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Overview

Progress towards more adversarially robust models is signifi-
cantly impaired by the difficulty of evaluating the robustness of
ML models. Today's methods are either fast but brittle (gradi-
ent-based attacks), or they are fairly reliable but slow (score-
and decision-based attacks). We here develop a new set of
gradient-based adversarial attacks for LO, L1, L2 and Linf which

(a) are more reliable in the face of gradient-masking than other
gradient-based attacks,

(b) perform better and are more query efficient than current
state-of-the-art gradient-based attacks,

(c) can be flexibly adapted to a wide range of adversarial
criteria and

(d) require virtually no hyperparameter tuning.

Implementations will soon be available in Foolbox, CleverHans
& ART.

The devil of model robustness

Adversarial perturbations are
large for model
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Optimal step within trust-region
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Adversarial attacks often overestimate
robustness of ML models because of
optimisation issues.

SOLUTION

Novel attack that follows decision
boundary and solves inner trust-region
optimisation problem to find optimal step.

Our attack moves along the decision boundary
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BENEFITS?

Single-step view
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Find optimal step k-1—k that

(1) minimizes distance to clean image
(2) stays within trust region

(3) stays within pixel bounds

(4) stays on decision boundary
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Compared to SOTA, our attack finds better minima in less queries

Attack needs almost no hyperparameter tuning

attack success (relative to optimum)
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Finds smaller adversarials in less steps than SOTA
on LO, L1, L2 & Linf with almost no hyperparameter
tuning. More robust to gradient masking.
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CODE?

Use it soon with Foolbox.

Code & Links

code (github) paper (arxiv)
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Algorithm

Algorithm 1: Overview over the trust-region solver for a given L, norm.

Data: clean image x, perturbed image &, boundary b, logit-difference ¢, trust region r
Result: optimal perturbation & minimizing (1)

begin

Mo, Ag — 0,0

while not converged do

g( Mg, pg) — infs A(0, g, A\ie) st u<x+66</4
Vag(Ag, ux) «— Vinfs A(d, pg, A\i) st u<x+6</4
fk41, Akt1 <— BFGS-B(g(Ak, i), Vg( Ak, pk))

end

0% <+ arginfs A(d, px, A\i,) st. u<x+6</

end

Conclusions

- Unlike other attacks, our methods follows the decision bounda-
ry to find optimal adversarial perturbations.

» Compared to SOTA, our attack finds smaller adversarial pertur-
bations across a wide range of models in several Lp-metrics.

» QOur attack is particularly well suited for adversarially trained
models as it moves along the area where maximal signal in
the gradients can be expected.



