the Bruhat–Tits tree of SU
L/K
3 when L is unramified.

The same remarks as in the SL2(D) case apply, so that we go quickly through the definitions.
Note that the valuation ω (respectively the Galois conjugation x 7→ x̄) on L induces a well-defined
map on OL/m

r
L that we still denote ω (respectively x 7→ x̄).

Definition 5.6. Let r ∈ N and x ∈ [−ω(πr
L), ω(π

r
L)]. We set

P 0,r
x = {g ∈ SL3(OL/m

r
L) | S ḡg = Id, ω(g) ≥

(

0 − x
2

−x
x
2

0 − x
2

x x
2

0

)

}.

Definition 5.7. We define

• H0,r = {
(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

∈ SL3(OL/m
r
L) | ω(x) = 0}

• M0,r = {
(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

∈ SL3(OL/m
r
L) | ω(x) = 0}

And we set N0,r = H0,r ⊔M0,r.

Definition 5.8. We let H0,r act trivially on R, and we let all elements of M0,r act as a reflection
through 0 ∈ R. This gives an affine action of N0,r on R, and we denote again the resulting map
N0,r → Aff(R) by ν.

We are now able to give a definition of the ball of radius r around [(Id, 0)] ∈ I which only
depends on the ring OL/m

r
L, and not on the whole field L.

Definition 5.9. Let r ∈ N. We define an r-local equivalence on P 0,r
0 × [−ω(πr

L), ω(π
r
L)] as follows.

For g, h ∈ P 0,r
0 and x, y ∈ [−ω(πr

L), ω(π
r
L)]

(g, x) ∼0,r (h, y) ⇔ there exists n ∈ N0,r such that ν(n)(x) = y and g−1hn ∈ P 0,r
x

The resulting space I0,r = P 0,r
0 × [−ω(πr

L), ω(π
r
L)]/∼0,r is called the local Bruhat–Tits tree of

radius r around 0, and [(g, x)]0,r stands for the equivalence class of (g, x) in I0,r. The group P 0,r
0

acts on I0,r by multiplication on the first component.

Remark 5.10. Note that the construction of the local Bruhat–Tits tree of SU
L/K
3 depends on

the pair (K,L) (which is assumed to be unramified in this section). When needed, we keep track
of this dependence by adding the subscript (K,L) to the objects involved. This gives rise to the
notations (P 0,r

x )(K,L), H
0,r
(K,L), M

0,r
(K,L), N

0,r
(K,L) and I0,r

(K,L).

Remark 5.11. Also, Remark 4.13 holds equally well in this case, with exactly the same proof,
upon replacing all d’s by 1.
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5.3 Integral model

We now proceed to define an integral model, and compare its rational points with our local model

for the Bruhat–Tits tree of SU
L/K
3 when L is unramified. Again, the same remarks as in the

SL2(D) case apply, so that we go quickly through the definitions.

Definition 5.12. Let SU
L/K
3 be the group SU3 considered over OK . We omit the superscript

L/K when it is understood from the context.

Concretely, SU3 is the OK-scheme associated with the OK-algebra OK [SU3] = OK [Xkl
ij ]/I

(i, j ∈ {1, 2, 3}, k, l ∈ {1, 2}), where I is the ideal generated by the following equations

For all i, j ∈ {1, 2, 3},
{

X12
ij = −βX21

ij

X22
ij = X11

ij + αX21
ij

∑

σ∈Sym(3)

[(−1)sgn(σ)
3
∏

i=1

Xiσ(i)]− 1

(

X33 X23 X13

X32 X22 X12

X31 X21 X11

)(

X11 X12 X13

X21 X22 X23

X31 X32 X33

)

−
(

1 0 0
0 1 0
0 0 1

)

Here α and β are elements of OK such that L ∼= K[T ]/(T 2 − αT + β), so that the first equations
encode the ring embedding OL →֒ M2(OK). In the other equations, Xij stands for the 2 × 2

matrix
(

X11
ij X12

ij

X21
ij X22

ij

)

. Also, for a 2× 2 matrix M =
(

M11 M12

M21 M22

)

, we denote M =
(

M22 −M12

−M21 M11

)

(this

operation reflects the conjugation on OL). Finally note that a 1 (respectively a 0) in the above
equations denotes the 2×2 identity matrix (respectively the 2×2 zero matrix), i.e. it corresponds
to the 1 ∈ L (respectively 0 ∈ L).

Theorem 5.13. SU
L/K
3 is a smooth OK-scheme.

Proof. We prove that the base change of SU
L/K
3 to OL is isomorphic to SL3 (as an algebraic group

over OL). Since SL3 is smooth over any base ring, the result is then a consequence of faithfully
flat descent.

Let ¯:OL → OL be the Galois conjugation. Note that since OL is unramified overOK , the map
ψ:OL⊗OK

OL → OL×OL:x⊗y 7→ (xy, xȳ) is an isomorphism of OL-algebras. Indeed, this follows
from the fact that L is unramified, so that OK → OL is etale, and since local fields are henselian,
the corresponding morphism of schemes is a Galois covering (see [BLR90, 6.2, Example B] for
more details). But in this simple case, one can also just check by hand that ψ is an isomorphism.
This implies that for any OL-algebra R, the map ϕ:R ⊗OK

OL → R × R: r ⊗ x 7→ (rx, rx̄) is an
isomorphism of OL-algebras.

Furthermore, let τ :R×R→ R×R: (r, r′) 7→ (r′, r) be the natural involution on R×R. Then
for any r⊗ x ∈ R⊗OK

OL, ϕ(r⊗ x̄) = τ(ϕ(r⊗ x)). It follows that for any OL-algebra R, we have

(SU
L/K
3 )OL

(R) = {g ⊗ x ∈ SL3(R⊗OK
OL) | S(g ⊗ x̄)(g ⊗ x) = Id}

∼= {(g, h) ∈ SL3(R× R) | (Shg, Sgh) = (Id, Id)}
∼= SL3(R)

Since the above isomorphisms are natural in R, this indeed shows that (SU
L/K
3 )OL

∼= SL3 as group
schemes over OL, which concludes the proof.

We now compare the rational points of the integral model with our local model.

Lemma 5.14. SU3(OK) ∼= P0 and SU3(OK/m
r
K) ∼= P 0,r

0 . Following the identifications
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SU3(OK) P0 ≤ SL3(OL)∼=

SU3(OK/m
r
K) P 0,r

0 ≤ SL3(OL/m
r
L)

∼=

the homomorphism pr:P0 → P 0,r
0 is the one induced by the projection of the coefficients OL →

OL/m
r
L.

Proof. Let t be any element in O×
L \ OK . Using the fact that OL

∼= OK ⊕ t.OK , one can check
that MorOK

(OK [SU3],OK) ∼= {g ∈ SL3(OL) | S ḡg = Id}, as wanted.
Furthermore, since L is unramified, OL/m

r
L
∼= OK/m

r
K ⊕ t.OK/m

r
K , and one can check that

MorOK
(OK [SU3],OK/m

r
K) ∼= {g ∈ SL3(OL/m

r
L) | S ḡg = Id}, as wanted.

And we can then deduce the surjectivity of the map pr.

Corollary 5.15. The map pr:P0 → P 0,r
0 is surjective, for all r ∈ N.

Proof. This is a direct consequence of the commutative square involving P0 → P 0,r
0 given in

Lemma 5.14, together with the fact that the integral model is smooth by Theorem 5.13, so that
Theorem 4.17 applies to the left hand side of the diagram.

We also need a kind of injectivity result:

Lemma 5.16. Let r ∈ N and x ∈ [−ω(πr
L), ω(π

r
L)]. Then p−1

r (P 0,r
x ) ⊂ Px.

Proof. Belonging to p−1
r (P 0,r

x ) implies that the valuation of the off diagonal entries are big enough.
Hence, the result follows directly from Definition 5.1.

We finally arrive at the result corresponding to Theorem 4.22: the ball of radius r together

with the action of SU
L/K
3 (K) is encoded in P 0,r

0 . We first need an adequate description of the ball
of radius r around 0 in I.

Lemma 5.17. Renormalise the distance on R so that dR(0;ω(πL)) = 1, and put the metric dI
on I arising from the distance dR (see Remark 3.2). Let B0(r) = {p ∈ I | dI([(Id, 0)]; p) ≤ r} be
the ball of radius r around 0 in I. Let B̃0(r) = {[(g, x)] ∈ I | g ∈ P0, x ∈ [−ω(πr

L), ω(π
r
L)] ⊂ R}.

Then B0(r) = B̃0(r).

Proof. The proof is word for word the same than the proof of Lemma 4.20, upon replacing all d’s
by 1’s.

Remark 5.18. The distance dI that we introduced in Lemma 5.17 is also the combinatorial
distance on the tree. Indeed, looking at when Py is inside Px for x, y ∈ R, we see that [(Id, x)] is
a vertex of I if and only if x ∈ ω(πL)Z. Furthermore, x is a vertex of degree |K|3+1 if and only
if x ∈ 2.ω(πL)Z.

Theorem 5.19. Let r ∈ N. The map B0(r) → I0,r: [(g, x)] 7→ [(pr(g), x)]
0,r is a (pr:P0 → P 0,r

0 )-
equivariant bijection.

Proof. The map is well-defined by Lemma 3.4.

• Injectivity: let [(g, x)], [(h, y)] ∈ B0(r) be such that they have the same image in I0,r. By
Remark 5.11, it means that for all ñ ∈ N0,r such that ν(ñ)(x) = y, pr(g)

−1pr(h)ñ ∈ P 0,r
x .

So, we can assume that ñ is either equal to Id, or is of the form
(

0 0 1
0 −1 0
1 0 0

)

. Hence, there exists

n ∈ N such that pr(n) = ñ. But ν(n)(x) = y, and g−1hn ∈ p−1
r (P 0,r

x ) ⊂ Px by Lemma 5.16.
Hence, [(g, x)] = [(h, y)], as wanted.

• Surjectivity: follows directly from the surjectivity of pr:P0 → P 0,r
0 (Corollary 5.15).

• Equivariance: h.[(g, x)] = [(hg, x)] 7→ [(pr(hg), x)]
0,r = pr(h).[(pr(g), x)]

0,r.
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5.4 Arithmetic convergence

Definition 5.20. Consider the set of unramified pairs (K,L) where K is a local field and L is an
unramified (separable) quadratic extension of K. We say that two unramified pairs (K1, L1) and
(K2, L2) are isomorphic if there exists a conjugation equivariant isomorphism between L1 and L2,
and we let Lur be the set of unramified pairs, up to isomorphism. For each prime p, let us also
define Lur

pn = {(K,L) ∈ Lur | |K|= pn}.

As in Section 4, we define a metric on the space Lur. For L ∈ Lur and r ∈ N, the Galois
conjugation induces an automorphism of OL/m

r
L that we still call the conjugation.

Definition 5.21. Let (K1, L1) and (K2, L2) be in Lur. We say that (K1, L1) is r-close to (K2, L2)
if and only if there exists a conjugation equivariant isomorphism OL1

/mr
L1

→ OL2
/mr

L2
.

Remark 5.22. A conjugation equivariant isomorphism OL1
/mr

L1
→ OL2

/mr
L2

always induces an
isomorphism OK1

/mr
K1

→ OK2
/mr

L2
, since OKi

/mr
Ki

is the invariant subring of OLi
/mr

Li
.

Remark 5.23. Note that being r-close is an equivalence relation, and that if r ≥ l and (K1, L1)
is r-close to (K2, L2), then (K1, L1) is l-close to (K2, L2).

Again, this notion of closeness induces a non-archimedean metric on Lur. Let

d:Lur × Lur → R≥0: d((K1, L1); (K2, L2)) = inf{ 1

2r
| (K1, L1) is r-close to (K2, L2)}

Lemma 5.24. d(· ; ·) is a non-archimedean metric on Lur.

Proof. If d((K1, L1); (K2, L2)) = 0, then OL1
and OL2

are equivariantly isomorphic. Hence, the
pairs of field of fraction are isomorphic in Lur, as wanted. The fact that this distance is non-
archimedean is a consequence of Remark 5.23.

Actually, by the uniqueness of unramified quadratic extension over a given local field, Lur is
isometric to the space K introduced in Definition 4.24.

Proposition 5.25. The map Lur → K: (K,L) → K is an isometry, which maps Lur
pn to Kpn .

Hence, Lur
pn is homeomorphic to N̂, the accumulation point being (Fpn((X)),Fp2n((X))).

Proof. The given map is indeed a bijection, by the uniqueness of unramified quadratic exten-
sions. We prove that it is an isometry. Let (K1, L1), (K2, L2) ∈ Lur. By Remark 5.22, if
d((K1, L1); (K2, L2)) ≤ ε (for some ε ∈ R>0)), then d(K1;K2) ≤ ε.

To prove the converse, assume that K1 and K2 are r-close with r ≥ 1 (note that there is
nothing to prove for r = 0). Then K1

∼= K2
∼= Fpn . Let T 2 − αT + β be an irreducible separable

quadratic polynomial in Fpn [T ]. For i = 1, 2, let αi (respectively βi) be a lift of α (respectively β)
under OKi

/mr
Ki

→ Ki. Then OLi
/mr

Li

∼= (OKi
/mr

Ki
)[T ]/(T 2 − αiT + βi) (for i = 1, 2).

Since this is true for any lifts αi and βi, we can assume that α1 (respectively β1) maps to
α2 (respectively β2) under the given isomorphism f :OK1

/mr
K1

∼= OK2
/mr

K2
, so that f extends to

a conjugation equivariant isomorphism of rings OL1
/mr

L1

∼= OL2
/mr

L2
. We conclude that Lur is

homeomorphic to N̂ in view of Proposition 4.30.

5.5 Continuity from unramified pairs to subgroups of Aut(T )

In this section, we start to vary the unramified pair (K,L), and look at the variation it produces

on the Bruhat–Tits tree of SU
L/K
3 . Recall that we introduced a notation to keep track of the

dependence on (K,L) of many of the definitions we made in this section (see Remark 5.4 and
Remark 5.10).

Proposition 5.26. Let (K1, L1) and (K2, L2) be two elements in Lur. Assume that (K1, L1)
is r-close to (K2, L2), for some r ∈ N. Then, (P 0,r

0 )(K1,L1)
∼= (P 0,r

0 )(K2,L2), and I0,r
(K1,L1)

is

equivariantly in bijection with I0,r
(K2,L2)

.
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Proof. The isomorphism OL1
/mr

L1

∼= OL2
/mr

L2
induces a group isomorphism ϕ

SL3(OL1
/mr

L1
) SL3(OL2

/mr
L2
)∼=

∨
(P 0,r

0 )(K1,L1) (P 0,r
0 )(K2,L2)

∨

ϕ

Define a linear map f :R → R:x 7→ x
ω(πL2

)

ω(πL1
) . It is clear that for all x ∈ [−ω(πr

L1
), ω(πr

L1
)], ϕ

restricts to an isomorphism (P 0,r
x )(K1,L1)

∼= (P 0,r
f(x))(K2,L2). Furthermore,

ϕ(T 0,r)(K1,L1) = (T 0,r)(K2,L2)

ϕ(M0,r)(K1,L1) = (M0,r)(K2,L2)

and for all n ∈ N0,r, f(n.x) = ϕ(n).f(x). Hence, the map I0,r
(K1,L1)

→ I0,r
(K1,L1)

: [(g, x)]0,r 7→
[(ϕ(g), f(x))]0,r is a ϕ-equivariant bijection.

We again discuss the homomorphism SU
L/K
3 (K) → Aut(I(K,L)).

Proposition 5.27. Let I = I(K,L) be the Bruhat–Tits tree of SU
L/K
3 (K). The homomor-

phism ˆ : SU
L/K
3 (K) → Aut(I) is continuous with closed image, and the kernel is equal to the

centre of SU
L/K
3 (K).

Proof. The proof is word for word the same as the proof of Proposition 4.32, upon replacing

SL2(D) by SU
L/K
3 (K).

The convergence is then a more or less direct consequence of Theorem 5.19.

Theorem 5.28. Let ((Ki, Li))i∈N be a sequence in Lur which converges to (K,L), and let Gi =

SU
Li/Ki

3 (Ki) (respectively G = SU
L/K
3 (K)). For N big enough and for all i ≥ N , there exist iso-

morphisms I(Ki,Li)
∼= I(K,L) such that the induced embeddings Ĝi →֒ Aut(I(K,L)) make (Ĝi)i≥N

converge to Ĝ in the Chabauty topology of Aut(I(K,L)).

Proof. The Bruhat–Tits tree I(Ki,Li) is the semiregular tree of bidegree (p3n + 1; pn + 1) if and
only if (Ki, Li) belongs to Lur

pn . Hence there exists N such that for all i ≥ N , I(Ki,Li)
∼= I(K,L).

Passing to a subsequence, we can assume that (Ki, Li) is (i)-close to (K,L). We now define
an explicit isomorphism fi: I(Ki,Li) → I(K,L) as follows: let I0,i

(Ki,Li)
∼= I0,i

(K,L) be the isomorphism

given by Proposition 5.26. By Theorem 5.19, this gives an isomorphism on balls of radius i:
I(Ki,Li) ⊃ B0(i) ∼= B0(i) ⊂ I(K,L) (recall that by Lemma 5.17, B0(i) is really the ball of radius
i on the tree I(K,L)). As I(Ki,Li) is a semiregular tree of the same bidegree than I(K,L), we can
extend this isomorphism of balls to an isomorphism fi: I(Ki,Li) → I(K,L) (this extension is of course

not unique, but we choose one such). By means of fi, we get an embedding Ĝi →֒ Aut(I(K,L)).
Now the end of the proof is word for word the same as the corresponding end of the proof

of Theorem 4.33, upon making the following changes: replace Di with (Ki, Li), replace D with
(K,L), replace d with 1, and replace all references to results in Section 4 by their corresponding
results in Section 5.

We then deduce the proof of the main theorem announced in the introduction for groups of

type SU
L/K
3 when L is unramified. To shorten the notations, we set G(K,L) = SU

L/K
3 (K) in the

following proof.

Proof of Theorem 1.4. Let T be a semiregular tree and let Lur
T = {(K,L) ∈ Lur | the Bruhat–Tits

tree of G(K,L) is isomorphic to T }. By Remark 5.5 and Proposition 5.25, Lur
T is a compact space.

Now, by Theorem 5.28, the map Lur
T → ST : (K,L) 7→ Ĝ(K,L) is continuous. Let (K1, L1) and

(K2, L2) be unramified pairs in Lur. We claim that Ĝ(K1,L1) = Ĝ(K2,L2) if and only if (K1, L1) =
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(K2, L2). Indeed, if Ĝ(K1,L1) is abstractly isomorphic to Ĝ(K2,L2), then by [BT73, Corollaire 8.13],
the corresponding adjoint algebraic groups AdG1 and AdG2 are algebraically isomorphic over
an isomorphism of fields K1

∼= K2. Since AdG1 (respectively AdG2) is quasi-split, there exists
a smallest extension splitting it ([BT84a, 4.1.2]), namely L1 (respectively L2). Hence, (K1, L1) ∼=
(K2, L2), as wanted.

To summarise, Lur
T → ST : (K,L) 7→ Ĝ(K,L) is an injective continuous map whose source is a

compact space, hence it is a homeomorphism onto its image. Now, the explicit description given
in Theorem 1.4 follows from Remark 5.5 and Proposition 5.25.

6 Convergence of groups of type SU
L/K
3 , L ramified of odd

residue characteristic

We keep our notations for local fields (see Section 2). Furthermore, throughout this section, L is
a ramified quadratic extension of the base local field K, and the residue characteristic is not 2.
Note that such an extension is automatically separable (because of the assumption on the residue
characteristic) and we have L ∼= K[T ]/(T 2 + β) with β a uniformiser of K. The results are very
close to those of Section 5.

6.1 Construction of the Bruhat–Tits tree

In the following definition of point stabilisers, we again use the notation introduced in Defini-
tion 4.1.

Definition 6.1. For x ∈ R, we define Px = {g ∈ SU
L/K
3 (K) | ω(g) ≥

(

0 − x
2

−x
x
2

0 − x
2

x x
2

0

)

}

Definition 6.2. Consider the following subsets

• T = {
(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

| x ∈ L×} < SU
L/K
3 (K)

• M = {
(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

| x ∈ L×} ⊂ SU
L/K
3 (K)

and let N = T ⊔M .

Definition 6.3. Let ν:N → Aff(R) be defined as follows: for m =

(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

∈M , ν(m) is

the reflection through −ω(x), while for t =

(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

∈ T , ν(t) is the translation by −2ω(x).

Then the Bruhat–Tits tree I of SU
L/K
3 (recall that in this section, L is ramified and the residue

characteristic is not 2) is the one obtained by applying Definition 3.1 to the collection of subgroups
{(Px)x∈R, N} appearing in Definition 6.1 and Definition 6.2, together with the homomorphism
ν:N → Aff(R) of Definition 6.3. We show in Appendix A that our definitions agree with [BT72,
7.4.1 and 7.4.2], so that the given data is indeed obtained from a valued root datum of rank one
on G.

Remark 6.4. Note that the construction of the Bruhat–Tits tree of SU
L/K
3 depends on the pair

(K,L). When needed, we keep track of this dependence by adding the subscript (K,L) to the
objects involved. This gives rise to the notations (Px)(K,L), T(K,L), M(K,L), N(K,L), ν(K,L) and
I(K,L).

Remark 6.5. The Bruhat–Tits tree of SU
L/K
3 is actually the (|K|+1)-regular tree. Indeed, this

follows from the fact that our definition of I agrees with the one given in [BT72, 7.4.1 and 7.4.2],
and from the tables in [Tit79, 4.2 and 4.3].
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6.2 Local model of the Bruhat–Tits tree

We now proceed to define a local model for the Bruhat–Tits tree of SU
L/K
3 when L is ramified

and the residue characteristic is not 2. The same remarks as in the SL2(D) case apply, so that we
go quickly through the definitions. Note that the valuation ω (respectively the Galois conjugation
x 7→ x̄) on L induces a well-defined map on OL/m

r
L that we still denote ω (respectively x 7→ x̄).

Definition 6.6. Let r ∈ N and x ∈ [−ω(πr
L), ω(π

r
L)]. We set

P 0,r
x = {g ∈ SL3(OL/m

r
L) | S ḡg = Id, ω(g) ≥

(

0 − x
2

−x
x
2

0 − x
2

x x
2

0

)

}.

Definition 6.7. We define

• H0,r = {
(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

∈ SL3(OL/m
r
L) | ω(x) = 0}

• M0,r = {
(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

∈ SL3(OL/m
r
L) | ω(x) = 0}

And we set N0,r = H0,r ⊔M0,r.

Definition 6.8. We let H0,r act trivially on R, and we let all elements of M0,r act as a reflection
through 0 ∈ R. This gives an affine action of N0,r on R, and we denote again the resulting map
N0,r → Aff(R) by ν.

We are now able to give a definition of the ball of radius r around [(Id, 0)] ∈ I which only
depends on the ring OL/m

r
L, and not on the whole field L.

Definition 6.9. Let r ∈ N. We define an r-local equivalence on P 0,r
0 × [−ω(πr

L), ω(π
r
L)] as follows.

For g, h ∈ P 0,r
0 and x, y ∈ [−ω(πr

L), ω(π
r
L)]

(g, x) ∼0,r (h, y) ⇔ there exists n ∈ N0,r such that ν(n)(x) = y and g−1hn ∈ P 0,r
x

The resulting space I0,r = P 0,r
0 × [−ω(πr

L), ω(π
r
L)]/∼0,r is called the local Bruhat–Tits tree of

radius r around 0, and [(g, x)]0,r stands for the equivalence class of (g, x) in I0,r. The group P 0,r
0

acts on I0,r by multiplication on the first component.

Remark 6.10. Note that the construction of the local Bruhat–Tits tree of SU
L/K
3 depends on the

pair (K,L) (which is assumed to be ramified of odd residue characteristic in this section). When
needed, we keep track of this dependence by adding the subscript (K,L) to the objects involved.
This gives rise to the notations (P 0,r

x )(K,L), H
0,r
(K,L), M

0,r
(K,L), N

0,r
(K,L) and I0,r

(K,L).

Remark 6.11. Also, Remark 4.13 holds equally well in this case, with exactly the same proof,
upon replacing all d’s by 1.

6.3 Integral model

We now proceed to define an integral model, and compare its rational points with our local model

for the Bruhat–Tits tree of SU
L/K
3 when L is ramified and the residue characteristic is not 2. Again,

the same remarks as in the SL2(D) case apply, so that we go quickly through the definitions.

Definition 6.12. Let SU
L/K
3 be the group SU3 considered over OK . We omit the superscript

L/K when it is understood from the context.

Concretely, SU3 is the OK-scheme associated with the OK-algebra OK [SU3] = OK [Xkl
ij ]/I

(i, j ∈ {1, 2, 3}, k, l ∈ {1, 2}), where I is the ideal generated by the following equations

For all i, j ∈ {1, 2, 3},
{

X12
ij = −βX21

ij

X22
ij = X11

ij
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∑

σ∈Sym(3)

[(−1)sgn(σ)
3
∏

i=1

Xiσ(i)]− 1

(

X33 X23 X13

X32 X22 X12

X31 X21 X11

)(

X11 X12 X13

X21 X22 X23

X31 X32 X33

)

−
(

1 0 0
0 1 0
0 0 1

)

Here β is a uniformiser of OK such that L ∼= K[T ]/(T 2 + β) (L is always of this form because it
is a ramified extension and the residue characteristic is not 2), so that the first equations encode
the ring embedding OL →֒ M2(OK). In the other equations, Xij stands for the 2 × 2 matrix
(

X11
ij X12

ij

X21
ij X22

ij

)

. Also, for a 2 × 2 matrix M =
(

M11 M12

M21 M22

)

, we denote M =
(

M22 −M12

−M21 M11

)

(this

operation reflects the conjugation on OL). Finally note that a 1 (respectively a 0) in the above
equations denotes the 2×2 identity matrix (respectively the 2×2 zero matrix), i.e. it corresponds
to the 1 ∈ L (respectively 0 ∈ L).

Theorem 6.13. SU
L/K
3 is a smooth OK-scheme.

Proof. It suffices to prove that it is flat and that the fibres are smooth. The generic fibre is SU
L/K
3 ,

and is a form of SL3, hence is smooth over K. The closed fibre is the K-functor (SU3)K which
associates to any K-algebra R the group

(SU3)K(R) = {g ⊗ x ∈ SL3(R ⊗K OL/m
2
L) | S(g ⊗ x̄)(g ⊗ x) = Id}

Let SO3 be the special orthogonal group associated with the quadratic form (x−1, x0, x1) 7→
x−1x1 + x20, considered over K. More explicitly, for a K-algebra R,

(SO3)K(R) = {g ∈ SL3(R) | Sgg = Id}

Recall that throughout this section, we are assuming that the characteristic ofK is not 2. It is then
well known that SO3 is isomorphic to PGL2 over K, hence is smooth and connected of dimension
3. The homomorphism of K-algebra OL/m

2
L → K induces a homomorphism of algebraic groups

f : (SU3)K → (SO3)K . The kernel of this map can be computed by hand, and we obtain that for
any K-algebra R,

ker f(R) = {g ∈ SL3(R ⊗K OL/m
2
L) | g =











(

1 0
g21
11 1

) (

0 0
g21
12 0

) (

0 0
g21
13 0

)

(

0 0
g21
21 0

) (

1 0
−2g21

11 1

) (

0 0
g21
12 0

)

(

0 0
g21
31 0

) (

0 0
g21
21 0

) (

1 0
g21
11 1

)











}

This description makes it clear that ker f is of dimension 5 and connected. Hence, using [DG70,
II, §5, Proposition 5.1] (note that it does not use smoothness), we conclude that dim(SU3)K = 8.
But we can also easily compute that the Lie algebra of (SU3)K is

(su3)K = {g ∈M3(OL/m
2
L) | S ḡ + g = 0, trace(g) = 0}

This is readily seen to be of dimension 8 (recall that the residue characteristic is not 2), and hence,
we conclude that (SU3)K is smooth, as wanted. Also note that the homomorphism f : (SU3)K →
(SO3)K is surjective onto a connected algebraic group, with connected kernel, hence (SU3)K is
also connected (and hence irreducible).

It remains to prove flatness, which is always a delicate matter. Since we already know that
the fibres of SU3 over SpecOK are smooth, irreducible and of the same dimension, it suffices to
give a closed embedding A1

OK
→֒ SU3 (see Lemma 6.14). Let πL be a uniformiser of L such that

πL = −πL. The morphism of schemes A1
OK

→ SU3:x 7→
(

1 0 x.πL

0 1 0
0 0 1

)

is such a closed embedding,

which concludes the proof.
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Lemma 6.14. Let K be a local field, let X be an affine scheme of finite type over OK and let
A1

OK
be the affine line over OK . Assume that XK and XK are smooth and irreducible of the same

dimension. Further assume that there exists a closed embedding of OK-schemes A1
OK

→֒ X. Then
X is flat over OK .

Proof. Let Y be the schematic adherence of XK in X . By definition, Y is flat with XK = YK ,
and it suffices to prove that YK = XK .

Since A1
OK

is flat, (A1
OK

)K is dense in A1
OK

, so that YK is non-empty. Now, flatness of Y
implies that the irreducible components of YK have the same dimension than YK = XK (see for
example [TS16, Tag 02NM]). Also, these irreducible components are closed subschemes of XK ,
which is a smooth irreducible (hence integral) affine scheme. Hence, by Lemma 6.15, we conclude
that YK = XK , as wanted.

Lemma 6.15. Let k be a field, and let X be an integral finite type affine k-scheme of dimension n.
Let Y be a closed subscheme of X and assume that Y has an irreducible component Z of dimension
n. Then Z = Y = X (as k-schemes).

Proof. We follow the argument given in [GE]: the composite k[X ] ։ k[Y ] ։ k[Z] has its kernel
contained in the nilradical of k[X ] (by Krull’s principal ideal theorem), which shows that R։ k[Z]
is injective as well (because being a domain, R has in particular a trivial nilradical).

Remark 6.16. In passing, note that the group (SU
L/K
3 )K is not a reductive group over K (as

predicted by [BT84a, 4.6.31]). In fact, we have just showed in the above proof that its reductive
quotient is naturally described as the orthogonal group in 3 variables. Again, this might be seen
as a reason for the complication of the ramified, residue characteristic 2 case, since philosophically,
it involves orthogonal group in characteristic 2. Also note that (SU3)OL

is not isomorphic to SL3

over OL, as opposed to what happens in the unramified case. Indeed, if it were, then the closed
fibre (SU3)K would be isomorphic to SL3 over K ∼= OL/mL, which is not true, as we have just
seen in the above proof.

We now compare the rational points of the integral model with our local model.

Lemma 6.17. SU3(OK) ∼= P0 and SU3(OK/m
r
K) ∼= P 0,2r

0 . Following the identifications

SU3(OK) P0 ≤ SL3(OL)∼=

SU3(OK/m
r
K) P 0,2r

0 ≤ SL3(OL/m
2r
L )∼=

the homomorphism p2r:P0 → P 0,2r
0 is the one induced by the projection of the coefficients OL →

OL/m
2r
L .

Proof. Let πL be a uniformiser of OL such that π2
L = −β is a uniformiser of OK . Using the fact

that OL
∼= OK ⊕ πL.OK , one can check that MorOK

(OK [SU3],OK) ∼= {g ∈ SL3(OL) | S ḡg = Id},
as wanted.

Furthermore, since L is ramified, OL/m
2r
L

∼= OK/m
r
K ⊕ πL.OK/m

r
K , and one can check that

MorOK
(OK [SU3],OK/m

r
K) ∼= {g ∈ SL3(OL/m

2r
L ) | S ḡg = Id}, as wanted.

And we can then deduce the surjectivity of the map p2r.

Corollary 6.18. The map p2r:P0 → P 0,2r
0 is surjective, for all r ∈ N.

Proof. This is a direct consequence of the commutative square involving P0 → P 0,2r
0 given in

Lemma 6.17, together with the fact that the integral model is smooth by Theorem 6.13, so that
Theorem 4.17 applies to the left hand side of the diagram.

While this is not necessary for our work on Chabauty limits, we nevertheless give a proof that
the map pr is also surjective for odd r.
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Corollary 6.19. The map pr:P0 → P 0,r
0 is surjective, for all r ∈ N.

Proof. By Corollary 6.18, it suffices to prove that P
0,2(r+1)
0 → P 0,2r+1

0 is surjective for all r ∈ N.

Note that the composite P
0,2(r+1)
0

fr−→ P 0,2r+1
0

gr−→ P 0,2r
0 is surjective for all r ∈ N, and that the

groups are finite. Hence, it suffices to prove that |ker(fr ◦ gr)|= |ker(fr)|.|ker(gr)|. For a ring R,
let M3(R) denote the 3-by-3 matrices with coefficients in R. Now, for r ≥ 1, we have

ker(fr ◦ gr) ∼= {g ∈M3(OL/m
2
L) | S ḡ + g = 0, trace(g) = 0}

ker(fr) ∼= {g ∈M3(OL/mL) | Sg = g, trace(g) = 0}
ker(gr) ∼= {g ∈M3(OL/mL) | Sg + g = 0, trace(g) = 0}

Since the residue characteristic is not 2, the result holds. Finally, the surjectivity of P 0,2
0 → P 0,1

0

is a direct consequence of the splitting of the ring homomorphism OL/m
2
L → OL/mL.

We also need a kind of injectivity result:

Lemma 6.20. Let r ∈ N and x ∈ [−ω(πr
L), ω(π

r
L)]. Then p−1

r (P 0,r
x ) ⊂ Px.

Proof. Belonging to p−1
r (P 0,r

x ) implies that the valuation of the off diagonal entries are big enough.
Hence, the result follows directly from Definition 6.1.

We finally arrive at the result corresponding to Theorem 4.22: the ball of radius r together

with the action of SU
L/K
3 (K) is encoded in P 0,r

0 . We first need an adequate description of the ball
of radius r around 0 in I.

Lemma 6.21. Renormalise the distance on R so that dR(0;ω(πL)) = 1, and put the metric dI
on I arising from the distance dR (see Remark 3.2). Let B0(r) = {p ∈ I | dI([(Id, 0)]; p) ≤ r} be
the ball of radius r around 0 in I. Let B̃0(r) = {[(g, x)] ∈ I | g ∈ P0, x ∈ [−ω(πr

L), ω(π
r
L)] ⊂ R}.

Then B0(r) = B̃0(r).

Proof. The proof is word for word the same than the proof of Lemma 4.20, upon replacing all d’s
by 1’s.

Remark 6.22. The distance dI that we introduced in Lemma 6.21 is also the combinatorial
distance on the tree. Indeed, looking at when Py is inside Px for x, y ∈ R, we see that [(Id, x)] is
a vertex of I if and only if x ∈ ω(πL)Z.

Theorem 6.23. Let r ∈ N. The map B0(r) → I0,r: [(g, x)] 7→ [(pr(g), x)]
0,r is a (pr:P0 → P 0,r

0 )-
equivariant bijection.

Proof. The proof is word for word the same than the proof of Theorem 5.19, upon replacing all
references to results in Section 5 with their analogues in this section.

6.4 Arithmetic convergence

Definition 6.24. Consider the set of ramified pairs (K,L) where K is a local field of odd residue
characteristic and L is a ramified (separable) quadratic extension of K. We say that two ramified
pairs (K1, L1) and (K2, L2) are isomorphic if there exists a conjugation equivariant isomorphism
between L1 and L2, and we let Lram

odd be the set of ramified pairs in odd residue characteristic, up
to isomorphism. For an odd prime power pn, we also define Lram

pn = {(K,L) ∈ Lram
odd | |K|= pn}.

As in Section 4, we define a metric on the space Lram
odd . For L ∈ Lram

odd and r ∈ N, the Galois
conjugation induces an automorphism of OL/m

r
L that we still call the conjugation.

Definition 6.25. Let (K1, L1) and (K2, L2) be in Lram
odd . We say that (K1, L1) is r-close to (K2, L2)

if and only if there exists a conjugation equivariant isomorphism OL1
/mr

L1
→ OL2

/mr
L2
.
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Remark 6.26. A conjugation equivariant isomorphism OL1
/mr

L1
→ OL2

/mr
L2

always induces an

isomorphism OK1
/m

⌈ r
2
⌉

K1
→ OK2

/m
⌈ r
2
⌉

L2
, since OKi

/m
⌈ r
2
⌉

Ki
is the invariant subring of OLi

/mr
Li
.

Remark 6.27. For any uniformiser β ∈ Fpn((X)), the pair (Fpn((X)),Fpn((X))[T ]/(T 2 + β)) is

isomorphic to the pair (Fpn((X)),Fpn((
√
X))) (because Fpn((X)) has many automorphisms). Hence,

despite the fact that there are two non-isomorphic quadratic ramified extensions of Fpn((X)), there
is only one ramified pair of positive characteristic in Lram

pn .

Remark 6.28. Note that being r-close is an equivalence relation, and that if r ≥ l and (K1, L1)
is r-close to (K2, L2), then (K1, L1) is l-close to (K2, L2).

Again, this notion of closeness induces a non-archimedean metric on Lram
odd . Let

d:Lram
odd × Lram

odd → R≥0: d((K1, L1); (K2, L2)) = inf{ 1

2r
| (K1, L1) is r-close to (K2, L2)}

Lemma 6.29. d(· ; ·) is a non-archimedean metric on Lram
odd .

Proof. If d((K1, L1); (K2, L2)) = 0, then OL1
and OL2

are equivariantly isomorphic. Hence, the
pairs of field of fraction are isomorphic in Lram

odd , as wanted. The fact that this distance is non-
archimedean is a consequence of Remark 6.28.

We now go on to prove that Lram
pn is homeomorphic to N̂. Again, the key ingredient in this

identification is Theorem 4.28. We further need a variation for ramified quadratic extension in
odd residue characteristic.

Corollary 6.30. Let K be a totally ramified extension of degree k of Qpn , where p is an odd
prime, and let L be a ramified quadratic extension of K. The distance between (K,L) and
(Fpn((X)),Fpn((

√
X))) is 1

22k .

Proof. Let t be a uniformiser of L such that t2 = πK is a uniformiser of K (such a t exists because
the residue characteristic is odd). Since we have the following equivariant isomorphisms of rings

OL/m
2k
L

∼= OK/m
k
K ⊕ t.OK/m

k
K

Fpn [[
√
X]]/(

√
X

2k
) ∼= Fpn [[X ]]/(Xk)⊕

√
X.Fpn [[X ]]/(Xk)

it is clear (in view of Theorem 4.28) that (K,L) is 2k-close to (Fpn((X)),Fpn((
√
X))).

To conclude that the distance is 1
22k it suffices to note that if (K,L) and (Fpn((X)),Fpn((

√
X)))

were r-close for r > 2k, then K and Fpn((X)) would be ⌈ r
2⌉-close as well by Remark 6.26, contra-

dicting Theorem 4.28.

We deduce the homeomorphism type of Lram
pn .

Proposition 6.31. Let p be an odd prime number. Then Lram
pn is homeomorphic to N̂.

Proof.

Claim 1. Let (K,L) ∈ Lram
pn . If K is of characteristic 0, (K,L) is isolated in Lram

pn .

Proof of the claim: If (K1, L1) is r-close to (K2, L2), then K1 is ⌈ r
2⌉-close to K2 by Remark 6.26.

Hence, the result follows from Claim 2 and Claim 3 in the proof of Proposition 4.30. �

Claim 2. Lram
pn is a countable space.

Proof of the claim: By Claim 3 in the proof of Proposition 4.30, there are only countably many
pairs of characteristic 0 in Lram

pn . Furthermore, there is only one ramified pair of characteristic p
in Lram

pn by Remark 6.27. �

We are now able to deduce the homeomorphism type of Lram
pn : ramified pairs of characteristic 0

are isolated by Claim 1, and the ramified pair of positive characteristic is an accumulation point
in Lram

pn by Corollary 6.30. Hence, by [MS20, Théorème 1], Lram
pn is homeomorphic to N̂.
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6.5 Continuity from pairs in Lram
odd to subgroups of Aut(T )

In this section, we start to vary the ramified pair (K,L), and look at the variation it produces

on the Bruhat–Tits tree of SU
L/K
3 . Recall that we introduced a notation to keep track of the

dependence on (K,L) of many of the definitions we made in this section (see Remark 6.4 and
Remark 6.10).

Proposition 6.32. Let (K1, L1) and (K2, L2) be two elements in Lram
odd . Assume that (K1, L1)

is r-close to (K2, L2), for some r ∈ N. Then, (P 0,r
0 )(K1,L1)

∼= (P 0,r
0 )(K2,L2), and I0,r

(K1,L1)
is

equivariantly in bijection with I0,r
(K2,L2)

.

Proof. Parallel the proof of Proposition 5.26.

Proposition 6.33. Let I = I(K,L) be the Bruhat–Tits tree of SU
L/K
3 (K). The homomor-

phism ˆ : SU
L/K
3 (K) → Aut(I) is continuous with closed image, and the kernel is equal to the

centre of SU
L/K
3 (K).

Proof. The proof is word for word the same as the proof of Proposition 4.32, upon replacing

SL2(D) by SU
L/K
3 (K).

Theorem 6.34. Let ((Ki, Li))i∈N be a sequence in Lram
odd which converges to (K,L), and let

Gi = SU
Li/Ki

3 (Ki) (respectively G = SU
L/K
3 (K)). For N big enough and for all i ≥ N , there

exist isomorphisms I(Ki,Li)
∼= I(K,L) such that the induced embeddings Ĝi →֒ Aut(I(K,L)) make

(Ĝi)i≥N converge to Ĝ in the Chabauty topology of Aut(I(K,L)).

Proof. The Bruhat–Tits tree I(Ki,Li) is the regular tree of degree pn + 1 if and only if (Ki, Li)
belongs to Lram

pn . Hence there exists N such that for all i ≥ N , I(Ki,Li)
∼= I(K,L).

Then the end of the proof parallels the proof of Theorem 5.28.

We then deduce the proof of the main theorem announced in the introduction for groups of

type SU
L/K
3 when L is ramified and of odd residue characteristic. To shorten the notations, we

set G(K,L) = SU
L/K
3 (K) and GK = SL2(K) in the following proof.

Proof of Theorem 1.3. Let T be the (pn + 1)-regular tree. Paralleling the proof of Theorem 1.4,
we see that the maps Lram

pn → ST : (K,L) 7→ Ĝ(K,L) and Kpn → ST :K 7→ ĜK are injective
continuous maps whose source is a compact space, hence they are homeomorphisms onto their
respective image. Now, the explicit description given in Theorem 1.3 follows from Remark 6.5 and
Proposition 6.31.

7 Convergence of groups of type SU
L/K
3 , L ramified of residue

characteristic 2

We keep our notations for local fields (see Section 2). Furthermore, throughout this section, L is
a separable quadratic ramified extension of the base local field K, and the residue characteristic
is 2. We carry out the same program than in previous sections, but with more technicalities to
overcome. The comments made all along Section 4 also apply here, and we do not repeat them to
not lengthen too much the paper.

7.1 Construction of the Bruhat–Tits tree

The definition of Px is less straightforward in this case. Following [BT84a, 4.3.3], we define a
parameter that handles the complication.

Lemma 7.1. Let L/K be as in this section. There exists t ∈ L and α, β ∈ K such that:

30



1. L = K[t] and t2 − αt+ β = 0.

2. β is a uniformiser of K.

3. α = 0, or 0 < ω(β) ≤ ω(α) ≤ ω(2).

Proof. See [BT84a, Lemme 4.3.3, (ii)].

Note that α = 0 implies 2 6= 0 in K, since L is assumed to be a separable extension.

Definition 7.2. Let L/K be as in this section, and let t, α, β be as in Lemma 7.1. Let l = tα−1 ∈ L
if α 6= 0, and l = 1

2 ∈ L if α = 0, where α is as in Lemma 7.1. We then define γ = − 1
2ω(l) ∈ R.

Remark 7.3. Note that since the residue characteristic is 2, γ > 0.

In fact, the parameter γ associated with the extension L/K only depends on the normalisation
of the valuation on K.

Proposition 7.4. Let L/K be as in this section. Then the parameter γ introduced in Definition 7.2
does not depend on the choices of t, α and β. We call γ the parameter associated with the extension
L of K.

Proof. This is a direct corollary of the work of Bruhat–Tits. Indeed, according to [BT84a, Propo-
sition 4.3.3, (ii)], the element l appearing in Definition 7.2 has a maximal valuation amongst
elements of L of trace 1.

In the following definition of point stabilisers, we again use the notation introduced in Defini-
tion 4.1.

Definition 7.5. Let γ be the parameter associated with the extension L of K as in Definition 7.2.
For x ∈ R, we define

Px = {g ∈ SU
L/K
3 (K) | ω(g) ≥

(

0 − x
2
−γ −x

x
2
+γ 0 − x

2
+γ

x x
2
−γ 0

)

}

Definition 7.6. Consider the following subsets

• T = {
(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

| x ∈ L×} < SU
L/K
3 (K)

• M = {
(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

| x ∈ L×} ⊂ SU
L/K
3 (K)

and let N = T ⊔M .

Definition 7.7. Let ν:N → Aff(R) be defined as follows: for m =

(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

∈M , ν(m) is

the reflection through −ω(x), while for t =

(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

∈ T , ν(t) is the translation by −2ω(x).

Then the Bruhat–Tits tree I of SU
L/K
3 (recall that in this section, L is ramified of residue

characterisitic 2) is the one obtained by applying Definition 3.1 to the collection of subgroups
{(Px)x∈R, N} appearing in Definition 7.5 and Definition 7.6, together with the homomorphism
ν:N → Aff(R) of Definition 7.7. We show in Appendix A that our definitions agree with [BT72,
7.4.1 and 7.4.2], so that the given data is indeed obtained from a valued root datum of rank one
on G.

Remark 7.8. Note that the construction of the Bruhat–Tits tree of SU
L/K
3 depends on the pair

(K,L). When needed, we keep track of this dependence by adding the subscript (K,L) to the
objects involved. This gives rise to the notations γ(K,L), (Px)(K,L), T(K,L), M(K,L), N(K,L), ν(K,L)

and I(K,L).

Remark 7.9. The Bruhat–Tits tree of SU
L/K
3 is actually the (|K|+1)-regular tree. Indeed, this

follows from the fact that our definition of I agrees with the one given in [BT72, 7.4.1 and 7.4.2],
and from the tables in [Tit79, 4.2 and 4.3].
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7.2 Local model of the Bruhat–Tits tree

We now proceed to define a local model for the Bruhat–Tits tree of SU
L/K
3 when L is ramified of

residue characteristic 2. In fact, there are two kinds of local models: when the radius is small, the
local action degenerates to an SL2-type action, whereas for large radii, the local action is (similar
to) an SU3-type action. We introduce a new parameter which controls the meaning of small in
this case.

Definition 7.10. Set i0 = min{r ∈ N | ω(πr
L) ≥ γ}. Equivalently, let α be as in Lemma 7.1. If

α = 0 (respectively if α 6= 0), i0 is such that ω(πi0
K) = ω(2) (respectively ω(πi0

K) = ω(α)).

Note that since γ only depends on the normalisation of the valuation on K, i0 is an intrinsic
parameter of L/K (not even depending on the normalisation of the valuation).

Lemma 7.11. Let x be in OL. Then x+ x̄ ∈ πi0
KOK .

Proof. Let t, α, β be as in Lemma 7.1, so that OL = OK ⊕ t.OK . Let x1, x2 ∈ OK such that
x = x1 + tx2. Then x+ x̄ = 2x1 + αx2, which belongs to πi0

KOK by Definition 7.10.

Hence, we can divide the trace of any element of OL by πi0
K and still get an element of OK .

Since this map plays a central role, we make a formal definition.

Definition 7.12. Let L/K be as in this section, and let i0 be the associated parameter as in
Definition 7.10. Given a uniformiser πK , we define a homomorphism of OK-module Tr

π
i0
K

:OL →
OK :x 7→ x+x̄

π
i0
K

that we call the reduced trace map. More generally, for any OK-algebra R, the

map R ⊗OK
OL → R ⊗OK

OK : r ⊗ x 7→ r ⊗ Tr

π
i0
K

(x) is also called the reduced trace map and

is also denoted by Tr

π
i0
K

. In particular, taking R to be OK/m
r
K , we get a reduced trace map

Tr

π
i0
K

:OL/m
2r
L → OK/m

r
K .

The reduced trace map depends on a choice of uniformiser in OK . However, its action on
OL/m

2r
L only depends on the uniformiser modulo m

r+1
K , as the following result shows. Technically,

this result is only going to be used much later, but we decided to place it here to illustrate
concretely how this reduced trace map acts on quotient.

Lemma 7.13. Let L/K and i0 be as in Definition 7.12. Let πK and π̃K be two uniformisers of
K such that πK − π̃K ∈ m

r+1
K . Then for all s ≤ r and for all x ∈ OL/m

2s
L , Tr

π
i0
K

(x) = Tr

π̃
i0
K

(x).

Proof. Let x ∈ OL/m
2s
L and let x′ ∈ OL be a lift of x. Let λ and λ̃ be elements of OK such that

πi0
Kλ = x′ + x′ and π̃i0

K λ̃ = x′ + x′. We have to show that λ− λ̃ is in m
s
K .

By assumption, there exists ε ∈ m
r+1
K such that π̃K = πK + ε. Hence π−1

K .π̃K = 1 + π−1
K ε, so

that there exists δ ∈ m
r
K such that (1 + δ)π−1

K = π̃−1
K . We thus get that λ = π−i0

K (x′ + x′), while

λ̃ = (1 + δ)i0π−i0
K (x′ + x′), so that λ− λ̃ is in m

s
K , as wanted.

We now define local stabilisers. In case the radius is smaller than 2i0, local stabilisers somehow
degenerate to SL2-type stabilisers, which explains the surprising following definition. Ultimately,
this fact is responsible for Chabauty convergence of groups of type SU3 to SL2.

Definition 7.14. Let i0 be the parameter associated to L/K, let r ∈ N and let x ∈ [−ω(π2r
L ), ω(π2r

L )].

• For 2r ≤ 2i0, we define P 0,2r
x = {g ∈ SL2(OL/m

2r
L ) | ω(g) ≥

(

0 −x
x 0

)

}
• For 2r > 2i0, let t be a uniformiser of OL and let β = tt̄. We define

P 0,2r
x = {g ∈ SL3(OL/m

2r
L ) | S ḡ

( 1 0 0
0 βi0 0
0 0 1

)

g =
( 1 0 0

0 βi0 0
0 0 1

)

, ω(g) ≥
(

0 − x
2

−x
x
2

0 − x
2

x x
2

0

)

Tr

βi0
(ḡ31g11) = −N(g21),

T r

βi0
(ḡ33g13) = −N(g23)}.

When needed, we emphasize the dependence on t by denoting this group P 0,2r
x (t).
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Remark 7.15. It is not a priori clear that P 0,2r
x is a group when 2r > 2i0. This is a consequence

of our work on integral model, see Corollary 7.32.

Remark 7.16. We only give local models for an even radius. It seems a priori possible to give
local models for odd radius as well, but it would make this section even more technical than it
already is, so that we decided to not dwell on those complications.

Remark 7.17. If one defines P̃ 0,2r
x by taking the second (more complicated) definition for all

r ∈ N, then one can see (by carrying the kind of computations we perform later) that for 2r ≤ 2i0,
P 0,2r
x is a kind of reductive quotient of P̃ 0,2r

x .

We now show that P 0,2r
x (t) does not depend on t.

Lemma 7.18. Let 2r > 2i0, and let t, t′ be uniformisers of OL. Then for all x ∈ [−ω(π2r
L ), ω(π2r

L )],
P 0,2r
x (t) ∼= P 0,2r

x (t′).

Proof. Those groups are actually conjugate. Indeed, the map

P 0,2r
x (t) → P 0,2r

x (t′): g 7→
(

1 0 0
0 t−i0 (t′)i0 0
0 0 1

)

g

(

1 0 0
0 ti0 (t′)−i0 0
0 0 1

)

is readily seen to be an isomorphism.

Remark 7.19. In Definition 7.14 and in the case 2r > 2i0, one could bypass the choice of a
uniformiser t ∈ OL by directly choosing a uniformiser β ∈ OK and proceed to make the same
definition. However, it would then not be clear that the definition does not depend on the choice
of β, because there are uniformisers of OK that are not the norm of uniformisers of OL (see
[Ser79, Chapter V, §3, Remark]).

Definition 7.20. Let r ∈ N. For 2r ≤ 2i0, we define

1. H0,2r = {
(

x 0
0 x−1

)

∈ SL2(OL/m
2r
L ) | ω(x) = 0}

2. M0,2r = {
( 0 −x
x−1 0

)

∈ SL2(OL/m
2r
L ) | ω(x) = 0},

while for 2r > 2i0, we define

1. H0,2r = {
(

x 0 0
0 x−1x̄ 0
0 0 x̄−1

)

∈ SL3(OL/m
2r
L ) | ω(x) = 0}

2. M0,2r = {
(

0 0 x
0 −x−1x̄ 0

x̄−1 0 0

)

∈ SL3(OL/m
2r
L ) | ω(x) = 0}

And then for all r ∈ N, we set N0,2r = H0,2r ⊔M0,2r.

Definition 7.21. For all r ∈ N, we let H0,2r act trivially on R, and we let all elements of M0,2r

act as a reflection through 0 ∈ R. This gives an affine action of N0,2r on R, and we denote again
the resulting map N0,2r → Aff(R) by ν.

We are now able to give a local definition of the ball of radius 2r around [(Id, 0)] ∈ I. Since
the reduced trace is involved in the definition when 2r > 2i0, this local definition depends on a
bit more than OL/m

2r
L . Using Lemma 7.51, we prove in Proposition 7.52 that it only depends on

OL/m
2r+2i0
L .

Definition 7.22. Let r ∈ N. We define a 2r-local equivalence on P 0,2r
0 × [−ω(π2r

L ), ω(π2r
L )] as

follows. For g, h ∈ P 0,2r
0 and x, y ∈ [−ω(π2r

L ), ω(π2r
L )]

(g, x) ∼0,2r (h, y) ⇔ there exists n ∈ N0,2r such that ν(n)(x) = y and g−1hn ∈ P 0,2r
x

The resulting space I0,2r = P 0,2r
0 × [−ω(π2r

L ), ω(π2r
L )]/∼0,2r is called the local Bruhat–Tits tree of

radius 2r around 0, and [(g, x)]0,2r stands for the equivalence class of (g, x) in I0,2r. The group
P 0,2r
0 acts on I0,2r by multiplication on the first component.
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Remark 7.23. Note that the construction of the local Bruhat–Tits tree of SU
L/K
3 depends on the

pair (K,L) (which is assumed to be ramified and of residue characteristic 2 in this section). When
needed, we keep track of this dependence by adding the subscript (K,L) to the objects involved.
This gives rise to the notations (i0)(K,L), (P

0,2r
x )(K,L), H

0,2r
(K,L), M

0,2r
(K,L), N

0,2r
(K,L) and I0,2r

(K,L).

Remark 7.24. Also, Remark 4.13 holds equally well in this case, with exactly the same proof,
upon replacing all d’s by 2.

7.3 Integral model

We now proceed to define an integral model, and compare its rational points with our local model

for the Bruhat–Tits tree of SU
L/K
3 when L is ramified of residue characteristic 2. The construction

is more involved, because the naive integral model is not smooth in this case. In the following
definition, we denote by ROL

OK
SL3 the Weil restriction from OL to OK of SL3.

Definition 7.25. Let L/K be as in this section, let t be a uniformiser of L and let i0 be as in
Definition 7.10. Consider the homomorphism of K-group schemes

ϕi0 : SU
L/K
3 → [ROL

OK
SL3]K

g 7→
(

g11 ti0g12 g13
t−i0g21 g22 t−i0g23

g31 ti0g32 g33

)

We define SU
L/K
3 to be the schematic adherence of ϕi0 (SU

L/K
3 ) in ROL

OK
SL3.

Remark 7.26. Since two uniformisers of L differ by an invertible element ofOL, it follows from the

definition of the schematic adherence that SU
L/K
3 does not depend on the choice of a uniformiser

t ∈ OL. One can also check that directly using our explicit description of SU
L/K
3 in Theorem 7.29.

Remark 7.27. The concrete description given here was derived from the general construction
made in [BT87], see especially section 3.9 and the Theorem in section 5 of loc. cit. In Theorem 7.29,
we give the defining equations of SU3 inside ROL

OK
SL3. This allows us to prove in a direct way

that it is a smooth OK-group scheme, without referring to loc. cit.

Lemma 7.28. SU
L/K
3 is an OK-group scheme.

Proof. Since SL3 is smooth over OL, ROL

OK
SL3 is smooth and hence flat over OK . The result then

follows from [BT84a, 1.2.7].

We are actually able to determine explicitly the equations defining SU
L/K
3 . Recall the reduced

trace Tr

π
i0
K

:OL → OK introduced in Definition 7.12.

Theorem 7.29. Keep the notations of Definition 7.25 and let β = tt̄. For any OK-algebra R,

SU
L/K
3 (R) = {g ∈ROL

OK
SL3(R) | S ḡ

( 1 0 0
0 βi0 0
0 0 1

)

g =
( 1 0 0

0 βi0 0
0 0 1

)

,

T r

βi0
(ḡ31g11) = −N(g21),

T r

βi0
(ḡ33g13) = −N(g23)}

Furthermore, SU
L/K
3 is smooth over OK .

Proof. Recall that in loose terms, for Z an OK -scheme and YK a closed subscheme of ZK , the
schematic adherence of YK in Z is defined by all equations satisfied by YK , where we “put the
valuation of the coefficients as low as possible” (while still remaining in OK). More precisely, let
I(Y ) be the ideal of K[Z] defining YK in ZK , and let j:OK [Z] → K[Z] be the canonical map
(which is injective if and only if Z is flat). Then the ideal defining the schematic adherence of YK
in Z is j−1(I(Y )) (see [BT84a, 1.2.6]).
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Hence, an element g in SU
L/K
3 (R) clearly satisfies S ḡ

( 1 0 0
0 βi0 0
0 0 1

)

g =
( 1 0 0

0 βi0 0
0 0 1

)

. Moreover, since

g satisfies this equation, we get in particular that ḡ33g13 + ḡ23β
i0g23 + ḡ13g33 = 0, so that after

division by βi0 , we get Tr
βi0

(ḡ33g13) = −N(g23). The remaining equation is obtained similarly.

Let X be the OK-closed subscheme of ROL

OK
SL3 defined on the right hand side of the equality

in the theorem. We have just showed that X contains SU
L/K
3 as a closed subscheme, and we

want to prove that they are actually equal. For this, let us study the fibres of X over SpecOK .

Obviously, XK is isomorphic to SU
L/K
3 , and hence is smooth of dimension 8.

Claim. XK is a smooth irreducible scheme of dimension 8.

Proof of the claim: To prove those claims, we can assume that the residue field K is algebraically
closed. Note that modulo πK , the Galois conjugation is trivial and t2 = 0. Also note that K is of
characteristic 2, so that we do not need to use the minus sign for the moment. A direct application
of the definitions shows that

XK(K) = {g ∈ SL3(K[t]) | Sg
(

1 0 0
0 0 0
0 0 1

)

g =
(

1 0 0
0 0 0
0 0 1

)

,
T r

βi0
(g31g11) = (g21)

2,
T r

βi0
(g33g13) = (g23)

2},

Let g ∈ XK(K). In particular, g satisfies the following equations:

g33g11 + g13g31 = 1

g33g12 + g13g32 = 0

g32g11 + g12g31 = 0

From this, we deduce that g12 = 0 as follows:

g12 = (g33g11 + g13g31)g12 = g11g33g12 + g13g12g31

= g11g13g32 + g13g32g11 = 2(g11g13g32) = 0

And using the same trick, we get g32 = 0 as well. Now since g ∈ SL3(K[t]), its determinant is
1. But since g12 = g32 = 0, the equation det g = 1 degenerates to g11g22g33 + g13g22g31 = 1. And
using again that g33g11 + g13g31 = 1, this implies that g22 = 1.

We can summarise our results so far as follows:

XK(K) ∼= {g ∈ SL3(K[t]) | g22 = 1, g12 = g32 = 0,

T r

βi0
(g31g11) = (g21)

2,
T r

βi0
(g33g13) = (g23)

2}.

In fact, the right hand side is a subgroup of SL3(K[t]). To prove it, we write down two repre-
sentative examples of the computations involved. First, for g, h ∈ SL3(K[t]) and satisfying the
conditions, we check that Tr

βi0
((gh)33(gh)13) = ((gh)23)

2. We have

(gh)33(gh)13 = (g31h13 + g33h33)(g11h13 + g13h33)

= h213g31g11 + h33h13 + h233g33g13.

Hence, recalling that we are working in characteristic 2,

Tr

βi0
((gh)33(gh)13) = (h13)

2 Tr

βi0
(g31g11) +

Tr

βi0
(h33h13) + (h33)

2 Tr

βi0
(g33g13)

= (h13)
2(g21)

2 + (h23)
2 + (h33)

2(g23)
2

= (g21h13 + g22h23 + g23h33)
2 = ((gh)23)

2

As a second example, for g ∈ SL3(K[t]) such that g satisfies the given conditions, we check
that Tr

βi0
((g−1)33(g

−1)13) = ((g−1)23)
2. We have (g−1)31(g

−1)11 = g11g13, while ((g−1)21)
2 =
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(g11g23 + g21g13)
2. Hence we want to show that Tr

βi0
(g11g13) = (g11g23 + g21g13)

2. This goes as
follows:

Tr

βi0
(g11g13) =

Tr

βi0
(g11g13(g11g33 + g13g31))

=
Tr

βi0
(g211g13g33 + g11g

2
13g31)

= g211
Tr

βi0
(g13g33) + g213

Tr

βi0
(g11g31)

= g211g
2
23 + g213g

2
21 = (g11g23 + g21g13)

2,

as wanted (recall that we are in characteristic 2). Hence, XK(K) is indeed a group scheme over
K.

Now, let π:K[t] → K be the quotient modulo t, and consider the following composition of
homomorphism of K-group schemes:

XK(K)
f−→ SL2(K[t])

g−→ SL2(K)
(

g11 0 g13
g21 1 g23
g31 0 g33

)

7→ ( g11 g13
g31 g33 ) 7→

(

π(g11) π(g13)
π(g31) π(g33)

)

Note that ker f = {
(

1 0 0
g21 1 g23
0 0 1

)

| gij ∈ K[t], (g21)
2 = 0 = (g23)

2}. Hence ker f is not reduced, but

the corresponding reduced K-scheme is irreducible of dimension 2 (recall that t2 = 0). On the
other hand, ker g = {

( 1+tg11 tg12
tg21 1+tg22

)

| gij ∈ K, g11 + g22 = 0}, which is irreducible of dimension

3. Finally, note that SL2(K) is connected of dimension 3, and that f and g are surjective. Hence,
we deduce that XK(K) is connected. Furthermore, using twice [DG70, II, §5, Proposition 5.1]
(note that it does not use smoothness), XK(K) is of dimension 8. To conclude, the tangent space
at the identity of XK(K) is {g ∈ M3(K[t]) | g22 = 0, g11 + g33 = 0, g12 = g32 = 0, Tr

βi0
(g31) =

0, Tr
βi0

(g13) = 0}, which is of dimension 8, as wanted. �

Since XK is irreducible and smooth of the same dimension than XK , we can prove that X is
flat over OK simply by giving a closed embedding of OK-schemes A1

OK
→֒ X (see Lemma 6.14).

But finding such an embedding is easy enough: the elements in OL having trace 0 form a free
OK-module of rank 1. Let τ denote a generator of this OK-module. Now, the map A1

OK
→

X :x 7→
(

1 0 x.τ
0 1 0
0 0 1

)

is the desired closed embedding.

We can finally conclude that SU
L/K
3 = X . Indeed, both schemes are flat over OK , and their

generic fibres are equal. But a flat subscheme of ROL

OK
SL3 is uniquely determined by its generic

fibre by [BT84a, 1.2.6] (which also uses the fact that ROL

OK
SL3 is (flat and hence) torsion free).

The last statement of the theorem follows from the fact that X is flat with smooth fibres.

We now compare the rational points of the integral model with our local model.

Lemma 7.30. Let ϕi0 : SU
L/K
3 7→ (SU

L/K
3 )K be the homomorphism introduced in Definition 7.25,

and let ϕi0(K) be the induced isomorphism on K-rational points. Then P0 = ϕ−1
i0

(K)(SU
L/K
3 (OK)).

Proof. By definition, ϕ−1
i0

(K): (SU
L/K
3 )(K) → SU

L/K
3 (K): g 7→

(

g11 t−i0g12 g13
ti0g21 g22 ti0g23
g31 t−i0g32 g33

)

is an iso-

morphism. Since by Definition 7.10, i0 is the smallest integer such that ω(ti0) ≥ γ, the lemma

follows from the fact that P0 = {g ∈ SU
L/K
3 (K) | ω(g) ≥

(

0 −γ 0
γ 0 γ
0 −γ 0

)

} (see Definition 7.5).

Lemma 7.31. Let r ∈ N.

• For 2r ≤ 2i0, we define a map f2r: SU3(OK/m
r
K) → SL2(OL/m

2r
L ): g 7→ ( g11 g13

g31 g33 ). The map f2r
is a group homomorphism whose image is P 0,2r

0 .
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• For 2r > 2i0, we have an isomorphism f2r: SU3(OK/m
r
K) ∼= P 0,2r

0 .

Proof. We begin with the case 2r ≤ 2i0. In this case, note that t2i0 = 0 in OL/m
2r
L , and that the

conjugation action is trivial in OL/m
2r
L . Furthermore, βi0 = 0 and 2 = 0 in OL/m

2r
L . Hence we

can reproduce the computations made in the beginning of the proof of the claim in Theorem 7.29.
We thus get

SU3(OK/m
r
K) = {g ∈ SL3(OL/m

2r
L ) | g22 = 1, g12 = g32 = 0

Tr

βi0
(g31g11) = (g21)

2,
T r

βi0
(g33g13) = (g23)

2}.

This already shows that f2r is a group homomorphism. Now, to prove that f2r is surjective, there
just remains to prove that the map OL/m

2r
L → OK/m

r
K :x 7→ x2 is surjective. Note that modulo

m
2r
L , t2 = tt̄ = β. Hence for x = x1 + tx2 ∈ OL/m

2r
L with xi ∈ OK/m

r
K , we have x2 = x21 + βx22.

Hence the result follows from the fact that OK/m
r
K =

∑r−1
i=0 F2nβ

i, and that squaring is a bijection
on the field F2n .

When 2r > 2i0, the assertion follows directly from Definition 7.14 and Theorem 7.29.

Corollary 7.32. Let r ∈ N and let x ∈ [−ω(π2r
L ), ω(π2r

L )]. Then P 0,2r
x is a group.

Proof. Only the case 2r > 2i0 requires a proof. By Lemma 7.28 and Lemma 7.31, P 0,2r
0 is a group.

Note that Ax = {g ∈ SL3(OL/m
2r
L ) | ω(g) ≥

(

0 − x
2

−x
x
2

0 − x
2

x x
2

0

)

} is a subgroup of SL3(OL/m
2r
L ). But

P 0,2r
x = P 0,2r

0 ∩ Ax. Hence the result follows.

Definition 7.33. Let p2r:P0 → P 0,2r
0 be the homomorphism such that the following square

commutes

SU3(OK) P0 ≤ SL3(OL)
ϕ−1

i0−−→

SU3(OK/m
r
K) P 0,2r

0

f2r−−→

p2r

Let π2r:OL → OL/m
2r
L denote the reduction modulo m

2r
L .

• If 2r ≤ 2i0, p2r(

(

g11 t−i0g12 g13
ti0g21 g22 ti0g23
g31 t−i0g32 g33

)

) =
(

π2r(g11) π2r(g13)
π2r(g31) π2r(g33)

)

• If 2r > 2i0, p2r(

(

g11 t−i0g12 g13
ti0g21 g22 ti0g23
g31 t−i0g32 g33

)

) =

(

π2r(g11) π2r(g12) π2r(g13)
π2r(g21) π2r(g22) π2r(g23)
π2r(g31) π2r(g32) π2r(g33)

)

.

And we can then deduce the surjectivity of the map p2r.

Corollary 7.34. The map p2r:P0 → P 0,2r
0 is surjective, for all r ∈ N.

Proof. This is a direct consequence of the commutative square involving P0 → P 0,2r
0 given in

Definition 7.33. Indeed, the integral model is smooth by Theorem 7.29, so that Theorem 4.17
applied to the left hand side of the diagram shows surjectivity there, and we proved in Lemma 7.31
that f2r is surjective as well.

We also need a kind of injectivity result:

Lemma 7.35. Let r ∈ N and x ∈ [−ω(π2r
L ), ω(π2r

L )]. Then p−1
2r (P

0,2r
x ) ⊂ Px.
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Proof. For 2r > 2i0, belonging to p−1
2r (P

0,2r
x ) implies that the valuation of the off diagonal entries

are big enough. Hence, the result follows directly from Definition 7.5.

For 2r ≤ 2i0, we have to show that if g ∈ P0 is such that ω(g) ≥
(

0 −γ −x
γ 0 γ
x −γ 0

)

, then ω(g) ≥
(

0 − x
2
−γ −x

x
2
+γ 0 − x

2
+γ

x x
2
−γ 0

)

. Let us for example prove it for x ∈ [0, ω(π2r
L )] (the other case being similar).

Let t, β be as in Lemma 7.1. Then there exists gij ∈ OL such that g =

(

g11 t−i0g12 g13
ti0g21 g22 ti0g23
g31 t−i0g32 g33

)

, with

ω(g31) ≥ x. Using S ḡg = Id (respectively gS ḡ = Id), we get in particular ḡ31g11 + t̄i0 ḡ21t
i0g21 +

ḡ11g31 = 0 (respectively g31ḡ33 + ti0g32t̄
i0 ḡ32 + g33ḡ31 = 0). Hence, Tr

βi0
(ḡ11g31) = −N(g21)

(respectively Tr
βi0

(g33ḡ31) = −N(g32)), which implies that ω(g21) ≥ x
2 (respectively ω(g32) ≥ x

2 ),
as wanted.

We finally arrive at the result corresponding to Theorem 4.22: the ball of radius 2r together

with the action of SU
L/K
3 (K) is encoded in P 0,2r

0 . We first need an adequate description of the
ball of radius 2r around 0 in I.

Lemma 7.36. Renormalise the distance on R so that dR(0;ω(πL)) = 1, and put the metric dI on
I arising from the distance dR (see Remark 3.2). Let B0(2r) = {p ∈ I | dI([(Id, 0)]; p) ≤ 2r} be the
ball of radius 2r around 0 in I. Let B̃0(2r) = {[(g, x)] ∈ I | g ∈ P0, x ∈ [−ω(π2r

L ), ω(π2r
L )] ⊂ R}.

Then B0(2r) = B̃0(2r).

Proof. The proof is word for word the same than the proof of Lemma 4.20, upon replacing all d’s
by 2’s.

Remark 7.37. The distance dI that we introduced in Lemma 7.36 is also the combinatorial
distance on the tree. Indeed, looking at when Py is inside Px for x, y ∈ R, we see that [(Id, x)] is
a vertex of I if and only if x ∈ ω(πL)Z.

Theorem 7.38. Let r ∈ N. The map B0(2r) → I0,2r: [(g, x)] 7→ [(p2r(g), x)]
0,2r is a (p2r:P0 →

P 0,2r
0 )-equivariant bijection.

Proof. The map is well-defined by Lemma 3.4.

• Injectivity: let [(g, x)], [(h, y)] ∈ B0(2r) be such that they have the same image in I0,2r. By
Remark 7.24, it means that for all ñ ∈ N0,2r such that ν(ñ)(x) = y, p2r(g)

−1p2r(h)ñ ∈ P 0,2r
x .

So, we can assume that ñ is either equal to Id, or is of the form
(

0 0 1
0 −1 0
1 0 0

)

. Hence, there

exists n ∈ N such that p2r(n) = ñ. But ν(n)(x) = y, and g−1hn ∈ p−1
2r (P

0,2r
x ) ⊂ Px by

Lemma 7.35. Hence, [(g, x)] = [(h, y)], as wanted.

• Surjectivity: follows directly from the surjectivity of p2r:P0 → P 0,2r
0 (Corollary 7.34).

• Equivariance: h.[(g, x)] = [(hg, x)] 7→ [(p2r(hg), x)]
0,2r = p2r(h).[(p2r(g), x)]

0,2r .

7.4 Arithmetic convergence

In order to obtain a compact space of pairs of local fields, we need to break our convention that
L is separable and also allow inseparable extensions. Note that all inseparable ramified quadratic
extensions of F2n((X)) are isomorphic over an isomorphism of F2n((X)) (because F2n((X)) has
many automorphisms), so that it is actually enough for our purposes to consider only one form of
inseparable pair.

Definition 7.39. Consider the set of pairs of local fields (K,L) whereK is of residue characteristic
2 and such that one of the following holds

1. K = F2n((X)) and L = F2n((
√
X)) (endowed with the trivial conjugation action).
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2. L is a separable quadratic ramified extension of K.

Definition 7.40. We say that two pairs (K1, L1) and (K2, L2) are isomorphic if there exists a
conjugation equivariant isomorphism between L1 and L2. Let Lram

even be the set of pairs of local
fields as in Definition 7.39, up to isomorphism. For each (non-zero) natural number n, let us also
define Lram

2n = {(K,L) ∈ Lram
even | |K|= 2n}.

As in Section 4, we define a metric on the space Lram
even. For L ∈ Lram

even and r ∈ N, the “Galois”
conjugation (which is trivial for an inseparable pair) induces an automorphism of OL/m

r
L that we

still call the conjugation.

Definition 7.41. Let (K1, L1) and (K2, L2) be in Lram
even. We say that (K1, L1) is r-close to

(K2, L2) if and only if there exists a conjugation equivariant isomorphism OL1
/mr

L1
→ OL2

/mr
L2
.

Again, this notion of closeness induces a non-archimedean metric on Lram
even. Let

d:Lram
even × Lram

even → R≥0: d((K1, L1); (K2, L2)) = inf{ 1

2r
| (K1, L1) is r-close to (K2, L2)}

Lemma 7.42. d(· ; ·) is a non-archimedean metric on Lram
even.

Proof. If d((K1, L1); (K2, L2)) = 0, then OL1
and OL2

are equivariantly isomorphic. Hence, the
pairs of field of fraction are isomorphic in Lram

even, as wanted. The fact that this distance is non-
archimedean is a consequence of Remark 7.43.

Remark 7.43. Note that being r-close is an equivalence relation, and that if r ≥ l and (K1, L1)
is r-close to (K2, L2), then (K1, L1) is l-close to (K2, L2).

Lemma 7.44. Let r ∈ N, and (K1, L1), (K2, L2) ∈ Lram
even. A conjugation equivariant isomorphism

OL1
/m2r

L1
→ OL2

/m2r
L2

induces an isomorphism OK1
/mr

K1
→ OK2

/mr
L2
.

Proof. Let (K,L) ∈ Lram
even. The proof of the lemma follows if we can characterise OK/m

r
K inside

OL/m
2r
L in an algebraic way. We claim that OK/m

r
K is the subring of OL/m

2r
L generated by the

images of the norm and the trace map.
First assume that L is a separable extension of K, and let t, α, β be as in Lemma 7.1, so

that OL/m
2r
L

∼= OK/m
r
K ⊕ t.OK/m

r
K . Let x = x1 + tx2 ∈ OK/m

r
K ⊕ t.OK/m

r
K and let i0 be

the parameter associated to L/K as in Definition 7.10. Using x + x̄ = 2x1 + αx2, we readily
see that the image of the trace map generates πi0

K .OK/m
r
K . Hence, we can work modulo (πi0

K).
In particular, in view of Lemma 7.1, we are in characteristic 2, and xx̄ = x21 + βx22. Thus, the
claim follows because squaring is surjective in the finite field F2n , so that for r ≤ i0, we have
OK/m

r
K = {x21 + βx22 | xi ∈ OK/m

r
K}.

To conclude, note that if (K,L) is an inseparable pair, the “norm”map is just squaring while
the “trace”map is trivial, and that in this case, OK/m

r
K = (OL/m

2r
L )2 as well.

We now go on to prove that Lram
2n is homeomorphic to N̂

2
. Again, the key ingredient in this

identification is Theorem 4.28. We further need a variation for ramified quadratic extension in
residue characteristic 2. We begin by refining our knowledge about separable ramified extensions
in characteristic 2.

Lemma 7.45. Let K = F2n((X)). Up to isomorphism, any separable pair of positive characteristic
in Lram

2n is of the form (K,K[T ]/(T 2 − αT +X)), for some non zero α ∈ (X). Also, given i ∈ N,
there are only finitely many extensions of K (up to isomorphism) of the form K[T ]/(T 2−αT +X)
where α ∈ (X i) \ (X i+1).

Proof. By Lemma 7.1, any quadratic ramified extension of K is of the form K[T ]/(T 2− αT + β),
where β ∈ (X) \ (X2) and α ∈ (X). Now, because F2n((X)) has many automorphisms, the pair
(K,K[T ]/(T 2 − αT + β)) is equivariantly isomorphic to a pair of the desired form. For the last
statement, mimicking the proof of [Lan94, Chapter II, §5, Proposition 14], the finiteness follows
directly from the compactness of (X i) \ (X i+1).
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We can now give the variations on Theorem 4.28:

Corollary 7.46. (1) Let F2n((X))[T ]/(T 2 − αT +X) be a separable quadratic ramified extension
of F2n((X)), with α ∈ (X). Let K be a totally ramified extension of degree k of Q2n, and let
ϕπK

:OK → F2n [[X ]] be the bijection defined in Theorem 4.28. Finally, let a = ϕ−1
πK

(α) ∈ OK .
Then (K,K[T ]/(T 2 − aT + πK)) is 2k-close to (F2n((X)),F2n((X))[T ]/(T 2 − αT +X)).

(2) (F2n((X)),F2n((X))[T ]/(T 2 −X iT +X)) is at distance 1
22i from (F2n((X)),F2n((

√
X))).

Proof. (1) By Theorem 4.28, OK/m
k
K

∼= F2n [[X ]]/(Xk). Observing that for a ramified quadratic
extension L = K[t] of K with t a uniformiser of L, we have OL/m

2r
L

∼= OK/m
r
K ⊕ t.OK/m

r
K ,

we directly obtain the conclusion. We could also easily conclude that the distance is 1
22k

, but
we do not need this information.

(2) To simplify notations, let L = F2n((X))[T ]/(T 2 − X iT + X). Observe that the conju-
gation action is trivial on OL/m

2i
L , so that OL/m

2i
L

∼= F2n [[X ]]/(X i) ⊕
√
X.F2n [[X ]]/(X i),

with trivial conjugation action. Hence, (F2n((X)), L) is 2i-close from the inseparable pair
(F2n((X)),F2n((

√
X))). Now, the conjugation action is non-trivial on OL/m

2i+1
L , so that the

distance is 1
22i .

We deduce the homeomorphism type of Lram
2n .

Proposition 7.47. The space Lram
2n is homeomorphic to N̂

2
. Its first Cantor–Bendixson derivative

(Lram
2n )(1) consists of pairs of positive characteristic, while its second Cantor–Bendixson derivative

is the singleton consisting of the inseparable pair (F2n((X)),F2n((
√
X))).

Proof.

Claim 1. Let (K,L) ∈ Lram
2n . If K is of characteristic 0, (K,L) is isolated in Lram

2n .

Proof of the claim: If (K1, L1) is r-close to (K2, L2), then K1 is ⌊ r
2⌋-close to K2 by Lemma 7.44.

Hence, the result follows from Claim 2 and Claim 3 in the proof of Proposition 4.30. �

Claim 2. Lram
2n is a countable space.

Proof of the claim: By Claim 3 in the proof of Proposition 4.30, there are only countably many
pairs of characteristic 0 in Lram

2n . Furthermore, there is only one inseparable pair by definition,
and there are countably many separable pair of characteristic 2 in Lram

2n by Lemma 7.45. �

We can now conclude the proof: since pairs of characteristic 0 are isolated by Claim 4, the first
Cantor–Bendixson derivative (Lram

2n )(1) contains only pairs of positive characteristic, and (Lram
2n )(1)

contains all of them by Corollary 7.46 (1). Also, by Corollary 7.46 (2) and Lemma 7.45, separable

pairs are isolated in L(1)
2n , and the inseparable pair is an accumulation point in (Lram

2n )(1). So that

again by [MS20, Théorème 1], we get Lram
2n

∼= N̂
2
.

7.5 Continuity from pairs in Lram
even to subgroups of Aut(T )

In this section, we start to vary the ramified pair (K,L), and look at the variation it produces

on the Bruhat–Tits tree of SU
L/K
3 . Recall that we introduced a notation to keep track of the

dependence on (K,L) of many of the definitions we made in this section (see Remark 7.8 and
Remark 7.23).

Note however that in Section 7.4 we were forced to consider inseparable pairs, i.e. pairs of the
form (F2n((X)),F2n((

√
X))), and that we have not yet associated any object to those pairs. The

definition of SU
L/K
3 still makes sense for L an inseparable extension, but this K-group scheme is

not smooth. In fact, it is the Weil restriction from L toK of the naive split special orthogonal group

SO3 in characteristic 2. Instead of SU
L/K
3 , the algebraic group associated to the inseparable pair

(K,L) should be the algebraic group SL2(L). It is the group of K-rational point of RL
K SL2, the
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Weil restriction from L to K of SL2 (as an aside, note that RL
K SL2 is the prototypical example

of a non-reductive pseudo-reductive group). The preceding discussion motivates the following
definitions.

Definition 7.48. Let (K,L) be an inseparable pair in Lram
even. We set (Px)(K,L) = (Px)L, T(K,L) =

TL, M(K,L) = ML, N(K,L) = NL, ν(K,L) = νL and I(K,L) = IL, where objects appearing on the
right hand side of an equality were defined in Remark 4.5. And similarly for local objects, we set
(P 0,2r

x )(K,L) = (P 0,2r
x )L, H

0,2r
(K,L) = H0,2r

L , M0,2r
(K,L) = M0,2r

L , N0,2r
(K,L) = N0,2r

L and I0,2r
(K,L) = I0,2r

L ,

where objects appearing on the right hand side of an equality were defined in Remark 4.12. Finally,
we set (i0)(K,L) = ∞.

Definition 7.49. Let (K,L) ∈ Lram
even.

• If (K,L) is separable, we set G(K,L) = SU
L/K
3 (K) = {g ∈ SL3(L) | S ḡg = Id}.

• If (K,L) is inseparable, we set G(K,L) = SL2(L).

As in the previous section, we now aim to prove that when two pairs in Lram
even are close, their

local Bruhat–Tits tree are equivariantly isomorphic. The appearance of the reduced trace in the
local model makes it a bit less straightforward, so that we first need the following lemmas.

Lemma 7.50. Let (K1, L1) and (K2, L2) be two pairs in Lram
even, and assume that that they are

r-close for some r ∈ N. If r ≤ (i0)(K1,L1), then r ≤ (i0)(K2,L2), while if r > (i0)(K1,L1), then
(i0)(K2,L2) = (i0)(K1,L1).

Proof. Note that the conjugation is trivial on OLi
/mr

Li
if and only if r ≤ (i0)(Ki,Li), so that the

first assertion is clear. On the other hand, note that (i0)(Ki,Li) is the largest integer such that

for all units x ∈ OLi
, x + x̄ ∈ m

i0
Ki

. Indeed, for ti, αi and βi as in Lemma 7.1, we see that either

[Tr(1+ ti) = 2+αi] or [Tr(1) = 2] belong to m
i0
Ki

\mi0+1
Ki

. Hence, the second assertion follows.

We now give a lemma allowing us to control the reduced norm. Recall that the valuation ω
on OL induces a map on OL/m

r
L that we still denote ω. By a uniformiser of OL/m

r
L, we mean

a non-invertible element of minimal image under ω (amongst non-invertible elements of OL/m
r
L).

Uniformisers of OK/m
r
K are defined in a similar way.

Recall that by Lemma 7.13, given a uniformiser πK ∈ OK/m
r
K , we get for every s < r a unique

map (not depending on the lift of πK) Tr

π
i0
K

:OL/m
2s
L → OK/m

s
K . We use this fact in the statement

of the following lemma.

Lemma 7.51. Let (K1, L1) and (K2, L2) be two pairs in Lram
even. Assume that (K1, L1) is separable

and let i0 = (i0)(K1,L1). Assume that the two pairs are 2r + 2i0-close, and let ϕ:OL1
/m2r+2i0

L1
→

OL2
/m2r+2i0

L2
be the given conjugation equivariant isomorphism. We also denote ϕ the induced

equivariant isomorphism OL1
/m2r

L1
→ OL2

/m2r
L2
. Finally let πK1

be a uniformiser of OK1
/mr+i0

K1
.

Then for all x ∈ OL1
/m2r

L1
, we have ϕ( Tr

π
i0
K1

(x)) = Tr
ϕ(πK1

)i0
(ϕ(x)).

Proof. First note that ϕ(πK1
) is a uniformiser of OK2

/mr+i0
K2

. Indeed, by Lemma 7.44, ϕ(πK1
)

is an element of OK2
/mr+i0

K2
, and the fact that it is a uniformiser follows from the fact that

ϕ(πK1
)r+i0−1 6= 0 but ϕ(πK1

)r+i0 = 0.
To simplify notations, let λ = Tr

π
i0
K1

(x). Let x′ (respectively λ′) be a lift of x (respectively λ) to

OL1
/m2r+2i0

L1
(respectively to OK1

/mr+i0
K1

). We claim that πi0
K1
λ′ = x′ + x′ in OK1

/mr+i0
K1

. Indeed,

by the definition of Tr

π
i0
K1

, there exists a lift x′′ (respectively λ′′, π′′
K1

) of x (respectively λ, πK1
) to

OL1
(respectively to OK1

, OK1
) such that (π′′

K1
)i0λ′′ = x′′ + x′′. But note that neither πi0

K1
λ′ nor

x′ + x′ depends on the chosen lifts x′ and λ′. Hence, letting p2r+2i0 :OL1
→ OL1

/m2r+2i0
L1

, we can
assume that x′ = p2r+2i0(x

′′) and λ′ = p2r+2i0(λ
′′), so that the claim holds.
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But now, we get ϕ(πK1
)i0ϕ(λ′) = ϕ(x′)+ϕ(x′) in OK2

/mr+i0
K2

. Furthermore, ϕ(x′) (respectively

ϕ(λ′)) is a lift of ϕ(x) (respectively ϕ(λ)). We therefore conclude that ϕ(λ) = Tr
ϕ(πK1

)i0
(ϕ(x)), as

wanted.

Proposition 7.52. Let (K1, L1) and (K2, L2) be two elements in Lram
even. Assume that (K1, L1) is

2r-close to (K2, L2), for some r ∈ N. Let i0 = (i0)(K1,L1) be the parameter associated to (K1, L1)
(see Definition 7.10 and Definition 7.48).

1. If 2r ≤ 2i0, then (P 0,2r
0 )(K1,L1)

∼= (P 0,2r
0 )(K2,L2), and I0,2r

(K1,L1)
is equivariantly in bijection

with I0,2r
(K2,L2)

.

2. If 2r > 2i0, then (P 0,2r−2i0
0 )(K1,L1)

∼= (P 0,2r−2i0
0 )(K2,L2), and I0,2r−2i0

(K1,L1)
is equivariantly in

bijection with I0,2r−2i0
(K2,L2)

.

Proof. When 2r ≤ 2i0, then 2r ≤ (2i0)(K2,L2) as well by Lemma 7.50. In view of Defini-
tion 7.14 and Definition 7.48, the isomorphism OL1

/m2r
L1

∼= OL2
/m2r

L2
induces a group isomorphism

ϕ: (P 0,2r
0 )(K1,L1) = SL2(OL1

/m2r
L1
) ∼= SL2(OL2

/m2r
L2
) = (P 0,2r

0 )(K2,L2).
When 2r > 2i0, then (i0)(K2,L2) = i0 by Lemma 7.50. If 2r ≤ 4i0, then the isomorphism

OL1
/m2r

L1

∼= OL2
/m2r

L2
induces a group isomorphism ϕ: (P 0,2r−2i0

0 )(K1,L1) = SL2(OL1
/m2r−2i0

L1
) ∼=

SL2(OL2
/m2r−2i0

L2
) = (P 0,2r−2i0

0 )(K2,L2). On the other hand, if 2r > 4i0, then in view of Lemma 7.18

and Lemma 7.51, the isomorphism OL1
/m2r

L1

∼= OL2
/m2r

L2
induces a group isomorphism ϕ

SL3(OL1
/m2r−2i0

L1
) SL3(OL2

/m2r−2i0
L2

)∼=
∨

(P 0,2r−2i0
0 )(K1,L1) (P 0,2r−2i0

0 )(K2,L2)

∨

ϕ

Let ε =

{

2r if 2r ≤ 2i0

2r − 2i0 if 2r > 2i0
. In both cases, define a linear map f :R → R:x 7→ x

ω(πL2
)

ω(πL1
) .

It is clear that for all x ∈ [−ω(πε
L1
), ω(πε

L1
)], ϕ restricts to an isomorphism (P 0,ε

x )(K1,L1)
∼=

(P 0,ε
f(x))(K2,L2). Furthermore,

ϕ(T 0,ε)(K1,L1) = (T 0,ε)(K2,L2)

ϕ(M0,ε)(K1,L1) = (M0,ε)(K2,L2)

and for all n ∈ N0,ε, f(n.x) = ϕ(n).f(x). Hence, the map I0,ε
(K1,L1)

→ I0,ε
(K1,L1)

: [(g, x)]0,ε 7→
[(ϕ(g), f(x))]0,ε is a ϕ-equivariant bijection.

We again discuss the homomorphism SU
L/K
3 (K) → Aut(I(K,L)).

Proposition 7.53. Let I = I(K,L) be the Bruhat–Tits tree of SU
L/K
3 (K). The homomor-

phism ˆ : SU
L/K
3 (K) → Aut(I) is continuous with closed image, and the kernel is equal to the

centre of SU
L/K
3 (K).

Proof. The proof is word for word the same as the proof of Proposition 4.32, upon replacing

SL2(D) by SU
L/K
3 (K).

The convergence is then a more or less direct consequence of Theorem 7.38.

Theorem 7.54. Let ((Ki, Li))i∈N be a sequence in Lram
even which converges to (K,L), and let Gi =

G(Ki,Li) (respectively G = G(K,L)). For N big enough and for all i ≥ N , there exist isomorphisms

I(Ki,Li)
∼= I(K,L) such that the induced embeddings Ĝi →֒ Aut(I(K,L)) make (Ĝi)i≥N converge to

Ĝ in the Chabauty topology of Aut(I(K,L)).
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Proof. The Bruhat–Tits tree I(Ki,Li) is the regular tree of degree 2n + 1 if and only if (Ki, Li)
belongs to Lram

2n . Hence there exists N such that for all i ≥ N , I(Ki,Li)
∼= I(K,L).

Let i0 be the parameter associated to (K,L) as in Definition 7.10 and Definition 7.48. First as-
sume that i0 is infinite (or in other words that (K,L) is an inseparable pair). Then by Lemma 7.50,
the sequence (i0)(Ki,Li) diverge, and hence up to passing to a subsequence, we can assume that
(i0)(Ki,Li) ≥ i and that (Ki, Li) is 2i-close to (K,L). On the other hand, when i0 is finite, up to
passing to a subsequence, we can assume that (Ki, Li) is 2i+ 2i0-close to (K,L).

We now define an explicit isomorphism fi: I(Ki,Li) → I(K,L) as follows: let I0,i
(Ki,Li)

∼= I0,i
(K,L)

be the isomorphism given by Proposition 7.52. By Theorem 7.38, this gives an isomorphism on
balls of radius i: I(Ki,Li) ⊃ B0(i) ∼= B0(i) ⊂ I(K,L) (recall that by Lemma 7.36, B0(i) is really
the ball of radius i on the tree I(K,L)). As I(Ki,Li) is a regular tree of the same degree than
I(K,L), we can extend this isomorphism of balls to an isomorphism fi: I(Ki,Li) → I(K,L) (this
extension is of course not unique, but we choose one such). By means of fi, we get an embedding
Ĝi →֒ Aut(I(K,L)).

Now the end of the proof is word for word the same as the corresponding end of the proof
of Theorem 4.33, upon making the following changes: replace Di with (Ki, Li), replace D with
(K,L), replace d with 2, and replace all references to results in Section 4 by their corresponding
results in Section 7.

We then deduce the proof of the main theorem announced in the introduction for regular trees
of degree 2n + 1. Recall the notation G(K,L) introduced in Definition 7.49. Furthermore, as in
Section 4, we set GK = SL2(K). Recall also the notation Kpn introduced in Definition 4.24. We
use this notation in the following proof with p = 2.

Proof of Theorem 1.5. Let T be the (2n+1)-regular tree. Paralleling the proof of Theorem 1.4, we
see that the maps Lram

2n → ST : (K,L) 7→ Ĝ(K,L) and K2n → ST :K 7→ ĜK are injective continuous
map whose source is a compact space, hence they are homeomorphism onto their respective image.
Now, the explicit description given in Theorem 1.5 follows from Remark 7.9, Proposition 7.47 and
Proposition 4.30.

A Comparison with the original Bruhat–Tits definitions

The purpose of this appendix is to show that our definitions of the Bruhat–Tits tree agrees with
the one in [BT72, 7.4.1 and 7.4.2]. Since the relative rank of SL2(D) and SU3 is 1, it is already
clear that the apartment A is indeed isomorphic to R. The main task is to show that our group
Px is the same as the group P̂x used to define the equivalence relation in [BT72, 7.4.1].

In the SL2(D) case, the explicit description of P̂x is given in [BT72, Corollaire 10.2.9], that we
take as a definition.

Definition A.1 ([BT72, Corollaire 10.2.9]). Let {a1, a2} be the canonical basis of R2, and let
aij = aj − ai (i, j ∈ {1, 2}). Identify R with a vector space V , whose dual is the vector space

V ∗ = R .a12. For x ∈ R, we set P̂x = {g ∈ SL2(K) | ω(gij) ≥ aji(x), for all 1 ≤ i, j ≤ 2}.

Note that we can omit the factor (r + 1)−1δ appearing in loc. cit. since by definition, δ =
ω(det(g)) = ω(1) = 0.

This description obviously depends on the identification of R as the dual of V ∗. Now, if we
furthermore impose the condition a12 = Id:R → R, then P̂x is indeed equal to the group Px of
Definition 4.2. To end the comparison between [BT72, Définition 7.4.2] and our definitions, one
has to show that N = T ⊔M and the maps ν:N → Aff(R) are the same. This is easily obtained
by comparing [BT72, Proposition 10.2.5 (ii)] with Definition 4.3 and Definition 4.4.

We now treat all the SU3 cases at once. As in Definition 2.1, we index the rows and the columns
of a 3-by-3 matrix by {−1, 0, 1}. Let a1 be a non-trivial element of R∗, and set a−1 = −a1 and
a0 = 0. We now take some time to spell out the definition of ωij as defined in [BT72, 10.1.27].
This requires to extend the definition of γ (see Definition 7.2) to all separable quadratic extensions.
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Lemma A.2. Let L be a separable quadratic extension of K. There exists t ∈ L and α, β ∈ K
such that:

1. L = K[t] and t2 − αt+ β = 0.

2. ω(β) = 0 when L is unramified, and β is a uniformiser of K when L is ramified.

3. α = 0, or 0 = ω(β) = ω(α) < ω(2), or 0 < ω(β) ≤ ω(α) ≤ ω(2).

Proof. See [BT84a, Lemme 4.3.3, (ii)]. The fact that α can be chosen so that ω(α) = 0 in the
unramified case is a direct consequence of the theory of unramified extensions of local fields (see
for example [FV02, Chapter II, Section 3.2, Proposition]). With this in mind, the equivalence with
[BT84a, Lemme 4.3.3, (ii)] is clear.

Remark A.3. To make Lemma A.2 possibly clearer, let us state what is the valuation of α on a
case-by-case analysis:

1. If L is unramified,

{

α = 0 if the residue characteristic is not 2

ω(α) = 0 if the residue characteristic is 2

2. If L is ramified,

{

α = 0 if the residue characteristic is not 2

α = 0 or 0 < ω(α) ≤ ω(2) if the residue characteristic is 2

The only difference between Remark A.3 and Lemma A.2 is that the latter allows the possibility
that α = 0 in the unramified residue characteristic 2 case. But this clearly cannot happen.

We can now extend our definition of the parameter γ to any separable quadratic extension
L/K.

Definition A.4. Let L/K be a separable quadratic extension, and let t, α, β be as in Lemma A.2.
Let l = tα−1 ∈ L if α 6= 0, and l = 1

2 ∈ L if α = 0, where α is as in Lemma A.2 (note that
α = 0 implies 2 6= 0 in K, since L is assumed to be a separable extension). We then define
γ = − 1

2ω(l) ∈ R.

Again, we can restate the fact that γ does not depend on the choice of α and β as in Lemma A.2
in the following way.

Lemma A.5. Let L1 = {x ∈ L | x+ x̄ = 1} and L1
max = {x ∈ L1 | ω(x) = sup{ω(x) | x ∈ L1}}.

The element l ∈ L in Definition A.4 belongs to L1
max

Proof. See [BT84a, 4.3.3 (ii)].

It is also important to note that γ ≥ 0, and that in view of Remark A.3, γ > 0 if and only if
the residue characteristic is 2 and L is a ramified extension.

Definition A.6 ([BT72, 10.1.20]). Let q be the pseudo-quadratic form associated with the her-
mitian form used to defined SU3 (see Remark 2.2). Explicitly, for x ∈ L3, q(x) = lf(x, x) + L0,
where L0 = {x ∈ L | x + x̄ = 0} (see [BT72, 10.1.1 (7), (8)]). For x ∈ L, we define ωq(x) =
1
2 sup{ω(k) | k ∈ q((0, x, 0))} = 1

2 sup{ω(k) | k ∈ lx̄x+ L0}.

We can actually compute explicitly the value of ωq.

Lemma A.7.

1. ωq(x) = ω(x) + ωq(1)

2. ωq(1) =
1
2ω(l)

Hence, ωq(x) = ω(x) + 1
2ω(l)

Proof. The first property follows from the definition, and the second one is Lemma A.5.
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Definition A.8 ([BT72, 10.1.27]). Let {e−1, e0, e1} be the canonical basis of L3. For g ∈ End(L3),
let (gij) be the matrix of g in the basis {e−1, e0, e1}. For i, j ∈ {−1, 0, 1}, we define ω̄ij(g) =
ω̃i(gij)− ω̃j(1), where ω̃±1 = ω, while ω̃0 = ωq.

Remark A.9. One readily check that this definition agrees with the one given in [BT72, 10.1.27].
Indeed, we can take advantage of the fact that X0 is one dimensional. Let us identify Hom(Xj , Xi)
with L, through the basis {e−1, e0, e1}, and define ωi as in [BT72, 10.1.27]. Then, for x ∈ L and
α ∈ Hom(Xj , Xi) ∼= L, we have ωi(α(xej))− ωj(xej) = ωi((αx)ei)− ωj(xej) = ω̃i(αx) − ω̃j(x) =
ω̃i(α) − ω̃j(1).

Definition A.10 ([BT72, Corollaire 10.1.33]). With these notations, P̂x = {g ∈ SU3(K) | ωij(g) ≥
ai(x)− aj(x), i, j ∈ {−1, 0, 1}}.

Note that we can omit the factor 1
2ωc(g) appearing in loc. cit. since by definition, c(g) is the

similitude ratio (see [BT72, Definition 10.1.4]) and is equal to 1 for g ∈ SU3.
Again, this description depends on the choice of a non-trivial element in R∗. Now, if we choose

a1:R → R:x→ x
2 , then for x ∈ R, the group P̂x of Definition A.10 is the following group:

P̂x = {g ∈ SU
L/K
3 (K) | ω(g) ≥

(

0 − x
2
−γ −x

x
2
+γ 0 − x

2
+γ

x x
2
−γ 0

)

}

When γ = 0, i.e. when L is unramified or when the residue characteristic is not 2, then this
indeed coincides with our definition of Px (see Definition 5.1 and Definition 6.1). Finally, when
γ > 0, the group Px of Definition 7.5 also coincides with P̂x.

To end the comparison between [BT72, Definition 7.4.2] and our definitions, one has to show
that N = T ⊔M and the maps ν:N → Aff(R) are the same. This is easily obtained by com-
paring [BT72, Proposition 10.1.28 (iii)] with our definitions (see Definition 5.2, Definition 5.3,
Definition 6.2, Definition 6.3, Definition 7.6 and Definition 7.7).

B A review of the theory of CSA over local fields

Let D be a central division algebra of degree d over a local field K (recall that the degree of
D over K is the square root of the dimension of the K-vector space D). It is well known that
such division algebras are classified (up to isomorphism) by elements of (Z/dZ)× (see for example
[Pie82, Corollary 17.7a and Corollary 17.8b]).

To be explicit, for r ∈ (Z/dZ)×, the corresponding division algebra is the cyclic algebra
(E/K, σr, πK) where

• E is the unramified extension of K of dimension d.

• σ ∈ Gal(E/K) is the element in Gal(E/K) inducing the Frobenius automorphism on E.

For the reader’s convenience, we recall the definition of a cyclic algebra.

Definition B.1. Let K be a field and let E/K be a cyclic extension of degree d. Let σ be a
generator of Gal(E/K), and let a ∈ K×. The cyclic algebra (E/K, σ, a) is defined as follows:

• (E/K, σ, a) =
d−1
⊕

i=0

uiE

• u−1xu = σ(x), for all x ∈ E

• ud = a

Definition B.2. As in [dlST15], for a finite central division algebra D of degree d over K, we call
the corresponding element r ∈ (Z/dZ)× the Hasse invariant of D.
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An important fact about such a division algebra D is that it splits over E. It is important
for us to describe explicitly the embedding of D inside Md(E), the algebra of d× d matrices with
coefficients in E.

Definition B.3. Let D be a division algebra isomorphic to the cyclic algebra (E/K, σr, πK) of
degree d over K. Consider the isomorphism of (right) E-vector spaces

f :Ed → D: v = (v1, . . . , vd) 7→
d−1
∑

i=0

uivi+1

Let ϕ:D →Md(E):x 7→ (v 7→ f−1(x.f(v))). More explicitly,

ϕ(

d−1
∑

i=0

uixi+1) =















x1 πKσ
r(xd) πKσ

2r(xd−1) . . . πKσ
(d−1)r(x2)

x2 σr(x1) πKσ
2r(xd) . . . πKσ

(d−1)r(x3)

x3 σr(x2) σ2r(x1) . . . πKσ
(d−1)r(x4)

...
...

...
. . .

...
xd σr(xd−1) σ2r(xd−2) . . . σ(d−1)r(x1)















We can now properly spell out the definition of the reduced norm.

Definition B.4. Let D be a division algebra isomorphic to the cyclic algebra (E/K, σr, πK) of
degree d over K. We define the reduced norm Nrd as follows:

Nrd:Mn(D) → K: g → det(ϕ(gij))

where ϕ(gij) is seen as a dn× dn matrix with coefficients in E.

We end this discussion by an analysis of the ring of integers of D.

Lemma B.5. Let D,E,K be as in Definition B.4, and let r ∈ N ∪ {∞}. Since E is unramified,

OE/m
r
E

∼= OK/m
r
K ⊕ . . . ⊕ OK/m

r
K . Furthermore, OD/m

rd
D

∼=
d−1
⊕

i=0

ui.OE/m
r
E. This shows that

OD/m
rd
D is a free OE/m

r
E-module (with the convention that m∞ = (0)), and that we can define

a map ϕ:OD/m
rd
D →֒ Md(OE/m

r
E), which is compatible with the map ϕ of Definition B.3, in the

sense that the following diagram commutes

OD Md(OE)→֒

OD/m
rd
D Md(OE/m

r
E)→֒

Proof. This is straightforward from the definitions.

C An integral model of SL2(D)

Recall that the group SL2(D) consists of the 2× 2 matrices with coefficients in D having reduced
norm 1 (Definition 2.4). Recall the definition of the embedding ϕ:D → Md(E) given in Defini-
tion B.3. In view of the definition of the reduced norm (Definition B.4), we arrive at the following
explicit definition of SL2(D).

Definition C.1. SL2(D) = {( g11 g12
g21 g22 ) | gij ∈ D, det(

(

ϕ(g11) ϕ(g12)
ϕ(g21) ϕ(g22)

)

) = 1}

Mimicking this definition, we can define a similar group over OD/m
rd
D .
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Definition C.2. Let D be a central division algebra over K of degree d, and let r ∈ N ∪ {∞}.
Keeping the notations of Lemma B.5, we define

SL2(OD/m
rd
D ) = {( g11 g12

g21 g22 ) | gij ∈ OD/m
rd
D , det(

(

ϕ(g11) ϕ(g12)
ϕ(g21) ϕ(g22)

)

) = 1}

Let us now discuss the underlying algebraic group of SL2(D). Let M2(D) be the algebra of
2× 2 matrices with coefficients in D. Using the embedding D →֒ Md(E), we can identify M2(D)

with a K-linear subspace of M2d(E). Now, SL2(D) is the closed subspace of M2(D) ∼= A4d2

K cut
out by the polynomial equation Nrd = 1. We can mimic this situation over the ring of integers to
define an integral model of SL2(D).

Definition C.3. Let D be a central division algebra of degree d over K, and let M2(OD) be the
OK-algebra of 2×2 matrices with coefficients in OD. Using the embedding OD →֒ Md(OE), where
E is the unramified extension of K of degree d, we can identifyM2(OD) with a free OK -submodule

of M2d(OE). We define the OK-scheme SL2,D to be the closed subscheme of M2(OD) ∼= A4d2

OK
cut

out by the polynomial equation Nrd = 1.

Of course, the crucial point is to check that SL2,D is in fact smooth.

Theorem C.4. SL2,D is a smooth OK-scheme.

Proof. This is one of the main results in [BT84b]. Let us explain how to extract it from there. Let ϕ
be the valuation of GL2(D) defined in [BT84b, 2.2, display (4)]. The valuation ϕ is thus a point of
the enlarged apartment A1. The associated norm is defined as αϕ(e1x1+e2x2) = inf{ω(x1), ω(x2)}
(following the definition in [BT84b, 2.8, display (9)]). The corresponding order Mαϕ

of M2(D)
defined in [BT84b, 1.17] is {( g11 g12

g21 g22 ) ∈ M2(D) | ω(gij) ≥ 0} (this is easily computed using the
description of Endα(u) in [BT84b, 1.11, display (17)]). Note that Mαϕ

is isomorphic to the affine

space A
(2d)2

OK
(being a free OK-module). Finally, following [BT84b, 3.6], let Gϕ be the (principal)

open subscheme of the affine space Mαϕ
defined by the non-vanishing of the reduced norm (see

also [BT84b, 3.2]).
Gϕ is actually an integral model forGL2(D), and the SL2(D) case is then treated in [BT84b, §5].

Let G1,ϕ be the schematic adherence of SL2(D) in Gϕ (following the definition in [BT84b, 5.3]).
It is mentioned in [BT84b, 5.5] that the group G1,ϕ is the closed subgroup of Gϕ defined by the
equation Nrd = 1, and hence it coincides with our group SL2,D. But by [BT84b, 5.5], G1,ϕ is
smooth over OK , concluding the proof. Note that to apply [BT84b, 5.5], we should check that a
finite unramified extension of a local field is étale in the sense of [BT84b]. But this is clear in view
of [BT84a, 1.6.1 (f) and Definition 1.6.2].

We conclude our study of the SL2(D) case by identifying the rational points of SL2,D.

Lemma C.5. Let D be a central division algebra over K of degree d, and let r ∈ N∪ {∞}. Then
SL2,D(OK/m

r
K) ∼= SL2(OD/m

rd
D ) (where by convention, m∞ = (0)).

Proof. Because the diagram appearing in Lemma B.5 is commutative, we have

SL2,D(OK/m
r
K) ∼={( g11 g12

g21 g22 ) ∈M2(OD/m
rd
D ) | Nrd(g) = 1}

={( g11 g12
g21 g22 ) ∈M2(OD/m

rd
D ) | det(

(

ϕ(g11) ϕ(g12)
ϕ(g21) ϕ(g22)

)

) = 1}

as wanted.
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