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Abstract

Mesh autoencoders are commonly used for dimensional-
ity reduction, sampling and mesh modeling. We propose a
general-purpose DEep MEsh Autoencoder (DEMEA) which
adds a novel embedded deformation layer to a graph-
convolutional mesh autoencoder. The embedded deforma-
tion layer (EDL) is a differentiable deformable geometric
proxy which explicitly models point displacements of non-
rigid deformations in a lower dimensional space and serves
as a local rigidity regularizer. DEMEA decouples the pa-
rameterization of the deformation from the final mesh reso-
lution since the deformation is defined over a lower dimen-
sional embedded deformation graph. We perform a large-
scale study on four different datasets of deformable objects.
Reasoning about the local rigidity of meshes using EDL
allows us to achieve higher-quality results for highly de-
formable objects, compared to directly regressing vertex po-
sitions. We demonstrate multiple applications of DEMEA,
including non-rigid 3D reconstruction from depth and shad-
ing cues, non-rigid surface tracking, as well as the transfer
of deformations over different meshes.

1. Introduction

With the increasing volume of datasets of deforming ob-
jects enabled by modern 3D acquisition technology, the de-
mand for compact data representations and compression
grows. Dimensionality reduction of mesh data has multi-
ple applications in computer graphics and vision, including
shape retrieval, generation, interpolation, and completion,
among others. Recently, deep convolutional autoencoder
networks were shown to be able to produce compact mesh
representations [2, 34, 29].

Dynamic real-world objects do not deform arbitrarily.
While deforming, they preserve topology, and nearby points
are more likely to deform similarly compared to more dis-
tant points. Current convolutional mesh autoencoders ex-
ploit this coherence by learning the deformation proper-
ties of objects directly from data and are already suitable
for mesh compression and representation learning. On the
other hand, they do not explicitly reason about the deforma-
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tion field in terms of local rotations and translations. We
show that explicitly reasoning about the local rigidity of
meshes enables higher-quality results for highly deformable
objects, compared to directly regressing vertex positions.

At the other end of the spectrum, mesh manipulation
techniques such as As-Rigid-As-Possible Deformation [3 1]
and Embedded Deformation [32] only require a single mesh
and enforce deformation properties, such as smoothness and
local rigidity, based on a set of hand-crafted priors. These
hand-crafted priors are effective and work surprisingly well,
but since they do not model the real-world deformation be-
havior of the physical object, they often lead to unrealistic
deformations and artifacts in the reconstructions.

In this paper, we propose a general-purpose mesh au-
toencoder with a model-based deformation layer, combin-
ing the best of both worlds, i.e., supervised learning with
deformable meshes and a novel differentiable embedded de-
formation layer that models the deformable meshes using
lower-dimensional deformation graphs with physically in-
terpretable deformation parameters. While the core of our
DEep MEsh Autoencoder (DEMEA) learns the deformation
model of objects from data using the state-of-the-art con-
volutional mesh autoencoder (CoMA) [29], the novel em-
bedded deformation layer decouples the parameterization
of object motion from the mesh resolution and introduces
local spatial coherence via vertex skinning.

DEMEA is trained on mesh datasets of moderate sizes
that have recently become available [22, 4, 3, 24]. DEMEA
is a general mesh autoencoding approach that can be trained
for any deformable object class. We evaluate our approach
on datasets of three objects with large deformations like
articulated deformations (body, hand) and large non-linear
deformations (cloth), and one object with small localized
deformations (face). Quantitatively, DEMEA outperforms
standard convolutional mesh autoencoder architectures in
terms of vertex-to-vertex distance error. Qualitatively, we
show that DEMEA produces visually higher fidelity results
due to the physically based embedded deformation layer.

We show several applications of DEMEA in computer
vision and graphics. Once trained, the decoder of our au-
toencoders can be used for shape compression, high-quality
depth-to-mesh reconstruction of human bodies and hands,
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Figure 1. Pipeline: DEMEA encodes a mesh using graph convolutions on a mesh hierarchy. The graph decoder first maps the latent
vector to node features of the coarsest graph level. A number of up-sampling and graph convolution modules infer the node translations
and rotations of the embedded graph. An expert-designed embedded deformation layer applies the node translations to a template graph,
against which a template mesh is skinned. With the node rotations and the skinning, this deformed graph allows reconstructing a deformed

mesh. We train our network on synthetic data.

and even poorly textured RGB-image-to-mesh reconstruc-
tion for deforming cloth. The low-dimensional latent space
learned by our approach is meaningful and well-behaved,
which we demonstrate by linearly interpolating between the
latent codes of different meshes. Thus, DEMEA provides
us a well-behaved general-purpose category-specific gener-
ative model of highly deformable objects.

2. Related Work

Mesh Manipulation and Tracking. Our embedded de-
formation layer is inspired by as-rigid-as-possible mod-
elling [31] and the method of Sumner et al. [32] for mesh
editing and manipulation. While these methods have been
shown to be very useful for mesh manipulation in computer
graphics, to the best of our knowledge, this is the first time
a model-based regularizer is used in a mesh autoencoder.
Using a template for non-rigid object tracking from
depth maps was extensively studied in the model-based set-
ting [20, 38]. Recently, Litany et al. [21] demonstrated a
neural network-based approach for the completion of hu-
man body shapes from a single depth map.
Graph Convolutions. The encoder-decoder approach to
dimensionality reduction with neural networks (NNs) for
images was introduced in [15]. With deeper architectures
encompassing a large number of parameters, learning can
be performed on large data structures including deformable
meshes. Deep convolutional neural networks (CNNs) al-
low to effectively capture contextual information of input
data modalities and can be trained for various tasks. Lately,
convolutions operating on regular grids have been gener-
alized to more general topologically connected structures

such as meshes and two-dimensional manifolds [6, 27], en-
abling learning of correspondences between shapes, shape
retrieval [25, 5, 26], and segmentation [37].

Masci et al. [25] proposed geodesic CNNs operating
on Riemannian manifolds for shape description, retrieval,
and correspondence estimation. Boscani ef al. [5] in-
troduced spatial weighting functions based on simulated
heat propagation and projected anisotropic convolutions.
Monti et al. [26] extended graph convolutions to variable
patches through Gaussian mixture model CNNs. In FeaST-
Net [35], the correspondences between filter weights and
graph neighborhoods with arbitrary connectivities are es-
tablished dynamically from the learned features. The local-
ized spectral interpretation of Defferrard er al. [7] is based
on recursive feature learning with Chebyshev polynomials
and has linear evaluation complexity.

Learning Mesh-Based 3D Autoencoders. Very recently,
several mesh autoencoders with various applications were
proposed. A new hierarchical variational mesh autoen-
coder with fully connected layers for facial geometry pa-
rameterization learns an accurate face model from small
databases and accomplishes depth-to-mesh fitting tasks [2].
Tan and coworkers [33] introduced a mesh autoencoder
with a rotation-invariant mesh representation as a generative
model. Their network can generate new meshes by sam-
pling in the latent space and perform mesh interpolation. To
cope with meshes of arbitrary connectivity, they use fully-
connected layers and do not explicitly encode neighbor re-
lations. Tan et al. [34] train a network with graph convo-
lutions to extract sparse localized deformation components
from meshes. Their method is suitable for large-scale de-



formations and meshes with irregular connectivity. Gao et
al. [10] transfer mesh deformations by training a genera-
tive adversarial network with a cycle consistency loss to
map shapes in the latent space, while a variational mesh au-
toencoder encodes deformations. The Convolutional facial
Mesh Autoencoder (CoMA) of Ranjan et al. [29] allows to
model and sample stronger deformations compared to pre-
vious methods and supports asymmetric facial expressions.

Our DEMEA is a general-purpose mesh autoencoder that
can be used for shape completion, shape interpolation, and
even surface reconstruction from monocular images using
shading cues. Similar to CoMA [29], our DEMEA uses
spectral graph convolutions but additionally employs the
embedded deformation layer as a model-based regularizer.
While most of these approaches show results only on a sin-
gle object category, we demonstrate the usefulness of our
approach through evaluations on three datasets of highly de-
formable objects. We believe that it is substantial to accom-
modate point relationships of the mesh data in the architec-
ture if the connectivities are available.

Learning 3D Reconstruction. Several supervised meth-
ods reconstruct rigid objects in 3D. Given a depth image,
the network of Sinha et al. [30] reconstructs the observed
surface of non-rigid objects. In its 3D reconstruction mode,
their method reconstructs rigid objects from single images.
Similarly, Groueix et al. [13] reconstruct object surfaces
from a point cloud or single monocular image with an atlas
parameterization. The approaches of Kurenkov et al. [19]
and Jack et al. [16] deform a predefined object-class tem-
plate to match the observed object appearance in an image.
Similarly, Kanazawa et al. [17] deform a template to match
the object appearance but additionally support object tex-
ture. The Pixel2Mesh approach of Wang et al. [36] recon-
structs an accurate mesh of an object in a segmented im-
age. Initializing the 3D reconstruction with an ellipsoid,
they gradually deform it until the appearance matches the
observation. The template-based approaches [19, 16, 17],
as well as Pixel2Mesh [36], produce complete 3D meshes.

Learning Monocular Non-Rigid Surface Regression.
Only a few supervised learning approaches for 3D recon-
struction from monocular images tackle the deformable na-
ture of non-rigid objects. Pumarola et al. [28] and Golyanik
et al. [12] train networks for deformation models with syn-
thetic thin plates datasets. Their methods can infer non-
rigid states of the observed surfaces such as paper sheets or
membranes. The accuracy and robustness of both methods
on real images are limited. Bednafik ef al. [3] propose an
encoder-decoder network for texture-less surfaces relying
on shading cues. They train on a real dataset and show an
enhanced reconstruction accuracy on real images, but sup-
port only trained object classes. Fuentes-Jimenez et al. [9]
train a network to deform an object template for depth map
recovery. They achieve impressive results on real image se-

quences but require an accurate 3D model of every object
in the scene, which restricts the method’s practicality.

One of the applications of DEMEA is the recovery of
texture-less surfaces from RGB images. Since a depth map
as a data modality is closer to images with shaded surfaces,
we train DEMEA in the depth-to-mesh mode on images in-
stead of depth maps. As a result, we can regress surface
geometry from shading cue.

3. Approach

In this section, we describe the architecture of the pro-
posed DEMEA. We employ an expert-designed embed-
ded deformation layer to decouple the complexity of the
learned deformation field from the actual mesh resolution.
The deformation is represented relative to a canonical mesh
M = (V,E) with N, vertices V = {v;}* , and edges E.
To this end, we define the encoder-decoder on a coarse de-
formation graph and use the embedded deformation layer to
drive the deformation of the final high-resolution mesh, see
Fig. 1. Our architecture is based on spectral graph convolu-
tions that are defined on a multi-resolution graph hierarchy.
In the following, we describe all components in more detail.

3.1. Mesh Hierarchy

The up- and down-sampling in the convolutional mesh
autoencoder is defined over a multi-resolution mesh hierar-
chy, similar to the CoMA [29] architecture. We compute
the mesh hierarchy fully automatically based on quadric
edge collapses [ 1], i.e., each hierarchy level is a simpli-
fied version of the input mesh. We employ a hierarchy with
five resolution levels, where the finest level is the mesh.
Given the multi-resolution graph hierarchy, we define up-
and down-sampling operations [29] for feature maps de-
fined on the graph. To this end, during down-sampling, we
enforce the nodes of the coarser level to be a subset of the
nodes of the next finer level. We transfer a feature map
to the next coarser level by a similar sub-sampling opera-
tion. The inverse operation, i.e., feature map up-sampling,
is implemented based on a barycentric interpolation of close
features. During edge collapse, we project each collapsed
node onto the closest triangle of the coarser level. We use
the barycentric coordinates of this closest point with respect
to the triangle’s vertices to define the interpolation weights.

3.2. Embedded Deformation Layer (EDL)

Given a canonical mesh for an object category, we de-
sign a corresponding coarse embedded deformation graph,
see Fig. 2. The deformation graph is used as one of the two
levels immediately below the mesh in the mesh hierarchy
(depending on the resolution of the graph) of the autoen-
coder. As the quadric edge collapse algorithm can delete
nodes of the embedded graph when computing intermedi-
ate levels of the graph hierarchy, we modify the algorithm
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Figure 2. Template meshes and the corresponding embedded de-
formation graphs.

to ensure that the nodes of the embedded graph are not re-
moved from finer levels. The number of nodes in the de-
formation graph is kept significantly lower than the mesh
resolution, and highly deformable regions (arms and legs in
the case of bodies) are assigned relatively more nodes.

Our embedded deformation layer models a space de-
formation that maps the vertices of the canonical template
mesh V to a deformed version V. Suppose G = (N, E)
is the embedded deformation graph [32] with L canoni-
cal nodes N = {g,}£ | and K edges E, with g, € R>.
The global space deformation is defined by a set of lo-
cal, rigid, per-graph node transformations. Each local rigid
space transformation is defined by a tuple T, = (Ry, t;),
with R; € SO(3) being a rotation matrix and ¢; € R3 be-
ing a translation vector. We enforce that R} = R; ' and
det(R;) = 1 by parameterizing the rotation matrices based
on three Euler angles. Each T'; is anchored at the canonical
node position g, and maps every point p € R? to a new
position in the following manner [32]:

T(p) = Rilp— g, + g, + t. (1)

To obtain the final global space deformation G, the local
per-node transformations are linearly combined:

G(p)= > _ wi(p)-Ti(p) . )
leNp

Here, N, is the set of approximate closest deformation
nodes. The linear blending weights w;(p) for each posi-
tion are based on the distance to the respective deformation
node [32]. Please refer to the supplemental for more details.

The deformed mesh V' = G(V) is obtained by apply-
ing the global space deformation to the canonical template
mesh V. The free parameters are the local per-node ro-
tations R; and translations ¢;, i.e., 6L parameters with L
being the number of nodes in the graph. These parameters
are input to our deformation layer and are regressed by the
graph convolutional decoder.

3.3. Differentiable Space Deformation

Our novel EDL is fully differentiable and can be used
during network training to decouple the parameterization
of the space deformation from the resolution of the final
high-resolution output mesh. This enables us to define the
reconstruction loss on the final high-resolution output mesh
and backpropagate the errors via the skinning transform to
the coarse parameterization of the space deformation. Thus,
our approach enables finding the best space deformation by
only supervising the final output mesh.

3.4. Spectral Graph Convolutions

Our graph encoder-decoder architecture is based on fast
localized spectral filtering [7]. Given an Fj,-channel fea-
ture tensor x € RN*Fin where the features are defined
at the graph nodes, and let x; € R denote the i-th input
graph feature map, we define the j-th output graph feature
map y; € RY as follows:

Fin

yi=_ go,(L)x; . 3)
=1

Here, L is the Laplacian matrix of the graph and the filters
9o, ,; (L) are parameterized using Chebyshev polynomials of
order K. This leads to K -localized filters that operate on the
K -neighbourhoods of the nodes. The complete output fea-
ture tensor, that stacks all F,,,, feature maps, is denoted as
y € RN*Four Each filter gg, , (L) is parameterized by K
coefficients, which in total leads to Fj, x F,,+ X K train-
able parameters for each graph convolution layer, see [7]
for more details. We apply the graph convolutions without
stride, i.e., input graph resolution equals output resolution.

3.5. Training

We train our approach end-to-end in Tensorflow [1] us-
ing Adam [18]. As loss we employ a dense geometric per-
vertex ¢1-loss with respect to the ground-truth mesh. For
all experiments, we use a learning rate of 10~* and default
parameters 51 = 0.9, S = 0.999, ¢ = 10~8 for Adam. We
train for 50 epochs for Dynamic Faust, 30 epochs for Syn-
Hand5M, 50 epochs for the CoMA dataset and 300 epochs
for the Cloth dataset. We employ a batch size of 8.

3.6. Reconstructing Meshes from Images/Depth

The image/depth-to-mesh network consists of an image
encoder and a mesh decoder, see Fig. 3. The mesh decoder
is initialized from the corresponding mesh auto-encoder, the
image/depth encoder is based on a ResNet-50 [ 14] architec-
ture, and the latent code is shared between the encoder and
decoder. We initialize the ResNet-50 component using pre-
trained weights from ImageNet [8]. To obtain training data,
we render synthetic depth maps from the meshes. We train
with the same settings as for mesh auto-encoding.
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3.7. Network Architecture Details

In the following, we provide more details of our encoder-
decoder architectures.

Encoding Meshes. Input to the first layer of our mesh en-
coder is an IV,, x 3 tensor that stacks the coordinates of all
N, vertices. We apply four down-sampling modules. Each
module applies a graph convolution and is followed by a
down-sampling to the next coarser level of the graph hi-
erarchy. After each graph convolution, we apply a ReLU
non-linearity. Finally, we take the output of the final mod-
ule and apply a fully connected layer followed by a ReLU
non-linearity to obtain a latent space embedding.

Encoding Images/Depth. To encode images/depth, we em-
ploy a 2D convolutional network to map color/depth in-
put to a latent space embedding. Input to our encoder are
images of resolution 256 x 256 pixels. We modified the
ResNet-50 [14] architecture to take single or three-channel
input image. We furthermore added two additional convolu-
tion layers at the end, which are followed by global average
pooling. Finally, a fully connected layer with a subsequent
ReLU non-linearity maps the activations to the latent space.
Decoding Graphs. The task of the graph decoder is to map
from the latent space back to the embedded deformation
graph. First, we employ a fully connected layer in combina-
tion with reshaping to obtain the input to the graph convolu-
tional up-sampling modules. We apply a sequence of three
or four up-sampling modules until the resolution level of
the embedded graph is reached. Each up-sampling module
first up-samples the features to the next finer graph resolu-
tion and then performs a spectral graph convolution (with
K = 6), which is then followed by a ReLU non-linearity.
Then, we apply three additional graph convolutions, where
we apply ReLUs after each of the first two. The latter two of
these graph convolutions work with K = 2 for local refine-
ment. The resulting tensor is passed to our expert-designed
embedded deformation layer.

4. Experiments

We evaluate DEMEA quantitatively and qualitatively on
several challenging datasets and demonstrate state-of-the-
art results for mesh auto-encoding. In Sec. 5, we show re-
construction from RGB images and depth maps and that the
learned latent space enables well-behaved interpolation.

Mesh | 1st 2nd | 3rd | 4th
DFaust [4] 6890 | 1723 | 352 | 88 22
CoMA [29] 5023 | 2525 | 632 | 158 | 40
SynHand5M [24] | 1193 | 400 100 | 25 7
Cloth [3] 961 256 100 | 36 16

Table 1. Number of vertices on each level of the graph hierarchy.
Bold levels denote the embedded graph.

Datasets. We demonstrate the generality of DEMEA on
experiments with body (Dynamic Faust, DFaust [4]), hand
(SynHand5M [24]), textureless cloth (Cloth [3]), and face
(CoMA [29]) datasets. Table 1 gives the number of graph
nodes used on each level of our hierarchical encoder-
decoder architecture. All meshes live in metric space.

DFaust [4]. The training set consists of 28,294 meshes. For
the tests, we split off two identities (female 50004, male
50002) and two dynamic performances, i.e., one-leg jump
and chicken wings. Overall, this results in a test set with
12,926 elements. For the depth-to-mesh results, we found
the synthetic depth maps from the DFaust training set to be
insufficient for generalization, i.e., the test error was high.
Thus, we add more pose variety to DFaust for the depth-
to-mesh experiments. Specifically, we add 28k randomly
sampled poses from the CMU Mocap' dataset to the train-
ing data, where the identities are randomly sampled from
the SMPL [23] model (14k female, 14k male). We also add
12k such samples to the test set (6k female, 6k male).

Textureless Cloth [3]. For evaluating our approach on gen-
eral non-rigidly deforming surfaces, we use the textureless
cloth data set of Bednatik et al. [3]. It contains real depth
maps and images of a white deformable sheet — observed
in different states and differently shaded — as well as
ground truth meshes. In total, we select 3,861 meshes with
consistent edge lengths. 3,167 meshes are used for training
and 700 meshes are reserved for evaluation. For this dataset,
we hand-design the entire graph hierarchy, since the canon-
ical mesh is a perfectly flat sheet, which causes the down-
sampling method [ 1] to introduce severe artifacts.

SynHand5M [24]. For the experiments with hands, we
take 100k random meshes from the synthetic SynHand5M
dataset of Malik ef al. [24]. We render the corresponding
depth maps. The training set is comprised of 90k meshes,
and the remaining 10k meshes are used for evaluation.
CoMA [29]. The training set contains 17,794 meshes of the
human face in various expressions [29]. For tests, we select
two challenging expressions, i.e., high smile and mouth ex-
treme. Thus, our test set contains 2,671 meshes in total.

4.1. Baseline Architectures

We compare our convolutional architecture with embed-
ded deformation (DEMEA) to a number of strong baselines.

lmocap .Ccs.cmu.edu
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FCIG | FCIM | GCIG | GCIM
GL 2.6 8.9 24 24
Ours | 2.2 23 23 24

Table 2. Evaluation of different settings of our network on the test
set of DFaust [4] using the latent code of length 128. The numbers
are the average vertex errors in cm.

Convolutional Baseline. We consider a version of our
proposed architecture, convolutional ablation (CA), where
the expert-designed ED layer is replaced by learned upsam-
pling modules that upsample to the mesh resolution. In this
case, the local refinement (convolutions with X = 2) oc-
curs on the level of the embedded graph. We also consider
modified CA (MCA), an architecture where the local graph
convolutions are moved to the end of the network for local
refinement on the mesh resolution.

Fully-Connected Baseline. We also consider an almost-
linear baseline, FC ablation (FCA) . The input is given to a
fully-connected layer, after which a ReLU is applied. The
resulting latent vector is decoded using another FC layer
that maps to the output space. Finally, we also consider
an FCED network where the fully-connected decoder maps
to the deformation graph, which the embedded deformation
layer (EDL) in turn maps to the full-resolution mesh.

4.2. Evaluation Settings

We first determine the most favorable input type and
loss function for the considered architectures. As input, we
consider either the full mesh (/M) or the subset of vertices
that is used to define the embedded deformation graph (IG).
In addition to our proposed loss function, we consider the
graph loss (GL) with the ¢ reconstruction loss directly on
the graph node positions (where the vertex positions of the
input mesh that correspond to the graph nodes are used as
ground truth). The GL setting uses the EDL only at test time
to map to the full mesh, but not for training. We perform
this evaluation for both fully-connected (FC) and graph-
convolutional (GC) architectures and train for 50 epochs.

Table 2 shows the quantitative results using the average
per-vertex Euclidean error. Using the EDL during training
leads to better quantitative results, as the network is aware
of the skinning function and can move the graph nodes ac-
cordingly. Fully-connected networks perform worse with
the mesh as input, perhaps due to the large number of pa-
rameters in the network. Graph convolutions by design per-
form local computations and thus require a much smaller
number of free variables during training. In all further ex-
periments, we use graphs as inputs for the fully-connected
architectures and meshes as inputs for the convolutional ar-
chitectures, to choose the strongest baselines. We always
use the EDL during training in all further results.
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Figure 4. In contrast to graph-convolutional networks that directly
regress vertex positions, our embedded graph layer does not show
artifacts. These results use a latent dimension of 32.

4.3. Evaluations of the Autoencoder

Qualitative Evaluations. Our architecture significantly
outperforms the baselines qualitatively on the DFaust and
SynHand5M datasets, as seen in Figs. 4 and 5. Convo-
lutional architectures without an embedded graph produce
strong artifacts in the hand, feet and face regions in the pres-
ence of large deformations. Since EDL explicitly models
deformations, we preserve fine details under strong non-
linear deformations and articulations of extremities.

Quantitative Evaluations. We compare the proposed DE-
MEA to the baselines on the autoencoding task, see Table 3.

While the fully-connected baselines are competitive for
larger dimensions of the latent space, their memory demand
increases drastically. On the other hand, they perform sig-
nificantly worse for low dimensions on all datasets. In this
work, we are interested in low latent dimensions, e.g. less
than 32, as we want to learn mesh representations that are as
compact as possible. In the experiments, we predominantly
evaluate with latent dimensions 8 and 32.

For all datasets, DEMEA outperforms all considered
baselines for latent codes of length 8. For a latent dimen-
sion of 32, the gap in the accuracy shrinks. With an in-
creasing dimensionality of the latent code, competing archi-
tectures obtain comparable or better results quantitatively,
perhaps because they become capable of fitting to the high-
frequency details and noise. On the other hand, we are in-
terested in capturing smooth large non-rigid deformations.
The baselines achieve comparable accuracy with different
sizes of the latent space for different datasets. In the case of
the face dataset [29], the closest baselines are on par even
for latent codes of size 8. Since faces deform locally, 8
is sufficient to capture the deformations around the mean
shape using standard architectures. As the latent code be-
comes larger, fully-connected networks consistently outper-



DFaust [4] SynHand5M [24] Cloth [3] CoMA [29]

8 32 1288 32 128 |8 32 128 | 8 32 128
CA |67 30 26 | 1030 449 376 | 1.61 090 0.72 | 1.57 097 0.87
MCA |86 34 25 933 455 367|175 082 070|161 099 087
Ours | 66 29 24 | 897 467 353|134 083 071|149 1.05 0.94
FCA |93 34 22 2096 722 144|171 071 044|319 139 0.75
FCED | 82 3.1 22 |2049 9.13 160 | 1.89 0.69 0.44 | 3.61 3.19 1.08

Table 3. Average per-vertex errors on the test sets of DFaust (in ¢m), SynHand5M (in mm), textureless cloth (in cm) and CoMA (in mm.)

Figure 5. Auto-encoding results on all four datasets. Clockwise,
starting from the single image on the left: Ground truth, CA with
latent dimension 8, Ours with 8, Ours with 32, CA with 32. Best
viewed on a screen.

form all convolutional architectures, as discussed before.

Comparisons. In extensive comparisons with several com-
petitive baselines, we have demonstrated the usefulness of
our approach for autoencoding strong non-linear deforma-
tions and articulated motion. Next, we compare DEMEA
to the existing state-of-the-art CoOMA approach [29]. We
train their architecture on all mentioned datasets with a
latent dimension of 8, which is also used in [29]. We
outperform their method quantitatively on DFaust (6.6cm
vs. 8.2cm), on SynHand5M (8.97cm vs. 9.76cm), and on
Cloth (1.34cm vs. 1.38cm). We perform worse on Faces
(1.49mm vs. 1.25mm), where the deformations are not
large. On the other datasets, the advantage of our ex-
plicit EDL formulation is clearly noticeable qualitatively. In
Fig. 4, we show that DEMEA avoids many of the artifacts
present in the case of [29] and other baselines.

5. Applications

We show several applications of DEMEA, including
image-to-mesh reconstruction and deformation transfer.

Figure 6. RGB-to-mesh results on our test set. From left to right:
real RGB image, our reconstruction, ground truth.

5.1. RGB to Mesh

On the Cloth [3] dataset, we show that DEMEA can re-
construct meshes from RGB images. See Fig. 6 for qual-
itative examples using a latent dimension of 32. On our
test set, our proposed architecture achieves RGB-to-mesh
reconstruction errors of 18.9mm, 14.7mm and 14.3mm
for latent dimensions 8, 32 and 128, respectively. Bednatik
et al. [3], who use a different split than us, report an er-
ror of 21.48mm. Moreover, we asked the authors of Hy-
brid Deformation Model Network (HDM-net) [12] to train
their method for regression of textureless surfaces. On their
split, HDM-Net achieves an error of 17.65mm after train-
ing for 100 epochs using a batch size of 4. Under the same
settings, we re-train our approach without pre-training the
mesh decoder. Our approach obtains test errors of 18.9mm,
14.6mm and 13.9mm using latent dimensions of 8, 32 and
128, respectively.

5.2. Depth to Mesh

For hands and bodies, we demonstrate reconstruction re-
sults from single depth images.

Bodies. We train networks with a small latent space dimen-
sion of 32 and a larger dimension of 128. Quantitatively, we
obtain errors of 2.6cm and 2.2cm with latent space dimen-
sions of 32 and 128, respectively, on un-augmented syn-
thetic data. Besides, we also apply our approach to real data,
see Fig. 7. To this end, we found it necessary to augment
the depth images with artificial noise to lessen the domain
gap. Video results are included in the supplementary.

Hands. DEMEA can reconstruct hands from depth as well,
see Fig. 8. We achieve a reconstruction error of 8.21 mm
for a latent dimension of 32 and 5.58 mm for 128. Ma-



Figure 7. DEMEA on real Kinect depth images. From left to right:
depth, our reconstructions with latent dimensions 32 and 128.

e Go e &

Figure 8. Reconstruction results from synthetic depth images of
hands using a latent dimension of 32. From left to right: depth,
our reconstruction, ground truth.

ARAR

Figure 9. Interpolation results, from left to right: source mesh,
a=0.2a=04,a=0.6,a = 0.8, target mesh.

lik et al. [24] report an error of 11.8 mm. Our test set is
composed of a random sample of fully randomly generated
hands from the dataset, which is very challenging. We use
256 x 256, whereas [24] use images of size 96 x 96.

5.3. Latent Space Arithmetic

Although we do not employ any regularization on the la-
tent space, we found empirically that the network learns a
well-behaved latent space. As we show in the supplemen-
tal document and video, this allows DEMEA to temporally
smooth tracked meshes from a depth stream.

Latent Interpolation. We can linearly interpolate the la-
tent vectors S and T of a source and a target mesh: Z(«a) =
(1 —a)S + aT. Even for highly different poses and identi-
ties, decoding these interpolated latent vectors Z(«) yields
plausible in-between meshes, see Fig. 9.

Deformation Transfer. Furthermore, the learned latent
space even allows to transfer poses between different iden-
tities on DFaust. Let a sequence of source meshes S =
{M,}; of person A and a target mesh My, of person B be
given, where w.l.o.g. My and My, correspond to the same
pose. We now seek a sequence of target meshes S’ = {M;};
of person B performing the same poses as person A in S.
We encode S and M{) into the latent space of the mesh auto-
encoder, yielding the corresponding latent vectors {M,};

(]
o
=
=}
o
(%]

Figure 10. Deformation transfer from a source sequence to a target
identity. The first column shows My and M.

and M. We define the identity difference d = M{ — M,
and set M}, = M, + d for i > 0. Decoding {M}; us-
ing the mesh decoder than yields S’. We show qualitative
results in Fig. 10 and in the supplementary.

6. Limitations

While the embedded deformation graph excels on highly
articulated, non-rigid motions, it has difficulties accounting
for very subtle actions. Since the faces in the CoMA [29]
dataset do not undergo large deformations, our EDL-based
architecture does not offer a significant advantage. Simi-
lar to all other 3D deep learning techniques, our approach
also requires reasonably sized mesh datasets for supervised
training, which might be difficult to capture or model. We
train our network in an object-specific manner. General-
izing our approach across different object categories is an
interesting direction for future work.

7. Conclusion

We proposed DEMEA — the first deep mesh autoen-
coder for highly deformable and articulated scenes, such as
human bodies, hands, and deformable surfaces, that builds
on a new differentiable embedded deformation layer. The
deformation layer reasons about local rigidity of the mesh
and allows us to achieve higher quality autoencoding results
compared to several baselines and existing approaches. We
have shown multiple applications of our architecture includ-
ing non-rigid reconstruction from real depth maps and 3D
reconstruction of textureless surfaces from images.
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In this supplementary material, we expand on several
points from the main paper. In Sec. 1, we offer additional
analysis of CoMA [4] on larger latent spaces in comparison
to DEMEA and our baselines. In Sec. 2, we describe how
we apply temporal smoothing in latent space. Sec. 3 con-
tains details about skinning template meshes to embedded
graphs. Sec. 4 provides low-level details of our architec-
ture. In Sec. 5, we describe how we normalize depth maps
and meshes (for reconstruction from real depth data). Sec. 6
explains how we obtain meshes from networks trained with
the graph loss (GL). Finally, in Sec. 7, we show the em-
ployed mesh hierarchy for all four datasets.

1. Additional Comparisons to CoMA

In addition to latent dimension 8, we also trained
CoMA [4] on latent dimensions 32 and 128 on all four
datasets. Since COMA uses a batch size of 16, while we use
a batch size of 8 for our method, we report two versions of
CoMA: one that is matched in the number of epochs to our
method and one that is matched in the number of iterations
to our method. I.e., the iteration-matched version is trained
for twice the number of epochs as our method. Note that
we report the iteration-matched numbers for CoMA in the
main paper. See Table | for an expanded version of Table 3
from the main paper.

Again, the fully-connected baselines outperform the
graph-convolutional networks for latent dimension 128. For
latent dimension 8§, DEMEA gives better quantitative re-
sults than CoMA on all datasets except for CoMA, which
does not include large non-rigid deformations. For latent
dimension 32, the results are more mixed: DEMEA, again,
has better results on Dynamic FAUST and on Cloth, but
performs on par on SynHand5M. On the CoMA dataset,
DEMEA is slightly worse. While these numbers show that
our approach compares favorably to CoMA for large non-
rigid deformations, the advantage of our architecture which
includes the EDL is more evident qualitatively. We avoid
many artifacts present in the results of CoMA and our base-
lines, see Fig. 4 in the main paper.

2Stanford University

2. Depth-to-Mesh Tracking

We can apply temporal smoothing to the reconstruction
of a sequence of real depth images {D,};, by decoding a
running (causal) exponential average of the latent vectors
of this sequence. First, we encode the sequence into la-
tent vectors {D;};. We then define a smoothed sequence
of latent vectors {D.}; as follows: let D) = Dy and set
D.=a-D;+(1—a)-D,_, fori > 0 for some « € [0, 1].
The smoothed sequence of meshes {M;}; is obtained by
decoding {D.},.

3. Skinning

We compute the skinning weight w;(v;) of vertex v; to
one of its approximately closest skinning nodes [ € Ny,, as:

_ .2
wi(v;) = exp (”glv) , (1)
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where o € R depends on the dataset. Table 2 contains our
choice of parameters for each dataset.

4. Architecture

Fig. 1 contains our low-level architecture. GC(f) is a
Chebychev graph-convolutional layer with f output fea-
tures. DS is a down-sampling layer and US is an up-
sampling layer. Conv2D(fk,s) is a 2D convolution with
f output features, kernel size k x k and stride s. We
modified ResNetV2 50 by removing its first convolutional
layer and its final non-convolutional layers. We use ReLU
non-linearities after every graph-convolutional, 2D convo-
lutional and fully-connected layer except for the first 2D
convolutional layer in the depth encoder and the last graph-
convolutional layer. The third up-sampling module (i.e. up-
sampling layer followed by a graph convolution) is only
used for higher-resolution embedded graphs. All graph con-
volutions use K = 6, except for the last two, which use
K = 2 for local refinement.



DFaust [2] SynHand5M [3] Cloth [1] CoMA [4]

8 32 128 | 8 32 128 | 8 32 128 | 8 32 128
CoMA (matched epochs) 80 34 32 |103 472 410 | 141 1.02 0.89 | 1.30 0.99 0.89
CoMA (matched iterations) | 8.2 34 2.6 | 9.76 455 340 | 138 1.05 0.88 | 1.25 093 0.85
CA 6.7 30 26 | 1030 449 376|161 090 0.72 | 157 097 0.87
MCA 8.6 34 25 |933 455 3.67 | 175 082 0.70 | 1.61 0.99 0.87
Ours 66 29 24 (897 467 353|134 083 071|149 105 094
FCA 93 34 22 |2096 722 144|171 071 044|319 139 0.75
FCED 82 3.1 22 |2049 9.13 1.60 | 1.89 0.69 0.44 | 3.61 3.19 1.08

Table 1. Average per-vertex errors on the test sets of DFaust (in ¢m), SynHand5M (in mm), textureless cloth
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Figure 1. The low-level architecture of DEMEA (orange path) and the depth-to-mesh network (blue path). Note that the two paths are not

trained simultaneously.

DFaust | SynHand5M | Cloth | CoMA
Ny, | | 12 7 5 6
o 0.05 0.009 0.015 | 0.01

Table 2. Skinning parameters for each dataset.

5. Normalization

Depth All depth-to-mesh networks rescale the depth val-
ues of the input depth map from between 0.3m and 7m to
[_1a ]-]

Bodies: Depth For our depth-to-mesh network on bod-
ies, we employ a number of additional normalization steps
to focus on non-rigid reconstruction. First, we assume to be
given a segmentation mask that filters out the background.
We crop the foreground tightly and use bilinear sampling
to isotropically rescale the crop to 256 x 256. Given such a
depth crop, we compute its average depth value and subtract

it from the input. Such normalization necessitates normal-
izing the network output, as we will describe next.

Bodies: Meshes We first normalize out the global transla-
tion from the meshes by subtracting from each mesh vertex
the average vertex position. Since scale information is also
lost, we fix the scale of the meshes by normalizing their
approximate spine length. To that end, we compute the ap-
proximate spine length of the template mesh and of each
mesh in the dataset. We then isotropically rescale all the
meshes to the same spine length as the template mesh. The
depth-to-mesh body reconstruction errors in the main paper
are reported for these normalized meshes.

6. Graph Loss

To obtain mesh results from a network trained for the
graph loss (GL), we need to apply embedded deformation
at test time. Although the trained network predicts graph



/
\
/

N
el

7R

' V. v‘\ / N
'4 ‘%’i%“

L

AR

N\ N
\ \
AN

Figure 5. Cloth hierarchy.

node positions ¢;, it does not regress graph node rotations
R;. We compute the missing rotation for each graph node [
as follows: assuming that each node’s neighborhood trans-
forms roughly rigidly, we solve a small Procrustes problem
that computes the rigid rotation between the 1-ring neigh-
borhoods of [ in the template graph and in the regressed
network output. We directly use this rotation as R;.

7. Mesh Hierarchy

Figures 2, 3, 4 and 5 visualize the five levels of the mesh
hierarchy used for computing the barycentric up-sampling
weights for the graph up-sampling layers.
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