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Fig. 1. We propose a novel text-based editing approach for talking-head video. Given an edited transcript, our approach produces a realistic output video in
which the dialogue of the speaker has been modified and the resulting video maintains a seamless audio-visual flow (i.e. no jump cuts).

Editing talking-head video to change the speech content or to remove filler
words is challenging. We propose a novel method to edit talking-head video
based on its transcript to produce a realistic output video in which the
dialogue of the speaker has been modified, while maintaining a seamless
audio-visual flow (i.e. no jump cuts). Our method automatically annotates
an input talking-head video with phonemes, visemes, 3D face pose and
geometry, reflectance, expression and scene illumination per frame. To edit
a video, the user has to only edit the transcript, and an optimization strategy
then chooses segments of the input corpus as base material. The annotated
parameters corresponding to the selected segments are seamlessly stitched
together and used to produce an intermediate video representation in which
the lower half of the face is rendered with a parametric face model. Finally,
a recurrent video generation network transforms this representation to a
photorealistic video that matches the edited transcript. We demonstrate a
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large variety of edits, such as the addition, removal, and alteration of words,
as well as convincing language translation and full sentence synthesis.
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construction; Motion processing; Graphics systems and interfaces.
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1 INTRODUCTION
Talking-head video – framed to focus on the face and upper body
of a speaker – is ubiquitous in movies, TV shows, commercials,
YouTube video logs, and online lectures. Editing such pre-recorded
video is challenging, but can be needed to emphasize particular
content, remove filler words, correct mistakes, or more generally
match the editor’s intent. Using current video editing tools, like
Adobe Premiere, skilled editors typically scrub through raw video
footage to find relevant segments and assemble them into the desired
story. They must carefully consider where to place cuts so as to
minimize disruptions to the overall audio-visual flow.
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Berthouzoz et al. [2012] introduce a text-based approach for edit-
ing such videos. Given an input video, they obtain a time-aligned
transcript and allow editors to cut and paste the text to assemble it
into the desired story. Their approach can move or delete segments,
while generating visually seamless transitions at cut boundaries.
However, this method only produces artifact-free results when these
boundaries are constrained to certain well-behaved segments of the
video (e.g. where the person sits still between phrases or sentences).

Neither conventional editing tools nor the text-based approach
allow synthesis of new audio-visual speech content. Thus, some
modifications require either re-shooting the footage or overdubbing
existing footage with new wording. Both methods are expensive
as they require new performances, and overdubbing generally pro-
duces mismatches between the visible lip motion and the audio.
This paper presents a method that completes the suite of opera-

tions necessary for transcript-based editing of talking-head video.
Specifically, based only on text edits, it can synthesize convincing
new video of a person speaking, and produce seamless transitions
even at challenging cut points such as the middle of an utterance.
Our approach builds on a thread of research for synthesizing

realistic talking-head video. The seminal Video Rewrite system of
Bregler et al. [1997] and the recent Synthesizing Obama project of
Suwajanakorn et al. [2017] take new speech recordings as input,
and superimpose the corresponding lip motion over talking-head
video.While the latter state-of-the art approach can synthesize fairly
accurate lip sync, it has been shown to work for exactly one talking
head because it requires huge training data (14 hours). This method
also relies on input audio from the same voice on which it was
trained – from either Obama or a voice impersonator. In contrast
our approach works from text and therefore supports applications
that require a different voice, such as translation.

Performance-driven puppeteering and dubbing methods, such as
VDub [Garrido et al. 2015], Face2Face [Thies et al. 2016] and Deep
Video Portraits [Kim et al. 2018b], take a new talking-head perfor-
mance (usually from a different performer) as input and transfer
the lip and head motion to the original talking-head video. Because
these methods have access to video as input they can often produce
higher-quality synthesis results than the audio-only methods. Nev-
ertheless, capturing new video for this purpose is obviously more
onerous than typing new text.

Our method accepts text only as input for synthesis, yet builds on
the Deep Video Portraits approach of Kim et al. [2018b] to craft syn-
thetic video. Our approach drives a 3Dmodel by seamlessly stitching
different snippets of motion tracked from the original footage. The
snippets are selected based on a dynamic programming optimization
that searches for sequences of sounds in the transcript that should
look like the words we want to synthesize, using a novel viseme-
based similarity measure. These snippets can be re-timed to match
the target viseme sequence, and are blended to create a seamless
mouth motion. To synthesize output video, we first create a syn-
thetic composite video in which the lower face region is masked out.
In cases of inserting new text, we retime the rest of the face and back-
ground from the boundaries. The masked out region is composited
with a synthetic 3D face model rendering using the mouth motion
found earlier by optimization (Figure 5). The composite exhibits the
desired motion, but lacks realism due to the incompleteness and

imperfections of the 3D face model. For example, facial appearance
does not perfectly match, dynamic high-frequency detail is missing,
and the mouth interior is absent. Nonetheless, these data are suf-
ficient cues for a new learned recurrent video generation network
to be able to convert them to realistic imagery. The new composite
representation and the recurrent network formulation significantly
extend the neural face translation approach of Kim et al. [2018b] to
text-based editing of existing videos.
We show a variety of text-based editing results and favorable

comparisons to previous techniques. In a crowd-sourced user study,
our edits were rated to be real in 59.6% of cases. The main technical
contributions of our approach are:

• A text-based editing tool for talking-head video that lets edi-
tors insert new text, in addition to cutting and copy-pasting
in an existing transcript.

• A dynamic programming based strategy tailored to video syn-
thesis that assembles newwords based on snippets containing
sequences of observed visemes in the input video.

• A parameter blending scheme that, when combined with our
synthesis pipeline, produces seamless talking heads, even
when combining snippets with different pose and expression.

• A recurrent video generation network that converts a com-
posite of real background video and synthetically rendered
lower face into a photorealistic video.

1.1 Ethical Considerations
Our text-based editing approach lays the foundation for better edit-
ing tools for movie post production. Filmed dialogue scenes often
require re-timing or editing based on small script changes, which
currently requires tedious manual work. Our editing technique also
enables easy adaptation of audio-visual video content to specific
target audiences: e.g., instruction videos can be fine-tuned to audi-
ences of different backgrounds, or a storyteller video can be adapted
to children of different age groups purely based on textual script
edits. In short, our work was developed for storytelling purposes.
However, the availability of such technology — at a quality that

somemight find indistinguishable from source material — also raises
important and valid concerns about the potential for misuse. Al-
though methods for image and video manipulation are as old as the
media themselves, the risks of abuse are heightened when applied
to a mode of communication that is sometimes considered to be
authoritative evidence of thoughts and intents. We acknowledge
that bad actors might use such technologies to falsify personal state-
ments and slander prominent individuals. We are concerned about
such deception and misuse.
Therefore, we believe it is critical that video synthesized using

our tool clearly presents itself as synthetic. The fact that the video
is synthesized may be obvious by context (e.g. if the audience un-
derstands they are watching a fictional movie), directly stated in
the video or signaled via watermarking. We also believe that it is es-
sential to obtain permission from the performers for any alteration
before sharing a resulting video with a broad audience. Finally, it is
important that we as a community continue to develop forensics,
fingerprinting and verification techniques (digital and non-digital)
to identify manipulated video. Such safeguarding measures would
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reduce the potential for misuse while allowing creative uses of video
editing technologies like ours.

We hope that publication of the technical details of such systems
can spread awareness and knowledge regarding their inner work-
ings, sparking and enabling associated research into the aforemen-
tioned forgery detection, watermarking and verification systems.
Finally, we believe that a robust public conversation is necessary to
create a set of appropriate regulations and laws that would balance
the risks of misuse of these tools against the importance of creative,
consensual use cases.

2 RELATED WORK
Facial Reenactment. Facial video reenactment has been an ac-

tive area of research [Averbuch-Elor et al. 2017; Garrido et al. 2014;
Kemelmacher-Shlizerman et al. 2010; Li et al. 2014; Liu et al. 2001;
Suwajanakorn et al. 2017; Vlasic et al. 2005]. Thies et al. [2016]
recently demonstrated real-time video reenactment. Deep video
portraits [Kim et al. 2018b] enables full control of the head pose, ex-
pression, and eye gaze of a target actor based on recent advances in
learning-based image-to-image translation [Isola et al. 2017]. Some
recent approaches enable the synthesis of controllable facial ani-
mations from single images [Averbuch-Elor et al. 2017; Geng et al.
2018; Wiles et al. 2018]. Nagano et al. [2018] recently showed how
to estimate a controllable avatar of a person from a single image. We
employ a facial reenactment approach for visualizing our text-based
editing results and show how facial reenactment can be tackled by
neural face rendering.

Visual Dubbing. Facial reenactment is the basis for visual dub-
bing, since it allows to alter the expression of a target actor to
match the motion of a dubbing actor that speaks in a different lan-
guage. Some dubbing approaches are speech-driven [Bregler et al.
1997; Chang and Ezzat 2005; Ezzat et al. 2002; Liu and Ostermann
2011] others are performance-driven [Garrido et al. 2015]. Speech-
driven approaches have been shown to produce accurate lip-synced
video [Suwajanakorn et al. 2017]. While this approach can synthe-
size fairly accurate lip-synced video, it requires the new audio to
sound similar to the original speaker, while we enable synthesis
of new video using text-based edits. Mattheyses et al. [2010] show
results with no head motion, in a controlled setup with uniform
background. In contrast, our 3D based approach and neural renderer
can produce subtle phenomena such as lip rolling, and works in a
more general setting.

Speech animation for rigged models. Several related methods pro-
duce animation curves for speech [Edwards et al. 2016; Taylor et al.
2017; Zhou et al. 2018]. They are specifically designed for animated
3D models and not for photorealistic video, requiring a character rig
and artist supplied rig correspondence. In contrast, our approach
“animates” a real person speaking, based just on text and amonocular
recording of the subject.

Text-Based Video and Audio Editing. Researchers have developed
a variety of audio and video editing tools based on time-aligned tran-
scripts. These tools allow editors to shorten and rearrange speech for
audio podcasts [Rubin et al. 2013; Shin et al. 2016], annotate video
with review feedback [Pavel et al. 2016], provide audio descriptions

of the video content for segmentation of B-roll footage [Truong et al.
2016] and generate structured summaries of lecture videos [Pavel
et al. 2014]. Leake et al. [2017] use the structure imposed by time-
aligned transcripts to automatically edit together multiple takes of
a scripted scene based on higher-level cinematic idioms specified
by the editor. Berthouzoz et al.’s [2012] tool for editing interview-
style talking-head video by cutting, copying and pasting transcript
text is closest to our work. While we similarly enable rearranging
video by cutting, copying and pasting text, unlike all of the previous
text-based editing tools, we allow synthesis of new video by simply
typing the new text into the transcript.

Audio Synthesis. In transcript-based video editing, synthesizing
new video clips would often naturally be accompanied by audio
synthesis. Our approach to video is independent of the audio, and
therefore a variety of text to speech (TTS) methods can be used.
Traditional TTS has explored two general approaches: parametric
methods (e.g. [Zen et al. 2009]) generate acoustic features based
on text, and then synthesize a waveform from these features. Due
to oversimplified acoustic models, they tend to sound robotic. In
contrast, unit selection is a data driven approach that constructs
new waveforms by stitching together small pieces of audio (or units)
found elsewhere in the transcript [Hunt and Black 1996]. Inspired by
the latter, the VoCo project of Jin et al. [2017] performs a search in the
existing recording to find short ranges of audio that can be stitched
together such that they blend seamlessly in the context around an
insertion point. Section 4 and the accompanying video present a few
examples of using our method to synthesize new words in video,
coupled with the use of VoCo to synthesize corresponding audio.
Current state-of-the-art TTS approaches rely on deep learning [Shen
et al. 2018; Van Den Oord et al. 2016]. However, these methods
require a huge (tens of hours) training corpus for the target speaker.

Deep Generative Models. Very recently, researchers have proposed
Deep Generative Adversarial Networks (GANs) for the synthesis of
images and videos. Approaches create new images from scratch
[Chen and Koltun 2017; Goodfellow et al. 2014; Karras et al. 2018;
Radford et al. 2016; Wang et al. 2018b] or condition the synthesis
on an input image [Isola et al. 2017; Mirza and Osindero 2014].
High-resolution conditional video synthesis [Wang et al. 2018a]
has recently been demonstrated. Besides approaches that require
a paired training corpus, unpaired video-to-video translation tech-
niques [Bansal et al. 2018] only require two training videos. Video-to-
video translation has been used in many applications. For example,
impressive results have been shown for the reenactment of the hu-
man head [Olszewski et al. 2017], head and upper body [Kim et al.
2018b], and the whole human body [Chan et al. 2018; Liu et al. 2018].

Monocular 3D Face Reconstruction. There is a large body of work
on reconstructing facial geometry and appearance from a single im-
age using optimization methods [Fyffe et al. 2014; Garrido et al. 2016;
Ichim et al. 2015; Kemelmacher-Shlizerman 2013; Roth et al. 2017;
Shi et al. 2014; Suwajanakorn et al. 2017; Thies et al. 2016]. Many
of these techniques employ a parametric face model [Blanz et al.
2004; Blanz and Vetter 1999; Booth et al. 2018] as a prior to better
constrain the reconstruction problem. Recently, deep learning-based
approaches have been proposed that train a convolutional network
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The quick brown ...
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Viseme Search
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Fig. 2. Method overview. Given an input talking-head video and a transcript, we perform text-based editing. We first align phonemes to the input audio and
track each input frame to construct a parametric head model. Then, for a given edit operation (changing spider to fox), we find segments of the input video
that have similar visemes to the new word. In the above case we use viper and ox to construct fox. We use blended head parameters from the corresponding
video frames, together with a retimed background sequence, to generate a composite image, which is used to generate a photorealistic frame using our neural
face rendering method. In the resulting video, the actress appears to be saying fox, even though that word was never spoken by her in the original recording.

to directly regress the model parameters [Dou et al. 2017; Genova
et al. 2018; Richardson et al. 2016; Tewari et al. 2018a, 2017; Tran
et al. 2017]. Besides model parameters, other approaches regress
detailed depth maps [Richardson et al. 2017; Sela et al. 2017], or 3D
displacements [Cao et al. 2015; Guo et al. 2018; Tewari et al. 2018b].
Face reconstruction is the basis for a large variety of applications,
such as facial reenactment and visual dubbing. For more details on
monocular 3D face reconstruction, we refer to Zollhöfer et al. [2018].

3 METHOD
Our system takes as input a video recording of a talking head with a
transcript of the speech and any number of edit operations specified
on the transcript. Our tool supports three types of edit operations;

• Add newwords: the edit adds one or more consecutive words
at a point in the video (e.g. because the actor skipped a word
or the producer wants to insert a phrase).

• Rearrange existing words: the edit moves one or more con-
secutive words that exist in the video (e.g. for better word
ordering without introducing jump cuts).

• Delete existing words: the edit removes one or more consec-
utive words from the video (e.g. for simplification of wording
and removing filler such as “um” or “uh”).

We represent editing operations by the sequence of words W in
the edited region as well as the correspondence between those
words and the original transcript. For example, deleting the word
“wonderful” in the sequence “hello wonderful world” is specified as
(‘hello’, ‘world’) and adding the word “big” is specified as (‘hello’,
‘big’, ‘world’).

Our system processes these inputs in five main stages (Figure 2).
In the phoneme alignment stage (Section 3.1) we align the transcript
to the video at the level of phonemes and then in the tracking and
reconstruction stage (Section 3.2) we register a 3D parametric head
model with the video. These are pre-processing steps performed
once per input video. Then for each edit operation W we first

perform a viseme search (Section 3.3) to find the best visual match
between the subsequences of phonemes in the edit and subsequences
of phonemes in the input video. We also extract a region around the
edit location to act as a background sequence, from which we will
extract background pixels and pose data. For each subsequence we
blend the parameters of the tracked 3D head model (Section 3.4) and
then use the resulting parameter blended animation of the 3D head,
together with the background pixels, to render a realistic full-frame
video (Section 3.5) in which the subject appears to say the edited
sequence of words. Our viseme search and approach for combining
shorter subsequences with parameter blending is motivated by the
phoneme/viseme distribution of the English language (Appendix A).

3.1 Phoneme Alignment
Phonemes are perceptually distinct units that distinguish one word
from another in a specific language. Our method relies on phonemes
to find snippets in the video that we later combine to produce new
content. Thus, our first step is to compute the identity and timing
of phonemes in the input video. To segment the video’s speech
audio into phones (audible realizations of phonemes), we assume
we have an accurate text transcript and align it to the audio using
P2FA [Rubin et al. 2013; Yuan and Liberman 2008], a phoneme-based
alignment tool. This gives us an ordered sequence V = (v1, . . . , vn )
of phonemes, each with a label denoting the phoneme name, start
time, and end time vi = (vlbli , v

in
i , v

out
i ). Note that if a transcript is not

given as part of the input, we can use automatic speech transcription
tools [IBM 2016; Ochshorn and Hawkins 2016] or crowdsourcing
transcription services like rev.com to obtain it.

3.2 3D Face Tracking and Reconstruction
We register a 3D parametric face model with each frame of the input
talking-head video. The parameters of the model (e.g. expression,
head pose, etc.) will later allow us to selectively blend different as-
pects of the face (e.g. take the expression from one frame and pose
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from another). Specifically, we apply recent work on monocular
model-based face reconstruction [Garrido et al. 2016; Thies et al.
2016]. These techniques parameterize the rigid head pose T ∈ SE(3),
the facial geometry α ∈ R80, facial reflectance β ∈ R80, facial ex-
pression δ ∈ R64, and scene illumination γ ∈ R27. Model fitting is
based on the minimization of a non-linear reconstruction energy.
For more details on the minimization, please see the papers of Gar-
rido et al. [2016] and Thies et al. [2016]. In total, we obtain a 257
parameter vector p ∈ R257 for each frame of the input video.

3.3 Viseme Search
Given an edit operation specified as a sequence of words W, our
goal is to find matching sequences of phonemes in the video that can
be combined to produce W. In the matching procedure we use the
fact that identical phonemes are expected to be, on average, more
visually similar to each other than non-identical phonemes (despite
co-articulation effects). We similarly consider visemes, groups of
aurally distinct phonemes that appear visually similar to one another
(Section 3.3), as good potential matches. Importantly, the matching
procedure cannot expect to find a good coherent viseme sequence in
the video for long words or sequences in the edit operation. Instead,
we must find several matching subsequences and a way to best
combine them.
We first convert the edit operation W to a phoneme sequence

W = (w1, . . . ,wm ) where each wi is defined as (wlbl
i ,w

in
i ,w

out
i )

similar to our definition of phonemes in the video vi . We can convert
the textW to phoneme labels wlbl

i using a word to phoneme map,
but text does not contain timing information win

i ,w
out
i . To obtain

timings we use a text-to-speech synthesizer to convert the edit into
speech. For all results in this paper we use either the built-in speech
synthesizer in Mac OS X, or Voco [Jin et al. 2017]. Note however
that our video synthesis pipeline does not use the audio signal, but
only its timing. So, e.g., manually specified phone lengths could be
used as an alternative. The video generated in the rendering stage
of our pipeline (Section 3.5) is mute and we discuss how we can add
audio at the end of that section. Given the audio of W, we produce
phoneme labels and timing using P2FA, in a manner similar to the
one we used in Section 3.1.

Given an editW and the video phonemesV, we are looking for the
optimal partition ofW into sequential subsequencesW1, . . . ,Wk ,
such that each subsequence has a good match in V, while encour-
aging subsequences to be long (Figure 4). We are looking for long
subsequences because each transition between subsequences may
cause artifacts in later stages. We first describe matching one subse-
quenceWi = (wj , . . . ,wj+k ) to the recording V, and then explain
how we match the full queryW.

Matching one subsequence. We define Cmatch(Wi ,V⋆) between a
subsequence of the queryWi and some subsequence of the videoV⋆

as a modified Levenshtein edit distance [Levenshtein 1966] between
phoneme sequences that takes phoneme length into account. The
edit distance requires pre-defined costs for insertion, deletion and
swap. We define our insertion cost Cinsert = 1 and deletion cost
Cdelete = 1 and consider viseme and phoneme labels as well as

Table 1. Grouping phonemes (listed as ARPABET codes) into visemes. We
use the viseme grouping of Annosoft’s lipsync tool [Annosoft 2008]. More
viseme groups may lead to better visual matches (each group is more specific
in its appearance), but require more data because the chance to find a viseme
match decreases. We did not perform an extensive evaluation of different
viseme groupings, of which there are many.

v01 AA0, AA1, AA2 v09 Y, IY0, IY1, IY2
v02 AH0, AH1, AH2, HH v10 R, ER0, ER1, ER2
v03 AO0, AO1, AO2 v11 L
v04 AW0, AW1, AW2, OW0, v12 W

OW1, OW2 v13 M, P, B
v05 OY0, OY1, OY2, UH0, UH1, v14 N, NG, DH, D, G,

UH2, UW0, UW1, UW2 T, Z, ZH, TH, K, S
v06 EH0, EH1, EH2, AE0, AE1, AE2 v15 CH, JH, SH
v07 IH0, IH1, IH2, AY0, AY1, AY2 v16 F, V
v08 EY0, EY1, EY2 v17 sp

phoneme lengths in our swap cost

Cswap(vi ,wj ) = Cvis(vi ,wj )(| vi | + |wj |) + χ
��| vi | − |wj |

�� (1)

where |a | denotes the length of phoneme a, Cvis(vi ,wj ) is 0 if vi
and wj are the same phoneme, 0.5 if they are different phonemes
but the same viseme (Section 3.3), and 1 if they are different visemes.
The parameter χ controls the influence of length difference on the
cost, and we set it to 10−4 in all our examples. Equation (1) penalized
for different phonemes and visemes, weighted by the sum of the
phoneme length. Thus longer non-matching phonemes will incur a
larger penalty, as they are more likely to be noticed.
We minimize Cmatch(Wi ,V) over all possible V⋆ using dynamic

programming [Levenshtein 1966] to find the best suffix of any prefix
ofV and its matching cost toWi . We brute-force all possible prefixes
of V to find the best match Vi to the queryWi .

Matching the full query. We define our full matching cost C be-
tween the queryW and the video V as

C(W,V) = min
(W1, ...,Wk )∈split(W)

(V1, ...,Vk )

k∑
i=1

Cmatch(Wi ,Vi ) + Clen(Wi ) (2)

where split(W) denotes the set of all possible ways of splitting
W into subsequences, and Vi is the best match for Wi according
to Cmatch. The cost Clen(Wi ) penalizes short subsequences and is
defined as

Clen(Wi ) =
ϕ

|Wi |
(3)

where |Wi | denotes the number of phonemes in subsequence Wi
and ϕ is a weight parameter empirically set to 0.001 for all our exam-
ples. Tominimize Equation (2) we generate all splits (W1, . . . ,Wk ) ∈
split(W) of the query (which is typically short), and for each Wi
we find the best subsequence Vi of V with respect to Cmatch. Since
the same subsequence Wi can appear in multiple partitions, we
memoize computations to make sure each match cost is computed
only once. The viseme search procedure produces subsequences
(V1, . . . ,Vk ) of the input video that, when combined, should pro-
duceW.
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Fig. 3. Our parameter blending strategy produces a seamless synthesized result from choppy original sequences. Above, we insert the expression “french toast”
instead of “napalm” in the sentence “I like the smell of napalm in the morning.” The new sequence was taken from different parts of the original video: F
R EH1 taken from “fresh”, N CH T taken from “drenched”, and OW1 S T taken from “roast”. Notice how original frames from different sub-sequences are
different in head size and posture, while our synthesized result is a smooth sequence. On the right we show the pixel difference between blue and red frames;
notice how blue frames are very different. Videos in supplemental material.

Fig. 4. Viseme search and retiming. Given a query sequence W, We split
it into all possible subsequences, of which one (W1, W2) ∈ split(W) is
shown. Each subsequence is matched to the input video V, producing a
correspondance between query phonemes wi and input video phonemes
vi . We retime in parameter space to match the lengths of each vi to wi .

3.4 Parameter Retiming & Blending
The sequence (V1, . . . ,Vk ) of video subsequences describes sections
of the video for us to combine in order to createW. However, we
cannot directly use the video frames that correspond to (V1, . . . ,Vk )
for two reasons: (1) A sequence Vi corresponds to part of W in
viseme identity, but not in viseme length, which will produce un-
natural videos when combined with the speech audio, and (2) Con-
secutive sequences Vi and Vi+1 can be from sections that are far
apart in the original video. The subject might look different in these
parts due to pose and posture changes, movement of hair, or camera
motion. Taken as-is, the transition between consecutive sequences
will look unnatural (Figure 3 top).

To solve these issues, we use our parametric face model in order
to mix different properties (pose, expression, etc.) from different
input frames, and blend them in parameter space. We also select a

background sequenceB and use it for pose data and background pix-
els. The background sequence allows us to edit challenging videos
with hair movement and slight camera motion.

Background retiming and pose extraction. An edit operation W
will often change the length of the original video. We take a video
sequence (from the input video) B′ around the location of the edit
operation, and retime it to account for the change in length the
operation will produce, resulting in a retimed background sequence
B. We use nearest-neighbor sampling of frames, and select a large
enough region around the edit operation so that retiming artifacts
are negligible. All edits in this paper use the length of one sentence
as background. The retimed sequence B does not match the original
nor the new audio, but can provide realistic background pixels and
pose parameters that seamlessly blend into the rest of the video. In
a later step we synthesize frames based on the retimed background
and expression parameters that do match the audio.

Subsequence retiming. The phonemes in each sequence vj ∈ Vi
approximately match the length of corresponding query phonemes,
but an exact match is required so that the audio and video will
be properly synchronized. We set a desired frame rate F for our
synthesized video, which often matches the input frame-rate, but
does not have to (e.g. to produce slow-mo video from standard video).
Given the frame rate F , we sample model parameters p ∈ R257
by linearly interpolating adjacent frame parameters described in
Section 3.2. For each vj ∈ Vi we sample F |wj | frame parameters
in [vinj , v

out
j ] so that the length of the generated video matches the

length of the query |wj |. This produces a sequence that matchesW
in timing, but with visible jump cuts between sequences if rendered
as-is (Figure 4 bottom).

Parameter blending. To avoid jump cuts, we use different strate-
gies for different parameters, as follows. Identity geometry α ∈ R80
and reflectance β ∈ R80 are kept constant throughout the sequence
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(a) Ground Truth (fi ) (b) Face & Mouth (c) Synth. Comp. (ri )

Fig. 5. Training Corpus: For each ground truth frame fi (a), we obtain a 3D
face reconstruction. The reconstructed geometry proxy is used to mask out
the lower face region (b, left) and render a mouth mask mi (b, right), which
is used in our training reconstruction loss. We superimpose the lower face
region from the parametric face model to obtain a synthetic composite ri
(c). The goal of our expression-guided neural renderer is to learn a mapping
from the synthetic composite ri back to the ground truth frame fi .

(it’s always the same person), so they do not require blending. Scene
illumination γ ∈ R27 typically changes slowly or is kept constant,
thus we linearly interpolate illumination parameters between the
last frame prior to the inserted sequence and the first frame after
the sequence, disregarding the original illumination parameters of
Vi . This produces a realistic result while avoiding light flickering
for input videos with changing lights. Rigid head pose T ∈ SE(3)
is taken directly from the retimed background sequence B. This
ensures that the pose of the parameterized head model matches the
background pixels in each frame.

Facial expressions δ ∈ R64 are the most important parameters for
our task, as they hold information about mouth and face movement
— the visemes we aim to reproduce. Our goal is to preserve the re-
trieved expression parameters as much as possible, while smoothing
out the transition between them. Our approach is to smooth out
each transition from Vi to Vi+1 by linearly interpolating a region
of 67 milliseconds around the transition. We found this length to
be short enough so that individual visemes are not lost, and long
enough to produce convincing transitions between visemes.

3.5 Neural Face Rendering
We employ a novel neural face rendering approach for synthesizing
photo-realistic talking-head video that matches the modified param-
eter sequence (Section 3.4). The output of the previous processing
step is an edited parameter sequence that describes the new desired
facial motion and a corresponding retimed background video clip.
The goal of this synthesis step is to change the facial motion of the
retimed background video to match the parameter sequence. To
this end, we first mask out the lower face region, including parts of
the neck (for the mask see Figure 5b), in the retimed background
video and render a new synthetic lower face with the desired facial
expression on top. This results in a video of composites ri (Figure 5d).
Finally, we bridge the domain gap between ri and real video footage
of the person using our neural face rendering approach, which is
based on recent advances in learning-based image-to-image transla-
tion [Isola et al. 2017; Sun et al. 2018].

3.5.1 Training the Neural Face Renderer. To train our neural face
rendering approach to bridge the domain gap we start from a paired

Fig. 6. We assume the video has been generated by a sequential process,
which wemodel by a recurrent network with shared generator G. In practice,
we unroll the loop three times.

Fig. 7. We employ a spatial discriminator Ds , a temporal discriminator Dt ,
and an adversarial patch-based discriminator loss to train our neural face
rendering network.

training corpus T =
{
(fi , ri )

}N
i=1 that consists of the N original

video frames fi and corresponding synthetic composites ri . The
ri are generated as described in the last paragraph, but using the
ground truth tracking information of the corresponding frame (Fig-
ure 5), instead of the edited sequence, to render the lower face
region. The goal is to learn a temporally stable video-to-video map-
ping (from ri to fi ) using a recurrent neural network (RNN) that is
trained in an adversarial manner. We train one person-specific net-
work per input video. Inspired by the video-to-video synthesis work
of Wang et al. [2018a], our approach assumes that the video frames
have been generated by a sequential process, i.e., the generation
of a video frame depends only on the history of previous frames
(Figure 6). In practice, we use a temporal history of size L = 2 in all
experiments, so the face rendering RNN looks at L + 1 = 3 frames
at the same time. The best face renderer G∗ is found by solving the
following optimization problem:

G∗ = argmin
G

max
Ds ,Dt

L(G,Ds ,Dt ) . (4)

Here,Ds is a per-frame spatial patch-based discriminator [Isola et al.
2017], and Dt is a temporal patch-based discriminator. We train the
recurrent generator and the spatial and temporal discriminator of
our GAN in an adversarial manner, see Figure 7. In the following,
we describe our training objective L and the network components
in more detail.

Training Objective. For training our recurrent neural face render-
ing network, we employ stochastic gradient decent to optimize the
following training objective:

L(G,Ds ,Dt ) = E(fi,ri)
[
Lr (G) + λsLs (G,Ds ) + λtLt (G,Dt )

]
.

(5)
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Here, Lr is a photometric reconstruction loss, Ls is a per-frame
spatial adversarial loss, and Lt is our novel adversarial temporal
consistency loss that is based on difference images. Let f ii−L denote
the tensor of video frames from frame fi−L to the current frame fi .
The corresponding tensor of synthetic composites rii−L is defined in
a similar way. For each of the L+ 1 time steps, we employ an ℓ1-loss
to enforce the photometric reconstruction of the ground truth:

Lr (G) =
L∑
l=0

������mi−L+l ⊗
(
fi−L+l − G(ci,l )

) ������
1
,

with ci,l =
(
ri−L+li−L , o

i−L+l−1
i−L

)
. (6)

Here, the ci,l are the generator inputs for the current frame i and
time step l , with oi−L+l−1i−L being the tensor of output frames for the
previous time steps. ⊗ is the Hadamard product and mi−L+l is a
mouth re-weighting mask that gives a higher weight to photometric
errors in the mouth region (Figure 5). The mask is 1 away from
the mouth, 10 for the mouth region, and has a smooth transition in
between. Note the same generator G is shared across all time steps.
For each time step, missing outputs of non existent previous frames
(we only unroll 3 steps) and network inputs that are in the future
are replaced by zeros (Figure 6). In addition to the reconstruction
loss, we also enforce a separate patch-based adversarial loss for each
frame:

Ls (G,Ds ) =
L∑
l=0

[
log(Ds (ri−L+l , fi−L+l ))

+ log(1 − Ds (ri−L+l ,G(ci,l )))
]
. (7)

Note there exists only one discriminator network Ds , which is
shared across all time steps. We also employ an adversarial temporal
consistency loss based on difference images [Martin-Brualla et al.
2018]:

Lt (G,Dt ) = log(Dt (r ii−L ,∆i,l (f))) + log(1 − Dt (r ii−L ,∆i,l (o))) .
(8)

Here, ∆i,l (f) is the ground truth tensor and ∆i,l (o) the tensor of syn-
thesized difference images. The operator ∆(•) takes the difference
of subsequent frames in the sequence:

∆i,l (x) = xii−L+1 − xi−1i−L . (9)

Network Architecture. For the neural face rendering network, we
employ an encoder-decoder network with skip connections that is
based on U-Net [Ronneberger et al. 2015]. Our spatial and temporal
discriminators are inspired by Isola et al. [2017] and Wang et al.
[2018a]. Our network has 75 million trainable parameters. All sub-
networks (G, Ds , Dt ) are trained from scratch, i.e., starting from
random initialization. We alternate between the minimization to
train G and the maximization to train Ds as well as Dt . In each
iteration step, we perform both the minimization as well as the
maximization on the same data, i.e., the gradients with respect to
the generator and discriminators are computed on the same batch
of images. We do not add any additional weighting between the
gradients with respect to the generator and discriminators as done
in Isola et al. [2017]. The rest of the training procedure follows Isola
et al. [2017]. For more architecture details, see Supplemental W13.

Table 2. Input sequences. We recorded three sequences, each about 1 hour
long. The sequences contain ground truth sentences and test sentences
we edit, and also the first 500 sentences from the TIMIT dataset. We also
downloaded a 1.5 hour long interview from YouTube that contains camera
and hand motion, and an erroneous transcript. Seq2 and Seq3 are both 60fps.
Seq1 was recorded at 240fps, but since our method produces reasonable
results with lower frame rates, we discarded frames and effectively used
60fps. Seq4 is 25fps, and still produces good results.

Source Transcript Length

Seq1 Our recording Manually verified ~1 hour
Seq2 Our recording Manually verified ~1 hour
Seq3 Our recording Manually verified ~1 hour
Seq4 YouTube Automatic (has errors) ~1.5 hours

The rendering procedure produces photo-realistic video frames of
the subject, appearing to speak the new phraseW . These localized
edits seamlessly blend into the original video, producing an edited
result, all derived from text.

Adding Audio. The video produced by our pipeline is mute. To
add audio we use audio synthesized either by the built in speech
synthesizer in Mac OS X, or by VoCo [Jin et al. 2017]. An alternative
is to obtain an actual recording of the performer’s voice. In this
scenario, we retime the resulting video to match the recording at
the level of phones. Unless noted otherwise, all of our synthesis
results presented in the performer’s own voice are generated using
this latter method. Note that for move and delete edits we use the
performer’s voice from the original video.

4 RESULTS
We show results for our full approach on a variety of videos, both
recorded by ourselves and downloaded from YouTube (Section 4).
We encourage the reader to view video results (with audio) in the
supplemental video and website, since our results are hard to evalu-
ate from static frames.

Runtime Performance. 3D face reconstruction takes 110ms per
frame. Phoneme alignment takes 20 minutes for a 1 hour speech
video. Network training takes 42 hours. We train for 600K iteration
steps with a batch size of 1. Viseme search depends on the size
of the input video and the new edit. For a 1 hour recording with
continuous speech, viseme search takes between 10 minutes and 2
hours for all word insertion operations in this paper. Neural face
rendering takes 132ms per frame. All other steps of our pipeline
incur a negligible time penalty.

4.1 Video Editing
Our main application is text-based editing of talking-head video.
We support moving and deleting phrases, and the more challenging
task of adding new unspoken words. A few examples of replacing
one or more words by unspoken word(s) are shown in Figure 1
and Figure 9. Our approach produces photo-realistic results with
good audio to video alignment and a photo-realistic mouth interior
including highly detailed teeth (Figure 10). For more examples of
adding new words, and results for moves and deletes we refer to
the supplemental video and Supplemental W1–W4.
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Fig. 8. Comparison of different neural face rendering backends: We compare the output of our approach with a baseline that is trained based on input data as
proposed in Deep Video Portraits (DVP) [Kim et al. 2018b]. DVP does not condition on the background and thus cannot handle dynamic background. In
addition, this alternative approach fails if parts of the foreground move independently of the head, e.g., the hands. Our approach explicitly conditions on
the background and can thus handle these challenging cases with ease. In addition, our approach only has to spend capacity in the mouth region (we also
re-weight the reconstruction loss based on a mouth mask), thus our approach gives much sharper higher quality results. Video credit (middle): The Mind of The Universe.

Fig. 9. Our approach enables a large variety of text-based edits, such as deleting, rearranging, and adding new words. Here, we show examples of the most
challenging of the three scenarios, adding one or more unspoken words. As can be seen, our approach obtains high quality reenactments of the new words
based on our neural face rendering approach that converts synthetic composites into photo-real imagery. For video results we refer to the supplemental.

Our approach enables us to seamlessly re-compose the modified
video segments into the original full frame video footage, and to
seamlessly blend new segments into the original (longer) video.
Thus our approach can handle arbitrarily framed footage, and is
agnostic to the resolution and aspect ratio of the input video. It also
enables localized edits (i.e. using less computation) that do not alter
most of the original video and can be incorporated into a standard
editing pipeline. Seamless composition is made possible by our
neural face rendering strategy that conditions video generation on
the original background video. This approach allows us to accurately
reproduce the body motion and scene background (Figure 11). Other
neural rendering approaches, such as Deep Video Portraits [Kim
et al. 2018b] do not condition on the background, and thus cannot
guarantee that the body is synthesized at the right location in the
frame.

4.2 Translation
Besides text-based edits, such as adding, rearranging, and deleting
words, our approach can also be used for video translation, as long
as the source material contains similar visemes to the target lan-
guage. Our viseme search pipeline is language agnostic. In order to
support a new language, we only require a way to convert words
into individual phonemes, which is already available for many lan-
guages. We show results in which an English speaker appears to
speak German (Supplemental W5).

4.3 Full Sentence Synthesis Using Synthetic Voice
With the rise of voice assistants like Alexa, Siri and the Google As-
sistant, consumers have been getting comfortable with voice-based
interactions. We can use our approach to deliver corresponding
video. Given a video recording of an actor who wishes to serve as
the face of the assistant, our tool could be used to produce the video
for any utterance such an assistant might make. We show results of
full sentence synthesis using the native Mac OS voice synthesizer
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Fig. 10. Our approach synthesizes the non-rigid motion of the lips at high
quality (even lip rolling is captured) given only a coarse computer graphics
rendering as input. In addition, our approach synthesizes a photorealistic
mouth interior including highly detailed teeth. The synthesis results are
temporally coherent, as can be seen in the supplemental video.

Fig. 11. Our approach enables us to seamlessly compose the modified seg-
ments back into the original full frame input video sequence, both spatially
as well as temporally. We do this by explicitly conditioning video generation
on the re-timed background video.

(Supplemental W7). Our system could also be used to easily create
instruction videos with more fine-grained content adaptation for
different target audiences, or to create variants of storytelling videos
that are tailored to specific age groups.

5 EVALUATION, ANALYSIS & COMPARISONS
To evaluate our approach we have analyzed the content and size of
the input video data needed to produce good results and we have
compared our approach to alternative talking-head video synthesis
techniques.

5.1 Size of Input Video
We performed a qualitative study on the amount of data required for
phoneme retrieval. To this end, we iteratively reduced the size of the
used training video. We tested our retrieval approach with 5%, 10%,
50%, and 100% of the training data (Supplemental W8). More data
leads in general to better performance and visually more pleasing
results, but the quality of the results degrade gracefully with the
amount of used data. Best results are obtained with the full dataset.
We also evaluate the amount of training data required for our

neural face renderer. Using seq4 (our most challenging sequence),

Fig. 12. Evaluation of Parameter Blending: Without our parameter blending
strategy, the editing results are temporally unstable. In this example, the
mouth unnaturally closes instantly between two frames without blending,
while it closes smoothly with our blending approach.

we test a self-reenactment scenario in which we compare the input
frames to our result with varying training data size. We obtain errors
(mean RMSE per-image) of 0.018 using 100%, 0.019 using 50% and
0.021 using only 5% of the data (R,G,B ∈ [0, 1]). This result suggests
that our neural renderer requires less data than our viseme retrieval
pipeline, allowing us to perform certain edits (e.g., deletion) on
shorter videos.

5.2 Size of Edit
We tested our system with various synthesized phrases. We ran-
domly select from a list of “things that smell” and synthesize the
phrases into the sentence “I love the smell of X in the morning”
(Supplemental W11). We found that phrase length does not directly
correlate with result quality. Other factors, such as the visemes that
comprise the phrase and phoneme alignment quality influence the
final result.

5.3 Evaluation of Parameter Space Blending
We evaluate the necessity of our parameter blending strategy by
comparing our approach to a version without the parameter blend-
ing (Figure 12 and SupplementalW12).Without our parameter space
blending strategy the results are temporally unstable.

5.4 Comparison to MorphCut
MorphCut is a tool in Adobe Premiere Pro that is designed to re-
move jump cuts in talking-head videos, such as those introduced by
moving or deleting words. It is based on the approach of Berthouzoz
et al. [2012], requires the performer to be relatively still in the video
and cannot synthesize new words. In Figure 13, we compare our
approach to MorphCut in the word deletion scenario and find that
our approach is able to successfully remove the jump cut, while
MorphCut fails due to the motion of the head.

We also tried to apply MorphCut to the problem of word addition.
To this end, we first applied our phoneme/viseme retrieval pipeline
to select suitable frames to compose a new word. Afterwards, we
tried to remove the jump cuts between the different phoneme sub-
sequences with MorphCut (Figure 14). While our approach with
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Fig. 13. We compare our approach in the word deletion scenario to Mor-
phCut. MorphCut fails on the second, third, and forth frames shown here
while our approach is able to successfully remove the jump cut. Video credit: The
Mind of The Universe.

Fig. 14. We tried to stitch retrieved viseme sequences with MorphCut to
generate a newword.While our approachwith the parameter space blending
strategy is able to generate a seamless transition, MorphCut produces a big
jump of the head between the two frames.

parameter space blending is able to generate seamless transitions,
MorphCut produces big jumps and can not smooth them out.

5.5 Comparison to Facial Reenactment Techniques
We compare our facial reenactment backend with a baseline ap-
proach that is trained based on the input data as proposed in Deep
Video Portraits [Kim et al. 2018b] (Figure 8). For a fair comparison,
we trained our recurrent generator network (including the temporal
GAN loss, but without our mouth re-weighting mask) with Deep
Video Portraits style input data (diffuse rendering, uv-map, and eye
conditioning) and try to regress a realistic output video. Compared
to Deep Video Portraits [Kim et al. 2018b], our approach synthesizes
a more detailed mouth region, handles dynamic foregrounds well,
such as for example moving hands and arms, and can better handle
dynamic background. We attribute this to our mouth re-weighting
mask and explicitly conditioning on the original background and
body, which simplifies the learning task, and frees up capacity in the
network. Deep Video Portraits struggles with any form of motion
that is not directly correlated to the head, since the head motion
is the only input in their technique. We refer to the supplemental
video for more results.

We also compare our approach to Face2Face [Thies et al. 2016], see
Figure 15. Our neural face rendering approach can better handle the

Fig. 15. Comparison to the Face2Face [Thies et al. 2016] facial reenactment
approach. Our approach produces high quality results, while the retrieval-
based Face2Face approach exhibits ghosting artifacts and is temporally
unstable. We refer to the supplemental video for more results.

complex articulated motion of lips, e.g., lip rolling, and synthesizes a
more realistic mouth interior. The Face2Face results show ghosting
artifacts and are temporally unstable, while our approach produces
temporally coherent output. We refer to the supplemental video for
more results.

5.6 Ablation Study
We also performed an ablation study to evaluate the new compo-
nents of our approach (see Figure 16). We perform the study in a
self-reenactment scenario in which we compare our result to the
input frames. To this end we compare our complete approach (Full)
with two simplified approaches. The first simplification removes
both the mouth mask and background conditioning (w\o bg & mask)
from our complete approach, while the second simplification only
removes the mouth mask (w\o mask). As shown in Figure 16, all
components positively contribute to the quality of the results. This
is especially noticeable in the mouth region, where the quality and
level of detail of the teeth is drastically improved. In addition, we
also show the result obtained with the Deep Video Portraits (DVP) of
Kim et al. [2018a]. We do not investigate alternatives to the RNN in
our ablation study, asWang et al. [2018a] have already demonstrated
that RNNs outperform independent per-frame synthesis networks.

5.7 User Study
To quantitatively evaluate the quality of videos generated by our
text-based editing system, we performed a web-based user study
with N = 138 participants and collected 2993 individual responses,
see Table 3. The study includes videos of two different talking heads,
Set 1 and Set 2, where each set contains 6 different base sentences.
For each of the base sentences, we recorded a corresponding target
sentence in which one or more words are different. We use both the
base and target sentences as ground truth in our user study. Next,
we employed our pipeline to artificially change the base into the
target sentences. In total, we obtain 2 × 3 × 6 = 36 video clips.
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Table 3. We performed a user study with N = 138 participants and collected in total 2993 responses to evaluate the quality of our approach. Participants
were asked to respond to the statement “This video clip looks real to me” on a 5-point Likert scale from 1 (strongly disagree) to 5 (strongly agree). We give the
percentage for each score, the average score, and the percentage of cases the video was rated as ‘real’ (a score of 4 or higher). The difference between conditions
is statistically significant (Kruskal-Wallis test, p < 10−30). Our results are different from both GT-base and from GT-target (Tukey’s honest significant difference
procedure, p < 10−9 for both tests). This suggests that while our results are often rated as real, they are still not on par with real video.

GT Base Videos GT Target Videos Our Modified Videos

Scores Scores Scores

5 4 3 2 1 Σ ‘real’ 5 4 3 2 1 Σ ‘real’ 5 4 3 2 1 Σ ‘real’

Set 1 45.3 36.3 7.9 10.0 0.5 4.1 81.6% 47.0 31.9 9.7 10.1 1.4 4.1 78.9% 31.9 25.2 10.9 23.9 8.2 3.5 57.1%
Set 2 41.6 38.1 9.9 9.2 1.2 4.1 79.7% 45.7 39.8 8.7 5.4 0.4 4.3 85.6% 29.3 32.8 9.4 22.9 5.7 3.9 62.1%

Mean 43.5 37.2 8.9 9.6 0.9 4.1 80.6% 46.4 35.9 9.2 7.7 0.9 4.2 82.2% 30.6 29.0 10.1 23.4 7.0 3.7 59.6%

Fig. 16. Ablation study comparing ground truth with several versions of our
approach: a simplified version without providing the mouth mask and the
background conditioning (w/o bg &mask); a simplified version that provides
the background but not the mouth mask (w/o mask); and our complete
approach with all new components (Full). In addition, we show a result
from the Deep Video Portraits (DVP) of Kim et al. [2018a]. All components
of our approach positively contribute to the quality of the results, and our
full method outperforms DVP. This is especially noticeable in the hair and
mouth regions.

In the study, the video clips were shown one video at a time to
participants N = 138 in randomized order and they were asked
to respond to the statement “This video clip looks real to me” on
a 5-point Likert scale (5-strongly agree, 4-agree, 3-neither agree nor
disagree, 2-disagree, 1-strongly disagree). As shown in Table 3, the
real ground truth base videos were only rated to be ‘real’ 80.6% of
the cases and the real ground truth target videos were only rated
to be ‘real’ 82.2% of the cases (score of 4 or 5). This shows that the
participants were already highly alert, given they were told it was a
study on the topic of ‘Video Editing’. Our pipeline generated edits
were rated to be ‘real’ 59.6% of the cases, which means that more
than half of the participants found those clips convincingly real.
Table 3 also reports the percentage of times each score was given
and the average score per video set. Given the fact that synthesizing
convincing audio/video content is very challenging, since humans
are highly tuned to the slightest audio-visual misalignments (espe-
cially for faces), this evaluation shows that our approach already
achieves compelling results in many cases.

6 LIMITATIONS & FUTURE WORK
While we have demonstrated compelling results in many challeng-
ing scenarios, there is room for further improvement and follow-up
work: (1) Our synthesis approach requires a re-timed background
video as input. Re-timing changes the speed of motion, thus eye
blinks and gestures might not perfectly align with the speech any-
more. To reduce this effect, we employ a re-timing region that is
longer than the actual edit, thus modifying more of the original
video footage, with a smaller re-timing factor. For the insertion of
words, this could be tackled by a generative model that is able to
synthesize realistic complete frames that also include new body
motion and a potentially dynamic background. (2) Currently our
phoneme retrieval is agnostic to the mood in which the phoneme
was spoken. This might for example lead to the combination of
happy and sad segments in the blending. Blending such segments
to create a new word can lead to an uncanny result. (3) Our current
viseme search aims for quality but not speed. We would like to
explore approximate solutions to the viseme search problem, which
we believe can allow interactive edit operations. (4) We require
about 1 hour of video to produce the best quality results. To make
our method even more widely applicable, we are investigating ways
to produce better results with less data. Specifically, we are investi-
gating ways to transfer expression parameters across individuals,
which will allow us to use one pre-processed dataset for all editing
operations. (5) Occlusions of the lower face region, for example by
a moving hand, interfere with our neural face renderer and lead to
synthesis artifacts, since the hand can not be reliably re-rendered.
Tackling this would require to also track and synthesize hand mo-
tions. Nevertheless, we believe that we demonstrated a large variety
of compelling text-based editing and synthesis results. In the future,
end-to-end learning could be used to learn a direct mapping from
text to audio-visual content.

7 CONCLUSION
We presented the first approach that enables text-based editing of
talking-head video by modifying the corresponding transcript. As
demonstrated, our approach enables a large variety of edits, such
as addition, removal, and alteration of words, as well as convincing
language translation and full sentence synthesis. We believe our
approach is a first important step towards the goal of fully text-based
editing and synthesis of general audio-visual content.
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A PHONEME & VISEME CONTENT
Our matching algorithm (Section 3.3) is designed to find the longest
match between subsequences of phonemes/visemes in the edit and
the input video. Suppose our input video consists of all the sen-
tences in the TIMIT corpus [Garofolo et al. 1993], a set that has been
designed to be phonetically rich by acoustic-phonetic reseachers.
Figure 17 plots the probability of finding an exact match anywhere
in TIMIT to a phoneme/viseme subsequence of length K ∈ [1, 10].
Exact matches of more than 4-6 visemes or 3-5 phonemes are rare.
This result suggests that even with phonetically rich input video
we cannot expect to find edits consisting of long sequences of
phonemes/visemes (e.g. multiword insertions) in the input video
and that our approach of combining shorter subsequences with
parameter blending is necessary.
Figure 17 also examines the variation in individual viseme in-

stances across the set of 2388 sentences in the TIMIT corpus. We see
that there is variation both between different visemes and within a
class of visemes. These observations led us to incorporate viseme dis-
tance and length in our search procedure (Section 3.3) and informed
our blending strategy (Section 3.4).

Fig. 17. Left: probability of matching phoneme/viseme subsequences of
length K ∈ [1, 10] in the TIMIT corpus. To ensure that the query subse-
quences reflect the distribution of such sequences in English we employ
a leave-one-out strategy: we choose a random TIMIT sequence of length
K, and look for an exact match anywhere in the rest of the dataset. Exact
matches of more than 4-6 vismes and 2-3 phonemes are uncommon. Right:
variation in viseme duration in TIMIT. Different instances of a single viseme
vary by up to an order of magnitude. Between different visemes, the median
instance length varies by a factor of five.
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