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ABSTRACT
We revisit the notion of individual fairness proposed by
Dwork et al. A central challenge in operationalizing their
approach is the difficulty in eliciting a human specification
of a similarity metric. In this paper, we propose an oper-
ationalization of individual fairness that does not rely on a
human specification of a distance metric. Instead, we pro-
pose novel approaches to elicit and leverage side-information
on equally deserving individuals to counter subordination
between social groups. We model this knowledge as a fair-
ness graph, and learn a unified Pairwise Fair Representation
(PFR) of the data that captures both data-driven similar-
ity between individuals and the pairwise side-information in
fairness graph. We elicit fairness judgments from a variety
of sources, including humans judgments for two real-world
datasets on recidivism prediction (COMPAS) and violent
neighborhood prediction (Crime & Communities). Our ex-
periments show that the PFR model for operationalizing
individual fairness is practically viable.

1. INTRODUCTION

1.1 Motivation
Machine learning based prediction and ranking models are

playing an increasing role in decision making scenarios that
affect human lives. Examples include loan approval deci-
sions in banking, candidate rankings in employment, wel-
fare benefit determination in social services, and recidivism
risk prediction in criminal justice. The societal impact of
these algorithmic decisions have raised concerns about their
fairness [3, 13], and recent research has started to investi-
gate how to incorporate formalized notions of fairness into
machine prediction models (e.g., [14, 20, 24, 22, 37]).

Individual vs Group Fairness: The fairness notions ex-
plored by the bulk of the works can be broadly categorized
as targeting either group fairness [32, 16] or individual fair-
ness [14]. Group fairness notions attempt to ensure that
members of all protected groups in the population (e.g.,
based on demographic attributes like gender or race) receive
their “fair share of beneficial outcomes” in a downstream
task. To this end, one or more protected attributes and re-
spective values are specified, and given special treatment
in machine learning models. Numerous operationalizations
of group fairness have been proposed and evaluated includ-
ing demographic parity [16], equality of opportunity [20],
equalized odds [20], and envy-free group fairness [36]. These

operationalizations differ in the measures used to quantify
a group’s “fair share of beneficial outcomes” as well as the
mechanisms used to optimize for the fairness measures.

While effective at countering group-based discrimination
in decision outcomes, group fairness notions do not address
unfairness in outcomes at the level of individual users. For
instance, it is natural for individuals to compare their out-
comes with those of others with similar qualifications (inde-
pendently of their group membership) and perceive any dif-
ferences in outcomes amongst individuals with similar stand-
ing as unfair.

Individual Fairness: In their seminal work [14], Dwork et
al. introduced a powerful notion of fairness called individ-
ual fairness, which states that “similar individuals should be
treated similarly”. In the original form of individual fairness
introduced in [14], the authors envisioned that a task-specific
similarity metric would be provided by human experts that
captures the similarity between individuals (e.g., “a student
who studies at University W and has a GPA X is similar to
another student who studies at University Y and has GPA
Z”). The individual fairness notion stipulates that individ-
uals who are deemed similar according to this task-specific
similarity metric should receive similar outcomes. Opera-
tionalizing this strong notion of fairness can help in avoiding
unfairness at an individual level.

However, eliciting such a quantitative measure of similar-
ity from humans has been the most challenging aspect of
the individual fairness framework, and little progress has
been made on this open problem. Two noteworthy subse-
quent works on individual fairness are [39] and [29], wherein
the authors operationalize a simplified notion of similarity
metric. Concretely, they assume a distance metric (simi-
larity metric) such as a weighted euclidean distance over a
feature space of data atttributes, and aim to learn fair fea-
ture weights for this distance metric. This simplification of
the individual fairness notion largely limits the scope of the
original idea of [14]: “. . . a (near ground-truth) approxima-
tion agreed upon by the society of the extent to which two
individuals are deemed similar with respect to the task . . . ”.

In this work we revisit the original notion of individual
fairness. There are two main challenges in its operationaliza-
tion: First, it is very difficult, if not impossible for humans
to come up with a precise quantitative similarity metric that
can be used to measure “who is similar to whom”. Second,
even if we assume that humans are capable of giving a pre-
cise similarity metric, it is still challenging for experts to
model subjective side-information such as “who should be
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treated similar to whom” in the form of a similarity metric.

Examples: The challenge is illustrated by two scenarios:

• Consider the task of selecting researchers for academic
jobs. Due to the difference in publication culture of
various communities, the citation counts of successful
researchers in programming language are known to be
typically lower than that of successful machine learning
researchers. An expert recruiter might have the back-
ground information for fair selection that “an ML re-
searcher with high citations is similarly strong and thus
equally deserving as a PL researcher with relatively lower
citations”. It is all but easy to specify this background
knowledge in the form of a similarity metric.

• Consider the task of selecting students for Graduate School
in the US. It is well known that SAT tests can be taken
multiple times, and only the best score is reported for
admissions. Further, each attempt to re-take the SAT
test comes at a financial cost. Due to complex inter-
play of historical subordination and social circumstances,
it is known that, on average, SAT scores for African-
American students are lower than for white students [7].
Keeping anti-subordination in mind, a fairness expert
might deem an African-American student with a rela-
tively lower SAT score to be similar to and equally de-
serving as a white student with a slightly higher score.
Once again, it is not easy to model this information as a
quantitative similarity metric.

Research Questions: We address the following research
questions in this paper.

- [RQ1] How to elicit and model various kinds of back-
ground information on individual fairness?

- [RQ2] How to encode this background information, such
that downstream tasks can make use of it for data-driven
predictions and decision making?

1.2 Approach
[RQ1] From Distance Metric to Fairness Graph.

Key Idea: It is difficult, if not impossible, for human ex-
perts to judge “the extent to which two individuals are sim-
ilar”, much less formulate a precise similarity metric. In
this paper, we posit that it is much easier for experts to
make pairwise judgments about who is equally deserving
and should be treated similar to whom. An argument along
these lines has been made by [21] in their work on subjective
individual fairness.

We propose to capture these pairwise judgments as a fair-
ness graph, G, with edges between pairs of individuals deemed
similar with respect to the given task. In Section 3.2 we ad-
dress some of the practical challenges that arise in eliciting
pairwise judgments such as comparing individuals from di-
verse groups, and we present various methods to construct
fairness graphs.

It is worth highlighting that we only need pairwise judg-
ments for a small sample of individuals in the training data
for the application task. Naturally, no human judgments are
elicited for test data (unseen data). So once the prediction
model for the application at hand has been learned, only the
regular data attributes of individuals are needed.

[RQ2] Learning Pairwise Fair Representations.
Given a fairness graph G, the goal of an individually fair

algorithm is to minimize the inconsistency (differences) in

outcomes for pairs of individuals connected in graph G.
Thus, every edge in graph G represents a fairness constraint
that algorithms needs to satisfy. In Section 3, we propose a
model called PFR (for Pairwise Fair Representations), that
learns a new data representation with the aim of preserving
the utility of the input feature space (i.e., retaining as much
information of the input as possible), while incorporating
the individual fairness constraints captured by the fairness
graph G.

Specifically, PFR aims to learn a latent data representa-
tion that preserves the local neighborhoods in the input data
space, while ensuring that individuals connected in the fair-
ness graph are mapped to nearby points in the learned rep-
resentation. Since local neighborhoods in the learned rep-
resentation capture individual fairness, once a fair represen-
tation is learned, any out-of-the-box downstream predictor
can be directly applied. PFR takes as input

• data records for individuals in the form of a feature ma-
trix X for training a predictor, and

• a (sparse) fairness graph G that captures pairwise simi-
larity for a small sample of individuals in training data.

The output of PFR is a mapping from the input feature
space to the new representation space that can be applied
to data records of novel unseen individuals.

1.3 Contribution
The key contributions of this paper are:

• A practically viable operationalization of the individual
fairness paradigm that overcomes the challenge of human
specification of a distance metric, by eliciting easier and
more intuitive forms of human judgments.

• Novel methods for transforming such human judgments
into pairwise constraints in a fairness graph G.

• A mathematical optimization model and representation
learning method, called PFR, that combines the input
data X and the fairness graph G into a unified represen-
tation by learning a latent model with graph embedding.

• Demonstrating the effectiveness of our approach at achiev-
ing both individual and group fairness using comprehen-
sive experiments with synthetic as well as real-life data
on recidivism prediction (Compas) and violent neighbor-
hoods prediction (Crime and Communities).

2. RELATED WORK
Operationalizing fairness notions: Prior works on al-
gorithmic fairness explore two broad families of fairness no-
tions: group fairness and individual fairness.

Group fairness: A majority of the literature on fair learn-
ing has focused on group fairness. For instance, the group
fairness notion of disparate impact or demographic parity in
its various forms [8, 23, 32, 14] requires equality of beneficial
outcome prediction rates between different socially salient
groups. Approaches to achieve group fairness include de-
biasing the input data via data perturbation, re-sampling,
modifying the value of protected attribute/class labels [33,
23, 32, 16] as well as incorporating demographic parity as
an additional constraint in the objective function of machine
learning models [25, 8, 38]. Another popular notion of group
fairness is disparate mistreatment or equalized odds that
aims to achieve equality of prediction error rates between
groups [20, 37]. Similar approaches to achieve group fair-
ness have been proposed for other tasks such as fair ranking



[4, 15, 9], fair set selection and clustering [10, 35] Recently,
several researchers have highlighted the inherent incompat-
ibility between different notions of group fairness and the
inherent trade-offs when attempting to achieve them simul-
taneously [28, 11, 17, 12].

Individual fairness: Despite its appeal, few works have
investigated individual fairness. The central challenge in op-
erationalizing individual fairness has been to specify a simi-
larity metric that captures which individuals deserve similar
treatment. Some recent works use the objective of the learn-
ing algorithm itself to implicitly define the similarity metric
[34, 5, 26]. For instance, when learning a classifier, these
works would use the class labels in the training data or pre-
dicted class labels to measure similarity. However, fairness
notions are meant to target addressing societal inequities
that are not captured in the training data (with potentially
biased labels and missing features). In such scenarios, the
fairness objectives are in conflict with learning objectives.

In this work, we assume that human experts with back-
ground knowledge of past societal unfairness and future soci-
etal goals could provide coarse-grained judgments on whether
pairs of individuals deserve similar outcomes. [18] similarly
assumes “a regulator who knows fairness when he sees it,
but cannot enunciate a quantitative fairness metric over in-
dividuals”, but it considers individual fairness in a restricted
online learning setting.

Bridging individual and group fairness: Approaches to
enforcing group fairness have mostly ignored individual fair-
ness and vice versa. Intuitively, the concept of individual
fairness appears sufficiently strong and broad to subsume
group fairness. In this work, we show that by appropriately
constraining outcomes for pairs of individuals belonging to
different groups, we are able to achieve group fairness to a
large degree. Our approach is loosely inspired by the idea
of “fair affirmative action” in [14], that attempts to achieve
both statistical parity and individual fairness. However, un-
like [14] that assumes a hypothetical distance metric, our ap-
proach is based on a fairness graph that can be constructed
in practice.

Learning pairwise fair representations: In terms of our
technical machinery, the closest prior work is [39, 29] that
aim to learn new representations for individuals that “retain
as much information in the input feature space as possi-
ble, while losing any information that can identify individ-
uals’ protected group membership”. Our approach aims to
learn new representations for individuals that retain the in-
put data to the best possible extent, while clustering equally
deserving individuals as closely as possible. Like [39, 29] our
method can be used to find representations for new individ-
uals not seen in the training data. This ability crucially
distinguishes our problem from the classical metric label-
ing problem [27], where the goal is to classify a given set of
individuals with pairwise relationships (i.e., costs for being
assigned different labels).

Finally, the core optimization problem we formulate re-
lates to graph embedding and representation learning [19].
The aim of graph embedding approaches is to a learn a rep-
resentation for the nodes in the graph encoding the edges
between nodes as well as the attributes of the nodes [30, 1].
Similarly, we wish to learn a representation encoding both
the features of individuals as well as their interconnecting
edges in the fairness graph.

3. MODEL

3.1 Notation

• X is an input data matrix of n data records and m nu-
merical or categorical attributes. We use X to denote
both the matrix and the population of individuals xi:

X = [x1, x2, x3, · · ·xn] ∈ Rm×n

• Z is a low-rank representation of X in a d-dimensional
space where d� m.

Z = [z1, z2, z3, · · · zn] ∈ Rd×n

• S is a random variable representing the values that
the protected-group attribute can take. We assume a
single attribute in this role; if there are multiple at-
tributes that require fair-share protection, we simply
combine them into one. We allow more than two val-
ues for this attribute, going beyond the usual binary
model (e.g., gender = male or female, race = white or
others). Xs ⊂ X denotes the subset of individuals in
X who are members of group s ∈ S.

• WX is the adjacency matrix of a k-nearest-neighbor
graph over the input space X given by:

WX
ij =

{
exp

(
− ‖xi−xj‖2

t

)
, if xi ∈ Np(xj) or xj ∈ Np(xi)

0 , otherwise

where Np(xi) denotes the set of p nearest neighbors
of xi in euclidean space (excluding the protected at-
tributes), and t is a scalar hyper-parameter.

• WF is the adjacency matrix of the fairness graph G
whose nodes are individuals and whose edges are con-
nections between individuals that are equally deserv-
ing and must be treated similarly.

3.2 From Distance Metric to Fairness Graph
In this section we address the question of how to elicit

side-information on individual fairness and model it as a
fairness graph G and its corresponding adjacency matrix as
WF . The key idea of our approach is rooted in the following
observations:

• Humans have a strong intuition about whether two
individuals are similar or not. However, it is difficult
for humans to specify a quantitative similarity metric.

• In contrast, it is more natural to make other forms of
judgments such as (i)“Is A similar to B with respect
to the given task?”, or (ii)“How suitable is A for the
given task (e.g., on a Likert scale)”.

• However, these kinds of judgments are difficult to elicit
when the pairs of individuals belong to diverse, in-
comparable groups. In such cases, it is easier for hu-
mans to compare individuals within the same group,
as opposed to comparing individuals between groups.
Pairwise judgements can be beneficial even if they are
available only sparsely, that is, for samples of pairs.

Next, we present two models for constructing fairness graphs,
which overcome the outlined difficulties via



(i) eliciting (binary) pairwise judgments of individuals who
should be treated similarly, or grouping individuals
into equivalence classes (see Subsection 3.2.1) and

(ii) eliciting within-group rankings of individuals and con-
necting individuals across groups who fall within the
same quantiles of the per-group distributions (see Sub-
section 3.2.2).

3.2.1 Fairness Graph for Comparable Individuals
The most direct way to create a fairness graph is to elicit

(binary) pairwise similarity judgments about a small sample
of individuals in the input data, and to create a graph WF

such that there is an edge between two individuals if they
are deemed similarly qualified for a certain task (e.g., being
invited for job interviews).

Another alternative is to elicit judgments that map indi-
viduals into discrete equivalence classes. Given a number
of such judgments for a sample of individuals in the input
dataset, we can construct a fairness graph WF by creating
an edge between two individuals if they belong to the same
equivalence class.

Definition 1. (Equivalence Class Graph) Let [xi] denote
the equivalence class of an element xi ∈ X. We construct
an undirected graph WF associated to X, where the nodes
of the graph are the elements of X, and two nodes xi and xj
are connected if and only if [xi] = [xj ].

The fairness graph built from such equivalence classes
identifies equally deserving individuals – a valuable asset
for learning a fair data representation. Note that the graph
may be sparse, if information on equivalence can be obtained
merely for sampled representatives.

3.2.2 Fairness Graph for Incomparable Individuals
However, at times, our individuals are from diverse and

incomparable groups. In such cases, it is difficult if not infea-
sible to ask humans for pairwise judgments about individuals
across groups. Even with the best intentions of being fair,
human evaluators may be misguided by wide-spread bias.
If we can elicit a ranked ordering of individuals per-group,
and pool them into quantiles (e.g., the top-10-percent), then
one could assume that individuals from different groups who
belong to the same quantile in their respective rankings, are
similar to each other. Arguments along these lines have been
made also by [26] in their notion of meritocratic fairness.

Specifically, our idea is to first obtain within-group rank-
ings of individuals (e.g., rank men and women separately)
based on their suitability for the decision task at hand, and
then construct a between-group fairness graph by linking all
individuals ranked in the same kth quantile across the differ-
ent groups (e.g., link PL researcher and ML researcher who
are similarly ranked in their own groups). The relative rank-
ings of individuals within a group, whether they are obtained
from human judgments or from secondary data sources, are
less prone to be influenced by discriminatory (group-based)
biases.

Formally, given (Xs, Ys) for all s ∈ S, where Ys is a ran-
dom variable depicting the ranked position of individuals
in Xs. We construct a between-group quantile graph using
Definitions 2 and 3.

Definition 2. (k-th quantile) Given a random variable Y ,
the k-th quantile Qk is that value of y in the range of Y ,

denoted yk, for which the probability of having a value less
than or equal to y is k.

Q(k) = {y : Pr(Y ≤ y) = k} where 0 < k < 1 (1)

For the non-continuous behavior of discrete variables, we
would add appropriate ceil functions to the definition, but
we skip this technicality.

Definition 3. (Between-group quantile graph) Let Xk
s ⊂ X

denote the subset of individuals who belong to group s ∈ S
and whose scores lie in the k-th quantile. We can construct
a multipartite graph WF whose edges are given by:

WF
ij =

{
1 , if xi ∈ Xk

s and xj ∈ Xk
s′ , s 6= s′

0 , otherwise
(2)

That is, there exists an edge between a pair of individuals
{xi, xj} ∈ X if xi and xj have different group memberships
and their scores {yi, yj} lie in the same quantile. For the
case of two groups (e.g., gender is male or female), the graph
is a bipartite graph.

This model of creating between-group quantile graphs is
general enough to consider any kind of per-group ranked
judgment. Therefore, this model is not necessarily limited
to legally protected groups (e.g., gender, race), it can be used
for any socially salient groups that are incomparable for the
given task (e.g., machine learning vs. programming language
researchers). Note again that the pairwise judgements may
be sparse, if such information is obtained only for sampled
representatives.

3.3 Learning Pairwise Fair Representations
In this section we address the question [RQ2]: How to

encode the background information such that downstream
tasks can make use of it for the decision making?

3.3.1 Objective Function
In fair machine learning, such as fair classification models,

the objective usually is to maximize the classifier accuracy
(or some other quality metric) while satisfying constraints on
group fairness statistics such as parity. For learning fair data
representations that can be used in any downstream appli-
cation – classifiers or regression models with varying target
variables unknown at learning time – the objective needs to
be generalized accordingly. To this end, the PFR model aims
to combine the utility of the learned representation and, at
the same time, preserve the information from the pairwise
fairness graph. Starting with matrix X of n data records
x1 . . . xn and m numeric or categorial attributes, PFR com-
putes a lower-dimensional latent matrix Z of n records each
with d < m values.

Utility is cast into a notion of data loss. In matrix factor-
ization, this usually means to minimize the error when using
Z to reconstruct an approximation of X. In our approach,
we do not adopt this standard error, but instead cast the
data loss into a measure for how well the neighborhoods
of data records are preserved when mapping the attribute
space X into the latent representation Z.

Reflecting the fairness graph in the learner’s optimization
for Z is a demanding and a priori open problem. Our so-
lution PFR casts this issue into a graph embedding that is
incorporated into the overall objective function. The follow-
ing discusses the technical details of PFR ’s optimization.



Preserving the input data: For each data record xi in
the input space, we consider the set Np(xi) of its p nearest
neighbors with regard to the distance defined by the kernel
function given by WX

ij . For all points xj within Np(xi), we
want the corresponding latent representations zj to be close
to the representation zi, in terms of their L2-norm distance.
This is formalized by the Loss in WX - LossX .

LossX =

N∑
i,j=1

‖zi − zj‖2WX
ij (3)

Note that this objective requires only local neighborhoods in
X to be preserved in the transformed space. We disregard
data points outside of p-neighborhoods. This relaxation in-
creases the feasible solution space for the dimensionality re-
duction.

Learning a fair graph embedding: Given a fairness
graph WF , the goal for Z is to preserve neighborhood prop-
erties in WF . In contrast to LossX , however, we do not need
any distance metric here, but can directly leverage the fair-
ness graph. If two data points xi, xj are connected in WF ,
we aim to map them to representations zi and zj close to
each other. This is formalized by the Loss in WF - LossF .

LossF =

N∑
i,j=1

‖zi − zj‖2WF
ij (4)

Intuitively, for data points connected in WF , we add a
penalty when their representations are far apart in Z.

Combined objective: Based on the above considerations,
a fair representation Z is computed by minimizing the com-
bined objectives of Equations 3 and 4. The parameter γ
weighs the importance tradeoff between WX and WF . As
γ increases influence of the fairness graph WF increases.
An additional ortho-normality constraint on Z is imposed
to avoid trivial results. The trivial result being that all the
datapoints are mapped to same point.

Minimize (1− γ)

N∑
i,j=1

‖zi − zj‖2WX
ij + γ

N∑
i,j=1

‖zi − zj‖2WF
ij

subject to ZTZ = I (5)

3.3.2 Equivalence to Trace Optimization Problem
Next, we show that the optimization problem in Equation 5
can be transformed and solved as an equivalent eigenvector
problem. To do so, we assume that the learnt representation
Z is a linear transformation of X given by Z = V TX.

We start by showing that minimizing ‖zi − zj‖2Wij is
equivalent to minimizing the trace Tr(V TXLXTV ). Here
we use W to denote WX or WF , as the following mathe-
matical derivation holds for both of them analogously:

Loss =
n∑

i,j=1

‖zi − zj‖2Wij

=

n∑
i,j=1

Tr((zi − zj)T (zi − zj))Wij

= 2 · Tr(
n∑

i,j=1

zTi ziDii −
n∑

i,j=1

zTi zjWij)

= 2 · Tr(V TXLXTV )

where Tr(.) denotes the trace of a matrix, D is a diagonal
matrix whose entries are column sums of W , and L = D−W
is the graph Laplacian constructed from matrix W . Analo-
gous to L, we use LX to denote graph laplacian of WX , and
LF to denote graph laplacian of WF .

3.3.3 Optimization Problem
Considering the results of Subsection 3.3.2, we can trans-

form the above combined objective in Equation 5 into a trace
optimization problem as follows:

Minimize J(V) = Tr{V TX((1− γ)LX + γLF )XTV }

subject to V TV = I (6)

We aim to learn an m × d matrix V such that for each
input vector xi ∈ X, we have the low-dimensional represen-
tation zi = V Txi, where zi ∈ Z is the mapping of the data
point xi on to the learned basis V . The objective function
is subjected to the constraint V TV = I to eliminate trivial
solutions.
Applying Lagrangian multipliers, we can formulate the trace
optimization problem in Equation 6 as an eigenvector prob-
lem

X((1− γ)LX + γLF )XTvi = λvi (7)

It follows that the columns of optimal V are the eigenvectors
corresponding to d smallest eigenvalues denoted by V =
[v1v2v3 · · ·vd], and γ is a regularization hyper-parameter.
Finally, the d-dimensional representation of input X is given
by Z = V TX.

Implementation: The above standard eigenvalue problem
for symmetric matrices can be solved in O(n3) using itera-
tive algorithms. In our implementation we use the standard
eigenvalue solver implementation from scipy.linalg.lapack python
library [2].

3.3.4 Kernelized Variants of PFR
In this paper, we restrict ourselves to assume that the

representation Z is a linear transformation of X given by
Z = V TX. However, PFR can be generalized to a non-linear
setting by replacing X with a non-linear mapping φ(X) and
then performing PFR on the outputs of φ (potentially in a
higher-dimensional space).

For this purpose, assume that Z = V T Φ(X) and V =
n∑

i=1

αiΦ(xi) with a Mercer kernel matrix K where Ki,j =

k(xi, xi) = Φ(xi)
T Φ(xj). We can show that the trace opti-

mization problem in Equation 7 can be generalized to this
non-linear kernel setting, and it can be conveniently solved
by working with Mercer kernels without having to compute
Φ(X). We arrive at the following generalized optimization
problem.

K((1− γ)LX + γLF )Kαi = λαi (8)

Analogously to the solution of Equation 7, the solution
to the kernel PFR is given by A = [α1α2α3 · · ·αd] where
α1 · · ·αd are the d smallest eigenvectors. Finally, the learned
representation of X is given by Z = V T Φ(X) = ATK.

In this paper we present results only for linear PFR, leav-
ing the investigation of kernel PFR for future work.



4. EXPERIMENTS
This section reports on experiments with synthetic and

real-life datasets. We compare a variety of fairness-enhancing
methods on a binary classification task as a downstream ap-
plication. The following key questions are addressed:

- [Q1] What do the learned representations look like?

- [Q2] What is the effect on individual fairness?

- [Q3] What is the influence on the trade-off between fair-
ness and utility?

- [Q4] What is the influence on group fairness?

- [Q5] What is the influence of the PFR hyper-parameter
γ on individual fairness and utility?

4.1 Experimental Setup
Baselines: We compare the performance of PFR with the
following methods

• Original representation: a naive representation of the in-
put dataset wherein the protected attributes are masked.

• iFair [29]: an unsupervised representation learning method,
which optimizes for two objectives: (i) individual fairness
in WX , and (ii) obfuscating protected attributes.

• LFR [39]: a supervised representation learning method,
which optimizes for three objectives: (i) accuracy (ii)
individual fairness in WX and (iii) demographic parity.

• Hardt [20]: a post-processing method that aims to mini-
mize the difference in error rates between groups by opti-
mizing for the group-fairness measure EqOdd (Equality
of Odds).

• PFR: Our unsupervised representation learning method
that optimizes for two objectives (i) individual fairness
as per WF and (ii) individual fairness as per WX .

Augmenting baselines: In order to ensure fair compari-
son we compare PFR with augmented versions of all meth-
ods (named with suffix +). In the augmented version, we
give each method an advantage by enhancing it with the
information in the fairness graph WF . Since none of the
methods can be naturally extended to incorporate the fair-
ness graph as it is, we make our best attempt at modeling
the side-information that is used to construct WF as a nu-
merical feature, and include this as an additional attribute
in the respective training data.

Hyper-parameter tuning: We use the same experimental
setup and hyper-parameter tuning techniques for all meth-
ods. Each dataset is split into separate training and test
sets. On the training set, we perform 5-fold cross-validation
(i.e., splitting into 4 folds for training and 1 for validation)
to find the best hyper-parameters for each model via grid
search. Once hyper-parameters are tuned, we use the inde-
pendent test set to measure performance.

Downstream-task: We compare all the methods on down-
stream classification tasks for a synthetic dataset (US uni-
versity admission) and two real-world datasets (recidivism
prediction and violent neighbourhood prediction). Table 1
gives details of experimental settings and statistics for each
dataset, including base-rate (fraction of samples belonging
to the positive class, for both the protected group and its
complement). Specific details of each dataset are discussed
in later subsections. In all the experiments, the represen-
tation learning approaches are followed by a out-of-the-box
logistic regression classifier trained on the corresponding rep-
resentations.

Dataset |X| |Xs=0| |Xs=1| Base-rate Base-rate Classification Protected
(s = 0) (s = 1) task attribute

Synthetic 600 300 300 0.51 0.48 Is successful Race
Crime 1993 1423 570 0.35 0.86 Is violent Race
Compas 8803 4218 4585 0.41 0.55 Is rearrested Race

Table 1: Experimental setting and statistics of the datasets.

Evaluation Measures:

• Utility is measured as AUC (area under the ROC curve).

• Individual Fairness is measured as the consistency of
outcomes between individuals who are similar to each
other. We report consistency values as per both the sim-
ilarity graphs, WX and WF .

Consistency = 1−

∑
i

∑
j

|ŷi − ŷj | ·Wij∑
i

∑
j

Wij
∀ i 6= j

• Group Fairness

• Disparate Mistreatment (aka. Equality of Odds):
A binary classifier avoids disparate mistreatment if
the group-wise error rates are the same across all
groups. In our experiments, we report per-group false
positive rate (FPR) and false negative rate (FNR).

• Disparate Impact (aka. Demographic Parity):
A binary classifier avoids disparate impact if the rate
of positive predictions is the same across all groups.

P (Ŷ = 1|s = 0) = P (Ŷ = 1|s = 1) (9)

In our experiments, we report per-group rate of pos-
itive predictions.

4.2 Analysis on Synthetic Data
We simulate the US graduate admissions scenario of Sec-

tion 1.1 where the population consists of two groups s = 0
or 1. For each candidate we know their score on the SAT
entrance exam – SAT score – and average grades – GPA.
Our task is it predict the ability of a candidate to complete
graduate school (binary classification).

It is known that the SAT test can be taken multiple times,
and only the best score is reported for admissions. Further,
each attempt to re-take the SAT comes at a financial cost.
Suppose we live in a society where group membership has a
high correlation with individuals with affluent and educated
parents. This would imply that one group has access to ex-
pensive tutoring for the SAT and can take the test multiple
times, which leads to increased SAT scores for one group.

4.2.1 Synthetic dataset
We simulate this scenario by generating data for two pop-

ulations X0 and X1 such that the two groups have similar
distributions for GPA, but one group has slightly higher val-
ues for SAT score than the other. We generate synthetic
data where features value for GPA and SAT score for group
Xs=0 were drawn from N ([100, 110], [25,−5;−5, 25]) and for
group Xs=1 from N ([100, 100], [25,−5;−5, 25]).

Despite average SAT scores for group Xs=0 being higher
than for the protected group Xs=1, we assume that the abil-
ity to complete graduate school is the same for both groups;
that is, members of Xs=0 and Xs=1 are equally deserving if
we adjust their SAT scores. To implement this scenario, we
set the true class label for group Xs=0 to positive (1) if GPA
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Figure 1: Comparison of (a) Original representation (b) iFair (c)LFR and (d)PFR representations on a synthetic dataset.
Original representation is standardized to zero mean and unit variance.

+ SAT ≥ 210 and for group Xs=1 as positive (1) if GPA +
SAT ≥ 200. Figure 1a visualizes the generated dataset. The
colors depict the membership to groups (S): S = 0 (orange)
and S = 1 (green). The markers denote true class labels Y
= 1 (marker +) and Y = 0 (marker o).

Fairness Graph WF : We simulate human judgments of
fairness by connecting similarly deserving candidates of one
group to another. That is, we add edges between “orange
plus”and“green plus”and between“orange o”and“green o”,
respectively. Concretely, we generate within-group rankings
of candidates for the two groups separately using the predic-
tion probability of a standard logistic regression model, and
use these rankings to construct a between-group quantile
graph as per Definitions 2 and 3.

4.2.2 Results on Synthetic Dataset
[Q1] What do the learned representations look like?
In this subsection we inspect the original representations
and contrast them with learned representations via iFair
[29], LFR [39], and our proposed model PFR. Figure 1 vi-
sualizes the original dataset and the learned representations
for each of the models with the number of latent dimen-
sions set to d = 2 during the learning. The contour plots
in (b), (c) and (d) denote the decision boundaries of logistic
regression classifiers trained on the respective learned repre-
sentations. Blue color corresponds to positive classification,
red to negative; the more intensive the color, the higher or
lower the score of the classifier. We observe several interest-
ing points:

• First, in the original data, the two groups are separated
from each other: green and orange datapoints are rela-
tively far apart. Further, the deserving candidates of one
group are relatively far away from the deserving candi-
dates of the other group. That is, “green plus” are far
from “orange plus”, illustrating the inherent unfairness
in the original data.

• In contrast, for all three representation learning tech-
niques – iFair, LFR and PFR – the green and orange
data points are well-mixed. This shows that these repre-
sentations are able to make protected and non-protected
group members indistinguishable from each other – a key
property towards fairness.

• The major difference between the learned representations
is that, PFR succeeds in mapping the deserving candi-
dates of one group close to the deserving candidates of
the other group (i.e., “green plus” are close to “orange
plus”). Neither iFair nor LFR can achieve this desired
effect, to the same extent.

[Q2] Effect on Individual Fairness: Figure 2 shows the
best achievable trade-off between utility and the two notions
of individual fairness.

• Individual fairness regardingWX : We observe that iFair,
LFR have similar performance as PFR for consistency
(WX), but with a much lower AUC. This is in line with
our observations on the learned representations. Since
the protected and non-protected groups are made indis-
tinguishable in the learned representations, the classifier
yields similar outcomes to similar individuals irrespec-
tive of their group membership, hence leading to high
consistency. In contrast, the high value of consistency
for the Original model is because of the trivial effect of
giving the same (but incorrect) prediction to all nearby
individuals.

• Individual fairness regarding WF : We observe that PFR
significantly outperforms all competitors in terms of con-
sistency (WF ). This follows from the observation that,
unlike Original, iFair and LFR representations, PFR
maps similarly deserving individuals close to each other
in its latent space.
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Figure 2: Comparison of Utility vs Individual Fairness trade-
off across methods. Higher values are better.

[Q3] Trade-off between Utility and Fairness: The
AUC bars in Figure 2 show the results on classifier utility
for the different methods under comparison.

• Utility (AUC): PFR achives by far the best AUC. While
this may surprise on first glance, it is indeed an expected
outcome. The fairness edges in WF reflect the true de-
servingness for both groups, which helps the classifier’s
accuracy. The other learned representations exhibit a
small loss in utility compared to the Original data, as
they trade off fairness for utility.

[Q4] Influence on Group Fairness: In addition to Orig-
inal, iFair, LFR and PFR, we include the Hardt model in
the comparison here, as it is widely viewed as the state-of-
the-art method for group fairness.
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Figure 3: Difference in (a) rate of positive predictions and
(b) error rates between protected and non-protected groups

Figure 3a shows the per-group positive predictions rates,
and Figure 3b shows the per-group error rates. The smaller
the difference in the values of the two groups, the higher the
group fairness. We make the following interesting observa-
tions:

• Disparate Impact (Figure 3a): The Original data ex-
hibits a substantial difference in the per-group positive
predictions rates. A classifier trained for AUC favors the
orange group. In contrast, iFair, LFR and PFR have
the orange and green data points well-mixed, and this
way achieve nearly equal rates for both groups. Likewise
Hardt has the same desired effect.

• Disparate Mistreatment (Figure 3b): For this measure
(aka. Equality of Odds), we also observe the strong bias
of the Original data, and the degrees of countering it
by the learned representations. The latter exhibit no-
table differences, though. iFair and LFR balance the
error rates across groups fairly well, but still have fairly
high error rates, indicating their loss on utility. PFR
and Hardt have well balanced error rates and generally
lower error. For Hardt, this is the expected effect, as it
is optimized for the very goal of Equality of Odds. PFR
achieves the best balance and lowest error rates, which
is remarkable as its objective function does not directly
consider group fairness. Again, the effect is explained by
PFR succeding in mapping equally deserving individuals
from both groups to close proximity in its latent space.

[Q5] Influence of Hyper-Parameter γ: PFR aims to
preserve proximity for both WF and WX , where the hyper-
parameter γ controls the relative influence of WF and WX .

• Individual Fairness: Figures 4a and 4b show the influence
of γ on individual fairness as per WF and WX , respec-
tively. As expected, as γ increases, the consistency as
per WF increases and the consistency as per WX de-
creases. It is worth highlighting that the extent of this
trade-off depends on the degree of conflict between the
two graphs. If WF contains judgements of equal deserv-
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Figure 4: Influence of γ on (a)Individual fairness w.r.t WF

(b) Individual fairness w.r.t WX and (c)Utility

ingness for data points that are far apart in the feature
space, there is a natural conflict between the two no-
tions of individual fairness. However, one may argue
that this is the right approach from a human perspective
to counter data-centric bias and unfairness (like in the
student admission scenario).

• Utility: Figure 4c shows the influence of γ on the utility
measure (AUC ). As γ increases, the AUC of PFR in-
creases. The improvement holds for both protected and
non-protected groups. This gain in AUC is because the
constraints in the fairness graph WF are in line with
ground-truth. So higher influence of WF helps utility. If
WF were in tension with ground-truth labels, like when
being motivated by affirmative action fairness, a drop in
utility would be unavoidable. Again, one may argue that
human judgement should overrule the data-only-centric
decision making.

4.3 Experiments on Real-World Datasets
We evaluate the performance of PFR on the following two

real world datasets

• Crime & Communities [31] is a dataset consisting of
socio-economic (e.g., income), demographic (e.g., race),
and law/policing data (e.g., patrolling) records for neigh-
borhoods in the US. We set isViolent as target variable
for a binary classification task. We consider the commu-
nities with majority population white as non-protected
group and the rest as protected group.

• Compas data collected by ProPublica [3] contains crim-
inal records comprising offenders’ criminal histories and
demographic features (gender, race, age etc.). We use the
information on whether the offender was re-arrested as
the target variable for binary classification. As protected
attribute s ∈ {0, 1} we use race: African-American (1)
vs. others (0).

4.3.1 Constructing the Fairness Graph WF

Crime & Communities: We need to elicit pairwise judg-
ments of similarity that model whether two neighborhoods
are similar in terms of crime and safety. To this end, we col-
lected human reviews on crime and safety for neighborhoods
in the US from http://niche.com. The judgments are given
in the form of 1-star to 5-star ratings by current and past
residents of these neighborhoods. We aggregate the judg-
ments and compute mean ratings for all neighborhoods. We
were able to collect reviews for about 1500 (out of 2000)
communities. WF is then constructed by the technique of
Subsection 3.2.1.

Although this kind of human input is subjective, the ag-
gregation over many reviews lifts it to a level of inter-subjective

http://niche.com


side-information reflecting social consensus by first-hand ex-
perience of people. Nevertheless, the fairness graph may
be biased in favor of the African-american neighbourhoods,
since residents tend to have positive perception of their neigh-
borhood’s safety.

Compas: We need to elicit pairwise judgments of sim-
ilarity that model whether two individuals are similar in
terms of deserving to be granted parole and not becoming
re-arrested later. However, it is virtually impossible for a
human judge to fairly compare people from the groups of
African-Americans vs. Others, without imparting the his-
toric bias (with much higher historic recidivism of the former
group). So this is a case, where we need to elicit pairwise
judgments between diverse and incomparable groups.

We posit that it is fair, though, to elicit within-group rank-
ings of risk assessment for each of the two groups, to cre-
ate edges between individuals who belong to the same risk
quantile of their respective group. To this end, we use North-
pointe’s Compas decile scores [6] as background information
about within-in group ranking. These decile scores are com-
puted by an undisclosed commercial algorithm which takes
as input official criminal history and interview/questionnaire
answers to a variety of behavioral, social and economic ques-
tions (e.g., substance abuse, school history, family back-
ground etc.). The decile scores assigned by this algorithm
are within-group scores and are not meant to be compared
across groups. We take the decile scores and compute kth

quantiles for each group separately, to construct WF by the
technique of Subsection 3.2.2.

Note that this fairness graph has an implicit anti-subordination
assumption. That is, it assumes that individuals in k-th risk
quantile of one group are similar to the individuals in k-th
quantile of other group - irrespective of their true risk.

Augmenting Baselines: For fair comparison with PFR,
we augment all other methods (named with suffix +) by
giving them access to the information in the fairness graph
WF . as additional numerical features in the respective train-
ing data. Note that this enhancement is only for training, as
this side-information is not available for the test data. This
is in line with how PFR uses the pairwise comparisons: its
representation is learned from the training data, but at test
time, only data attributes WX are available.

4.3.2 Results on Crime & Communities Dataset

[Q2] Effect on Individual Fairness: Results on individ-
ual fairness and utility (AUC) are given in Figure 5. We
observe that PFR outperforms all other methods on indi-
vidual fairness regarding WF . However, this gain for WF

comes at the cost of losing in individual fairness regarding
WX . So in this case, the pairwise input from human judges
exhibits pronounced tension with the data-attributes input.
Deciding which of these sources should take priority is a
matter of application design.

[Q3] Trade-off between Utility and Fairness: The im-
provement in individual fairness regarding WF comes with
a drop in utility as shown by the AUC bars in Figure 5. This
is because, unlike the case of the synthetic data in Subsec-
tion 4.2, the side-information fir the fairness graph WF is
not strongly aligned with the ground-truth for the classi-
fier. The other methods benefit from the side-information
in their augmented versions, but still exhibit the same fun-
damental trade-off between individual fairness and utility.

In terms of relative comparison, LFR+ performs best: AUC
close to that of PFR while achieving some of the best values
for the two notions of individual fairness. However, LFR+
exhibits weaknesses (and notably inferior performance) on
group fairness, as discussed next.
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Figure 5: Crime & Communities Data: Utility vs. Individ-
ual Fairness (higher is better).

P(Y = 1)
0.0
0.2
0.4
0.6

Original +

P(Y = 1)
0.0
0.2
0.4
0.6

iFair +

P(Y = 1)
0.0
0.2
0.4
0.6

LFR +

P(Y = 1)
0.0
0.2
0.4
0.6

PFR

P(Y = 1)
0.0
0.2
0.4
0.6

Hardt +

Protected Group (S)
0 1

(a) Difference in rates of positive prediction

FNR FPR
0.0

0.5

Original +

FNR FPR
0.0

0.5

iFair +

FNR FPR
0.0

0.5

LFR +

FNR FPR
0.0

0.5

PFR

FNR FPR
0.0

0.5

Hardt +

Protected Group (S)
0 1

(b) Difference in error rates (FPR and FNR)

Figure 6: Crime & Communities Data: Difference between
groups in (a) Rate of Positive Predictions and (b) Error
Rates.

[Q4] Influence on Group Fairness Figure 6a shows the
per-group positive prediction rates, and Figure 6b shows the
per-group error rates. Smaller differences in the values be-
tween the two groups are preferable. The following observa-
tions are notable:

• Disparate Impact (aka. Demographic parity): PFR clearly
outperforms all the methods by achieving near perfect
balance (i.e., near-equal rates of positive predictions).

• Disparate Mistreatment (aka. Equality of Odds): PFR
significantly outperforms all other methods on balanc-
ing the error rates of the two groups. Furthermore, it
achieves nearly equal error rates comparable to the Hardt
model, whose sole goal is to achieve equal error rates be-
tween groups via post-processing.

[Q5] Influence of Hyper-Parameter γ: Key points from
the experiments are the following.

• Individual Fairness: Figure 7a and 7b show the influence
of γ on individual fairness as per WF and WX , respec-
tively. As expected, we observe that with increasing γ



the consistency with regard toWF increases. Conversely,
the consistency with regard to WX decreases.

• Utility: Figure 7c shows the influence of γ on the AUC.
With increasing γ, the influence of the pairwise con-
straints in WF increases and the overall utility AUC for
both groups together (S = Any) decreases. However,
there is an improvement in AUC for the protected group,
and the gap in AUC between the groups decreases. This
results constitutes a clear case of how incorporating side-
information on pairwise judgments can help in improv-
ing algorithmic decision making for historically disadvan-
taged groups.
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Figure 7: Influence of γ on (a) Individual Fairness w.r.t.
WF , (b) Individual Fairness w.r.t. WX and (c) Utility

4.3.3 Results on Compas Dataset
The results for the Compas dataset are mostly in line

with the results for the synthetic data (in Subsection 4.2)
and Crime & Communities datasets (in Subsection 4.3.2).
Therefore, we report only briefly on them.

Utility vs. Individual Fairness: PFR performs similarly
as the other representation learning methods in terms of
utility and individual fairness, as shown in Figure 8.
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Figure 8: Compas dataset: Utility vs Individual-fairness.
Higher values are better.

Group Fairness: However, PFR clearly outperforms all
other methods on group fairness. It achieves near-equal rates
of positive predictions as shown in Figure 9a, and near-equal
error rates across groups as shown in Figure 9b. Again,
PFR’s performance on group fairness is as good as that of
Hardt which is solely designed for equalizing error rates by
post-processing the classifier’s outcomes.

Influence of Hyper-Parameter γ: Figures 10a and 10b
show the same effects as observed for the other datasets:
increasing γ helps consistency w.r.t. WF and degrades con-
sistency w.r.t. WX . Likewise, Figure 10c confirms that
higher γ hurts AUC over both groups together. However, as
before, AUC for the protected group (S =1) improves and
the gap in AUC between the two groups decreases when
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Figure 9: Compas Data: Difference between Groups in (a)
Rate of Positive Predictions and (b) Error Rates.

γ is set higher. So the PFR way of incorporating pairwise
judgements helps the protected group.
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Figure 10: Influence of γ on (a) Individual Fairness w.r.t.
WF (b) Individual Fairness w.r.t. WX and (c) Utility

4.4 Discussion and Lessons
PFR outperforms all other methods on individual fairness

regarding WF for an acceptable performance in AUC, even
when these baselines are given the same side-information for
their augmented version (suffixed +). The improvement in
individual fairness in WF comes at the expense of reduc-
ing individual fairness for WX , an unavoidable trade-off if
the two views of fairness – data attributes (WX) and pair-
wise judgements (WF ) – exhibit inherent tension. As for
group fairness, PFR clearly outperforms all other represen-
tation learning methods, with group-fairness metrics as good
as those of Hardt whose sole optimization goal is to equal-
ize the error rates. This strong behavior of PFR on group
fairness measures is remarkable as PFR is not explicitly de-
signed for this goal. It underlines, however, the point that
pairwise judgements is highly beneficial side-information, es-
pecially when comparing individuals from a-priori incompa-
rable groups via quantiles from within-group rankings. The
flexibility to incorporate such information is a salient advan-
tage of PFR, missing in prior works for fair representation
learning.



5. CONCLUSIONS
This paper proposes a new departure for the hot topic

of how to incorporate fairness in algorithmic decision mak-
ing. Building on the paradigm of individual fairness, we
devised a new method, called PFR, for operationalizing this
line of models, by eliciting and leveraging side-information
on pairs of individuals who are equally deserving and, thus,
should be treated similarly for a given task. We developed
an optimization model to learn Pairwise Fair Representa-
tions (PFR), using the fairness graphs of pairwise judge-
ments as inputs. We carried out comprehensive experiments
with the Compas recidivism data and decile scores derived
from questionnaires, and with the Crime & Communities
data on socio-economic properties and ratings of neighbor-
hoods by former and current residents. In both cases, the
side-information on fairness turned out to be beneficial for
giving members of the protected group their deserved share,
resulting in high individual fairness and high group fairness
(near-equal error rates across groups), with reasonably low
loss in utility.
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