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Abstract

We define a new category of quantum polynomial functors extending the quantum polyno-
mials introduced by Hong and Yacobi. We show that our category has many properties of the
category of Hong and Yacobi and is the natural setting in which one can define composition
of quantum polynomial functors. Throughout the paper we highlight several key differences
between the theory of classical and quantum polynomial functors.

1 Introduction

Hong and Yacobi [10] introduced a category of quantum polynomial functors which quantizes
the strict polynomial functors of Friedlander and Suslin [7]. The purpose of this paper is to
introduce higher level categories of quantum polynomial functors that extend the construction
of Hong and Yacobi and explain why they give a natural quantization of classical polynomial
functors. The most visible advantage of our definition is that we are now able to compose
quantum polynomial functors.

A polynomial functor is defined as a functor between vector spaces which is polynomial
on the space of morphisms. The definition can be formulated as follows. Let k be a field, and
let V be the category of finite dimensional vector spaces over k. The dth symmetric group
S, acts on V®? by permuting tensor factors. Let I'¢) be the category which has the same
objects as 1V does while the set of morphisms between V, W € V is

Hompay,(V, W) = I“Hom(V, W) = (Hom(V, W)®)Sd, (1)

The category P¢ of polynomial functors of degree d is the category of linear functors F :

'’V — V. A polynomial functor is by definition an object in the category P = D=0 P,
The category P has initially been introduced by [7] to prove the cohomological finite

generation of finite group schemes over a field, where they use certain rational cohomology
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computations for the general linear groups effectively done in the category of polynomial
functors. Another example of important rational cohomology result obtained from the polyno-
mial functors is the untwisting of Frobenius due to Chatupnik [2] and Touzé [16]. Polynomial
functors can also be used to compute cohomology for other classical algebraic groups (see
[15] and references therein). In a different direction, Hong, Touzé and Yacobi [8,9] showed
that there is a categorical action of EE, on P that categorifies the action of gE, on the Fock
space, where p is the characteristic of the base field.

Two instrumental properties in the theory of polynomial functors are representability and
composition. Representability allows one to prove that the category P¢ is equivalent to the
category of modules of the Schur algebra S(n; d) forany n > d, or the category of polynomial
GL,, representations of degree d ([7, Sect. 3]). Composition is a natural property of functors,
which is not so natural for modules over a Schur algebra, hence is a main advantage of
studying polynomial functors. It is extremely useful in performing cohomology calculations.
Given F, G € P and an exact sequence in P that represents an element of Ext';;(F , G),
precomposing (respectively, postcomposing, when it is exact) the exact sequence with another
polynomial functor H € P gives a class in Ext'’, (FH, GH) (resp., Ext; (H F, HG)). The
special case of precomposing by the Frobenius functor, where the assignment is injective, is
particularly interesting in many contexts (see [5]). In general, this can relate Ext spaces in
different degrees and provides, for example [7, Theorem 2.13] which is a key technique in
main computations in [7].

A natural question is whether one can deform the polynomial functors into quantum poly-
nomial functors. A first such quantization is due to Hong and Yacobi [10]. They introduced
a new category ’Pg that is a ¢-deformation of the category P and showed that it enjoys

many properties that P¢ has. As in the classical case where the corresponding category is
equivalent to the module category for the Schur algebra, Pg is equivalent to the category of
finite dimensional modules for the quantum Schur algebra S, (n; d) of Dipper and James [4].
They present several applications to quantum invariant theory, including a quantum version
of (GL,, GL,,)-Howe duality. However, their category of quantum polynomial functors does
not allow for composition of the functors.

The underlying reason is that the action of Sy in Eq. (1) is replaced by a quantum action
that depends on the extra structure given to the objects. In [10], the domain category of 73“]1
consists of pairs (V;, R;), where one can think of V,, as the defining n-dimensional U, (gl,,)-
module or the defining A, (n, n)-comodule (where A, (n, n) is the quantum coordinate ring
of n x n matrices). The generators of the braid group 5B, act on Vn®d via the standard R-matrix
Ry, the R-matrix of the defining U, (g[,,)-representation V,,. When one applies a quantum
polynomial F to V,,, there is an U, (gl,) structure on F(V,) which produces an R-matrix
RF(v,) associated to F'(V,). The problem is then that Rr(v,) is not a standard R-matrix, so
the pair (F(V), Rr(v)) is not in the domain category.

We can also see this in the classical case. The domain of a polynomial functor consists
of vector spaces. One can endow such vector spaces with GL,,-module structures. If V is a
polynomial representation of degree e, then F € 7?5 maps V to a polynomial representation
F (V) of degree de. So we can think of the domain in the classical case as containing finite
dimensional polynomial representations of GL,,. The reason why this extra structure of V is
not present in the definition of polynomial functors is because Sy acts on V®? in the same
way regardless of the GL, -structure on V. In other words, one can view a single polynomial
functor as a functor between degree e modules and degree de modules for all e € N at the
same time. This is not true for quantum polynomial functors. The braid group acts on V®4
via the R-matrix of V, and different U, (g[,,)-modules have different associated R-matrices.

@ Springer



Quantum polynomial functors from e-Hecke pairs 3

Therefore, the action of B, on V®¢ depends on the module structure of V. If V is the defining
representation, the action of the braid group on V®¢ factors through the Hecke algebra H,,
but if V is the eth tensor power of the defining representation, or its subquotient,, this action
factors through the e-Hecke algebra H; . (see Definition 2.9). The e-Hecke algebras are
quantizations of the symmetric group and together play the role which the symmetric group
plays in the classical case.

This extra structure should be taken into account in the quantum case. It is then natural
to introduce the categories Pg’e of quantum polynomial functors that map degree e modules
to degree de modules. In this category, We are able to compose quantum polynomials by
Theorem 5.2. More precisely, given G € Pq .and F e P d .» their composition F o G is a

polynomial in Pdldz.

We think of the categories Pj,e as “higher” analogues of PI‘; . They satisfy many of the
properties that Pg satisfy. For example we show in Theorem 4.4 that the category Py, =
@d 7. 18 a braided monoidal category. Another fundamental property we prove is that
ngy . has a (finite) generator when g is generic (Theorem 6.13). The root of unity case is
significantly harder than the generic g case, since the domain category of the functors in 73[‘1{ ¢
consists of degree e polynomial representations of U, (g[,,), which is more complicated then
the corresponding category for generic g. However, when e = 1, the category of polynomial
representations of degree 1 is “the same” for ¢ a root of unity and for generic ¢; it consists
only of direct sums of the defining representation. Therefore our finite generation result holds
for any ¢ when e = 1.

The generator in Theorem 6.13 is defined in terms of a direct sum even for e = 1 (when
we would hope our category to reduce to the category studied by Hong and Yacobi). This is
something that is needed in order to define composition in full generality as we explain in
Sect. 6. We then consider another category of polynomial functors, whose definition involves
restricting the domain; we denote the new category by Pg:g. This category has a projective
generator as shown in Theorem 6.15 and we explain that when e = 1 we get back the main
result of [10] in full generality in Remark 6.17.

The existence of the projective generators allows us to conclude the equivalence between
the categories Pq ¢ and Pd and the category of finite dimensional modules of certain
Schur algebra. Such Schur algebras are natural generalizations of the quantum Schur algebra
Sy (n; d); we conjecture they also appear in a generalization of quantum Schur—Weyl duality.

Another interesting difference between the quantum and the classical categories can be
seen when taking into consideration e-Hecke pairs for all e at once. In Sect.7, we define
the category 735 as the category of functors with domain all e-Hecke pairs for all e. For
q = 1, this category is equivalent to the category Pg’e for any e. When ¢ is generic, Pg is
not equivalent to Pg’ . for any e.

To further endorse the categories 775’ . as quantum analogues of strict polynomial functors
we give several examples of objects in 73[‘1{ .- The most interesting we believe are the quantum
symmetric and exterior powers of Berenstein and Zwicknagl [1].

We now briefly outline the structure of the paper. In Sect.2, we introduce the basics of
quantum multilinear algebra which are of use throughout the paper. In Sect. 3, we define the
categories Pq > the main objects to be studied in this paper and present several interesting
examples of quantum polynomial functors. We focus on the quantum divided, symmetric and
exterior power (due to Berenstein and Zwicknagl [1]). We show that the definition of these
objects produce quantum polynomial functors, so their construction fits in our framework.
In Sect. 4, we show that the category of quantum polynomial functors is a braided monoidal
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category. In Sect. 5, we explain how two quantum polynomial functors can be composed in
our setting. In Sect. 6, we show that the categories 73(‘11’ . and stf have a (finite) projective
generator for generic g. This immediately implies equivalence to the category of modules of
a “generalized” ¢-Schur algebra. In Sect. 7, we consider a different category Pg with domain
all e-Hecke pairs for all ¢ > 0 and we show that this category does not contain a projective
generator for generic g. In Sect. 8, we discuss quantum polynomial functors at roots of unity.

2 Preliminaries

Let k be a field. Let g be an element of k*. We say ¢ is generic if ¢ is not a root of unity. In
this section we introduce several objects and prove some properties which will be of use in
defining quantum polynomial functors. We note that several of these definitions and some of
the properties are taken directly from [10].

2.1 Yang-Baxter spaces

Let V be the category of finite dimensional vector spaces over the field k. Each V € V comes
with a chosen basis {vy, ..., v,} where n = dim(V'). Even though our results are independent
of the chosen basis, the exposition is more clear if we associate a fixed basis to each vector
space.

Lett: V® W — W ® V be the flip operator, namely 7(v ® w) = w ® v. Let Sy be the
symmetric group on d letters. Let 34 be the Artin braid group generated by 7;, 1 <i <d—1

subject to the relations
LT, =TT if |i—j| > 1 )
TiTiTi = TitaTiTita

The Hecke algebra H, is the quotient of the braid group By by the relations
(T, —q)(Ti +q~ ") =0, Vi
ForV € V, R € End(V ® V) is called an R-matrix if it satisfies the Yang—Baxter equation:
Ri2R23R12 = Ry3R12R»3 (3)

where Rjy = R® ly € End(V®?) and Ry3 = 1y ® R € End(V®?).

If R € End(V ® V) is an R-matrix, we call the pair (V, R) a Yang-Baxter space. To
each pair we can associate a right representation, oz v : By — End(V®9) that sends T;
t0 lyei ® R @ lyed-i-1. We will most of the time use the short hand notation V for the
Yang-Baxter space (V, R) and denote the R-matrix in the pair (V, R) by R := Ry.

We now define the quantum Hom-space algebra as it is defined by Hong and Yacobi [10].
Given two Yang-Baxter spaces V and W with basis {v;} and {w}, respectively, let T (V, W)
be the tensor algebra of Hom(V, W), that is

T(V,W)=®u=T(V, W)y

where T(V, W), := Hom(V, W)® = Hom(V®, W®). Let I(V, W) be the two sided
ideal generated by X o Ry — Ry o X, forall X € Hom(V®2, W®2). Define A(V, W) :=
T(V,W)/1(V,W). The space A(V, W) has a natural gradation

AV, W) = By0AV, W4
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Quantum polynomial functors from e-Hecke pairs 5

where A(V, W)y =TV, W)a/I(V, W).
Denote by xj; : W — V the map

xji(wg) = ;v
with x;; € Hom(W, V) C A(W, V).

Lemma 2.1 The algebra A(W, V) has a presentation by the generators x j; and the relations
generated by

pq kl
Z(Rwyk[xkixlj - R\/,[J'xpkqu)v “)
k,l

where the coefficients Rl{,l ij are defined by the following equation:
Ry (v; ®vj) = Z R"‘/l,,-jvk ® .
k.l

Proof Elements of the form x;;xy; form a basis of Hom(W®2, V®2). The quadratic relations
(4) are exactly the relations that generate R(W, V). Since R(W, V) generates I (W, V), the
result follows. O

There is a degree preserving morphism of algebras
Aywuy AV, U) = AV, W) @ AW, U)

that is given on generators by Ay w y(x;j) = D Xik ® xij. Thereisamap V — W ®
Hom(W, V) given by

v; E wj & Xjj.
J

This extendstoamap Ay w : V - W AW, V).

Proposition 2.2 The following diagram commutes:

A
v LW W ® AW, V)
Av,ul lAW,U ®1
U®A(U,V? URQAWU,W)R A(W,V)
® Ay,w,v

Proof One can compute (1 ® Ay,w,v)Av,u(v) = > ;uj ® xjk ® xti = (Awu ®
1)Ay w(v;) from which the commutativity of the diagram follows. O

Let (V, Ry) and (W, Rwy) be Yang—Baxter spaces. We define the generalized (g-)Schur
algebra

S(V,W;d) = (AW, V)"
as in [10]. The following is proved in [10]:
Proposition 2.3 Ler V., W be Yang—Baxter spaces. Then there is a natural isomorphism

S(V, W; d) = Hompg, (V& w®)
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6 V. Buciumas, H. Ko

Proof See Proposition 2.7 in [10]. O

By taking the dual of Ay w ¢y we obtain a map
my,w,y :SW,Vid)®@SWU,W;d) - SU, V;d).

There is a natural map my, v\ Homg,(W®, V®d) ® Homp, (U®!, W) —
Homp, (U®?, V®?) that takes f ® g +> f o g. The following Proposition shows they
are the same map under the isomorphism in Proposition 2.3.

Proposition 2.4 Given three Yang—Baxter spaces V, U, W, the following diagram commutes:

~

SW,V;d)® S(U, W;d)

Homg, (W®¢, V@) @ Homp, (U®!, W®)

mU,W,VJ lm/U,W,V

SU,V;d) Homg, (U®?, V&)

Proof See Proposition 2.8 in [10]. O

Remark 2.5 1f W = V, the quadratic relation (4) becomes the RTT relation due to Faddeev,
Reshetikhin and Taktajan. The algebra A(V, V) is then just the algebra denoted by Ag,, in
[6].

We record two properties of A(V, V) which are standard results in the theory of quantum
matrices; their proofs are nothing more than simple computations.

1. A(V, V) is a bialgebra with comultiplication Ay v v (x;j) = Y ; xik ® xx; and counit
e(xij) = eaqv,v)(xij) = dij.
2. Visan A(V, V)-comodule with coaction given by Ay vy (v;) = Zi v ® Xji.

We note that one of the two diagrams that need to commute for Ay y to be a coaction
is the diagram in Proposition 2.2 for V.= W = U. Therefore we can think of the map
Ay w:V = W®A(W, V) as a generalization of the coaction.

Since the comultiplication is degree preserving (i.e., Ay y y maps A(V,V), to
AWV, V)g ® A(V,V),), the map my v,y makes S(V, V;d) into an algebra. The asso-
ciativity of my v v is equivalent to the coassociativity of Ay y, y. The unit of S(V, V; d) is
given by the counit e of A(V, V).

2.2 Quantum matrix spaces and e-Hecke pairs

Let V,, denote an n-dimensional vector space. Let R, be the R-matrix of U, (gl,) for the
defining representation, namely

v; ® v ifi <j
Ry(vi @ vj) = 1 qvi ® v; ifi=j o)
@-qg Hu®v+v; @y ifi>].
It is well known that (V,, R,,) form a Yang-Baxter space. Define A, (n, n) := A(Vy, Vy).
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Quantum polynomial functors from e-Hecke pairs 7

The space A, (n, n) is the algebra of quantum n x n matrices (see [6,14]). It is a coqua-
sitriangular bialgebra generated by elements x;;, 1 < i, j < n subject to the following RTT
relations:

D R xkixi; = ) (Ra)ijXprqr. (6)
k.l k,l

We now present some standard properties of A, (1, n), see for example [12, Chapter 7]. We
begin by reminding the reader about the coalgebra structure on A, (2, n). The comultiplication
and counit are given on generators by

A(xij) = ink ® xij, €(xij) = 6.
k
The vector space Vj, is an Aq(n, n)-comodule via the coaction v; > ;v ® Xji.

The coalgebra structure on A, (n, n) allows one to endow the tensor product V ® W of two
A4 (n, n)-comodules with the structure of an A, (n, n)-comodule. Therefore the category of
finite dimensional A, (n, n)-comodules is a monoidal category. The unit is the trivial comod-
ule k with the coaction 1 € k > 1® 1 € k ® A, (n, n). There are standard isomorphisms
ly :kQV > Vandry : V®k— V.

The bialgebra A, (n,n) is coquasitriangular. This means that there is a map R :
Ay;(n,n)®Ay(n, n) — kthatisinvertible in the convolution algebra, satisfying the following
conditions:

R(ab, c) = R(a, cq))R(b, c2))
R(a, bc) = R(aqy, b)R(aw), ¢) 7
bayamyR(aw), be)) = Rlaq), ba))baaw)
foralla, b, c € Ay(n, n). In the above formula we use Sweedler notation, namely we denote
A(a) = a(1) ® a(zy. The map R is given on generators x;; by the formula
R(xij ® xu1) = (Ry)j)- ®)

The values of R on higher order terms is given by repeated applications of the first two
equalities in Eq. (7).

The existence of R implies that for every A, (n, n)-comodules V, W there is an A, (n, n)-
comodule isomorphism Ry w : V® W — W ® V given by the formula

Ryw =(1010R)(1IQTt® 1Ay Q Ay)r. ©

This morphism makes the category of finite dimensional A, (n, n)-comodules into a strict
braided monoidal category. A strict braided monoidal category C is a monoidal category with
braiding isomorphisms yy w : V@ W — W ® V that satisty

rvew,u = (yv,u ® D ® yw,v)
vwweu =1 @yvu)lyvw®1) (10)
Fvyiv =1y, Fvyvg =1y
where [ is the identity object in the monoidal category and 7y, Iy are the identity constraints
inC.
Proposition 2.6 The category of finite dimensional Ag(n,n)-comodules is a braided

monoidal category with braiding isomorphisms given by yy w = Ry w.
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8 V. Buciumas, H. Ko

When W = V, the map Ry := Ry, y satisfies the Yang—Baxter equation. This makes
makes the pair (V, Ry) a Yang-Baxter space for every A, (n, n)-comodule V.

Definition 2.7 An e-Hecke pair V is an A4 (n, n)-comodule for some n > 1 such that the
image of the coaction Ay : V — V ® Ay(n,n) liesin V ® Ay (n, n)e.

Remark 2.8 Equivalently, an e-Hecke pair is a (finite dimensional) module over the g-Schur
algebra S, (n; e), or equivalently a degree e representation of U, (gl,). Yet another way to
understand the e-Hecke pairs is to note the fact that they are direct sums of subquotients of
V.®¢ where V,, is either the n-dimensional defining comodule for Ay (n, n) or the defining
U, (gl,) module.

We explain the term “e-Hecke pair”. Let V be an e-Hecke pair. First, we call it a “pair”
because we think of V as the pair (V, Ry). To explain the word “Hecke”, let us start with
the case e = 1. If V is indecomposable, then V has to be the defining comodule V,, and the
action of the braid group B; on Vn®d factors through the action of the Hecke algebra H,.
This is not the case for general e. Instead, the action of By on V® factors through a different
deformation of the symmetric group Sy, which is realized as a subalgebra of H, as follows.
Let w; be the element in Sy, such that

jte eli—-1D<j<ei
wi()=1j—e ei<j<el+1) (11
j otherwise.

Definition 2.9 The e-Hecke algebra of rank d, denoted by Hy ., is the subalgebra of H,
generated by Ty,,, . .. T,,,_,, where w; are as in Eq. (11).

One sees from the definition that the action of 5; on (Vn®e)®d factors through Hy .. Since
an indecomposable e-Hecke pair V is a subquotient of V,®¢ as an A4 (n, n)-comodule (see
Remark 2.8), the B;-module V® is a B;-subquotient of (V2¢)®? hence a H,_ .-subquotient.
We also have that

Homyy, , (V®?, W®?) = Homg, (V®?, W®?) = (Hom(V, W)®?)Pd.

It follows that the dth tensor power of an indecomposable e-Hecke pair is a module over the
e-Hecke algebra H, .. Note that the last sentence is false if we do not require the e-Hecke
pair to be indecomposable, for both ¢ = 1 and general e.

Remark 2.10 Note that the dimension of H, . is in general greater than that of £S;. When
d = 2, we canrelate the dimension of Hy . to the eigenvalues of a certain R-matrix, where we
can already see the difficulty of computing the dimension. The Schur—Weyl duality identifies
Ho, with Enduq (Q[ZL)(VSZ‘?)' under this identification, the generating element Ty, € Hz,
corresponds to the map RV®< Thus, the dimension of H; . is equal to the degree of the
minimal polynomial of Rv®e Since any R-matrix is diagonalizable for ¢ generic, the degree
is equal to the number of different eigenvalues of the R-matrix RV®e For example, when
e = 2 and g # 1 is generic, the R-matrix RV®2 has 7 distinct elgenvalues as seen from the
table in the last section of [10]. Therefore, the dimension of Hj > is 7. For general e, we do
not know the number of eigenvalues for the R-matrices involved. But the argument above
gives an upper bound 2(2¢2 + 1) for the dimension of Hae-
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Quantum polynomial functors from e-Hecke pairs 9

Remark 2.11 The e-Hecke algebra arises when one considers the wreath product of finite
groups. Given two groups G and H C By, one can define a wreath product mimicking the
usual construction where H C S;: Let the wreath product G : H be the semidirect product
G*? % H, where the action of H is the braid group action permuting components. If G = B,
and H = By, then the wreath product 5, : B, is a subgroup of the larger braid group By,
generated by Tl, ey Tefl, Te+1, ey Tzefl, ey T(d,1)6+1, ey Tdefl and Wiy, Wd—1,
where T7; are the standard generators for 5, and w; € By, are (unique) shortest lifts of
w; € Sge in (11). Now we replace the braid groups by Hecke algebras in constructing
the (internal) wreath product. The group B, is replaced by the Hecke algebra H,, and the
product B:d is replaced by H?d. This latter algebra is a subalgebra of H,, generated by
T, ....Te—1, Teg1, .., Toe—1s -y Ta—1ye415 - - - » Tae—1. The e-Hecke algebra Hy . natu-
rally acts on this; the generator T, acts as the multiplication in Hg4.. Then, the subalgebra
in Hg, generated by the above H;@d and our e-Hecke algebra Hy ., denoted by H, 2 Hy e,
can be thought of as an analog to B, : B4 or S, @ Sy.

The last equality of Eq. (7) implies that Ry is an A, (n, n)-comodule homomorphism.
Given an A, (n, n)-comodule V, write the coaction map as

. \%4
Ay v > ZUQ,‘ ®tj;
j
for some t}; € A4 (n, n). The equation above serves as the definition for tx

Lemma 2.12 The equation
ZRV /([tkltlj ZRVU pqul

is equivalent to the fact that Ry is an Ay (n, n)-comodule homomorphism.

Proof Ry is an A, (n, n)-comodule homomorphism if and only if
Aygv Ry = (Ry ® DAygy.

Applying both sides to v; ® v; and picking out the A (n, n)-coefficients of v, ® v, produces
the the desired equation. O

Lemma 2.13 The relation
ZRV kltkltl/ ZRV ij pk ql (12)

holds in Ay (n, n).

Proof This follows from Lemma 2.12 and the fact that Ry is an A, (n, n)-comodule homo-
morphism. o

Given an A, (n, n)-comodule V, we denote A(V, V) by A,(V,V) and S(V,V;d) by
Sq(V, V:d). If we define S;(n; d) := S;(Vy, Vs d), then Sy (n; d) is the g-Schur algebra
due to Dipper and James [4].

Proposition 2.14 Suppose q is generic or 1 and chark = 0. Then the category of finite
dimensional Ay (n, n)-comodules is semisimple.
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10 V. Buciumas, H. Ko

Proof See Theorem 11.4.4 in Parshall and Wang [13] where our Proposition is proved for
GL, (n). The same result for A, (n, n) follows in a similar way. O

Proposition 2.15 Suppose q is generic or 1 and chark = 0. Any irreducible A;(n,n),-
comodule V is a direct summand of V,2°.

Proof This follows from Proposition 2.14 and Remark 2.8. O

3 Quantum polynomial functors
3.1 Definition

In this section we propose a different definition of quantum polynomial functors that general-
izes the definition in [10]. Our category of quantum polynomial functors enjoys many of the
properties presented in [10], and additionally, it has a composition. Let d, e be non-negative
integers.

Let us define the quantum divided power category 1"511’ . V. Its objects are all e-Hecke pairs
for all positive n. The morphisms are defined as

Hompy (V. W) := Homgp, (V& w&?),

Note that the category Ff]l, .V always contains a one dimensional e-Hecke pair that is obtained
by tensoring the defining A, (1, 1);-comodule with itself e times. It then follows that the
category contains an n-dimensional vector space for every positive integer n. When d = 1,
the forgetful functor (V, R) — V to finite dimensional vector spaces induces an equivalence
of categories

Y=y (13)

for any g, e. When g = 1, the R-matrix Ry of any e-Hecke pair (V, Ry) is just the transpose
mapVeV—->VeV, vdwr— w v, thus we also have the equivalence

r{ y=ry (14)

for any d, e, where ['?V is the domain category for the classical polynomial functors defined
in the introduction.

Definition 3.1 A quantum polynomial functor of degree d on e-Hecke pairs is a linear functor

. d
F: Fq’KV—> V.

We denote by Pg,e the category of quantum polynomial functors of degree d on e-Hecke
pairs. Morphisms are natural transformations of functors.

Definition 3.2 Define the category 77;’ jff as in Definition 3.1 with the added requirement that
the domain consists only of e-Hecke pairs that are a subquotient of V,®¢ for some n.

Given an object of P,‘;,e,
show that the categories Pgﬂ are the natural setting where one can define composition. The
equivalence (14) tells us that if we specialize ¢ = 1 in in both categories defined above, we

recover the category of polynomial functors P¢ of Friedlander—Suslin [7] (see Sect. 1).

one can restrict its domain and define an object of le’jf. We will
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Quantum polynomial functors from e-Hecke pairs 1

Remark3.3 If d = 0, Homrd (v® w4y = Hom(k, k). Therefore the constant functor,
mapping an e-Hecke pair V . k, where k is the trivial A, (n, n)-comodule, is a degree 0
polynomial functor on e-Hecke pairs. It’s not hard to see all elements in de are direct sums
of the constant functor.

There is an equivalent characterization of a polynomial functor both in the classical and
Hong and Yacobi [10] setting, which directly applies to ours. Given F' € Pg sV, We rg,ev,
we have a map

Fyw:S4(V,W;d) — Hom(F(V), F(W))
which gives rise to two maps
Fyw:8q(V.,W:d)® F(V) = F(W)
F{,”W F(V) > F(W)® A, (W, V).

Proposition 3.4 ([10, Proposition 3.5]) A quantum polynomial functor F of degree d is equiv-
alent to the following data:

(1) foreachV € Fd a vector space F(V);

(2) given V, W € F a linear map

q.e’
Fj oy F(V)—> F(W)® Ag(W, V)q

such that the following diagrams commute for any V, W, U € FZ’ o

F//
F(V) vy F(U)® Ag(U, V)a
F‘///,WJ l1®AU,W,V
FOW) ® Aq(W, V)i FU)® AU, W)a ® Ay(W, V)4
w.u (15)
FOV)—LY S F(V) @ Ay (V. V)
ll 1®e
F(V)®k

(16)

Proof See Proposition 3.5 in [10]. We note that even though they prove it for when V, W, U
are defining comodules, their proof goes through unchanged for general e-Hecke pairs as in
our setting. o

We can extend the map F",’ v i FV)—=> F(V)®A4(V, V)4 to amap AF(V) F(V)—
F(V) ® Ay(V, V) that satisfies the following property.

Lemma 3.5 The map AF(V) makes F(V) into an Ay(V, V)-comodule.

Proof The diagrams in Proposition 3.4 are exactly what is needed for A}é(v) to be a coaction
map. ]
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12 V. Buciumas, H. Ko

Let V be an e-Hecke pair. The bialgebra A (V V) is a quotient of the free algebra
generated by {xv} by the ideal generated by ;- Z(RV klxklxl] R]{,l ij pkqu) The space V
isan Ay (V, V)- comodule via the coaction

A¥ TV > Zv‘,- ®xjvl-
J
and let
Ay v > va ®t}§
J
be the coaction map that makes V into an A, (n, n)-comodule.
Define the map ¥y : A4(V, V) — A, (n, n) on the generators of A, (V, V) as follows:

Yy () =1 (17)
Lemma 3.6 The map vy is a bialgebra homomorphim.

Proof We first need to check that vy is well defined. We can do this by showing that:

ki v .vi] _ rq .V ki
‘//V Z RV klxkle] RV Jij pkqu - Z RV,kltkitl] RV Jj pktql -
k.,

The first equality is by definition and the second one holds according to Lemma 2.13.
We now show that vy is a coalgebra homomorphism. This is equivalent to showing that
Yy commutes with the comultiplication and the counit, namely

Aa,em¥v = (v @ Yv)Aa, v, v).
ea, Vv = ea,wv.v)

Both equations follows from the fact that Ay is a coaction. m}

Let G be a quantum polynomial functor of degree d. We have maps:
Gyw:G(V) = GW)Q Ay (W, V)q.

If we denote by {vG} and {wG} the bases of G(V') and G (W), respectively, the map G/(/ W
takes v7 > w¢ @1"" fortw Y € A,(W, V)4. By the definition of A,(G(W), G(V)) we
get a map

G(V)—> GW)® A, (GW),G(V))

which takes

vGr—>w ®xwv,

where xjvi./’v are the generators of A, (G(W), G(V)).

Lemma 3.7 The map
Yy v i Ag(GIW), G(V)) > Ag(W, V) (18)

V) =1V s well-defined. Therefore it is an algebra

G w,
defined on generators as Yy, y (x ;; i

homomorphism.
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Quantum polynomial functors from e-Hecke pairs 13

Proof The proof is similar to how we proved that ¥y is well-defined in Lemma 3.6. We want

WV WV ok wyv wv)| _ pa W,V W,V
WW v ZRG(W) ¥k X~ RGwyiXpr Xqi ZRG(W) LT
k.l
Kl WV WY
—RGwyijtpk 1y =0.

The first equality is by definition. The second equality follows from the commutativity of the
exterior square in the diagram

(1em) (181G}, 19V y
GCMRGV) ————— > G ®GW)® Agy(G(W),G(V)) ——— G @ G(W) ® Ay(W, V)

RG(V)l RG(W)®|l Rc(tv)®'l

(1em)(19t@ 1G22, 19v§
GV)®GV) —————— > G ®GW)R® Ay (G(W),G(V)) ———> GW) @ G(W) ® A, (W, V)

19)

where m is the multiplication in A;,(GW, GV). The diagram is commutative because the
two small squares are: the first by Lemma 2.12 and the second is trivial. O

Lemma 3.8 The maps wv?, v satisfy the following two equations for all e-Hecke pairs
u,v,w:

Ay,w,v o Wg,v = (lﬁg,w ® lﬁ‘?/,v) o AGU),GW),G(V) (20)

€A, (G(V).G(V)) = C’Aq(v,V)lﬁ\?v 21

Proof The first equation is equivalent to Ay .y, W(t ) => .t il k ® t,f}/ ‘Y This in turn
follows from the commutativity of diagram (15).

The second equation is equivalent to e Ag(V.V) (ti?/’ V) = 4;; which follows from the com-
mutativity of diagram (16). O

3.2 Basic operations on quantum polynomial functors

We denote by Pff =, ij’e the category of quantum polynomial functors of degree d,
by Py =P, 735’8 the category of quantum polynomial functors on e-Hecke pairs, and by
Py = EBE’ d ng . the category of quantum polynomial functors.

3.2.1 Tensor product in Pg

Given two quantum polynomials on e-Hecke pairs F € P, and G € P4 the (external)

q.e’
tensor product F ® G € Pg:‘e'd/ is defined in the same way as in [10]. For an e-Hecke pair
V, we define it to be

(FRG)(V)=FV)®G((V).

@ Springer



14 V. Buciumas, H. Ko

To define it on the morphisms one uses the inclusion By x By C By44 . To be more explicit,
for two e-Hecke pairs V, W, the map (F ® G)y,w is the following composition:

HodeM/(V@d—kd” Wod+d'y Hodede/(VQad ® VOl Wwed g wed
— Homp, (V®, W®?) ® Homg,, (V& , W)
— Hom(F(V), F(W)) ® Hom(G(V), G(W))
— Hom(F(V) ® G(V), F(W) ® G(W))

where the third map is Fy.w ® Gy, w.

Recall the constant functor k£ € 732,6. It maps an e-Hecke pair V to the trivial A, (n, n)-
comodule k. It is then an easy exercise using the definition above to show that F @ k = F
via the natural transformation n : F ® k — F given by the standard isomorphism ny :
F(V)®k = F(V). We similarly have that k ® F = F. This can be summarized as follows:

Proposition 3.9 The category Py . is a monoidal category with the tensor product @ and the
unit object k.

3.2.2 Duality in ’Pg,e

One defines a duality on the functor category using dualities on the domain and codomain
categories. In V, we have the linear dual V — V* = Homg(V, k). For our category FZ’KV
where the objects have additional structures, we “lift” the linear dual to what is compatible
with this structure, namely the twisted dual. To explain the twist here, it is more convenient
to work with the U, (gl,,)-modules where the twisted duality is rather standard. (Recall that
an A, (n, n)-comodule can be thought of as a polynomial representation for U, (gl,).) For
a U, (gl,)-module V, one can define a twisted U, (gl,) structure on the linear dual V* of
the underlying vector space by precomposing the U, (gl,) action by an antiautomorphism 7;
(see [11, 9.20] for the definition of 71 and the twisted dual). We denote by ™V the resulting
U, (gl,)-module. Then we have

Ttvy=v (22)

in Uy (gl,,)-mod. We remark that * — is a duality of a highest weight category, under which the
irreducibles are self-dual and a standard module and a costandard module of the same highest
weight are dual to each other. In particular, the duality preserves the degree of polynomial
representations, that s, if V is an U, (g[,,)-module of degree e, then the dual * V is also a degree
e U, (gl,,)-module, so we can extend this duality on the category of A, (n, n)-comodules. We
therefore have a contravariant functor

SRR VIRZE G
Now we define the duality —* on ng . as
F* . ="F( ).
It is not hard to show that F* satisfies the properties in Proposition 3.4 and therefore it is a

quantum polynomial functor. Taking ¢ = 1 in our setting agrees with the classical definition
of the dual.
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Quantum polynomial functors from e-Hecke pairs 15

3.3 Examples

We present several examples of quantum polynomial functors.

3.3.1 Tensor powers

For each d € N, the dth tensor product functor ®“ : V > V® is a quantum polynomial of
degree d. To be more precise, for each e, there is a functor ®§ in qu’e which maps an e-Hecke

pair V to the de-Hecke pair V®?. The map ®“I,’W on the morphisms is just the inclusion
Homp, (V, W) < Hom(V®, w&?),

We abusively denote this functor by ®7 for any e.
When d = 0 we get the constant polynomial functor ®° : V +— k, which we denote
abusively by k, and ®' is the identity functor which we prefer to denote by 1.

3.3.2 Divided powers and symmetric powers

Given an e-Hecke pair W, the divided power ngew is the object in nge represented by W,
namely, r:]i:eW : V > Homg,(W®, V®) The map on morphisms

Homg, (VZ?, V;24) — Hom(Homg, (W®?, V®?), Homg, (W&, V,2%))

is given by f > f o —. When W is the e-Hecke pair (k®¢, qez), we denote it by Fg’e and
call it the divided power. We may drop the index ““e” in the notation because it is determined
by V. That is, if V is an e-Hecke pair, then Fg 'V denotes the functor Homrgev(V, —) in

P,‘j,e. Since a divided power is a representable functor, Yoneda’s lemma tells us that it is a
projective object in Pge (see Proposition 6.1 for a detailed proof). Moreover, divided powers
form a set of projective generators for ’Pg, . for generic g as we shall prove in Theorems 6.13
and 6.15.

For an e-Hecke pair V let Sﬁ € ng . be defined by

s§ = @k

where the dual F* of a functor F is defined in §3.2.2. These are the corepresentable objects
in Pj’e and form a set of injective cogenerators for ij’e.

3.3.3 Quantum symmetric, divided and exterior powers

In this subsection we assume char(k) = 0. Let V be an e-Hecke pair. An important set of
examples of quantum polynomial functors are the quantum symmetric and exterior powers
for generic g due to Berenstein and Zwicknagl [1] (they also require char(k) = 0). These
are quantum deformations of the classical symmetric and exterior power, though their theory
is significantly more complex. For example, it is not necessary that the dimension of the
quantum symmetric power of an U, (gl,)-module to be the same as the dimension of the
classical symmetric power of the corresponding U (gl,,)-module.

In this subsection we define the quantum symmetric, divided and exterior powers when
q is generic or when it is a pth root of unity for an odd integer p. In the generic case, the
definition of quantum symmetric and exterior can easily be seen to be the same as in [1].
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16 V. Buciumas, H. Ko

Let V be an e-Hecke pair. The map Ry : V®> — V®?2 is diagonalizable for generic g.
For all non-zero ¢ it has eigenvalues +¢", for a finite number of integers r (see [1] for details;
note that they only state it for when V is indecomposable, but it is easy to see that this holds
for the direct sum of indecomposables as well). If ¢ is a pth root of unity and p is an odd
integer, then g% # —q” for any integers a, b. Therefore the following definition makes sense
for this choice of ¢, even though the R-matrix Ry might not be diagonalizable. Define

ALV =) (we VE(Ry +¢)Vw = 0for N > 0},
i€’

Fo(V) = {we V®|(Ry —g")"w = 0for N > 0}.
i€Z

(23)

We can now define
V®d

Yicica1 VO @A (V)iis1® @V’
AZ(V) =Ni<i<d-1V ® -+ ® AZ(V)MJrl -V,
Fg(V) =Ni<izg-1V® - ® Fg(V)l-’l-H R---QV.

SIV) =

Remark 3.10 When g is generic, our quantum divided power agrees with the definition of
quantum symmetric power in [1]. Note that semisimplicity makes it unnecessary for [1] to
distinguish the two. We prefer to define the quantum symmetric power as a quotient since it
is more natural.

Proposition 3.11 The quantum symmetric, exterior and divided powers are quantum poly-
nomial functors.

Proof Let f € Homg, (V®?, W®?). Inorder to show that AZ and FZ are quantum polynomial
functors we need to show that the restriction of f to A‘qi(V) has image in AZ (W) and the
restriction of f to Fg(V) has image in Fg(W). Since f commutes with the action of T; € By,
wehave f(V®- - @AZ(V)iit1 ® - Q@V)SW®- - @AZ(W)iiy1®--- @ W. It then
easily follows from the definition that f restricts to a map from Ag(V) to Ag(W). A similar
proof works for FZ.

From the fact that f maps V®- - -®@AZ (V)i i11®- - @V o W®- - -®AZ(W); i 11®- - QW
it follows that f induces a map (which we denote by the same letter) f : Sg(V) — Sg (W)
from which we deduce that Sf; is a quantum polynomial functor. O

Remark 3.12 Symmetric/divided power and quantum symmetric/divided power are differ-

®e

ent quantum polynomial functors. Consider for example the divided power functor F,?Z b
®e

where V1 is the defining A, (1, 1)-comodule. For any V € Fg’e, the image 1"5:2/1 (V) is the
eigenspace of Ry : V® V — V ® V with eigenvalue ¢¢. The quantum divided power Fg

maps V to the direct sum of eigenspaces of Ry with eigenvalues +¢" for all integers r.

. dv ®e
Remark 3.13 Note that when ¢ = 1, the quantum polynomials Sf/@, sd, Fq,ev ', and 'Y all
1

return the classical symmetric power, since in that case g = 1 = +¢", Vr.

With our definition, the following statement is clear.
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Quantum polynomial functors from e-Hecke pairs 17

Proposition 3.14 Let V be an e-Hecke pair. Let N be the maximal rank of the Jordan blocks
of Ry. The sequence
0—T2v 5 ve2 B A%y 0
is exact, where p1 is the inclusion FSV < V&2 (recall that we defined FSV as a subspace
of V®2) and p, is defined by
piwe [ ®v—g)Vw.
—e<i<e
Here we record two short exact sequences of degree 2 quantum polynomial functors

0—> A} > ® — 5 -0, (24)
which is by definition, and

0—>TI7 > @ > A} >0, (25)

which follows from Proposition 3.14. Also note that the first map in (24) and the last map in
(25) make an exterior power a direct summand of a tensor power.
Furthermore, we have the following.

Proposition 3.15 There are isomorphisms of quantum polynomial functors
@ =g,
(sp* =y,
(An* = AL

Proof Let V be an e-Hecke pair, or equivalently, a polynomial representation of U, (gl,,) of
degree e. There is a canonical isomorphism

Gn: (V) ST(VE)

of U, (gl,)-modules, since 7 and the comultiplication commute (see [11, 9.20]). We note
that what Jantzen denotes by the twisted comultiplication A’ is the usual comultiplication
structure that makes A (n, n) live in the dual of U, (gl,,).) This is then also an isomorphism of
A, (n, n)-comodules. By (22), the dual of ¢, induces the desired isomorphism ®" = @"*
of polynomial functors.

To prove the other statements, first consider the n = 2 case. The R-matrix of * V satisfies

R-y = Ry.

This follows from the fact that the R-matrix of V* is the transpose of Ry (follows easily
from Proposition 4.2.7 in [3]) and the matrix of V twisted by 17 is also the transpose of
Ry (follows from the formulas in [11, 9.20]). The isomorphism ¢, preserves eigenspaces of
Ry = Ry, and hence restricts to an isomorphism from (Afl (*V)), which is the direct sum

of eigenspaces of Ry corresponding to eigenvalues —g’, to I(Aﬁ V), which is the direct sum
of eigenspaces of Ry corresponding to eigenvalues —g’. Thus, ¢ induces an isomorphism

Afl(TV) %f(Aé V).

The duality * satisfies “*(V ® W) = V ®" W because both 7| and the antipode are antiau-
tomorphisms. So we have

WO @AVt ® - @V)ZEVR- @A (V)iit1 @ ®V.
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18 V. Buciumas, H. Ko

By intersecting we obtain "(A4(V)) = Ad("V), from which A = (A})* follows (again,
we use (22)).

The second statement is then obtained by comparing the short exact sequence (24) and
the dual of the short exact sequence (25) for d = 2. Then it is clear from the definition of the
quantum symmetric and divided powers that the same is true for all d. O

Remark 3.16 We now explain why we assume p to be an odd root of unity. Assume g =
i = +/—1and V; is the defining A, (2, 2)-comodule. We want to decompose V2®2 into two

parts F;(Vz) and Aé(V2). The problem with the construction above is that the R-matrix

R, only has one eigenvalue ¢ = —g~! = i. It is not diagonalizable; it has a 2 x 2 Jordan
block and two 1 x 1 blocks. Thus, we cannot separate the eigenvalues of Ry, into “positive”

and“negative” eigenvalues and therefore definition (23) doesn’t make sense.

4 Braiding on Pg ¢

We can use the braiding structure on the category of A, (n, n)-comodules to endow the
category (Py,., ®) with the structure of a braided monoidal category.

Let F € Pd and G € Pd The tensor products F ® G and G ® F both live in Pd+d
For an e- Hecke pair V, recall that F(V) and G(V) are both A;(n, n)-comodules for some
n according to Proposition 5.1. Let Rr(v),gv) : F(V) ® G(V) — G(V) ® F(V) be the
braiding isomorphism defined in equation (9). We use it to define the natural transformation
Rrc:F®G — GQ®F by

Rr,g(V) = Rrw),6v)-

This map turns P, . into a braided monoidal category. But before we can prove that we need
two results which are interesting in their own right.

Let V be an e-Hecke Pair and let F € Pd and G € P‘I Then F(V) and G(V)
are naturally A, (V, V)-comodules. They also have the structure of Ay (n, n)-comodules by
Proposition 5. l

The coalgebra A, (n, n) is coquasitriangular, therefore the comodule structure supplies us
with the braiding Rrv).gv) : F(V) ® G(V) — G(V) ® F(V) that we mentioned above.
However the coalgebra A, (V, V) is also coquasitriangular. Therefore there is a universal
R-matrix RV € A;(VRV)® Ay (V ® V) that satisfies properties (7) and is defined on the
generators of A, (V, V) by

RY () ® xp) = (Ry)jk.

Since F(V), G(V) are A;(V, V)-comodules, there is an R-matrix RF(V) Gy - F(V)®
G(V)—> G(V)® F(V).

Proposition 4.1 The maps Rrv),G(v) and R%(V) G(v) are equal.
Proof The map Yy : A;(V, V) — A, (n, n) defined in equation (17) has the property that

RY(x,y) = Ry (x), Yv ()

forallx,y e A (V V). The equation holds when x, y are generators of A, (V, V) because
we defined R’(x ® xkl) = (RV) . The R-matrix of the A, (n, n)-comodule V is Ry,

therefore the followmg equation holds by definition R(ti‘; ® t,x ) = (RV)Z? . We have that

vy (xi‘]/.) = tl.‘; and therefore the equation above holds when x, y are generators.
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Quantum polynomial functors from e-Hecke pairs 19

Since the equation holds on generators, it holds for every x, y € A4(V, V). Itimplies that
the R-matrices Rr(v),g(v) and R;(V) G(v) are equal. m]

Lemma 4.2 The following diagram is commutative:

1T @ V(F) &Gl )
F(V)® G(V) : >FW)QGW)RA;(W,V)® A, (W, V)
RF(V),G(V)l lRF(W),G(W) ®1
G(V)® F(V) GW)@FW)®@A;(W,V)® A, (W, V)

(1 RTR 1)(G/‘//W ® F\//lyw)

Proof Note that by Proposition 4.1, we can replace in the equation above Rr(v),c(v) and
RFrwy,c(w) by R%(V)’G(V) and R%(W)’G(W), respectively.

By considering the commutative diagram in equation (19) in the proof of Lemma 3.7 for
the functor F @ G we obtain that the diagram

(1QT@D(FBG);, 1y ®(FBGCYy )
FeG)(V)®(FDG)V) (FOGW)R(FOG)(W)®A;(W,V)

RF@G(V)l RF@G(W)®1JV

(1QT@D)(FBG);, 1y ®(FBGCY) )
FeG)(V)® (FeG)V) : — (FOG)(W)Q (FOG)W)® Ay (W, V)

is commutative. The result follows from the fact that the tensor product (F & G)(V) ® (F &
G)(V) can be written as

FV)QF(V)8F(V)QG(V)BG(V)QF(V)BG(V)® G(V)
and that the restriction of Rrgc(v) to F (V) ® G(V) is just Rp(v),G(v), while the restriction

of 1@t DH(F @ G)/\//,W R (F & G)/\//.W) to F(V)® G(V)and G(V) ® F(V) is just
1®t® l)F"/’,U ® G"//’U and (1®T® l)y(G"’,,U ® F{,’7U), respectively. O

Proposition4.3 Let F, F' ¢ 73(‘11’6 be quantum polynomial functors and let a : F — F’ be
a natural transformation. Then the maps ay : F(V) — F'(V) are Ay(V, V)-comodule
homomorphisms.

Proof The following diagram commutes for any f € Hom(V, V) = §,(V, V; d) because
« is a natural transformation:

Fv)—2— F(v)
F( f)l lF’(f )
F(V) —ay F'(V)
This is the same as saying that the map ay is an S, (V, V; d)-module homomorphism from
which the conclusion follows. O
Now we can prove the main result of this subsection.

Theorem 4.4 The category Py . is a braided monoidal category with braiding isomorphism
Rrg: F®G—>GQF.

Proof We first show that the braiding is a well defined morphism in Hom(F ® G, G ® F).
This is equivalent to showing the commutativity of the following diagram
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20 V. Buciumas, H. Ko

FRG
rovy e 62Dy o gowy

RF(V»G(V)l lRF(WxG(W)

V)® F(V) ——— G(W) ® F(W
GV ® ()(G®F)(f)G( ) ® F(W)

for all e-Hecke pairs V, W and any f € Hom(V, W). The commutativity of the diagram
above for all f is equivalent to the commutativity of the following diagram

Sq(V,W;d+d)Q F(V)® G(V) F(W)® G(W)
1® RF(VLG(V)l lRHW),G(W)
Sq(V,W;d+d)®G(V)® F(V) GW)® F(W)

where the horizontal maps are given by f ® vF @09 > (FQ G)(f(wF @ v%).
The commutativity of the second diagram is now equivalent to the commutativity of the
following diagram by the definition of S, (V, W; d + d’) as the dual of Ag(W, V)gqa-

(1I1®T® 1)F",’,U QG

F(V)®G(V) SEW) ® GW) ® Ag(W, V) ® Ay (W, V)
RF(WG(V)J lRF(W),G(W) ®1
G(V)® F(V) GW)® F(W)® Ag(W. V) ® Ag(W., V)

(1®t® DGy, ® Fy

which is commutative by Lemma 4.2. This completes the proof of naturality of the braiding.
Now we show that Rr ¢ is a natural transformation, namely we need to show that for
f:F— F and g : G — G’ we have

Rp o (f®g =(g® f)Rrc

The relation above holds when applied to any V because we can write Ry (V) = Rp(v),G(v)
as the composition (1 ® 1 ® RNH1®Tt® D(AGgw) ® Apvy)T and fy ® gy commutes
with each factor of that composition except for T which switches fy and gy by Proposition
4.3. Notice that in the equation above we use RV, the universal R-matrix of the coalgebra
A4 (V, V), instead of R. We can do this because of Proposition 4.1.

The natural transformation R ¢ ¢ is anisomorphismbecause R (v),G(v) is anisomorphism
for every V. We show that it satisfies equations (10). To prove the first property yyew.u =
(yv.u ® (1 ® yw,u) we note that it is equivalent to

RreG.H(V) = (RF.a(V)® 16)(1F ® RG.u(V))
for every e-Hecke pair V. This can be rewritten as

Rrivyecwv),HWv) = (REw),HV) @ lav) U F(v)y ® RG(v),H(V))

and follows immediately from Proposition 2.6.
The third property 7y yy v = ly can be rewritten as

rv R vy = 1lFv)
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which again follows immediately from Proposition 2.6.
The rest of the properties properties follow by the same argument as above. m}

Rernlark 4.5 One can similarly show the existence of a braiding for the monoidal category
Pye-

5 Composition of quantum polynomial functors

Given two linear functors F, G between arbitrary k-linear categories, one can define the
composition F o G if the domain of F agrees with the codomain of G, and then F o G is a
linear functor. The quantum polynomial functors, as in the definition presented, have (up to
equivalence) V as their codomain, which does not match the domains of quantum polynomial
functors. We have to endow the image of F with some additional structure.

Proposition 5.1 Given V an e-Hecke pair and F a quantum polynomial functor of degree d,
then F (V) is also an Ay (n, n)-comodule. It is a de-Hecke pair.

Proof By Lemma 3.5, F(V) is an A,(V, V)-comodule with coaction A;(V)' Since Yy is
a coalgebra homomorphism by Lemma 3.6, the composition (1 ® WV)AX(V) makes F' (V)
into an A, (n, n)-comodule. It is easy to see from the way (1 ® wv)Aﬁ(V) is defined that
F (V) is a de-Hecke pair. This completes the proof of the statement. O

We now explain the composition of quantum polynomials functors. Let G € Pg?e and
F e P5,1d2e~ We define F o G € PA as follows: on objects V e T2V we let
(FoG)(V)=F(G(V)).

This composition makes sense because G(V) is an A, (n, n)g4,.-comodule by Proposition
5.1. Since F is a quantum polynomial functor of degree d;, we have maps

Floncan - FG(V) = F(GW) ® Ag(G(W), G(V))y,

that satisfy the commutation relations in Proposition 3.4. G is also a quantum polynomial
functor so we have maps:

Gy :GV) > GW)® Ag(W, V)g,.
Define (F o G)"’,,W i F(G(V)) = F(GW)) ® Ag(W, V) as

(FoG)y =Y w) o Féw) oam
where wg w 1s defined in Lemma 3.7.

Theorem 5.2 (F o G)” satisfies properties (15), (16) in Proposition 3.4. Therefore F o G is
a well-defined quantum polynomial functor in Pg led 2,

Proof Diagram (15) for (F o G) is equivalent to the exterior square of the following diagram:

F(/.:(V).(.‘(U) - : ; 1 %1}’?}‘.&" B
(FoG)(V) ——————————————— (FoG)(U) @ Ay(G(U),G(V)) ————————— > (Fo G)(U) ® A,(U,V)

Fg(\,) G(W)j 1® Agw),cw),cv)

(FoG)(W)® A (GIV), G(V)) —— (F o G)(U) & A(G(U), GV)) © A (GIW), G(V)) 16 Avawy
Feawyean @1 1@ VG w @ UGy

195y

FoG)(W)® Ay(W,V FoG)(U)® Ay (U, W) @ Ay(W,V
( )W) W, V) Fodho el ( ) (U, W) W, v)
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We show the commutativity of the exterior square by showing the commutativity of all
three interior quadrilaterals. The commutativity of the top left diagram follows from the fact
that F is a quantum polynomial functor. The bottom left diagram follows from the fact that
the horizontal arrows modify only the left component of the tensor product, while the vertical
arrows modify the right component only. The commutativity of the top right diagram follows
from the fact that ‘/’g,v satisfies equation (20).

Diagram (16) for F o G is the exterior triangle of the following diagram:

FGwy.om) 1 vy y
(FoG)(V) —2U29Y) (56 Gy (V) ® Ag(GIV). G(V)) —V s (Fo G) (V) ® Ag(V. V)

1 I®es,G6v).6v))
I®eq,v,v)

(FoG)(V)®k

The left triangle commutes by (16) and the right triangle by (21). O

6 Representability

Recall the divided power functor Fg :e\/ € ’Pg’ o

rdY (W) = Homg, (V& w&)

e
defined for each e-Hecke pair V € F,‘I{ V-

Proposition 6.1 (Yoneda’s lemma) For any e-Hecke pair W, the functor Fg::v € qu’ . epre-
sents the evaluation functor P[‘II, . — V given by F — F(W);, therefore ngew is a projective
object in Pz’f,e.

Proof We need to show the existence of an isomorphism

Hompgve(l‘gjy, F) — F(W)

forany F € PL‘]I’E. Define the map p : Hompgg(l"g,’:v, F) — F(W) by

p(f) = fw(d) € F(W).
Let¢ : F(W) —> Hompge(l";ljg/, F) be defined as follows: for any v € F(W), ¢ (v) is the
natural transformation such that ¢ (v)(U) : FZ;:V(U) — F(U) takes
g € Homg, (W)®, U®) > Fy, y(g)(v) € F(U).
We now show that p and ¢ are inverses to each other. Start with v € F(W). We have

p(P()) = p)(W)(id) = Fy,w(id)(v) = v

d,w

Now let f € Hompge(rq,e ,

F). We want to show that

d(p(Nu) = fulg)
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forany U € I'¢ , and g € Homp, (W)®?, U®?).
d((NW)(Q) = Fw,u(g)(fw(id)
= fu(Tg) (2)(id)
= fu(g).

The second equality follows from the commutativity of the following diagram

TNy ve)
rdW ) 2 pd )

| |5

FW FWU
( ) FW,U(g) ( ) (26)

which holds because f is a natural transformation.
It follows that Ffj j:V is a projective object in Pg o O

Definition 6.2 Let W be an e-Hecke pair. The quantum polynomial functor F € Pg, e 18
W -generated if for every e-Hecke pair U the map

Fyy:SqW, U d)® F(W) — F(U)

is surjective. We say that the category ’Pg, . 18 finitely generated if there is an e-Hecke pair
W such that every F € ng . 1s W-generated.

Remark 6.3 Note that S, (W, U; d) = FZ:ZV(U). So the map FéV,U above gives a surjection
d.W
rdV @ F(w)—> F

in Pg, »» Where Fg ::V ® F (W) is interpreted as the direct sum of dim F' (W) copies of Fg,’ew in
Pg’e. Since FZ jeW is projective by Proposition 6.1, Definition 6.2 says that l"g jZV is a projective

generator of the category Pg_ o

Definition 6.4 Given two objects V, W € Fg, .V, we say V generates W if the identity
Idyea (which should be written Idy if we view it as an identity in the category 1"(‘117 . V) can

be written as a linear combination of B,-homomorphisms which factor through V®¢ (which
should be stated as ‘in FZ .V, the identity on W can be written as a linear combination of
endomorphisms on W that factor through V).

Proposition 6.5 Let V, W € Fg’ o V. Assume that any indecomposable summand of w® (as
a Bg-module) is isomorphic to a direct summand of V®. Then V generates W.

Proof Denote by M; all the indecomposable summands appearing in a fixed indecomposable
summand decomposition of W®¢. For each M;, there is a summand N; in V®¢ that is
isomorphic to M; as Bs-modules. Let f; be a By-map that maps the summand M; ¢ W®¢ —
N; € V® and g; a By-map that maps N; C V®¢ — M; c W®?_ Then the sum of g; o f;
is the identity on W®9, o
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Lemma 6.6 IfV generates W, then the natural map
F(V)@TeV (W) — F(W)
is surjective for any F € Pg,e.

Proof Since there are maps f;, g; such that ) ; g; o fi = Idyea, by applying F we obtain
Zi F(gi) o F(f;) = Idr(w). This implies that the natural map F (V) ® Hompge(V, W) —
F (W) is surjective. O

We obtain an important corollary.

Corollary 6.7 The functor I"Z’V is a projective generator in 735’8 if V generates W for all
Werd, v

Proof This follows immediately from the proof of Lemma 6.6. O

Lemma 6.8 If'V generates W then V generates any direct summand of W as an A, (n, n)-
comodule.

Proof 1f V generates W and W = W @ W, (as A, (n, n)-comodules), then V generates W;.
To see this, assume the existence of maps f;, g; such that ), g; o f; = Idyea. Since W
is a direct summand, there are inclusion and projection maps i : Wy — Wiy @ W, = W
and p : W = Wy & Wo — W,. Then i® : ngd — W®d and p® . W ngd

. . . = ®d
are B;-maps because By acts via R-matrices which are A, (n, n)-maps. Let f; : W;© —
®d

V.8 v W1®d be defined as f; = f; o i® and g = p®d o gi, respectively. Then

fi, & are By-mapsand Y, gio f; = p®? oldyead 0i® = Idyca. Therefore W) is generated
by V. O

The following lemma is a standard fact in quantum theory.

Lemma 6.9 Given a composition A = (A1, -+, A,) of d, let V ;, be the subspace of Vn®d
generated (as a vector space) by the vectors Vigy ® *++ @ Vigy where vj; ® -+ @ v, =
v(lm1 Q- Quy )"”, and o € Sy, where {v;} is the standard basis of V. Then V, , is a direct
summand of VE? as a By-module.

Proof The generator T ; of the braid group maps the vector v ="+ ® v;; @ v;;,, ® --- toa
linear combination of v and v’ = --- ® v;,,, ® v;; ® - - - . See equation (5). It follows that T;
leaves V, ; invariant. Since this is true for all A, the submodule Vj; 5 is a direct summand of
V¢ as Bg-modules. O

Remark 6.10 As a vector space, V, ; is the same as the permutation module M;, in Vn®d
viewed as an S;-module.

IfW e Ffj oV is of the form V,#¢, then we can formulate an explicit sufficient condition
for what generates W.

Proposition 6.11 The e-Hecke pair V,2¢ € ngev generates V.2 foranyn € Nifm > de.

Proof First let e = 1. By Proposition 6.5, it is enough to prove that any B,;-indecomposable
summand of V,#¢ is a By-summand of V4. Let M be an indecomposable summand of V&4
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as By-modules. It follows from Lemma 6.9 that M is an indecomposable summand of V, ;.
forsome A.If m > d, then V; ; is isomorphic to a summand of V,S?d. The conclusion follows.

For general e, consider the 3;,-modules Vn®de and V,S@de. The proof of the case e = 1
(where d is replaced by de), implies that there are By.-maps

fi 1 vRde — y@de g y@de _, yede

suchthat ) ; gj o f; = Ian®a’e, provided that m > ed. Consider the subgroup, call it B4, of
Bge generated by Ty, - - -, Ty,_,, where w; are as in (11).

The action of Ty, € By, on V.29 is the same as the action of T; € B, on (V,2¢)®4 = y&de
via (R\,,;@e),,,ﬂ. The B4.-maps f; and g; can then be viewed as 3;-maps

fi n (VEOSE — (V2O®L g (VOB — (v, 2%
with ), gi o fi = 1d. This gives the desired result. O
Define (V,2¢)®) to be a (numbered) copy of V,2¢.

Proposition 6.12 The e-Hecke pair &, (V2¢)®) € rg,ev generates ®_ (V2D for any
n, N € Nifm > de.

Proof Given a composition A = (A1, ..., Ay) of d, let U,z C (@Y, (V,E))®4 be the
direct sum

@ (Vn®e)(iu(1)) ® (Vn®e)(ia(2)) ® - ® (Vn®€)(ia(d))

oeSy

where (V®6)(i1) R ® (V®e)(id) ((V®e)(l))®k1 Q- ®((V®€)(N))®)\N The space Uy,
is a direct summand of (GBN 1(V®e)(’))®d as a By module and (@N L (V8e)0)®d g 4 direct
sum of Uy, 2 OVer A. Leth = (A, .. A ) be the composition A with all the 0’s removed, then
N <d.If N < d, add 0’s at the end of A such that the number of entries in A is exactly d.
Define U, 5 C (@l 1(V®€)(’))®d in much the same way we defined U, ) above. Then
by an argument similar to the proof of Proposition 6.11 it follows that U, 5 generates Uy, .
By Proposition 6.5 we are done. O

The special cases in the Propositions 6.11 and 6.12 are enough to guarantee a projective
generator in the semisimple situation. Denote @ 1(V®9)(’> € Fd NV by Wy .

e

d,w
Theorem 6.13 Suppose q is not a root of unity and char(k) = 0. Then the functor T'y . md s
a projective generator in nge ifm > ed.

Proof By Corollary 6.7, it is enough to show that any W € ng’ev is generated by W ;. But
by Propositions 2.14 and 2.15, W is a direct sum of direct summands of some V,®¢,which
means it is a direct summand of ealN: l(V,?e ). So Proposition 6.12 and Lemma 6.8 shows
that Wy , generates W.

awy .. L "
The fact that 'y . ™4 js projective is just Proposition 6.1. O
Corollary 6.14 The evaluation functor Pg, — mod (S, (W, . e Wi g d)) is an equiva-

lence of categories for q not a root of unity, char(k) = 0 and m > de. It follows that
Sq(We 4 m 4> d) and S (Wed, W;d, d) are Morita equivalent when m, n > de.
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The main motivation behind our construction is composition of polynomial functors. For
this to work in the greatest generality, we require direct sum of indecomposable e-Hecke
pairs to be in the domain. To see this consider the simplest case possible, whene = 1,d = 1.
Consider the polynomial functor mapping the 1-Hecke pair V; +— V| @ V. This defines the
functor since V| is a projective generator by Theorem 6.13. It follows that V| @& V| must be
in the domain if we wish to compose any two polynomial functors (subject to constraints on
d and e).

The category qu’e is equivalent to the module category of a generalized Schur algebra.
We now present a category who has the same property, but whose Schur algebra is slightly
simpler.

Recall the category 77; ,"Z from Definition 3.2. Each quantum polynomial functor in ”Pg’ ¢
can then be restricted to an object of 79;;;’. The added condition on the domain makes it
so that composition is not possible in P;jg (in the simplest case presented above, because

V1 @ Vj is not part of the domain of P;‘f). However this condition allows one to prove the
existence of a simpler projective generator.

®e
Theorem 6.15 Suppose q is not a root of unity and char(k) = 0. Then the functor FZ:GV’” is

a projective generator in P;:Z ifm > ed.

Proof The proof follows along the same lines as the proof of Theorem 6.13, only now
we require the simpler Proposition 6.11 (instead of Proposition 6.12) because of the extra
condition on the domain. O

Corollary 6.16 The evaluation functor 73;;;’ — mod(S, (Vn®e, Vn‘g’e, d)) is an equivalence of
categories for q not a root of unity and char(k) = 0. It follows that Sq(Vn@’e, Ve d) and
Sq(Vn?e, V,?e, d) are Morita equivalent when m,n > de.

The category P;:f is equivalent to the category studied by Hong and Yacobi in [10].
The category qu’l is strictly greater. In order to be able to define composition one needs

to consider higher degree comodules in the domain (which produces P,}):f ) and then also
consider direct sums (which produces 775’ o)

Remark 6.17 Setting ¢ = 1 in Theorem 6.15, we obtain Theorem 4.7 in Hong and Yacobi
[10] when ¢ is generic and char(k) = 0. But note that our proof for e = 1 works when ¢ is
a root of unity or char(k) # O with a minor addition which we now explain. Theorem 6.15
depends on Corollary 6.7, Proposition 6.11 and Lemma 6.8 which are true regardless if ¢ is
aroot of unity or not and if char (k) is O or not. It also depends on Propositions 2.14 and 2.15,
which are not true in general for g a root of unity or char(k) = 0. However, when e = 1,
Propositions 2.14 and 2.15 hold for ¢ a root of unity or char(k) # 0O because 1-Hecke pairs
are just direct sums of the defining comodule V,, for any n. Thus we obtain Theorem 4.7 in
[10] with no restrictions on g or the characteristic of k.

Remark 6.18 We can think of the generalized Schur algebras S, (V,2¢, V,®¢; d) for generic
q as follows. Quantum Schur—Weyl duality (due to Jimbo) says that there is a commuting
action of the Hecke algebra H and the g-Schur algebra S, (V),, V,;; d) on the space Vn®d and
these two actions satisfy a double centralizer property. The e-Hecke algebra Hy . C Hg, acts
on (V,2¢)® as explained before. Then S, (V.2¢, V¢, d) D S;(Vy, Vii; de) is conjecturally
the object that makes the following diagram satisfy a double centralizer property on both
rOWS.
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Sg(VEe, Ve d) ~ (v, 2ey®d ~ Ha,e
U 2l n
Sq(n, n; de) ~ v @de A Hae

7 The category ’Pg

We now define a category that “lives in between” the category 7357 . for any e and the category

79[‘11 . Let d be a positive integer. The quantum divided power category ng is the category
with objects formal finite direct sums &; V; where each V; is an e-Hecke for some e. The
morphisms are defined on homogeneous objects as follows:

Hompy (V;, W;) := Homg, (V/, W)

The Hom extends naturally to all objects via the formula

Homrg(® Vi D W;) = @D Hompy (Vi, W)).
i j i,j

Definition 7.1 The category 735 is the category of of linear functors
.d 1
F:Tyv—>T.V.
Morphisms are natural transformations of functors. Note that F;V is equivalent to V.

Remark 7.2 Given a linear functor F : F;’V — 'y, denote by F, its restriction to r;’,ev.
Then it is not hard to see that F, qu’e.

We can define a composition on 77(‘11 similarly to how we defined composition between a
functor in 73;’1 1, and a functor in Pg?e. _
It is interesting to note that when ¢ = 1, the category Pg becomes the category of classical

polynomial functors P? due to Friedlander and Suslin. Therefore when ¢ = 1, the category
’Pg and the categories ’Pg, . for any e are all equivalent. We show that for generic g, Pg is not

equivalent to ’ng . for any e. In fact in the quantum case 77;11 is “closer” to 73,‘11 than to KP,‘;’ ¢

since both P4 and P¢ are not finitely generated while ’P;{ . 18 for g is generic. This is another
reason why the theory of quantum polynomial functors is richer in the quantum case than it
is in the classical case.

Proposition 7.3 Suppose q is not a root of unity. Then the category 73;1 is not finitely generated.

In particular, Pg is not equivalent to Pg’e for any e.

Proof Consider the sequence of objects k®/ in ng, where f € Nand k = (k, q) is the
trivial A4 (1, 1)-comodule of degree 1. Then each (k®/)®4 s a one-dimensional B;-module

I (w;

on which each 7; acts as multiplication by g/ = ¢/ * . These form an infinite collection of
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irreducibles Bz-modules since ¢ is not a root of unity. Take F = ®d in 7.1; we show that
no V makes the evaluation map

V®d ® Fg:eV(k®f) — V®d ® HOde(V®d, (k®f)®d) _ (k®f)®d

surjective for all f. If there was such V, then V@4 (as B;-module) would contain all the k®/
above. This is impossible since V is finite dimensional. O

Remark 7.4 Note that the proof makes use of the normalization of the R-matrix R, defined
in Eq. (5). In particular, we use that R, (vi ® v;) = gv; ® v;. For a different normalization
(for example where R, (v] ® v1) = v] ® v;) the proof above doesn’t work. The result stays
true, while the argument becomes computationally more complicated. One needs to look at
R, (which will have an eigenvalue —g 2 for the normalization mentioned above) and modify
the proof of Proposition 7.3 accordingly.

8 Remarks on quantum polynomial functors when q is a root of unity

Let g be an /th root of unity where / > 1 is an odd integer.

8.1 Representability

The proof of Theorems 6.13 and 6.15 are not valid in this case, since an indecomposable
e-Hecke pair W € comod(A,(n, n)) is not necessarily a direct sum of summands of Ve,
But it can still be true that 775’ . 1s finitely generated, hence equivalent to the module category
of a finite dimensional algebra. For example in the classical case (¢ = 1) when the field &
has characteristic p, the category of polynomial functors is not semisimple, but it does have a
projective generator just as in the case when the characteristic of the field is 0. In this section
we present some remarks on the case when ¢ is a root of unity not equal to 1.

First recall that it is only at the last step of the proof that we use the semisimplicity. In
particular, Corollary 6.7, Lemma 6.8 and Proposition 6.5 are valid when ¢ is non-generic.
We summarize them as a separate statement.

Proposition 8.1 Let V be an e-Hecke pair. Assume for any e-Hecke pair W, every indecom-
posable Bg-summand of W®? is isomorphic, as a Bg-module, to a direct summand of V®4.
Then the category ’ng . has a (finite) projective generator Fg:X .
Note that the set of divided powers generates Pg e
can find a functor of the form FZ X which is a projective generator.

The condition in Proposition 8.1 is reduced to an elementary statement about Jordan block
decomposition of R-matrices if d = 2.

thus if ’Pg’ . 1s finitely generated then one

Proposition 8.2 Let n € N, and let U be an indecomposable A, (m, m)-comodule of degree
e. Denote the Jordan blocks of Ry e by B(n;, a;), where i runs through some finite index
set I, n; € N is the rank of the block and a; € k is the generalized eigenvalue of the block.
Similarly, name the Jordan blocks of Ry by B(mj, b;), where j € J.

Then the identity map on U ® U factors through V®¢ ® V2¢ as a By-map if and only if
foreach j € J, there exists i € I suchthata; =bj andn; = m;j.

Proof Tt is enough to factor the identity on each Jordan block of U. But we can do it by
embedding B(m, b;) onto the block B(n;, a;). ]

@ Springer



Quantum polynomial functors from e-Hecke pairs 29

Therefore understanding the Jordon block decomposition of Ry would allow one to prove
representability for stf. A statement similar to Proposition 8.2, where one replaces the
indecomposable U by any e-Hecke pair U can also be proven.

Remark 8.3 The condition in Proposition 8.2 is trivially true if the R-matrix of any e-Hecke
pair is diagonalizable. This is the case when ¢ is not a root of unity, but it is not true when
q is a root of unity. For example R is not diagonalizable when g = =i. If we look only at
1-Hecke pairs, these are the only values for ¢ where Ry is not diagonalizable. For a general
e-Hecke pair V, we expect there are other roots of unity for which Ry is not diagonalizable.

Remark 8.4 1t is possible that the functor cohomology for quantum polynomial functors
agrees with the corresponding quantum group cohomology even if the category 775’ . does
not have a finite generator. A similar approach is found in Suslin’s appendix in [5].

8.2 An additional structure

An important feature when ¢ is a root of unity is the existence of the Frobenius twist. When
e = 1, this structure comes from the g-Schur algebra. Let us write this in terms of polynomial
functors. This is explained in a previous version of [10], which we now repeat. The algebra
map Frym : A{(n, m) — Ay (n, m) defined on the standard generators by

. l
Xij > X

is also a coalgebra map. Using this map, we can define a functor
1] . pd ld
(=P Pl

We call it the Frobenius twist. (We remind the reader that the classical polynomial functor
category P can be viewed as Pﬁ , for any e, and that Pédl is equivalent to the category 794‘1

of Hong—Yacobi [10]. See Remark 6.17.) Given F € P?, its Frobenius twist FI! is defined
to be a functor from FZVIV toll ;’ 4V £V that sends a 1-Hecke pair V to the vector space

F (V) (forgetting the 1-Hecke structure, V is viewed as an object in V). To define what
F! does to morphisms, it is enough to specify the map

(FUY W F(V) > F(W) ® Ag(W, V).

Note that V and W are 1-Hecke pairs, hence direct sum of standard A, (n, n)-comodules and
A4 (m, m)-comodules, respectively, for certain n, m. We define the map Fr : A((W,V) —
Ay (W, V) as a straightforward generalization of Fry, ,,. It maps

xij € P AV, Vi) Z ALV W) > xi; € @D Ag(Va Vi) = Ag(V. W),
This extends to a bialgebra map. Now we define the map (F [1])"’,,W; it is the composition
(Lpaw) ®Fr) o FY) y t F(V) = F(W) ® Aj(W, V) = F(W) ® Ag(W, V).

Itis not hard to see that (F “])"’, w satisfies the properties needed to make F Ulinto a quantum
polynomial functor. 7

Consider 1!l € 73([1,1 where I € P! is the identity polynomial V = I''V — V. Then for
any d, the composition

. pd ! dl
— 0 —: Pq,l ®PL],1 — Pq,l
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induces the functor
11 . pd dl
—o Pg1 = Py

Since the Frobenius M1 lives only in the category P(]] |» we cannot compose the Frobenius
with itself multiple times (as in the classical case). ‘

One may ask if we can define a class of objects Me me for all e which are reasonable
analogues of the Frobenius. This will supply higher Frobenius twists using composition:

Ie[rJ = Il[,ljle 0---0 Iem.

Precomposing or postcomposing Iy] provides functors between various polynomial functor
categories.

However, 11" does not come from the structure of the q-Schur algebras as in the e = 1
case; if e > 1 we do not have an analogous coalgebra map

AL (V, W) — Ag(V, W)

where V, W are e-Hecke pairs. Thus we must take a different approach to define Ie[ . One
may try to define the Frobenius as the cohomology of certain complexes that are of interest
by themselves.

Classically (by this we mean ¢ = 1 and char(k) = p), we have the following exact
sequence of polynomial functors:

0 1M sp 5 pr gl 27

That is, one can define the Frobenius polynomial 1) € P{, as either the kernel or the
cokernel of the middle map in (27). Alternatively, the following complex, called the dth de
Rham complex, has nontrivial cohomology when p divides d.

0> 8> 85 1Togal 5 89 20A%2 > ...> AY >0 (28)

Ifd = ap, its cohomology is given by the Frobenius twist of the (a — 1) pth de Rham complex.

One can try to quantize these complexes. That gives a way to define Ie[l]. Note that all
the objects in (27) and (28) except the Frobenius are defined in ”Pj . for all e. Also note that
the quantum symmetric powers and quantum divided powers usually behave very differently
when we move away from the degree 1 case to the degree e case. For example, the dimension
of SZ(V) depends on the A, (n, n)-comodule structure of V and not only on the dimension

of V (this phenomenon is investigated in [1]). Therefore the dimension of Ie[l](V) for an
e-Hecke pair V might be different from the dimension of V, in contrary to the classical case.
In particular, we cannot obtain Igm(V) from the underlying space of V by just twisting the
module structure.

We note that the middle map in the exact sequence (27) can be quantized into a map
between polynomial functors acting on 1-Hecke pairs and for ¢ a root of unity (and char(k) =
0) we can define the Frobenius functor as either the kernel or the image of that map. This
definition of the Frobenius coincides with definition of 7'l via the Frobenius twist. This a
sign that a homological approach to defining the Frobenius in the quantum case is worth
investigating.

This discussion can be the starting point of further investigations. One can try to define
the quantum Frobenius twist as mentioned above, and try to understand its properties. Then,
one can try to understand its role in quantum theory, or its uses in cohomology theory.
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