
BRAUER-MANIN OBSTRUCTION AND FAMILIES OF GENERALISED
CHÂTELET SURFACES OVER NUMBER FIELDS

F. BALESTRIERI

Abstract. Over infinitely many number fields k (including all finite Galois extensions k/Q of odd
degree unramified at 2), we give general sufficient conditions in order for the generalised Châtelet
surfaces X over k associated to the normic equation Nk(

√
−1)/k(~z) = h(x), where deg(h) ≥ 4 is even

and arbitrarily large, to have the property that X(Ak)Br = ∅ but X(Ak) 6= ∅. We also give general
sufficient conditions in order for the generalised Châtelet surfaces X over k of the same form as
above to have the property that X(Ak)Br = X(Ak) 6= ∅ and BrX/Br k 6= 0. As an application, we
prove that, for a certain family of generalised Châtelet surfaces over Q, a positive proportion (but
not 100%) of its members exhibit a violation of the Hasse principle explained by the Brauer-Manin
obstruction.

1. Introduction

Let k be a number field, Ωk its set of places, and Ak its adelic ring. We say that a family {Xω}ω
a family of smooth, projective, geometrically integral varieties over k satisfies the Hasse principle if
Xω(Ak) 6= ∅ implies that Xω(k) 6= ∅, for all ω. Let X be a smooth, quasi-projective, geometrically
integral variety over k and let BrX := H2

ét(X,Gm) be the (cohomological) Brauer group of X. The
Brauer-Manin set of X, introduced by Manin in [Man71], is the set

X(Ak)
Br :=

{
(xv) ∈ X(Ak) :

∑
v∈Ωk

invv α(xv) = 0 for all α ∈ Br(X)

}
,

where invv : Br(kv) → Q/Z are the Hasse invariant maps from local class field theory. One can
check that X(k) ⊂ X(Ak)

Br. If X(Ak) 6= ∅ but X(Ak)
Br = ∅, we say that X is a counterexample

to the Hasse principle explained by the Brauer-Manin obstruction.
The aim of this paper is to provide large classes of examples supporting the following conjecture

for the Hasse principle, which is a special case of the conjecture in [CTS80] for weak approximation.

Conjecture 1.1 (Colliot-Thélène and Sansuc). Let X be a smooth, projective, geometrically
rational surface over a number field k. Then X(Ak)

Br 6= ∅ implies that X(k) 6= ∅.

By a theorem of Iskovskikh (cf. [Isk79, Thm 1]), any smooth, proper, geometrically rational
surface over k is k-birationally equivalent to either a del Pezzo surface or a smooth conic bundle
surface (or both). Since the property “X(Ak)

Br 6= ∅ implies X(k) 6= ∅” is birationally invariant
for smooth, projective, and geometrically integral varieties (see e.g. [CTPS16, §6]), it follows that
Conjecture 1.1 needs only be verified for del Pezzo surfaces and conic bundle surfaces. In this
paper, we are concerned with the following types of (k-birational classes of) conic bundle surfaces.

Let K := k(
√
d) be a quadratic field extension of k, and let {ω1, ω2} be a k-basis for K. Let

h(x) ∈ k[x] be a separable polynomial of degree deg(h) ≥ 2. Let X0 ⊂ A3
k be given by the

equation
NK/k(~z) = h(x),
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where ~z := ω1z1 +ω2z2. As explained in e.g. [Sko01, §7.1], by making a change of variables in A3
k if

necessary we can assume without loss of generality that deg(h) = 2n for some n ≥ 1 and
√
d is not

in the splitting field of h over k. A smooth proper model X of X0 that extends the map X0 → A1
k

given by (~z, x) 7→ x to a map X → P1
k can be constructed as follows (see e.g. [VAV12, §2]).

Let E := (⊕2
i=1OP1

k
) ⊕ OP1

k
(n) be a vector sheaf on P1

k of rank 3. Let s2 be the homogeneisation

h̃(x, t) := t2nh(x/t) in Γ(P1
k,OP1

k
(n)⊗2) and let s1 := NK/k(~z) ∈ Γ(P1

k, Sym2(⊕2
i=1OP1

k
)). Then

X := V(s1 − s2) ⊂ PE is a compactification of X0. Moreover, one can check that X is smooth

over k (using the fact that h(x) is separable), and that X becomes rational over k(
√
d).

Definition 1.2. A generalised Châtelet surface over k associated to X0 is the smooth compactifi-
cation X of X0 as above.

Assuming Schinzel’s hypothesis (cf. [SS58]; see e.g. [VAV12] for the statement for number fields),
Conjecture 1.1 holds for generalised Châtelet surfaces over any number field k (cf. [CTSD94]).
We mention the following unconditional results in the literature. When deg(h) = 4, generalised
Châtelet surfaces are usually called Châtelet surfaces and their arithmetic has been studied ex-
tensively (see e.g. [CTSSD87a] and [CTSSD87b]); in particular, the full Conjecture 1.1 for weak
approximation has been verified for Châtelet surfaces over any number field. When deg(h) = 6
and h(x) = f(x)g(x) is the product of two irreducible polynomials over k with deg(f) = 2 and
deg(g) = 4, Conjecture 1.1 has been verified by Swinnerton-Dyer in [SD99]. A detailed account
of these results can be found in [Sko01, §7]. For higher degrees of h(x), we also mention the work
[BMS14], which verifies the full Conjecture 1.1 for weak approximation when h(x) completely splits
over Q.

We focus here on the case when K := k(
√
−1) and deg(h) ≥ 4 is even. Our aim is to give large

classes of examples of generalised Châtelet surfaces for which the failure of the Hasse principle is
explained by the Brauer-Manin obstruction, and examples for which the Brauer-Manin obstruction
is empty and the Brauer group (modulo constants) is non-trivial. The first class of examples
provides direct evidence towards Conjecture 1.1. The surfaces in the second class of examples
conjecturally have a k-rational point and can be used, with the help of a computer algebra system,
as a testing ground for Conjecture 1.1. In general, to the best of our knowledge, such general
examples for large deg(h) have not yet appeared in the literature.

We now state our main results. Let Ωeven
k be the set of even places of k and let Ω

even#

k be the
subset of places v in Ωeven

k with [kv : Q2] odd. Let

K := {k number field :
√
−1 6∈ k, Ωeven

k = Ω
even#

k , and kv/Q2 is unramified for all v ∈ Ωeven
k }.

Remark 1.3. Examples of number fields k ∈ K are Galois extensions k/Q of odd degree unram-
ified at 2.

Our first main result is the following.

Theorem 1.4. Let k ∈ K be such that |Ωeven
k | is odd. Let f(x) :=

∑n
i=0 fix

i ∈ Ok[x] and
(λ, µ, ν) ∈ Ok × Ok × Z≥1 satisfy Conditions (ELS) and (Br) in Section §4. Let X be the
generalised Châtelet surface over k associated to X0 : Nk(

√
−1)/k(~z) = f(x)(λ + µf(x)ν). Then

X(Ak) 6= ∅ and X(k) ⊂ X(Ak)
Br = ∅.

Remark 1.5. For k = Q, f(x) = −x2 + 3, and (λ, µ, ν) = (1,−1, 1), we retrieve Iskovskikh’s
famous counterexample to the Hasse principle (see [Isk71]).

For any k ∈ K and any even integer N ≥ 4, we define Fk,N to be the family of generalised
Châtelet surfaces X over k associated to affine varieties of the form

X0 : Nk(
√
−1)/k(~z) = f(x)(λ+ µf(x)ν),
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where f(x) ∈ Ok[x] has even degree, λ, µ ∈ O×k , ν ∈ Z≥1, and deg(f · (λ+µf ν)) = N . Specialising
to k = Q, we obtain the following corollary to Theorem 1.4.

Corollary 1.6. Let N ≥ 4 be any even number such that N/2 is not an odd prime ≥ 5. Then
there exist infinitely many generalised Châtelet surfaces X ∈ FQ,N such that X(AQ) 6= ∅ and
X(AQ)Br = ∅.

For any variety X over k, we let Br0X := im(Br k → BrX), where Br k → BrX is the natural
morphism induced by the structure morphism X → Spec k. Our second main theorem is the
following.

Theorem 1.7. Let k ∈ K , f(x) :=
∑n

i=0 fix
i ∈ Ok[x], and (λ, µ, ν) ∈ Ok × Ok × Z≥1 satisfy

Conditions (ELS) and (HP) in Section §4. Let X be the generalised Châtelet surface over k
associated to X0 : Nk(

√
−1)/k(~z) = f(x)(λ + µf(x)ν). Then BrX/Br0X 6= 0 and X(Ak)

Br =
X(Ak) 6= ∅.

Specialising to k = Q, we obtain the following corollary.

Corollary 1.8. Let N ≥ 4 be any even number. Then there exist infinitely many generalised
Châtelet surfaces X ∈ FQ,N such that X(AQ) = X(AQ)Br 6= ∅ and BrX/Br0X 6= 0.

Remark 1.9. The generalised Châtelet surfaces constructed in Corollary 1.8 don’t usually have
any “obvious” rational points.

As an application of Theorems 1.4 and 1.7, one can prove positive density results of the following
kind: for a certain family of generalised Châtelet surfaces over Q, a positive proportion (but not
100%) of its members exhibit a violation of the Hasse principle explained by the Brauer-Manin
obstruction. See Theorems 7.1 and 7.2 and Remark 7.3 for more details.

Structure of the paper. In §§2, 3, we recall some useful results for computing the Brauer
group of generalised Châtelet surfaces and the Hilbert symbol. In §4, we prove the main theorems
of this paper, namely Theorems 1.4 and 1.7; their proof is not difficult, but rather computational.
In §5, we specialise to k = Q and prove Corollaries 1.6 and 1.8. In §6, we give some examples of
many-parameters families of generalised Châtelet surfaces over a number field k 6= Q satisfying
the conditions of Theorems 1.4 and 1.7. We conclude in §7 with an application (Theorems 7.1 and
7.2) of Theorems 1.4 and 1.7.

General notation. We fix once and for all an algebraic closure Q of Q, and we take any algebraic
extension of Q to be inside Q. Let k be a number field. We denote by Ωk the set of places of
k, and by kv the completion of k at the place v ∈ Ωk. We denote by ΩR

k and ΩC
k the real and

complex places of k, respectively, and we denote by Ωeven
k and Ωodd

k the finite places of k above
the rational prime 2 and above odd rational primes, respectively. If v ∈ Ωk is a finite place, we
write Fv := Okv/mv for the residue field at v, where mv is the maximal ideal of Okv ; we write

redv : Okv → Fv for the reduction map. We further denote by Ω
oddQR

k and Ω
oddQNR

k the subsets of
places v ∈ Ωodd

k such that redv(−1) is and is not, respectively, a square in Fv, and by Ω
even#

k the
subset of places v ∈ Ωeven

k with [kv : Q2] odd. If f ∈ k[x], we denote by Splitk(f) the splitting
field of f over k. If X is a variety over a number field k, we denote by X the base-change of X to Q.
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author is financially supported by a Postdoctoral Fellowship from the Max-Planck-Institut für
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2. The Hilbert symbol

We recall, for convenience, some of the explicit formulas for computing the Hilbert symbol. For
v ∈ Ωodd

k and a, b ∈ k×v , we have (see e.g. [Ser79, Chap. XIV,§3])

(a, b)kv =

(
redv

(
(−1)v(a)v(b)a

v(b)

bv(a)

))#Fv−1
2

.

Remark 2.1. If c ∈ F×v , then c
#Fv−1

2 is the Legendre symbol, which is equal to 1 if and only if c
is a square in Fv.

In particular, letting a = −1 yields the following.

Lemma 2.2. Let v ∈ Ωodd
k . For b ∈ k×v , we have (−1, b)kv = −1 if and only if v(b) is odd and

redv(−1) is not a square in Fv.

Now let v ∈ Ωeven
k . Let a ∈ k×v and b ∈ Q×2 , and write Nkv/Q2(a) = 2αua and b = 2βub, where

ua, ub ∈ O×Q2
. By [Ben73, Theorem 1], the Hilbert symbol for kv descends to the Hilbert symbol

for Q2 as

(a, b)kv = (Nkv/Q2(a), b)Q2 = (−1)ε(ua)ε(ub)+αω(ub)+βω(ua), (2.1)

where ε(x) := x−1
2

(mod 2), ω(x) := x2−1
8

(mod 2), and where the right-most equality in (2.1)
follows from the well-known formula of the Hilbert symbol for Q2. In particular, letting b = −1
yields the following.

Lemma 2.3. Let v ∈ Ωeven
k . For a ∈ k×v , we have (a,−1)kv = (Nkv/Q2(a),−1)Q2 = (−1)ε(ua).

Let v ∈ Ωk be a finite place. We briefly recall some results about the structure of the group of
units of kv. For any integer m ≥ 1, we define the group of m-principal units of kv to be

Um
kv := 1 + mm

v ,

and we define the set

U
m

kv := −1 + mm
v .

For any integer r ≥ 1, we denote by µr(kv) the subgroup of O×kv consisting of all r-th roots of unity
in kv. From these definitions, we immediately have the following.

Lemma 2.4. O×kv/U
1
kv

= F×v . Consequently, we can write any unit u ∈ O×kv as u = εu1, where
ε ∈ µ#Fv−1(kv) and u1 ∈ U1

kv
.

Remark 2.5. O×Q2
= U1

Q2
.

Lemma 2.6. Suppose that kv/Q2 is an unramified (Galois) extension and let a = 2v(a)u ∈ k×v ,
where u ∈ O×kv . Write u = εu1t

2, where ε ∈ µ2[kv :Q2]−1(kv) and u1 ∈ U1
kv

are square-free, and

t ∈ O×kv . If [kv : Q2] is odd and u1 ∈ U
2

kv , then (−1, a)kv = −1.

Proof. First, we note that Nkv/Q2(a) = Nkv/Q2(2
v(a)u) = 2[kv :Q2]v(a)Nkv/Q2(u). By Lemma 2.3, it

follows that

(−1, a)kv = (−1, Nkv/Q2(a))Q2 = (−1, Nkv/Q2(u))Q2 .

Let fv := [Fv : F2] = [kv : Q2] be the residue degree. Since Nkv/Q2(t
2) is a square, by the

properties of the Hilbert symbol we have

(−1, Nkv/Q2(u))Q2 = (−1, Nkv/Q2(εu1))Q2 .
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Since 2fv−1 is odd and ε2
fv−1 = 1, by the multiplicativity property of the Hilbert symbol it follows

that (−1, Nkv/Q2(ε))Q2 = ((−1, Nkv/Q2(ε))Q2)
2fv−1 = 1. Hence, by the multiplicativity property of

the Hilbert symbol we have

(−1, Nkv/Q2(εu1))Q2 = (−1, Nkv/Q2(u1))Q2 .

It remains to compute (−1, Nkv/Q2(u1))Q2 . If u1 ∈ U
2

kv , then we can write u1 = −1 + 4h for
some h ∈ Okv . Then

Nkv/Q2(u1) =
∏

σ∈Gal(kv/Q2) σ(u1)

=
∏

σ∈Gal(kv/Q2) σ(−1 + 4h)

=
∏

σ∈Gal(kv/Q2)(−1 + 4σ(h))

= (−1)[kv :Q2] + 4h′,

for some h′ ∈ OQ2 . If [kv : Q2] is odd, it follows that Nkv/Q2(u1) ∈ U2

kv . Hence, by Lemma 2.3 we

obtain (−1, a)kv = (−1)ε(Nkv/Q2
(u1)) = −1, as required. �

Remark 2.7. If u1 ∈ U2
kv

, then a similar proof as the above yields (−1, a)kv = 1 for any degree
[kv : Q2].

3. The Brauer group

Let X be a smooth, quasi-projective, geometrically integral variety over a number field k. As a
consequence of the fact that BrX injects into Br k(X) and of a result by Gabber (see [dJ]), for such
an X we have that BrX is the same as the Brauer group defined in terms of Azumaya algebras.
We briefly recall the relations between Hilbert symbols, quaternion algebras, and evaluation of the
Hasse invariant maps, as we will use them in the subsequent sections; for more details, we refer
the reader to e.g. [Poo17, Chap. 1], [GS06, Chapters 1, 2, 4, 8], [KKS11, Chap. 8]. Let K be
a field of characteristic different from 2, let a, b ∈ K×, and let Q(a, b;K) be the corresponding
quaternion (Azumaya) algebra. By definition of the Hilbert symbol, we have (a, b)K = 1 if and
only if Q(a, b;K) splits. Now let K := kv be the completion of a number field k at a place v of k.
Let Q := [Q(a, b; kv)] be the class of Q(a, b; kv) in Br(kv). Then Q is a 2-torsion element in Br(kv)
and the Hasse invariant map invv : Br(kv)[2]→ 1

2
Z/Z sends Q to 0 if and only if Q(a, b; kv) splits,

and hence if and only if (a, b)K = 1. In what follows, for any field K with charK 6= 2 and for
any a, b ∈ K×, we will denote the quaternion algebra Q(a, b;K) by (a, b)K ; hopefully this will not
cause any confusion.

In the subsequent sections, we will also need some results on the Brauer group of our generalised
Châtelet surfaces. Let X be the generalised Châtelet surface over a number field k associated to

Nk(
√
−1)/k(~z) = f(x)g(x),

where f and g are non-zero polynomials over k of even degrees deg f, deg g ≥ 2 and f(x)g(x) is
separable. Let A ∈ Br k(X) be the class of the quaternion algebra (−1, f)k(X). Since the class of

(−1, f)k(X) is unaffected if we multiply f by a square or by a norm of k(X)(
√
−1)/k(X), it follows

that A = [(−1, g)k(X)].

Lemma 3.1. Let X, k, and A as above. If moreover f and g are irreducible over k and neither
Splitk(f) nor Splitk(g) contain

√
−1, then BrX/Br0X = 〈A + Br0X〉 ∼= Z/2Z.

Proof. By [VAV12, Theorem 3.2], we have an isomorphism

{(n1, n2) ∈ (Z/2Z)2 : n1 deg f + n2 deg g ≡ 0 (mod 2)}
(1, 1)

∼−→ BrX

Br0X
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given by [(n1, n2)] 7→ [(−1, f(x)n1g(x)n2)k(X)] + Br0X. Since deg f and deg g are both even, it
follows that n1 deg f + n2 deg g ≡ 0 (mod 2) for all (n1, n2) ∈ (Z/2Z)2. Hence, BrX/Br0X =
〈A + Br0X〉 ∼= Z/2Z. �

4. Proofs of the main theorems

In this section we prove Theorems 1.4 and 1.7.
Let k ∈ K . For any f(x) :=

∑n
i=0 fix

i ∈ Ok[x] and any tuple (λ, µ, ν) ∈ Ok × Ok × Z≥1, we
define the following set of conditions, which we collectively call Conditions (ELS).

Condition 4.1 (ELS-f). We have n ≥ 2 even, f · (λ+ µf ν) separable, and fn, f0, λ+ µf ν0 6= 0.

Condition 4.2 (ELS-oddQR). For any v ∈ Ω
oddQR

k , there is xv ∈ kv such that v(f(xv)(λ +
µf(xv)

ν)) is even.

Remark 4.3. If fn = ±1, v(µ) = 0 for all v ∈ Ω
oddQR

k , and n ≥ 2 is even, then for any v ∈ Ω
oddQR

k

we can take xv = uv/π, where π is a uniformiser of Okv and uv ∈ O×kv .

Condition 4.4 (ELS-oddQNR). For v ∈ Ω
oddQNR

k , we have v(fn) = v(λ) = v(µ) = 0.

Condition 4.5 (ELS-even). For v ∈ Ωeven
k , we have (−1, f0)kv = (−1, λ+ µf ν0 )kv .

Condition 4.6 (ELS-R). If ΩR
k 6= ∅, then, for v ∈ ΩR

k , there exists some xv ∈ kv such that
f(xv)(λ+ µf(xv)

ν) > 0 in kv.

We also define the following set of conditions, which we collectively call Conditions (Br).

Condition 4.7 (Br-k-f). Let χk := lcmv∈Ωeven
k
{2[kv :Q2] − 1}.

(1) If fi 6∈ 4Ok, then χk|i;
(2) both f and λ+ µf ν have no zeros in k.

Condition 4.8 (Br-even). For v ∈ Ωeven
k , writing λ = 2v(λ)uλ, µ = 2v(µ)uµ, and λ + µf ν0 =

2v(λ+µfν0 )uλ+µfν0
, we have:

(1) if j is odd, then either fj = 0 or v(fj) ≥ 1;

(2) fn, f0, uλ+µfν0
∈ U2

kv ;
(3) uλ ∈ U2

kv
;

(4) if ν is odd, then uµ ∈ U
2

kv , while if ν is even, then uµ ∈ U2
kv

;

(5) either
∑n−1

i=1 fi ∈ U2
kv

, or
∑n−1

i=1 fi ∈ U
2

kv , or
∑n−1

i=1 fi ∈ 4Okv . Moreover,

(a) if
∑n−1

i=1 fi ∈ U
2

kv , then
(i) if ν is odd, then v(µ) = v(λ) + 1;
(ii) if ν is even, then either v(µ) = v(λ) + 1 or v(λ) = v(µ) + 1;

(b) if
∑n−1

i=1 fi ∈ 4Okv , then v(µ) + ν = v(λ) + 1 and ν ≤ 2.

Condition 4.9 (Br-R). If ΩR
k 6= ∅, then, for v ∈ ΩR

k , we have:

(1) if ν is odd, then λ > 0 and µ < 0 in kv;
(2) if ν is even, then λ, µ > 0 in kv.

Finally, we let Conditions (HP) be Conditions (Br-k-f) and (Br-R) together with the following
two conditions.

Condition 4.10 (HP-k-f). Both f and λ+ µf ν are irreducible over k, and neither Splitk(f) nor
Splitk(λ+ µf ν) contains

√
−1.
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Condition 4.11 (HP-even). For v ∈ Ωeven
k , writing λ = 2v(λ)uλ, µ = 2v(µ)uµ, and λ + µf ν0 =

2v(λ+µfν0 )uλ+µfν0
, we have:

(1) if j is odd, then either fj = 0 or v(fj) ≥ 1;
(2) fn, f0, uλ+µfν0

∈ U2
kv

;
(3) uλ ∈ U2

kv
;

(4) if ν is odd, then uµ ∈ U
2

kv , while if ν is even, then uµ ∈ U2
kv

;

(5) either
∑n−1

i=1 fi ∈ U2
kv

, or
∑n−1

i=1 fi ∈ U
2

kv , or
∑n−1

i=1 fi ∈ 4Okv , or
∑n−1

i=1 fi ∈ 2 + 4Okv .
Moreover,
(a) if

∑n−1
i=1 fi ∈ U2

kv
, then

(i) if ν is odd, then v(µ) ≥ v(λ) + 2;
(ii) if ν is even, then either v(µ) ≥ v(λ) + 2 or v(λ) ≥ v(µ) + 2;

(b) if
∑n−1

i=1 fi ∈ 4Okv , then
(i) if ν is odd, then either v(µ) ≥ v(λ) + 2, or v(λ) = v(µ) + 1 and ν ≥ 3;

(ii) if ν is even, then either v(µ) ≥ v(λ) + 2, or v(µ) + 2 ≤ v(λ) ≤ v(µ) + ν − 2;
(c) if

∑n−1
i=1 fi ∈ 2 + 4Okv , then

(i) if ν is odd, then either v(µ) ≥ v(λ) + 2, or v(λ) = v(µ) + 1 and ν ≥ 3;
(ii) if ν is even, then either v(µ) ≥ v(λ) + 2, or v(µ) + 2 ≤ v(λ) ≤ v(µ) + 2ν − 2.

Before proving Theorems 1.4 and 1.7 we need some preliminary results.

Lemma 4.12. Let k be a number field with
√
−1 6∈ k. Let v ∈ Ωk be such that there exists γ ∈ k×v

with (−1, γ)kv = −1. Then, for any α, β ∈ k×v , there is a kv-solution ~zv to Nk(
√
−1)/k(~z) = αβ if

and only if (−1, α)kv = (−1, β)kv .

Proof. The “only if” direction is clear, by the definition and the multiplicativity property of the
Hilbert symbol. For the other direction, let us assume that (−1, α)kv = (−1, β)kv . By multiplica-
tivity, this is equivalent to (−1, αβ)kv = 1. By the definition of the Hilbert symbol, this implies
that there is a non-trivial kv-solution (~zv, tv) to the equation Nk(

√
−1)/k(~z) = αβt2. If we can show

that tv 6= 0, then clearly ~zv/tv is a kv-solution to Nk(
√
−1)/k(~z) = αβ. By hypothesis, there exists

some γ ∈ k×v with (−1, γ)kv = −1. Hence, there is no non-trivial kv-solution to Nk(
√
−1)/k(~z) = γt2.

In particular, there is no non-trivial kv-solution to Nk(
√
−1)/k(~z) = 0. This is sufficient to rule out

the case tv = 0 in our solution (~zv, tv) to Nk(
√
−1)/k(~z) = αβt2. �

Remark 4.13. If k ∈ K holds, then Lemma 4.12 applies to all v ∈ Ωk with the exception of
v ∈ ΩC

k and v ∈ Ωodd
k with redv(−1) ∈ F2

v (cf. Lemma 2.2 and Lemma 2.6).

The following lemma follows from deduced from e.g. [Neu99, Chap. V, §1, Cor 1.2] and by
using the fact that adjoining to a local field K a root of unity of order coprime to the residue
characteristic of K yields an unramified extension of K.

Lemma 4.14. Let k be a number field and let v ∈ Ωodd
k . Then kv(

√
−1)/kv is unramified. Conse-

quently, Nkv(
√
−1)/kv : O×

kv(
√
−1)
→ O×kv is a surjective homomorphism.

Proposition 4.15. Let k ∈ K , f(x) :=
∑n

i=0 fix
i ∈ Ok[x], and (λ, µ, ν) ∈ Ok × Ok × Z≥1

satisfy Conditions (ELS). Let X be the generalised Châtelet surface over k associated to X0 :
Nk(

√
−1)/k(~z) = f(x)(λ+ µf(x)ν). Then X(Ak) 6= ∅.

Proof. It suffices to show that X0(kv) 6= ∅ for all v ∈ Ωk, since then ∅ 6=
∏

v∈Ωk
X0(kv) ⊂∏

v∈Ωk
X(kv) = X(Ak). For v ∈ ΩC

k , it is clear that X0(kv) 6= ∅. For v ∈ ΩR
k ∪ Ω

oddQNR
k ∪ Ωeven

k we

use Lemma 4.12. More precisely, if ΩR
k 6= ∅, then for v ∈ ΩR

k there exists, by assumption, some

xv ∈ kv such that f(xv), λ + µf(xv)
ν ∈ k×v and (−1, f(xv)(λ + µf(xv)

ν))kv = 1. For v ∈ Ω
oddQNR
k ,
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we can choose some xv ∈ kv with v(xv) < 0 and f(xv), λ + µf(xv)
ν ∈ k×v . Then, using that

f, λ + µf ν ∈ Ok[x], that v(fn) = v(µf νn) = 0, and that n is even, we deduce that both v(f(xv))
and v(λ+ µf(xv)

ν) are even. By Lemma 2.2, it follows that (−1, f(xv))kv = (−1, λ+ µf(xv)
ν)kv .

For v ∈ Ωeven
k , we take xv = 0. Then, by assumption, we have (−1, f0)kv = (−1, λ + µf ν0 )kv . In

order to prove that X0(kv) 6= ∅ for v ∈ Ω
oddQR
k , we take the xv ∈ kv that, by assumption, has

v(f(xv)(λ+ µf(xv)
ν)) even and use Lemma 4.14. �

Proposition 4.16. Let k ∈ K , f(x) :=
∑n

i=0 fix
i ∈ Ok[x], and (λ, µ, ν) ∈ Ok ×Ok ×Z≥1 satisfy

Conditions (ELS-f), (ELS-oddQNR), and (Br-R). Let X be the generalised Châtelet surface over
k associated to X0 : Nk(

√
−1)/k(~z) = f(x)(λ+µf(x)ν). Let A := [(−1, f)k(X)] = [(−1, λ+µf ν)k(X)] ∈

BrX. Then for any xv ∈ X0(kv) and for any v 6∈ Ωeven
k , we have invv A (xv) = 0.

Proof. Since invv A : X(kv) → Q/Z is continuous for the local topology for any v ∈ Ωk, by
deforming locally if necessary we may assume without loss of generality that f(xv), λ+µf(xv)

ν 6= 0
for all v 6∈ Ωeven

k . Since A (xv) = [(f(xv),−1)kv ] = [(λ+ µf(xv)
ν ,−1)kv ], it suffices to compute the

Hilbert symbols (f(xv),−1)kv = (λ+ µf(xv)
ν ,−1)kv for each v ∈ Ωk.

If v ∈ ΩC
k , then (f(xv),−1)kv = 1, as −1 ∈ k2

v . Hence, invv A (xv) = 0. If ΩR
k 6= ∅ and v ∈ ΩR

k ,
then f(xv) > 0 in kv: if f(xv) < 0, then by Condition (Br-R) we would have λ + µf(xv)

ν > 0,
and thus that (f(xv),−1)kv 6= (λ+ µf(xv)

ν ,−1)kv , which in turn, by the correspondence between
Hilbert symbols and quaternion algebras, would give invv A (xv) = 1/2 and invv A (xv) = 0, a
contradiction. Hence, f(xv) > 0 and invv A (xv) = 0.

If v ∈ Ω
oddQR

k , then by Lemma 2.2 we have (f(xv),−1)kv = 1 and thus invv A (xv) = 0. If

v ∈ Ω
oddQNR

k , we need to distinguish some cases. We write xv = παu, where π is a uniformiser of
Okv , α ∈ Z, and u ∈ O×kv . If α < 0, we have already seen in the proof of Proposition 4.15 that
(f(xv),−1)kv = 1 and thus invv A (xv) = 0. If α > 0, then it easy to see that v(f(xv)) > 0 if
and only if v(f0) > 0, and, similarly, that v(λ + µf(xv)

ν) > 0 if and only if v(λ + µf ν0 ) > 0. If
v(f0) > 0, then v(λ + µf ν0 ) = 0 as v(λ) = 0. Hence, either v(f0) = 0 or v(λ + µf ν0 ) = 0, meaning
that either v(f(xv)) = 0 or v(λ + µf(xv)) = 0. Using (f(xv),−1)kv = (λ + µf(xv),−1)kv and
Lemma 2.2, we deduce that invv A (xv) = 0. Finally, if α = 0, then v(f(xv)) is even. Indeed, if
v(f(xv)) > 0 were odd, then v(λ+µf(xv)

ν) = 0 as v(λ) = 0 and we would have by Lemma 2.2 that
(f(xv),−1)kv 6= (λ+ µf(xv)

ν ,−1)kv , which in turn would give at the same time invv A (xv) = 1/2
and invv A (xv) = 0, a contradiction. Hence, by Lemma 2.2, invv A (xv) = 0. �

Proposition 4.17. Let k ∈ K , f(x) :=
∑n

i=0 fix
i ∈ Ok[x], and (λ, µ, ν) ∈ Ok ×Ok ×Z≥1 satisfy

Conditions (ELS-f) and (Br-k-f). Let X be the generalised Châtelet surface over k associated to
X0 : Nk(

√
−1)/k(~z) = f(x)(λ+ µf(x)ν). Let A := [(−1, f)k(X)] = [(−1, λ+ µf ν)k(X)] ∈ BrX. Then

for any xv ∈ X0(kv) and for any v ∈ Ωeven
k , we have

invv A (xv) =

{
0 if (HP-even) holds,
1
2

if (Br-even) holds.

Proof. Since invv A : X(kv)→ Q/Z is continuous for the local topology, we may assume without
loss of generality that f(xv), λ + µf(xv)

ν 6= 0 for all v ∈ Ωeven
k . Since A (xv) = [(f(xv),−1)kv ] =

[(λ+µf(xv)
ν ,−1)kv ], it suffices to compute the value of either (f(xv),−1)kv or (λ+µf(xv)

ν ,−1)kv
for each v ∈ Ωeven

k . We remark that (f(xv),−1)kv = (λ + µf(xv)
ν ,−1)kv as these two Hilbert

symbols represent the same element A (xv) ∈ Br(kv). We give the proof for when (HP-even)
holds; the proof for (Br-even) is similar. We will show that either (−1, f(xv))kv = 1 or (−1, λ +
µf(xv)

ν)kv = 1 for each v ∈ Ωeven
k , thus implying that invv A (xv) = 0 for each v ∈ Ωeven

k .
If xv = 0, then by (HP-even)(2) we have (−1, f(xv))kv = (−1, f0)kv = 1 and (−1, λ +

µf(xv)
ν)kv = (−1, uλ+µfν0

)kv = 1. So let us assume that xv 6= 0. Write xv = 2αu, for some

α ∈ Z and u ∈ O×kv . We distinguish some cases depending on α.
8



If α > 0, then by using (HP-even)(1),(2) we have f(xv)−f0 ∈ 4Okv and thus that f(xv) ∈ U2
kv

.
Hence, by Remark 2.7 we have (−1, f(xv))kv = 1.

If α < 0, then by by using (HP-even)(1),(2) we have 2−nαu−nf(xv)− fn ∈ 4Okv and thus that
2−nαu−nf(xv) ∈ U2

kv
. Hence, since n is even and by Remark 2.7, we have invv A (xv) = 0.

Finally, if α = 0, then we write xv = εu1 for some ε ∈ µ2[kv :Q2]−1(kv) and some u1 ∈ U1
kv

. In
this case, by (Br-k-f) we have that f(xv)−

∑n
i=0 fi ∈ 4Okv , since fi ∈ 4Ok whenever χk 6 |i (and

for those indices i such that χk|i, we have fix
i
v = fi(εu1)i = fiu

i
1). We distinguish some subcases

depending on the value of
∑n

i=0 fi mod 4Okv .
(1) Let us begin with the subcase

∑n−1
i=1 fi ∈ U

2

kv , i.e.
∑n

i=0 fi ∈ U2
kv

. Since f(xv)−
∑n

i=0 fi ∈
4Okv , we have f(xv) ∈ U2

kv
and thus, by Remark 2.7, that (−1, f(xv))kv = 1.

(2) Let us now deal with the subcase
∑n−1

i=1 fi ∈ U2
kv

, i.e.
∑n

i=0 fi ∈ U
2

kv . We show that
(−1, λ+ µf(xv)

ν)kv = 1. Write

λ+ µf(xv)
ν = 2v(λ)uλ + 2v(µ)uµf(xv)

ν .

(a) If ν is odd, then by (HP-even)(5)(a)(i) we have that v(µ) ≥ v(λ) + 2. Hence,

λ+ µf(xv)
ν = 2v(λ)(uλ + 2v(µ)−v(λ)uµf(xv)

ν).

Moreover, by (HP-even)(3),(4) we have uλ ∈ U2
kv

. Since v(µ) − v(λ) ≥ 2, we can

deduce that uλ + 2v(µ)−v(λ)uµf(xv)
ν ∈ U2

kv
. By Remark 2.7, this implies that (−1, λ+

µf(xv)
ν)kv = 1.

(b) If ν is even, then by (HP-even)(5)(a)(ii) we have that either v(λ) ≥ v(µ) + 2 or
v(µ) ≥ v(λ) + 2. We will do the first subsubcase, the second subsubcase being very
similar. Assume that v(λ) ≥ v(µ) + 2. Then

λ+ µf(xv)
ν = 2v(µ)(2v(λ)−v(µ)uλ + uµf(xv)

ν).

Moreover, by (HP-even)(3),(4) we have uλ, uµ ∈ U2
kv

. Since f(xv) ∈ U
2

kv , we de-

duce that 2v(λ)−v(µ)uλ + uµf(xv)
ν ∈ U2

kv
. By Remark 2.7, this implies that (−1, λ +

µf(xv)
ν)kv = 1.

As a side note, we remark that this subcase never occurs, that is, if
∑n−1

i=1 fi ∈ U2
kv

then
α 6= 0. Indeed, if α = 0, then we have just shown that (−1, λ+ µf(xv)

ν)kv = 1. But since

f(xv)−
∑n

i=0 fi ∈ 4Okv , we have f(xv) ∈ U
2

kv and thus, by Lemma 2.6, (−1, f(xv))kv = −1.

Since (−1, f(xv))kv = (−1, λ+ µf(xv)
ν)kv , we obtain a contradiction. Hence, if

∑n−1
i=1 fi ∈

U2
kv

then α 6= 0.

(3) Next, we deal with the subcase
∑n−1

i=1 fi ∈ 4Okv , i.e.
∑n

i=0 fi ∈ 2 + 4Okv . Since f(xv) −∑n
i=0 fi ∈ 4Okv , we have that f(xv) = 2 + 4t = 2(1 + 2t) for some t ∈ Okv . We will show

that (−1, λ+ µf(xv)
ν)kv = 1. Write

λ+ µf(xv)
ν = 2v(λ)uλ + 2v(µ)uµf(xv)

ν .

(a) If ν is odd, then by (HP-even)(5)(b)(i) we have that either v(µ) ≥ v(λ) + 2 or
v(λ) = v(µ) + 1 and ν ≥ 3. The first subsubcase is similar to the subsubcase in (2)(a)
above. For the second subsubcase, we have

λ+ µf(xv)
ν = 2v(µ)+1(uλ + 2ν−1uµ(1 + 2t)ν).

Since ν − 1 ≥ 2 and uλ ∈ U2
kv

, we can deduce that uλ + 2ν−1uµ(1 + 2t)ν ∈ U2
kv

. By
Remark 2.7, this implies that (−1, λ+ µf(xv)

ν)kv = 1.

We remark that the condition v(λ) = v(µ) + 1 is used, together with uµ ∈ U
2

kv and
f0 ∈ U2

kv
, to ensure that uλ+µfν0

∈ U2
kv

in (HP-even)(2) is satisfied.
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(b) If ν is even, then by (HP-even)(5)(b)(ii) we have that either v(µ) ≥ v(λ) + 2 or
v(µ) + 2 ≥ v(λ) ≥ v(µ) + ν − 2. The first subsubcase is similar to the subsubcase in
(2)(b) above. For the second subsubcase, since v(λ) ≥ v(µ) + ν − 2 we have

λ+ µf(xv)
ν = 2v(λ)(uλ + 2ν+v(µ)−v(λ)uµ(1 + 2t)ν).

Moreover, by (HP-even)(3),(4) we have uλ ∈ U2
kv

. Since ν + v(µ) − v(λ)) ≥ 2, we

can deduce that uλ + 2ν+v(µ)−v(λ)uµ(1 + 2t)ν ∈ U2
kv

. By Remark 2.7, this implies that
(−1, λ + µf(xv)

ν)kv = 1. We remark that the condition v(µ) + 2 ≥ v(λ) is used to
ensure that uλ+µfν0

∈ U2
kv

in (HP-even)(2) is satisfied.

(4) Finally, let us deal with the case
∑n−1

i=1 fi ∈ 2 + 4Okv , i.e.
∑n

i=0 fi ∈ 4Okv . Since f(xv) −∑n
i=0 fi ∈ 4Okv , we have that f(xv) = 4t for some t ∈ Okv . We will show that (−1, λ +

µf(xv)
ν)kv = 1. Write

λ+ µf(xv)
ν = 2v(λ)uλ + 2v(µ)uµf(xv)

ν .

(a) If ν is odd, then by (HP-even)(5)(c)(i) we have that either v(µ) ≥ v(λ) + 2 or
v(λ) = v(µ) + 1 and ν ≥ 3. These subsubcases are similar to those in (3)(a) above.

(b) If ν is even, then by (HP-even)(5)(c)(ii) we have that either v(µ) ≥ v(λ) + 2 or
v(µ)+2 ≥ v(λ) ≥ v(µ)+2ν−2. These subsubcases are similar to those in (3)(b) above.
We remark that the condition v(µ) + 2 ≥ v(λ) is used to ensure that uλ+µfν0

∈ U2
kv

in
(HP-even)(2) is satisfied. �

Proof of Theorem 1.4. By Proposition 4.15, X(Ak) 6= ∅. Now let (xv) ∈ X(Ak). We want to show
that (xv) 6∈ X(Ak)

A , where A := [(−1, f)k(X)] ∈ BrX (cf. §3). Since X is smooth, by the Implicit
Function Theorem we have that X0(kv) is dense in X(kv) for the local topology, for any v ∈ Ωk.
Since moreover invv A : X(kv) → Q/Z is continuous for the local topology for any v ∈ Ωk, by
deforming locally if necessary we may assume without loss of generality that xv ∈ X0(kv) for all
v ∈ Ωk. By Propositions 4.16 and 4.17, invv(A (xv)) = 0 if v 6∈ Ωeven

k and invv(A (xv)) = 1/2 if
v ∈ Ωeven

k . Since by assumption |Ωeven
k | is odd, it follows that∑

v∈Ωk

invv A (xv) =
1

2
,

implying that (xv) 6∈ X(Ak)
A . Hence, X(Ak)

A = ∅, which implies that X(Ak)
Br = ∅. �

Proof of Theorem 1.7. By Proposition 4.15, X(Ak) 6= ∅. Now let (xv) ∈ X(Ak). We want to show
that (xv) ∈ X(Ak)

Br = X(Ak)
A , where A := [(−1, f)k(X)] ∈ BrX (cf. §3). Since X is smooth,

by the Implicit Function Theorem we have that X0(kv) is dense in X(kv) for the local topology,
for any v ∈ Ωk. Since moreover invv A : X(kv) → Q/Z is continuous for the local topology
for any v ∈ Ωk, by deforming locally if necessary we may assume without loss of generality that
xv ∈ X0(kv) for all v ∈ Ωk. By Propositions 4.16 and 4.17, invv(A (xv)) = 0 for all v ∈ Ωk. Hence,∑

v∈Ωk

invv A (xv) = 0,

implying that (xv) ∈ X(Ak)
A = X(Ak)

Br. Since (xv) ∈ X(Ak) was arbitrary, it follows that
X(Ak) = X(Ak)

Br. Finally, we recall that BrX/Br0X 6= 0 by Lemma 3.1. �

5. Proofs of Corollaries 1.6 and 1.8

As corollaries of Theorems 1.4 and 1.7, we can now prove Corollaries 1.6 and 1.8.
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Proof of Corollary 1.6. If N/2 is even and not equal to 2, we can let, for example, (λ, µ, ν) :=

(1,−1, 1) and f(x) := −xN/2 + 4x
∑N/4−1

i=0 f2i+1x
2i +

∑N/4−1
i=1 f2ix

2i + 3 ∈ Z[x], where fj ∈ Z

for all j ∈ {1, ..., N/2} and
∑N/4−1

i=1 f2i ≡ 1 (mod 4Z), or we can let (λ, µ, ν) := (1,−2, 1) and

f(x) := −xN/2 +4x
∑N/4−1

i=0 f2i+1x
2i+
∑N/4−1

i=1 f2ix
2i+3 ∈ Z[x], where fj ∈ Z for all j ∈ {1, ..., N/2}

and
∑N/4−1

i=1 f2i ≡ −1 (mod 4Z).
If N/2 is odd and not equal to 3, then we let p be any prime dividing N/2. Since, by assumption,

N/2 is not a prime, it follows that N/(2p) 6= 1. In this case, we can let, for example, (λ, µ, ν) :=
(2, 1, N/(2p)−1) and let f(x) := −x2p+4x

∑p−1
i=0 f2i+1x

2i+
∑p−1

i=1 f2ix
2i+3 ∈ Z[x], where fj ∈ Z for

all j ∈ {1, ..., 2p− 1} and
∑p−1

i=1 f2i ≡ 1 (mod 4Z), or we can let (λ, µ, ν) := (1, 2, N/(2p)− 1) and

f(x) := −x2p + 4x
∑p−1

i=0 f2i+1x
2i +

∑p−1
i=1 f2ix

2i + 3 ∈ Z[x], where fj ∈ Z for all j ∈ {1, ..., 2p− 1}
and

∑p−1
i=1 f2i ≡ −1 (mod 4Z).

If N = 4, then we let (λ, µ, ν) := (1,−1, 1) and let f(x) := −x2 + 4f1x+ 3 ∈ Z[x], where f1 ∈ Z.
If N = 6, then we let (λ, µ, ν) := (2, 1, 2) and let f(x) := −x2 + 4f1x+ 3 ∈ Z[x], where f1 ∈ Z.
In any case, we let the coefficients fi be such that both f and λ+ µf ν have no roots in Q, and

such that f · (λ+ µf ν) is separable. Let X be the generalised Châtelet surface over Q with affine
equation given by

Nk(
√
−1)/k(~z) = f(x)(λ+ µf(x)ν).

By construction, deg(f · (λ + µf ν)) = N . It is clear that the conditions on f(x) and λ + µf(x)ν

in the statement of Theorem 1.4 are satisfied. For example, for the real place v =∞, we just note
that multiplying the leading and the constant coefficients of f gives (−1)·3 < 0 in R, which implies
that f has a root in R. Near such a root, we can find an x̃ ∈ R such that f(x̃)(λ + µf(x̃)ν) > 0.
Hence, we can apply Theorem 1.4 to deduce that X(AQ) 6= ∅ and X(AQ)Br = ∅. �

Proof of Corollary 1.8. If N ≡ 0 (mod 4), let can let (λ, µ, ν) := (1,−4, 1) and let f(x) := xN/2 +

4
∑N/2−1

i=0 fix
i − 3 ∈ Z[x], where fj ∈ Z for all j ∈ {1, ..., N/2}. Alternatively, if N ≡ 0 (mod

4) with N > 4, we could also let (λ, µ, ν) := (1,−4, 1) and f(x) := xN/2 + 4x
∑N/4−1

i=0 f2i+1x
2i +∑N/4−1

i=1 f2ix
2i − 3 ∈ Z[x], where fj ∈ Z for all j ∈ {1, ..., N/2} and

∑N/4−1
i=1 f2i ≡ 1 (mod 4Z). If

N = 4, we could let (λ, µ, ν) := (1,−4, 1) and f(x) := x2 + 2f1 − 3 ∈ Z[x], where f1 ∈ Z and
f1 6≡ 0 (mod 2Z).

If N ≡ 2 (mod 4), let (λ, µ, ν) := (1, 4, (N − 2)/2) and let f(x) := x2 + 4f1x− 3 ∈ Z[x], where
f1 ∈ Z.

In any case, we let the coefficients fi be such that f · (λ+ µf ν) is separable, f and λ+ µf ν are
both irreducible over Q, and Q(

√
−1)/Q is not a subfield of the splitting fields of f and λ+ µf ν

over Q. Let X be the generalised Châtelet surface over Q associated to

Nk(
√
−1)/k(~z) = f(x)(λ+ µf(x)ν).

By construction, deg(f · (λ+µf ν)) = N . It is clear that the conditions on f(x) and λ+µf(x)ν in
the statement of Theorem 1.7 are satisfied. For example, for the real place v =∞, we just note that
multiplying the leading and the constant coefficients of f gives 1·(−3) < 0 in R, which implies that
f has a root in R. Near such a root, we can find an x̃ ∈ R such that f(x̃)(λ+µf(x̃)ν) > 0. Hence,
we can apply Theorem 1.7 to deduce that X(AQ) = X(AQ)Br 6= ∅ and BrX/Br0X 6= 0. �

6. Many-parameters examples over a field k 6= Q

In this section, we give examples of infinite families of generalised Châtelet surfaces over number
fields k 6= Q satisfying the conditions in Theorems 1.4 and 1.7. (All the properties of the number
fields used in the examples have been check with a computer algebra system.)
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Example 6.1. Let k := Q(α) be the totally real cubic Galois extension where α satisfies α3 −
α2 − 2α + 1 = 0. Then k ∈ K and k has class number equal to 1 (so Eisenstein’s criterion works
over k). For any v ∈ Ωeven

k , we have f := fv := [Fv : F2] = [k : Q] = 3. Consequently, the
number χk appearing in Condition (Br-k-f)(1) is χk = 23 − 1 = 7. For any n ≡ 0 (mod 28), we

let f := (fi)
n/14−1
i=1 ∈ Zn/14−1 and we let fn,f(x) := −xn/2 + 12

∑n/14−1
i=1 fix

7i + 3 ∈ Z[x]. Let Xn,f be
the generalised Châtelet surface associated to

Nk(
√
−1)/k(~z) = fn,f(x)(1− fn,f(x)).

We note that the rational primes 2 and 3 are inert in k. By Eisenstein’s criterion for 3 we deduce
that fn,f(x) is irreducible over k. Similarly, by Eisenstein’s criterion for 2 we deduce that 1−fn,f(x)
is irreducible over k. Apart from those f ∈ Zn/14−1 for which fn,f ·(1−fn,f) is not separable, it is easy
to check that all the other hypotheses of Theorem 1.4 are satisfied. Hence, the family {Xn,f}f∈Zn/2−1

of generalised Châtelet surfaces over k is such that Xn,f(Ak) 6= ∅ and Xn,f(k) ⊆ Xn,f(Ak)
Br = ∅,

for all f ∈ Zn/2−1 such that fn,f · (1− fn,f) is separable.

Example 6.2. We let k := Q(α) ∈ K be as in Example 6.1. For any n ≡ 0 (mod 28), we let

f := (fi)
n/14−1
i=1 ∈ Zn/14−1 and we let fn,f(x) := xn/2 + 12 · 13

∑n/14−1
i=1 f7ix

7i − 3 ∈ Z[x]. Let Xn,f be
the generalised Châtelet surface associated to

Nk(
√
−1)/k(~z) = fn,f(x)(1− 4fn,f(x)).

We note that the rational prime 13 is totally split in k; we fix some prime p13 above 13. By
Eisenstein’s criterion for 3 and p13, we deduce that both fn,f(x) and 1 − 4fn,f(x) are irreducible
over k. Apart from those f ∈ Zn/14−1 for which fn,f · (1− 4fn,f) is not separable or for which

√
−1

is contained in Splitk(fn,f · (1− 4fn,f)), it is easy to check that all the other hypotheses of Theorem
1.7 are satisfied. Hence, the family {Xn,f}f∈Zn/2−1 of generalised Châtelet surfaces over k is such
that Xn,f(Ak)

Br = Xn,f(Ak) 6= ∅ and BrX/Br0X 6= 0, for all f ∈ Zn/2−1 such that fn,f · (1− 4fn,f)
is separable and

√
−1 is not contained in Splitk(fn,f · (1− 4fn,f)).

7. An application: some density considerations for a family of generalised
Châtelet surfaces over Q

For any even integer n ≥ 2, consider the family of generalised Châtelet surfaces over Q

Gn := {Xε,f : gen. Châtelet surf. associated to NQ(
√
−1)/Q(~z) = fn,ε,f(x)(1−fn,ε,f(x))}f:=(fi)

n−1
i=0 ∈Zn,ε∈{0,1}

,

where fn,ε,f(x) := (−1)εxn +
∑n−1

i=1 fix
i + f0. We define the counting function

N Br
n (B) :=

#{Xε,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B and Xε,f(AQ) 6= ∅, Xε,f(AQ)Br = ∅}
#{Xε,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B}

.

Theorem 7.1. For any even integer n ≥ 2, we have lim infB→+∞N Br
n (B) ≥ δn, where δ2 :=

2−7 > 0 and δn := 2−(n/2+7) > 0 for n ≥ 4.

Proof. First of all, we note that, for any B > 1,

N Br
n (B) ≥ #{X1,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B and X1,f(AQ) 6= ∅, X1,f(AQ)Br = ∅}

#{Xε,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B}
=: N Br

n,ε=1(B)

and thus that lim infB→+∞N Br
n (B) ≥ lim infB→+∞N Br

n,ε=1(B). So we just focus on those Xε,f ∈
Gn with ε = 1 and look for a lower bound to lim infB→+∞N Br

n,ε=1(B). Let X1,f ∈ Gn with
12



max0≤i≤n−1 |fi| ≤ B. Let f0 ∈ [−B,B] ∩ Z be such that f0 ≡ 3 (mod 8). Then 1 − f0 = 2u1−f0

where u1−f0 ∈ U
2

Q2
. We have

#{f0 ∈ [−B,B] ∩ Z : f0 > 0 and f0 ≡ 3 (mod 8)} =
1

8
B +O(1).

If n = 2, then to get a lower bound it suffices to count the number of f1 ∈ [−B,B] ∩ Z such
that f1 ∈ 4Z, which is B/2 + O(1). If n ≥ 4, then to get a lower bound it suffices to count
the number of (fi)

n−1
i=1 ∈ ([−B,B] ∩ Z)n−1 such that

∑n−1
i=1 fi ∈ 4Z and fi is even whenever i is

odd. This number has a lower bound of 2n/2−3Bn−1 +O(Bn−2): indeed, if write f2j+1 = 2g2j+1 for

g2j+1 ∈ [−B/2, B/2] ∩Z and j = 0, ..., n/2− 1, then 2
∑n/2−1

j=0 g2j+1 +
∑n/2−1

j=1 f2j ≡ 0 (mod 4) can

be viewed as an equation in f2 (where all the other parameters fj with j 6= 2 are free), and the
value of f2 is determined mod 4; hence, we get a lower bound of (2B)n/2−2Bn/2(2B/4) +O(Bn−2).

We note that the number of (fi)
n−1
i=0 ∈ ([−B,B]∩Z)n such that fn,1,f(x) and 1−fn,1,f(x) are either

not separable or have Q-roots, is negligible as B → +∞. Indeed, by [vdW63] (see also [Che63]) the
right order of magnitude of the number of monic polynomials of degree n with integer coefficients
bounded in absolute value by B which are reducible is O(Bn−1) if n ≥ 4 and O(B logB) if n = 2.
Hence, by an inclusion-exclusion argument, the number of (fi)

n−1
i=0 ∈ ([−B,B]∩Z)n such that fn,1,f

and 1 − fn,1,f are both irreducible over Z is (2B)n − O(Bn−1) if n ≥ 4 and (2B)2 − O(B logB)
if n = 2. By Gauss’ lemma, since fn,1,f and 1 − fn,1,f are both primitive, we have that their
irreducibility over Z is the same as their irreducibility over Q. It is clear that if fn,1,f and 1− fn,1,f
are both irreducible over Q, then they have no Q-roots (as n ≥ 2) and they are both separable,
implying, since fn,1,f and 1 − fn,1,f are coprime, that fn,1,f · (1 − fn,1,f) is also separable. Hence,
putting everything together, we obtain that the number of (fi)

n−1
i=0 ∈ ([−B,B]∩Z)n such that X1,f

satisfies Conditions (ELS) and (Br) is at least{
2−4B2 +O(B logB) if n = 2,

2n/2−6Bn +O(Bn−1) if n ≥ 4.

By Theorem 1.4, it follows that any such X1,f satisfies X1,f(AQ) 6= ∅ and X1,f(AQ)Br = ∅. Hence,
since

lim inf
B→+∞

N Br
n,ε=1(B) ≥

{
limB→+∞(2−4B2 +O(B logB))/(2 · (2B + 1)2) = 2−7 if n = 2,

limB→+∞(2n/2−6Bn +O(Bn−1))/(2 · (2B + 1)n) = 2−(n/2+7) if n ≥ 4,

we deduce that lim infB→+∞N Br
n (B) ≥ δn, where δ2 := 2−7 and δn := 2−(n/2+7) for n ≥ 4. �

We now define the counting function

N HP
n (B) :=

#{Xε,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B,Xε,f(AQ) = Xε,f(AQ)Br 6= ∅, and BrXε,f/Br Q 6= 0}
#{Xε,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B}

.

Theorem 7.2. For any even integer n ≥ 4, we have lim infB→+∞N HP
n (B) ≥ 2−(n/2+8) > 0.

Proof. The proof is similar as that of Theorem 7.1, so we just give a sketch. For any B > 1,

N HP
n (B) ≥ #{X0,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B,X0,f(AQ) = X0,f(AQ)Br 6= ∅,BrX0,f/Br Q 6= 0}

#{Xε,f ∈ Gn : max0≤i≤n−1 |fi| ≤ B}
=: N HP

n,ε=0(B)

and thus that lim infB→+∞N HP
n (B) ≥ lim infB→+∞N HP

n,ε=0(B). So we just focus on those Xε,f ∈
Gn with ε = 0 and look for a lower bound to lim infB→+∞N HP

n,ε=0(B). Let X0,f ∈ Gn with
13



max0≤i≤n−1 |fi| ≤ B. Let f0 ∈ [−B,B] ∩ Z be such that f0 ≡ −3 (mod 16). Then 1− f0 = 4u1−f0
where u1−f0 ∈ U2

Q2
. We have

#{f0 ∈ [−B,B] ∩ Z : f0 < 0 and f0 ≡ −3 (mod 16)} =
1

16
B +O(1).

For n ≥ 4, in order to get a lower bound it suffices to count the number of (fi)
n−1
i=1 ∈ ([−B,B]∩

Z)n−1 such that
∑n−1

i=1 fi ≡ −1 (mod 4) and fi is even whenever i is odd. As in the proof of
Theorem 7.1, we note that this number has a lower bound of 2n/2−3Bn−1 +O(Bn−2). Moreover, as
in the proof of Theorem 7.1, we note that the number of (fi)

n−1
i=0 ∈ ([−B,B]∩Z)n such that fn,0,f(x)

and 1 − fn,0,f(x) are not both irreducible is negligible as B → +∞. Hence, putting everything
together, we obtain that the number of (fi)

n−1
i=0 ∈ ([−B,B]∩Z)n such that X0,f satisfies Conditions

(ELS) and (HP) is at least 2n/2−7Bn + O(Bn−1). By Theorem 1.7, it follows that any such X0,f

satisfies X0,f(AQ) = X0,f(AQ)Br 6= ∅ and BrX0,f/Br Q 6= 0. Hence, since

lim inf
B→+∞

N HP
n,ε=0(B) ≥ lim

B→+∞
(2n/2−7Bn +O(Bn−1))/(2 · (2B + 1)n) = 2−(n/2+8),

we deduce that lim infB→+∞N HP
n (B) ≥ 2−(n/2+8), as required. �

Remark 7.3. Theorem 7.2 shows that lim supB→+∞N Br
n (B) ≤ 1 − 2−(n/2+8) < 1. Moreover, if

we assume Schinzel’s hypothesis, Theorem 7.2 also shows that a positive proportion of members
in Gn satisfy the Hasse principle (and, more generally, weak approximation).
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