
The Journal of Geometric Analysis (2019) 29:2456–2468
https://doi.org/10.1007/s12220-018-0082-7

Extremal Metrics for Laplace Eigenvalues in Perturbed
Conformal Classes on Products

Henrik Matthiesen1

Received: 8 February 2018 / Published online: 24 August 2018
© The Author(s) 2018

Abstract
In this short note, we prove that conformal classes which are small perturbations of a
product conformal class on a product with a standard sphere admit a metric extremal
for some Laplace eigenvalue. As part of the arguments, we obtain perturbed harmonic
maps with constant density.
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1 Introduction

For a closed manifold M , we are interested in the eigenvalues of the Laplace operator
considered as functionals of the metric.

We denote by

R := {g : g is a Riemannian metric on M with vol(M, g) = 1}

the space of all unit volumeRiemannianmetrics onM endowedwith theC∞-topology,
i.e. the smallest topology containing any Ck-topology. The group C∞+ (M) of positive
smooth functions acts via (normalized) pointwise multiplication onR,

φ.g := vol(M, φg)−2/nφg, (1.1)

so that vol(M, φ.g) = 1. The quotient space
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C = C∞+ (M)\R

is the space of all conformal structures on M .

SinceM is compact, the spectrumof�g consists of eigenvalues of finitemultiplicity
only for any g ∈ R. We list these as

0 = λ0 < λ1 ≤ λ2 ≤ . . . , (1.2)

where we repeat an eigenvalue as often as its multiplicity requires.
In recent years, there has been much interest in finding extremal metrics for eigen-

values λk considered either as functionals

λk : R → R (1.3)

or
λk : [g] → R, (1.4)

where
[g] = {φg : φ ∈ C∞+ (M)}

denotes the conformal class of ametric g, see for instance [4,5,7,10,11], and references
therein. These functionals will not be smooth but only Lipschitz; therefore extremality
has to be defined in an appropriate way, see below.

One reason to study these extremal metrics is their intimate connection to other
classical objects from differential geometry. For (1.3), these are minimal surfaces in
spheres, and for (1.4) these are sphere-valued harmonic maps with constant density,
so called eigenmaps. There has been a lot of effort in the past to understand, which
manifolds admit eigenmaps or even minimal isometric immersions into spheres, see
for instance [14, Chap. 6] for a general overview over classical results for eigenmaps
including the generalized Do Carmo–Wallach theorem, and [2,8] to mention only the
two most classical results.

Before we state our results, we have to introduce some notation. LetM be a smooth,
closed manifold.

A smooth map u : M → S� is called an eigenmap, if it is harmonic, i.e.

�u = |∇u|2u, (1.5)

and has constant density |∇u|2 = const . In other words, the components of u are
all eigenfunctions corresponding to the same eigenvalue. Note that most Riemannian
manifolds do not admit eigenmaps, since the spectrum is generically simple by [13,
Theorem 8]. Even more, the spectrum of a generic metric in a conformal class is
simple [1,6,13]. Moreover, we would like to point out that it is not clear at all whether
eigenmaps exist in the presence of large multiplicity.

Theorem 1.6 Let (M, g) be a closed Riemannian manifold of dimension dim(M) ≥ 3,
and assume
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(i) There is a non-constant eigenmap u : (M, g) → S1,
or

(ii) (M, g) = (N × S�, gN + gst .), where gst . denotes the round metric of curvature
1 on S�.

Then there is a neighbourhood U of [g] in C, such that for any c ∈ U , there is
a representative h ∈ c, such that (M, h) admits a non-constant eigenmap to S1

respectively S�.

An obvious question is then, whether the set of conformal structures admitting
non-constant eigenmaps is always non-empty. We answer this at least in the following
case.

Corollary 1.7 Assume φ : M → S1 is a submersion. Then the set E ⊂ C of conformal
structures admitting non-trivial eigenmaps to S1 is open and non-empty.

Remark 1.8 It is not clear, whether E is also closed. This question is related to possible
degenerations of n-harmonic maps, as it will become clear from the proof.

Not everymanifold admits a submersion to S1. In fact, there are topological obstruc-
tions to the existence of such a map.

More precisely, since S1 is a K (Z, 1), a submersion gives rise to a non-trivial
element in H1(M,Z). Moreover, the differentials of local lifts of the submersion to
R give rise to a globally defined nowhere vanishing 1-form. In particular, M needs to
have χ(M) = 0.

As mentioned above, the existence of an eigenmap u : (M, h) → S� for a metric
h ∈ [g] implies that h is extremal for some of the functionals λk on [g]. Therefore,
Theorem 1.6 and Corollary 1.7 have the following consequences for the existence of
extremal metrics.

Corollary 1.9 Under the assumptions of Theorem 1.6, there is a neighbourhood U of
[g] in C, such that for any c ∈ U , there is a representative h ∈ c, such that (M, h) is
extremal for some eigenvalue functional on c.

Corollary 1.10 Under the assumptions of Corollary 1.7, the set E ⊂ C of conformal
structures admitting extremal metrics for some eigenvalue functional on conformal
classes is open and non-empty.

The proof of Theorem 1.6 is rather simple once the correct conformally invariant
formulation of the assertion is found.

This is as follows. Let n be the dimension of M . Then a smooth map into a sphere
is called n-harmonic, if it is a critical point of the n-energy

En[u] =
∫
M

|du|ndVg,

which is a conformally invariant functional. These are precisely the solutions of the
equation

− div(|∇u|n−2∇u) = |∇u|nu. (1.11)
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From (1.5) and (1.11), it is evident that an eigenmap defines an n-harmonic map,
which has∇u 	= 0 everywhere. The crucial observation is that also the converse holds
up to changing the metric conformally, see Lemma 3.21.

Therefore, we will be concerned with n-harmonic maps with nowhere vanishing
derivative.

In order to deduce Corollary 1.7 from Theorem 1.6, it suffices to find a single non-
trivial eigenmap u : (M, g) → S1 for some metric g. This turns out to be very easy
using that M is a mapping torus.

In Sect. 2, we discuss the necessary preliminaries on n-harmonic maps and Laplace
eigenvalues. Sect. 3 contains the proofs.

2 Preliminaries

First, we explain the notion of extremal metrics and its connection to eigenmaps.

2.1 Extremal Metrics for Eigenvalue Functionals

In presence ofmultiplicity, the functionals λk are not differentiable, but only Lipschitz.
However, it turns out that for any analytic deformation, left and right derivatives exist.
Using this, El Soufi–Ilias introduced a notion of extremal metrics for these functionals.

Definition 2.1 [3, Definition 4.1] A metric g is called extremal for the functional
λk restricted to the conformal class [g] of g, if for any analytic family of metrics
(gt ) ⊂ [g], with g0 = g, and vol(M, g0) = vol(M, gt ), we have

d

dt

∣∣∣∣
t=0−

λk(gt ) · d

dt

∣∣∣∣
t=0+

λk(gt ) ≤ 0.

We have

Theorem 2.2 [3, Theorem 4.1] The metric g is extremal for some eigenvalue λk on [g]
if and only if there is a eigenmap u : (M, g) → S� given by λk(g)-eigenfunctions and
either λk−1(g) < λk(g), or λk(g) < λk+1(g).

2.2 Background on n-Harmonic Maps

First of all, we need some background on the existence of n-harmonic maps. We call
a map u ∈ W 1,n(M, S�) weakly n-harmonic, if it is a weak solution of

− div(|∇u|n−2∇u) = |∇u|nu. (2.3)

We assume that we have fixed a CW-structure on M, and denote by M (l) its l-
skeleton. Let v : M → S� be a Lipschitz map, where l < n = dim M . Denote by v(l)

the restriction of v to the l-skeleton of M . The l-homotopy type of v is the homotopy
type of v(l).
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2460 H. Matthiesen

Theorem 2.4 [16, Theorem 3.4] There exists a weakly n-harmonic map u : M →
S�, with well-defined l-homotopy type, which agrees with the l-homotopy type of v.

Moreover, u minimizes the n-energy among all such maps.

We do not elaborate here on how the l-homotopy type is defined for maps in
W 1,n(M, S�). For our purposes, this is not necessary, since the map u is actually
continuous.

Theorem 2.5 Let u ∈ W 1,n(M, S�) be aweakly n-harmonicmap,which is aminimizer
for its own l-homotopy type. There is a constant C depending on an upper bound on
the n-energy of u, and on the bounds of the sectional curvature and injectivity radius
of M, such that ‖u‖C1,α ≤ C .

Proof Let x ∈ M and r > 0 be small enough. If v ∈ W 1,n(B(x, r), S�) with u = v

on ∂B(x, r), we can consider the map w ∈ W 1,n(M, S�) given by u in M \ B(x, r)
and by v in B(x, r). It is shown in [12, Theorem 2.8] that the l-homotopy type of w

agrees with the l-homotopy type of u. In particular, we need to have

∫
B(x,r)

|du|ndVg ≤
∫
B(x,r)

|dv|ndVg,

which means that u is a minimizing n-harmonic map. Therefore, the assertion follows
e.g. from [9, Theorem 2.19]. ��

In particular, these estimates are uniform as g varies over a compact set of R, as
long as the energy stays bounded.

At points, in which we do not have a lack of ellipticity, we actually get higher
regularity.

Theorem 2.6 Aweakly n-harmonic map u ∈ C1,α is smooth near points with∇u 	= 0.

This follows from standard techniques for quasilinear elliptic equations. For com-
pleteness, we give a proof in Sect. 3.1.

The main reason for the restrictive assumptions in item (i i) of Theorem 1.6 is that
the above results do not imply that for a sequence gk → g we can find a sequence of
n-harmonic maps uk (w.r.t. gk), such that uk → u, for a given n-harmonic map u.

In the case of maps to the circle, this problem does not appear, thanks to

Theorem 2.7 [15, Theorem A] Up to rotations of S1, n-harmonic maps u : M → S1

are unique in their homotopy class.

3 Proofs

3.1 Higher Regularity of n-Harmonic Maps

In this section, we give a proof of Theorem 2.6. We start with W 2,2-regularity. The
proof follows using standard techniques, since under our assumptions the equation is
of the form

− (Lu)(x) − b(x)u(x) = 0, (3.1)
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with L a quasilinear operator, which is elliptic at u (as demonstrated in Lemma 3.14
below) and b ∈ L∞.

Lemma 3.2 Let U ⊂ M be open and u : (U , g) → S� be weakly n-harmonic. Assume
that u ∈ C1,α(U , S�) with ∇u 	= 0 everywhere in u. Then we have u ∈ W 2,2

loc (U , S�).

Proof For simplicity, we focus on the case gi j = δi j and denote the usual differential
of u in Euclidean Space by Du. The general case follows along the same lines but
with some more notation.

Take open subsets W ⊂⊂ V ⊂⊂ U , and a cut-off function η which is 1 in W ,

and has supp η ⊂ V . We show that u ∈ W 2,2(W , S�). We use the test functions
given by φk = −D−h

s (η2Dh
s u

k), where Dh
s denotes the difference quotient operator

in coordinate direction s,

Dh
s φ(x) = 1

h
(φ(x + hes) − φ(x)). (3.3)

To handle notation, let us write

Fα
k (Du) = |Du|n−2∂αu

k, (3.4)

and
Gk(u, Du) = |Du|nuk . (3.5)

Then we have

−
∫
U
Fα
k (Du)∂αD

−h
s (η2Dh

s u
k) = −

∫
U
Gk(u, Du)D−h

s (η2Dh
s u

k), (3.6)

Note that this is well defined thanks to Hölder’s inequality. For the left-hand side of
(3.6), we have

−
∫
U
Fα
k (Du)∂αD

−h
s (η2Dh

s u
k) =

∫
U
Dh
s (Fα

k (Du))∂α(η2Dh
s u

k). (3.7)

We can write

Dh
s F

α
k (Du) = 1

h

∫ 1

0

d

dt
Fα
k (Du + thDh

s Du)dt

= 1

h

∫ 1

0

∂Fα
k

∂qlβ
(Du + thDh

s Du)hDh
s ∂βu

ldt

=
∫ 1

0

∂Fα
k

∂qlβ
(Du + thDh

s Du)dt Dh
s ∂βu

ldt

=: θ
αβ
kl (Du)Dh

s ∂βu
l .

(3.8)
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Note that this is well defined pointwise, since u ∈ C1,α. The condition |Du| ≥ c > 0
implies that θ

αβ
kl are uniformly super strongly elliptic for h 
 1, as demonstrated

below. Since the coefficients θ are uniformly super strongly elliptic, we have

∫
U

η2|Dh
s Du|2 ≤ C

∫
U

η2θ
αβ
kl (Du)(Dh

s ∂αu
k)(Dh

s ∂βu
l). (3.9)

Moreover, since θ and |Dη| are bounded, we can estimate

∣∣∣∣
∫
U

θ
αβ
kl (Dh

s ∂βu
l)(Dh

s u
k)η∂αη

∣∣∣∣ ≤ C
∫
U

|Dh
s Du||Dh

s u|η

≤ Cε

∫
U

η2|Dh
s Du|2 + C

ε

∫
V

|Dh
s u|2

≤ Cε

∫
U

η2|Dh
s Du|2 + C

ε

∫
U

|Du|2,

(3.10)

where we have used Young’s inequality and u ∈ W 1,2. Combining the last two esti-
mates with (3.6) and (3.7), we find that we can choose ε sufficiently small so that

∫
U

η2|Dh
s Du|2 ≤ C

∫
U

|Du|2 + C

∣∣∣∣
∫
U
Gk(u, Du)D−h

s (η2Dh
s u

k)

∣∣∣∣ . (3.11)

To estimate the last summand above,we note that u, |Du| ∈ L∞, impliesGk(u, Du) ∈
L∞, and hence

∣∣∣∣
∫
U
Gk(u, Du)D−h

s (η2Dh
s u

k)

∣∣∣∣ ≤ C
∫
U

|D−h
s (η2Dh

s u
k)|

≤ C

ε
vol(U ) + Cε

∫
U

|D−h
s (η2Dh

s u
k)|2

≤ C

ε
+ Cε

∫
U

|D(η2Dh
s u

k)|2

≤ C

ε

(
1 +

∫
U

|Du|2
)

+ Cε

∫
U

η2|Dh
s Duk |2.

(3.12)
For ε sufficiently small, we can absorb the last term, and find

∫
V

|Dh
s Du|2 ≤

∫
U

η2|Dh
s Du|2 ≤ C

ε
(1 +

∫
U

|Du|2). (3.13)

Thus u ∈ W 2,2
loc (U , S�). ��

We still need to justify that the coefficients θ
αβ
kl are uniformly super strongly elliptic.

Lemma 3.14 There is h0 > 0 depending on ‖Du‖C0,α such that we have θ
αβ
kl Ak

αA
l
β ≥

ν|A|2, for any h with |h| ≤ h0 and ν = ν(c), where |Du|2 ≥ c.

123



Extremal Metrics for Laplace Eigenvalues 2463

Proof We have

∂Fα
k

∂qlβ
(q) = |q|n−4

(
|q|2δαβδkl + (n − 2)qkαq

l
β

)
. (3.15)

Thus, it is not very hard to see that

∂Fα
k

∂qlβ
(q)Ak

αA
l
β = |q|n−4

(
|q|2δαβδkl A

k
αA

l
β + (n − 2)qkαq

l
β A

k
αA

l
β

)

≥ |q|n−2|A|2
≥ 2ν|A|2,

(3.16)

as long as |q|2 ≥ (2ν)2/(n−2). Since Du ∈ C0,α, and |Du|2 ≥ c, we can choose
h0 
 1, such that |(1 − t)Du(x + hes) + t Du(x)|2 ≥ c/2, for all x, and |h| ≤ h0.
Clearly, this implies

θ
αβ
kl (Du)(x)Ak

αA
l
β =

∫ 1

0

∂Fα
k

∂qlβ
((1 − t)Du(x + hes) + t Du(x))Ak

αA
l
βdt

≥
∫ 1

0
ν|A|2dt

≥ ν|A|2,

for ν = c(n−2)/2/2. ��
In the next step, we derive the equation for ∂αuk and apply Schauder estimates to

gain higher regularity. In particular, this completes the proof of Theorem 2.6

Lemma 3.17 Under the above assumptions, the function u is smooth.

Proof Write

ϑ
αβ
kl = ∂Fα

k

∂qlβ
. (3.18)

By the calculation above, these coefficients are uniformly super strongly elliptic at u.

We test the equation for uk with ∂αφk for some test function φ and integrate by parts
in order to find

∫
U

ϑ
αβ
kl (∇u)∂βγ u

l∂αφk =
∫
U

∂γ Gk(u,∇u)φk . (3.19)

In other words, v = ∂γ u is a weak solution to

− div(ϑ(Du)v) = ∂γ G(u, Du). (3.20)

Since |Du|2 ≥ c > 0, the right-hand side of this equation is in Ck,α, once we have
u ∈ Ck+1,α. In this case, the left-hand side has coefficients in Ck,α; thus, it follows
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that v ∈ Ck+1,α and thus u ∈ Ck+2,α. Since we know u ∈ C1,α, we can start this
bootstrap argument at k = 0, and get u ∈ C∞. ��

3.2 Proofs of Main Results

We start with the following simple but crucial observation.

Lemma 3.21 Let u : (M, g) → S� be a smooth n-harmonic map with du 	= 0 every-
where. Then there is metric g′ conformal to g, such that u : (M, g′) → S� is an
eigenmap.

Proof Define g′ = |du|2gg. Since we assumed du 	= 0 everywhere, this defines a
smooth metric, which is conformal to g. Then |du|2g′ = |dug|−2|du|2g = 1. Finally, u
solves

− divg(|du|n−2
g ∇u) = |du|ngu,

which can also be written as

�g′u = − 1

|du|ng
divg(|du|n−2

g ∇u) = u,

and hence u : (M, g′) → S� is an eigenmap. ��
In order to prove Theorem 1.6, it now suffices to show that metrics close to the

initial metric g on M also admit smooth n-harmonic maps with nowhere vanishing
derivative.

Proof of Theorem 1.6 (i) Let u : (M, g) → S1 be an eigenmap and assume that the
assertion of the theorem was not correct. This means that any neighbourhood U ⊂ C
of [g] contains a conformal class which does not contain any representative which
admits an eigenmap to S1. Let Uk ⊂ R be a sequence of open neighbourhoods of
g with ∩k∈NUk = {g}. (Such a sequence exists since the C∞-topology on R is first
countable and Hausdorff.) Denote by π : R → C the quotient map and observe that
this is an openmap. In particular, the setsπ(Uk) ⊂ C are open andwe can find gk ∈ Uk

such that no metric in [gk] admits an eigenmap to S1. By Lemma 3.21, this implies
that gk itself cannot admit a nowhere vanishing n-harmonic map to S1.

Wenowplan to useTheorem2.4 to obtainweakly n-harmonicmaps uk : (M, gk) →
S1 which are close to u for k sufficiently large. By assumption, the uk have some point
xk with duk(xk) = 0. This forces u to have a critical point as well, which gives the
desired contradiction.

More precisely, we apply Theorem 2.4 to u : (M, gk) → S1 and obtain n-harmonic
representativesuk : (M, gk) → S1 of [u]. If duk 	= 0 everywhere, Theorem2.6 implies
that uk is a smooth n-harmonic map from (M, gk) to S1 with nowhere vanishing
derivative contradicting the construction of gk in the preceding paragraph. Therefore,
we can find xk ∈ M such that duk(xk) = 0. Since dim(M) ≥ 3 and S1 � K (Z, 1),
we have that w � u if and only if their l-homotopy type agrees for some l ≥ 2. In
particular, we have that
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∫
M

|duk |ndVgk ≤
∫
M

|du|ndVgk ≤ C
∫
M

|du|ndVg,

so that we are in the position to apply Theorem 2.5.
By taking a subsequence if necessary, we may assume that xk → x . Thanks to

Theorem 2.5 and the compact embedding C1,α(M) ↪→ C1,β(M) for β < α, we can
extract a further subsequence, such that uk → v in C1,β(M, g). We have

∫
M

|dv|gdVg = lim
k→∞

∫
M

|dv|gkdVgk

≤ lim
k→∞

(∫
M

|duk |gkdVgk +
∫
M

∣∣|dv|gk − |duk |gk
∣∣ dVgk

)

≤ lim
k→∞

(∫
M

|dw|gkdVgk + CdC1,β (M,gk )(v, uk)

)

≤ lim
k→∞

∫
M

|dw|gkdVgk + lim
k→∞CdC1,β (M,g)(v, uk)

=
∫
M

|dw|gdVg,

for any w � u. It follows that v is n-harmonic and homotopic to u. Thus, it follows
from Theorem 2.7 that there is A ∈ SO(2), such that A ◦ v = u. Then A ◦ uk → u
in C1,β(M). It follows that

|du(x)| ≤ lim sup
k→∞

Cd(x, xk)
β = 0,

contradicting the assumption on u. ��
In order to adapt the strategy from above for more general situations, we need to

understand whether there exist eigenmaps u : (M, g) → S�, which can be approxi-
mated through n-harmonic maps for any sequence of metrics gk → g.

This is precisely what we do now for product metrics gst . + gN on S� × N . The
natural candidate here is the projection map onto S�. In what follows n will denote
the dimension of N , so that the dimension of N × S� is n + l.

Proposition 3.22 Let g = gN +gst . be a product metric on N × S�,with gst . the round
metric of curvature 1 on S�. The projection u : N × S� → S� onto the second factor
is the unique minimizer for the (n + l)-energy in its l-homotopy class up to rotations
of S�.

Proof Let v : N × S� → S� be a Lipschitz map whose restriction to the l-skeleton of
N×S� is homotopic to the restriction of the projection N×S� → S� to the �-skeleton.
We want to estimate ∫

N×S�

|dv|n+�
g dVg (3.23)

from below.
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We have

∫
N×S�

|dv|n+�
g dVg

=
∫
N

∫
S�

(|∇Nv|2 + |∇S�

v|2)(n+�)/2(x, θ)dθdx

≥
∫
N

∫
S�

|∇S�

v|n+�(x, θ)dθdx

≥ (� + 1)ω�+1)
−n/�

∫
N

(∫
S�

|∇S�

v|�(x, θ)dθ

)(n+�)/�

dx,

(3.24)

where we have used Hölder’s inequality in the last step. Equality holds in the above
inequalities if and only if |∇Mv|2 = 0 and |∇S�

v|2 = const .
In order to estimate the remaining integral in the last line of (3.24), we use that the

maps v(x, ·) : S� → S� have degree 1. This can be seen by inspecting the l-homotopy
type of v: If we endow S� with the CW-structure consisting of a single 0- and a single
�-cell, we have (N × S�)(�) = N (�) × {θ0} ∪ {x0} × S� = N (�) ∨ S� with θ0 ∈ S�

and x0 ∈ N corresponding to the 0-cells. The projection onto S� restricts to the map
N (�)∨S� → S� that collapses the first summand and is the identity on S�. In particular,
we find that for any v, such that v(�) is homotopic to the map described above, the
degree of v(x0, ·) : S� → S� equals 1. Since N is connected, v(x, ·) � v(x0, ·) for
any x, thus deg v(x, ·) = 1 for any x ∈ N .

This implies that

∫
S�

|∇S�

v|l(x, θ)dθ ≥ (� + 1)ω�+1�
�/2| deg v(x, ·)| = (� + 1)ω�+1l

�/2. (3.25)

Here, equality holds if and only if v(x, ·) is conformal. Combining (3.24) and (3.25),
we find ∫

N×S�

|dv|n+�
g dVg ≥ vol(N )(� + 1)ω�+1l

(n+�)/2, (3.26)

with equality if and only if |∇Mv|2 = 0, and |∇S�
v|2 = const ., and v(x, ·) is

conformal. It follows in this case that v(x, θ) = ṽ(θ) with ṽ : S� → S� of degree 1.
Observe that u : M × S� → S� realizes the equality in (3.26). Therefore,

inf
v

∫
N×S�

|dv|n+�dVg = vol(N )(� + 1)ω�+1l
(n+�)/2, (3.27)

where the infimum is taken over all Lipschitz maps v having the l-homotopy of u. In
particular, by the equality discussion above, minimizers need to be (n + l)-harmonic
maps v(x, θ) = ṽ(θ), with |∇v|2 = const . Therefore, ṽ defines a harmonic selfmap
of S� with constant density. Since ṽ is non-trivial, it follows that |∇ṽ|2 ≥ λ1(S�) = l.
Consequently, equality in (3.26) is only achieved by maps of the form A ◦ u, with
A ∈ O(l + 1). ��
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Using Proposition 3.22 instead of Theorem 2.7, assertion (i i) of Theorem 1.6
follows along the same lines as assertion (i).

Proof of Corollary 1.7 Let f : M → S1 be a submersion. Since M is compact this is
a proper submersion. Moreover, f has to be surjective, since otherwise M would be
contractible. It follows by Ehresmann’s lemma that f : M → S1 is a fibre bundle,
F → M → S1, with F a smooth (n − 1)-dimensional manifold. As a consequence,
there is a diffeomorphism φ : F → F, such that M is obtained as the mapping torus
corresponding to φ, i.e.

M ∼= (F × [0, 1]) /(x, 0) ∼ (φ(x), 1).

Choose a metric g0 on F, which is invariant under φ. We claim that the metric g1 =
g0 + dt2 defined on F × [0, 1] descends to a smooth metric g on M . Clearly, g1
descends to a metric g on M, we only need to check that it is smooth. This is clear
near all points (x, t) with t 	= 0, 1. We have coordinates with values in F × (−ε, ε)

near the t = 0-slice as follows:

(x, t) �→
{

(x, t − 1) if t ≤ 1

(φ(x), t) if t > 0.
(3.28)

In these coordinates, g is given by g0 + dt2, since g0 is φ-invariant.
It remains to show that (M, g) admits an eigenmap. Define u : F ×[0, 1]/(x, 0) ∼

( f (x), 1) → S1 by (x, t) �→ t . With respect to g this is a Riemannian submersion.
Moreover, it follows from (3.28) that u has totally geodesic fibres. Thus u is an
eigenmap. ��
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