Accurate, reliable and fast robustness evaluation

Wieland Brendel^{1–3} • Jonas Rauber^{1–3} • Matthias Kümmerer^{1–3} • Ivan Ustyuzhaninov^{1–3} • Matthias Bethge^{1–5}

¹ Centre for Integrative Neuroscience, University of Tübingen, Germany • ³ Institute for Theoretical Physics, University of Tübingen, Germany • ⁴ Max Planck Institute for Biological Cybernetics, Tübingen, Germany • ⁵ Center for Neuroscience Artificial Intelligence, Baylor College of Medicine, Houston, USA

TL;DR

PROBLEM Adversarial attacks often overestimate robustness of ML models because of optimisation issues.

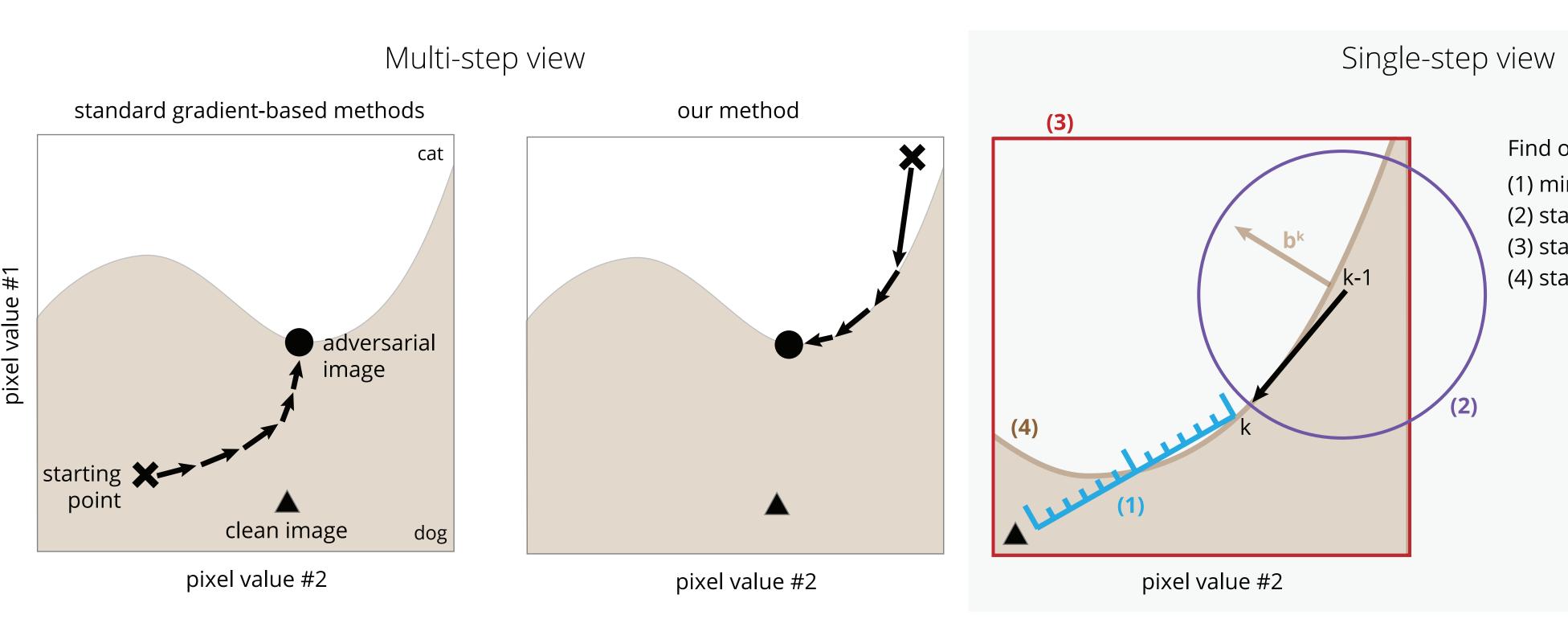
Overview

Progress towards more adversarially robust models is significantly impaired by the difficulty of evaluating the robustness of ML models. Today's methods are either fast but brittle (gradient-based attacks), or they are fairly reliable but slow (scoreand decision-based attacks). We here develop a new set of gradient-based adversarial attacks for L0, L1, L2 and Linf which

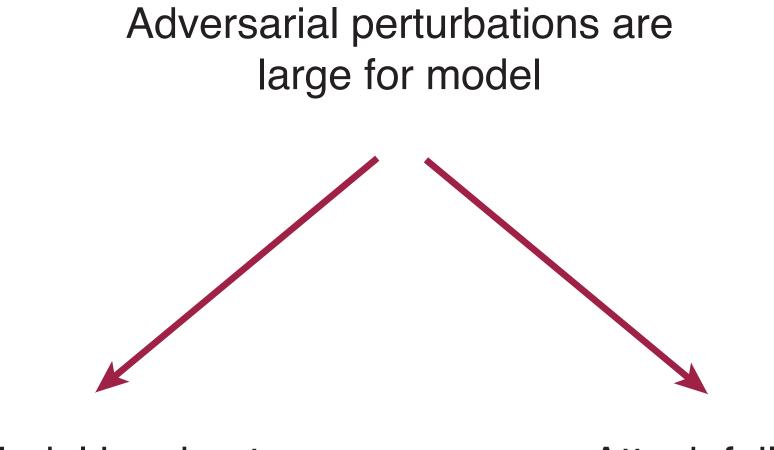
- (a) are more reliable in the face of gradient-masking than other gradient-based attacks,
- (b) perform better and are more query efficient than current state-of-the-art gradient-based attacks,
- (c) can be flexibly adapted to a wide range of adversarial criteria and
- (d) require virtually no hyperparameter tuning.

Implementations will soon be available in Foolbox, CleverHans & ART.

The devil of model robustness



Compared to SOTA, our attack finds better minima in less queries



Model is robust

Attack failed

Optimal step within trust-region

$$\min_{oldsymbol{\delta}} \left\| oldsymbol{x} - ilde{oldsymbol{x}}^{k-1} - oldsymbol{\delta}^k
ight\|$$

s.t.
$$0 \leq \tilde{x}^{k-1} + \delta^k \leq 1$$

 $b^{k\top} \delta^k = c^k$
 $\|\delta^k\|_2^2 \leq r$

minimize distance

stay within bounds

move to boundary

stay within trust-region

SOLUTION

Novel attack that follows decision boundary and solves inner trust-region optimisation problem to find optimal step.

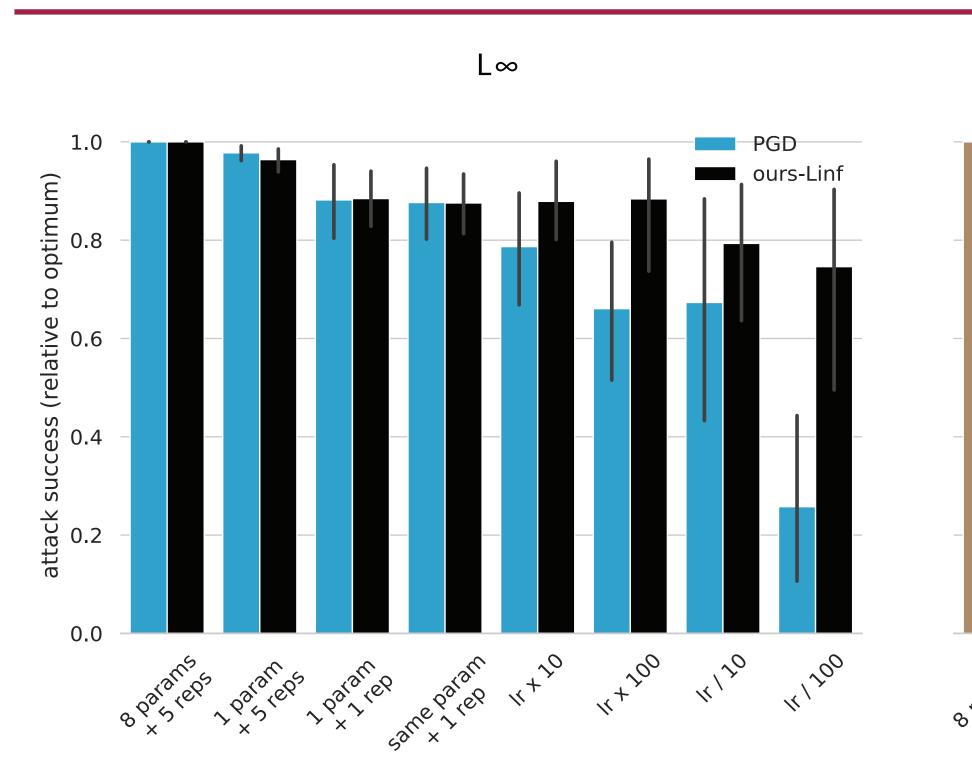
Our attack moves along the decision boundary

BENEFITS?

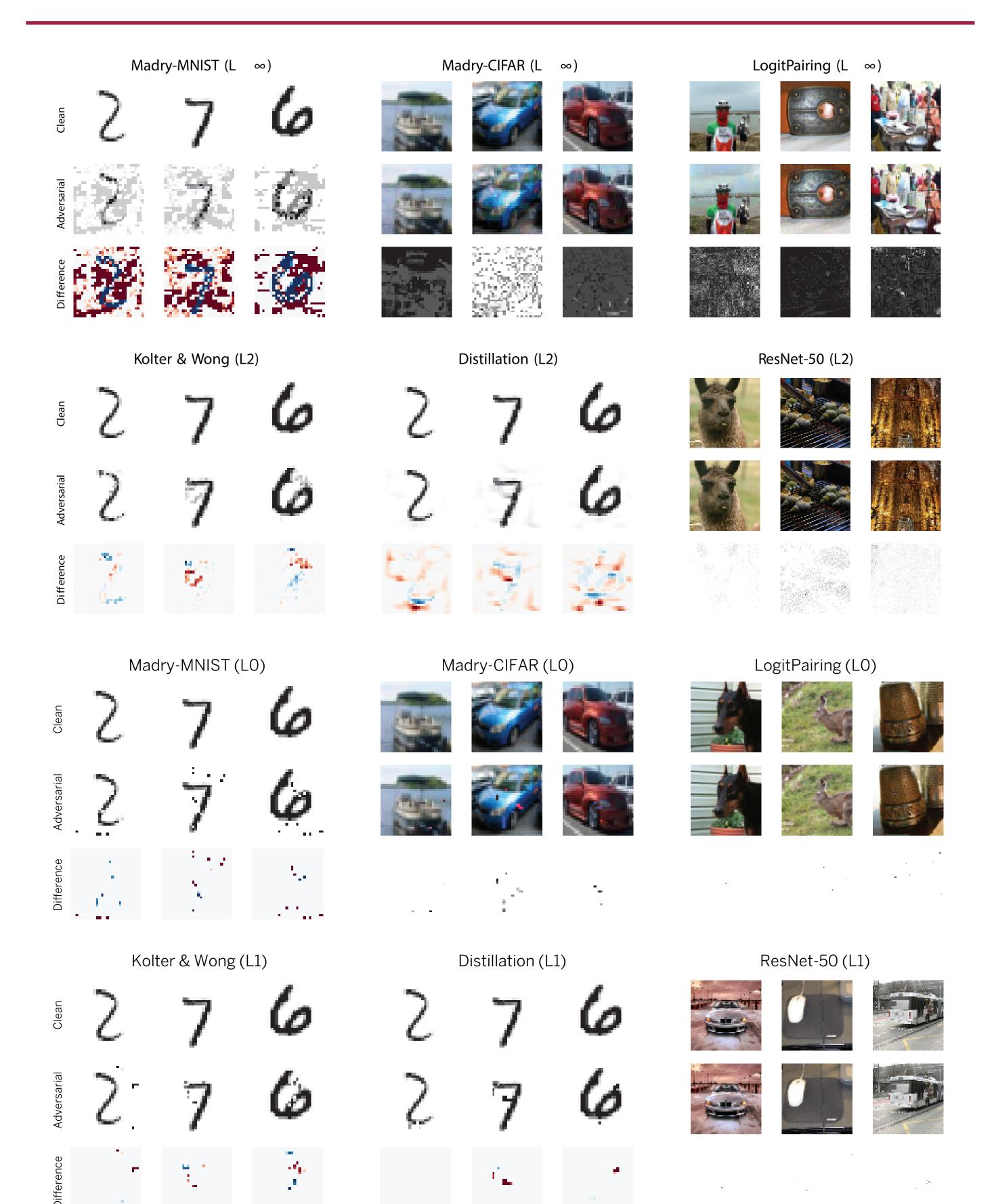
Finds smaller adversarials in less steps than SOTA on L0, L1, L2 & Linf with almost no hyperparameter tuning. More robust to gradient masking.

Find optimal step k-1 \rightarrow k that (1) minimizes **distance to clean image** (2) stays within **trust region** (3) stays within **pixel bounds** (4) stays on **decision boundary**

Attack needs almost no hyperparameter tuning

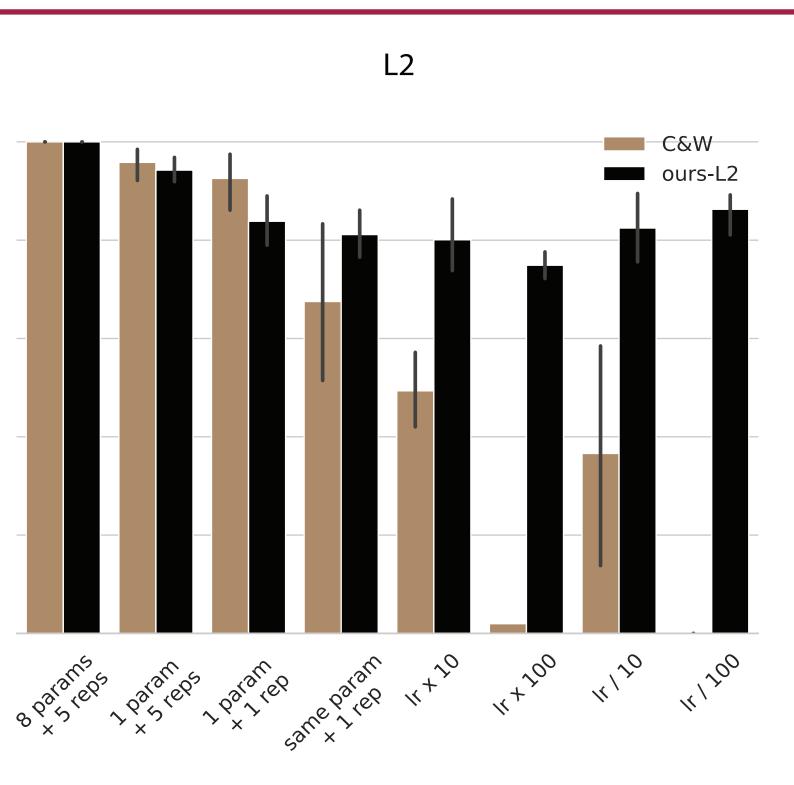


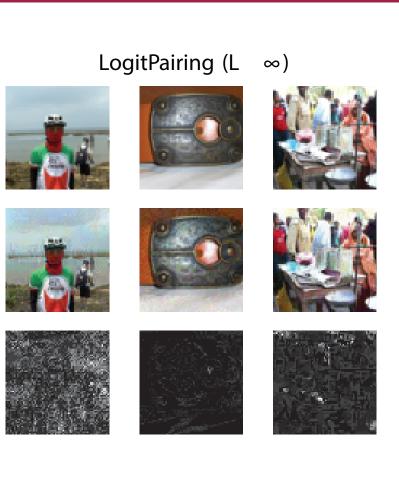
Samples of our adversarial attack

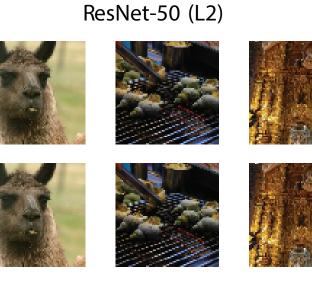


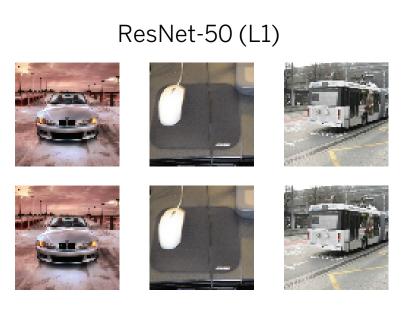
EBERHARD KARLS UNIVERSITÄT TUBINGEN

CODE? Use it soon with Foolbox.









Code & Links

code (github)

paper (arxiv

Funding

- Tübingen AI Center (FKZ: 01IS18039A)
- nan Research Foundation (DFG): Collaborative Rearch Center (CRC 1233) "Robust Vision"
- ence Advanced Research Projects Activity (IARPA via Department of Interior/Interior Business Center

Contact & Social Media

wieland.brendel@uni-tuebingen.de

Algorithm

Algorithm 1: Overview over the trust-region solver for a given L_p norm. **Data:** clean image \boldsymbol{x} , perturbed image $\boldsymbol{\tilde{x}}$, boundary \boldsymbol{b} , logit-difference c, trust region r**Result:** optimal perturbation $\boldsymbol{\delta}$ minimizing (1)

- begin
- $\mu_0, \lambda_0 \longleftarrow 0, 0$
- while not converged do $g(\lambda_k, \mu_k) \longleftarrow \inf_{\delta} \Lambda(\delta, \mu_k, \lambda_k) \quad \text{s.t.} \quad u \leq \tilde{x} + \delta \leq \ell$ $\nabla g(\lambda_k, \mu_k) \longleftarrow \nabla \inf_{\delta} \Lambda(\delta, \mu_k, \lambda_k) \quad \text{s.t.} \quad u \leq \tilde{x} + \delta \leq \ell$
- $\mu_{k+1}, \lambda_{k+1} \longleftarrow BFGS-B(g(\lambda_k, \mu_k), \nabla g(\lambda_k, \mu_k))$
- $\boldsymbol{\delta}^* \leftarrow \operatorname{arginf}_{\boldsymbol{\delta}} \Lambda(\boldsymbol{\delta}, \mu_k, \lambda_k) \quad \text{s.t.} \quad u \leq \tilde{\boldsymbol{x}} + \boldsymbol{\delta} \leq \ell$ end

Conclusions

- Unlike other attacks, our methods follows the decision boundary to find optimal adversarial perturbations.
- Compared to SOTA, our attack finds smaller adversarial perturbations across a wide range of models in several Lp-metrics.
- Our attack is particularly well suited for adversarially trained models as it moves along the area where maximal signal in the gradients can be expected.