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Abstract

Rationale: In addition to their well-known function as antibody-
producing cells, B lymphocytes can markedly influence the course
of infectious or noninfectious diseases via antibody-independent
mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their
functional contribution to the host response remains poorly understood.

Objectives: To document the role of B cells in TB in an unbiased
manner.

Methods:We generated the transcriptome of B cells isolated from
Mycobacterium tuberculosis (Mtb)-infected mice and validated the
identifiedkey pathways using in vitro and in vivo assays. Theobtained
data were substantiated using B cells from pleural effusion of patients
with TB.

Measurements and Main Results: B cells isolated from
Mtb-infected mice displayed a STAT1 (signal transducer
and activator of transcription 1)-centered signature, suggesting

a role for IFNs in B-cell response to infection. B cells stimulated
in vitro with Mtb produced type I IFN, via a mechanism
involving the innate sensor STING (stimulator of interferon
genes), and antagonized by MyD88 (myeloid differentiation
primary response 88) signaling. In vivo, B cells expressed type I
IFN in the lungs of Mtb-infected mice and, of clinical relevance,
in pleural fluid from patients with TB. Type I IFN expression
by B cells induced an altered polarization ofmacrophages toward a
regulatory/antiinflammatory profile in vitro. In vivo, increased
provision of type I IFN by B cells in a murine model of
B cell–restricted Myd88 deficiency correlated with an enhanced
accumulation of regulatory/antiinflammatory macrophages in
Mtb-infected lungs.

Conclusions:Type I IFNproduced byMtb-stimulated B cells favors
macrophage polarization toward a regulatory/antiinflammatory
phenotype during Mtb infection.
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Infection with Mycobacterium tuberculosis
(Mtb) leads to the formation of lung
lesions, the granulomas, which contain
macrophages and other cell types and are
surrounded by various lymphocyte
populations, including B lymphocytes
(1–4). The presence of B cells at the site of
infection suggests that they may contribute
to host–pathogen interaction locally.

Several studies attempted to delineate the
antibody-mediated roles of B cells and
the impact of their total deficiency in
tuberculosis (TB) (5–10). Studies
performed with B cell–deficient mice
yielded conflicting results, with some
studies concluding that B cells played no
apparent function in TB and others
concluding that B cells contributed to
protection against Mtb (2, 6, 8, 11, 12).
In humans, the depletion of B cells in
patients treated with rituximab did not
increase the risk of TB reactivation (13, 14),
and in macaques rituximab administration
to Mtb-infected animals had limited effects
at the individual granuloma level (15).
These studies suggest a moderate role for
B cells in immunity to Mtb. However, they
used approaches that might not be suitable
to reveal more complex functions of B cells,
in particular those mediated through the
production of cytokines, whose relevance
during infection by intracellular bacterial
pathogens has received increasing
experimental evidence (16–18). Indeed,
B cells can play either favorable or
detrimental roles during infection,
depending on the cytokines they produce,
and the depletion of the whole B-cell
compartment may not be suitable to
reveal such potentially antagonistic B-cell
activities. The aim of our study was
to investigate the eventual antibody-
independent functions of B cells in an
unbiased manner. For this, we analyzed
the transcriptome of B cells isolated from
the lungs and spleen of Mtb-infected mice.
This revealed a STAT1 (signal transducer
and activator of transcription 1)-centered
signature, which pointed to the ability of
B cells to both produce and respond to type I
IFN. We identified STING (stimulator of
interferon genes) and Mincle as positive
regulators, and myeloid differentiation

primary response gene 88 (MyD88) as a
negative regulator of type I IFN production
by Mtb-stimulated B cells. Type I IFN
production by B cells drove macrophages
toward an antiinflammatory phenotype
in vitro. Mice with a B cell–specific Myd88
deficiency harbored B cells that
overexpressed type I IFN and displayed
an abnormal accumulation of
antiinflammatory myeloid cells in infected
lungs compared with control mice. This
was associated with reduced signs of
inflammation and increased Mtb burden in
lungs. Importantly, B cells purified from
the pleural fluid of patients with TB
displayed a massive type I IFN expression,
and supernatants of Mtb-stimulated
human B cells also polarized human
macrophages toward an antiinflammatory
profile in vitro. Altogether, our data
reveal that type I IFN expression in
B cells impacts macrophage polarization
toward an antiinflammatory/regulatory
phenotype during TB and unravel a
previously unanticipated role for B cells in
this disease.

Methods

Patients with TB
Human studies were performed in
accordance with the Declaration of Helsinki
(2013) of the World Medical Association
and have been approved by the Ethics
Committees of Hospital F.J Muñiz,
Academia Nacional de Medicina, and
Instituto Vaccarezza from Buenos Aires,
Argentina. Patients with TB with or
without moderate and large pleural
effusions were identified at the Servicio de
Tisioneumonoloǵıa. Written informed
consent was obtained before sample
collection.

*These authors contributed equally to the work.

Supported by Centre National de la Recherche Scientifique, University of Toulouse–Université Paul Sabatier, Institut Pasteur, Agence Nationale de la
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At a Glance Commentary

Scientific Knowledge on the
Subject: The role played by T cells in
tuberculosis (TB) has been thoroughly
investigated. In marked contrast, the
contribution of B cells in immunity
to TB, which has mostly been
explored for their ability to produce
antibodies, remains poorly understood,
despite their massive accumulation in
lung lesions of both patients with
TB and experimentally infected
animals.

What This Study Adds to the
Field: Here we show that B cells can be
directly stimulated by Mycobacterium
tuberculosis in an innate manner to
produce type I IFN to subsequently
modulate the polarization of
macrophages toward a regulatory/
antiinflammatory profile in vitro and
in infected lungs. This pathway was
observed in a murine model of TB and
in B cells isolated from patients with
TB. Our observations reveal B cells as
novel regulators of immunity to TB
through type I IFN–mediated
polarization of myeloid cells.
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Mice
All mice were on the C57BL/6 background.
All of the procedures, including animal
studies, were conducted in strict accordance
with French laws and regulations in
compliance with the European Community
council directive 68/609/EEC guidelines
and their implementation in France. All
protocols were approved by the Comité
d’Ethique Midi-Pyrénées (MP/11/13/02/11
and MP/07/80/11/12).

Full methods are provided in online
supplement.

Results

B Cells Purified from the Lungs and
Spleen of Mtb-infected Mice Display a
STAT1-centered Gene Expression
Signature
To address whether B cells might perform
antibody-independent functions in TB, as
observed in other bacterial infections (17–19),
we performed a genome-wide transcriptome
analysis of B cells isolated from the lungs and
spleen of Mtb-infected mice, in comparison
with splenic B cells from naive mice. Strikingly,
B cells from infected mice differentially
expressed a limited number (30) of genes
(Figure 1A; see Table E1 in the online
supplement) compared with naive controls.
Ingenuity Pathway Analysis indicated that the
differentially expressed genes formed a network
centered on STAT1, a master transcription
factor of the IFN response (Figure 1B). The
higher expression of the STAT1 signature
genes Stat1 (signal transducer and activator of
transcription 1), Irgm1 (immunity-related
GTPase family M member 1), Csf1 (colony-
stimulating factor 1), Ccrl2 (C-C motif
chemokine receptor–like 2), Ccl5 (C-C motif
chemokine ligand 5), and Cxcl9 (C-X-C
motif chemokine ligand 9) in B cells from the
lungs of infected mice was confirmed by
quantitative reverse transcriptase–polymerase
chain reaction (Figures 1C and 1D).

Type I IFNs Are Chief Cytokines
Induced in Lung B Cells on Mtb
Infection and Reflect an Innate B-Cell
Response
Interrogation of the Interferome database
(20) indicated that 20 out of the 30 genes
of the B-cell signature were regulated by
both type I and type II, but not by type III
IFN, and that 5 of them, namely Mllt3
(mixed-lineage leukemia; translocated to, 3),

Hspa1a (heat shock protein family A,
member A1), Isg20 (interferon-stimulated
gene 20), Gls (glutaminase), and Klrd1 (killer
cell lectin-like receptor D1), were specifically
regulated by type I IFN (Figure 2A),
suggesting that the STAT1 signature
reflected an effect of type I IFN on B cells.
Consistent with this possibility, naive B cells
stimulated with type I IFN in vitro displayed
a similar gene signature (Figure 2B), and
B cells recovered from the lungs of Mtb-
infected mice at 3 weeks after infection
showed increased STAT1 phosphorylation
after stimulation with type I IFN ex vivo
(Figure 2C). Taken together, these data
suggest that B cells were exposed to type I
IFN in infected mice. Because type I IFN
could act in an autocrine manner (21), we
next investigated whether B cells expressed
type I IFN during infection. B cells isolated
from the lungs and spleen of infected mice
indeed displayed a massive up-regulation of
the Ifnb transcripts, compared with B cells
from naive mice (Figure 2D). In comparison,
the levels of Il-6 and Il-10 mRNA, which
have previously been identified as important
mediators of the antibody-independent
functions of B cells in other diseases (16,
19), showed only a modest increase
(although significant in for Il-6)
(Figure 2D). Thus, type I IFNs are the chief
cytokines induced in lung B cells on Mtb
infection. This possibly involved a direct
interaction between Mtb and B cells, because
Mtb elicited type I IFN expression in naive
spleen B cells in vitro within 24 hours
(Figures 2E and 2F). Similar results were
obtained after 4 hours of stimulation (Figure
E1), underlining a rapid innate response.
B cell–derived type I IFN protein was detected
in the B-cell culture supernatants using a type
I IFN–specific reporter cell line (Figure 2G)
and ELISA (Figure 2H). Type I IFN amplified
its induction in an autocrine manner, because
its expression was markedly reduced in B cells
lacking the type I IFN receptor subunit
IFNAR1 (Figure 2I). B-cell infection per se
was not necessary, as filtered supernatants
from Mtb cultures also induced type I IFN
expression in B cells, implicating secreted
Mtb components in this process (Figure 2J).
We conclude that B cells produce and
respond to type I IFN during Mtb infection.

Type I IFN Expression in Mtb-stimulated
B Cells Involves Innate Receptors
We next sought to identify the molecular
mechanisms controlling type I IFN
expression in B cells exposed to Mtb and

tested the involvement of distinct innate
sensors. The cytosolic dinucleotide sensor
STING (22, 23) contributed to type I IFN
expression in B cells stimulated with Mtb
or cyclic-di-AMP (c-di-AMP), a secreted
mycobacterial STING ligand (Figures
3A–3D) (22, 24). In addition, the C-type
lectin Mincle (25) also contributed to type I
IFN expression in B cells stimulated with
Mtb, albeit to a lower extent than STING
(Figure E2). We thus used c-di-AMP
to further address which B-cell subset(s)
contributed to this response. CD21lowCD23hi

follicular and CD212CD232 B cells
contributed most to type I IFN production
(Figure 3E). This particular mode
of activation could operate in lung B cells,
because B cells from Mtb-infected lungs also
expressed type I IFN on c-di-AMP
stimulation, although in smaller amounts
than non-B cells taken for comparison
(Figure 3F). Testing the role of other innate
receptors, we found that type I IFN
expression in B cells could also be triggered
by a TLR3 (Toll-like receptor 3) ligand,
suggesting a role for the adaptor TIR-
domain–containing adapter-inducing IFN-b
(TRIF), but not by ligands of TLR7/8 or 9,
which signal via MyD88 (Figures 3G and 3H).

Type I IFN Production by B Cells on
Mtb Stimulation Is Antagonized by
MyD88 Signaling
We next tested the effect of MyD88
signaling on type I IFN expression in
Mtb-stimulated B cells. Myd88 (myeloid
differentiation primary response 88)
deficiency resulted in an increased type I
IFN expression at both transcriptional
(Figure 4A) and protein (Figure 4B) levels.
Accordingly, stimulation of B cells with the
TLR2 agonist Pam3CSK4, which signals via
MyD88, downregulated type I IFN
expression induced by the agonists of
STING (Figure 4C) or Mincle (Figure 4D),
or Mtb (Figure 4E). As expected, IL-1b also
inhibited type I IFN expression in B cells in
a MyD88-dependent manner (Figures 4F
and 4G). In sum, we found that the amount
of type I IFN produced by B cells is regulated
by the balance between distinct innate
signaling pathways. These results illustrate
further the possible antagonism between
TLR-MyD88 and IFN signaling (26–28).

Pleural Fluid B Cells Express Type I
IFN in Patients with TB
An excessive type I IFN signature
distinguished patients with TB from latently
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Mtb-infected individuals (29, 30). To
address whether B cells could contribute to
the type I IFN response in TB, we next
assessed whether human B cells produced
and responded to type I IFN on Mtb

stimulation in vitro and whether this
pathway was operative in clinical TB.
Human B cells purified from the blood of
healthy donors up-regulated type I IFN
(both a and b) expression on stimulation

with Mtb (Figures 5A and 5B) or c-di-AMP
(Figure 5C) in vitro. Remarkably, B cells
from the pleural fluid (PF) of patients with
TB displayed a markedly increased
abundance of type I IFN transcripts,
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Figure 1. B cells from Mycobacterium tuberculosis (Mtb)-infected mice display a STAT1 signature. (A) Heat map of the differentially expressed genes
(selected on the basis of an adjusted P value [Benjamini-Hochberg procedure], 0.05 and a fold change. 2 or ,0.5) both between B cells from the
spleen of naive C57BL/6 mice and B cells from the spleen of Mtb-infected mice on the one side, as well as between B cells from the spleen of
naive C57BL/6 mice and B cells from the lung of infected mice after 21 days of infection on the other side (we had to pool the B cells from three independent
mice to obtain the necessary amount of mRNA to perform microarrays, and four to five independent microarrays were performed for each of the
three conditions indicated above). (B) Main network deduced from the Ingenuity Pathway Analysis involved in B cells from Mtb-infected lungs and spleens, as
compared with naive spleens. Solid lines and dotted lines indicate direct and indirect interactions, respectively. Differentially expressed genes present in the
pathways are represented in red. Light red, 2, fold change, 10; dark red, fold change. 10. (C) Quantitative reverse transcriptase–polymerase chain
reaction analysis of mRNA expression of the Stat1, Irgm1, and Csf1 genes found to be up-regulated in the transcriptome of B cells purified from the spleen of
naive mice or from spleen and lung of Mtb-infected C57BL/6 mice. (For each sample, B cells were pooled from three independent mice. Four to five
independent infection experiments were performed.) (D) As in C, except that the Ccrl2, Ccl5, and Cxcl9 genes were analyzed. Data represent mean6 SEM
and were analyzed by the two-tailed Mann-Whitney test. *P< 0.05; **P< 0.01.
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Figure 2. B cells from Mycobacterium tuberculosis (Mtb)-infected mice produce and respond to type I IFN. (A) The Venn diagram shows the differentially
expressed genes known to be regulated by type I, type II, and/or type III IFN according to Interferome analysis. The histogram on the right indicates
the relative expression of the five genes regulated only by type I IFN in B cell samples from naive spleen or Mtb-infected spleen or lungs (microarray data).
(B) B cells purified from the spleen of naive C57BL/6 mice were stimulated for 24 hours with IFNa or not, and the mRNA expression of IFN-stimulated
genes was analyzed by quantitative reverse transcriptase–polymerase chain reaction (n = 3). (C) Overlay of flow cytometry histograms showing
phospho-STAT1 staining in lung B cells from Mtb-infected mice stimulated for 15 minutes with IFNa (n = 3; a representative experiment out of two
independent experiments is shown). (D) Expression of Ifnb, Il6, and Il10 in B cells purified from the spleen of naive (NS) or Mtb-infected (IS) C57BL/6 mice
and from the lungs of Mtb-infected (IL) C57BL/6 mice after 21 days of infection. (For each sample, B cells were pooled from three independent mice.
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WT or Ifnar12/2 mice on in vitro stimulation for 24 hours with Mtb (MOI = 0.3); fold change is relative to respective expression before stimulation (n = 5).
(J) Ifnb mRNA expression in B cells purified from the spleen of C57BL/6 mice on in vitro stimulation (supMtb) for 24 hours or not (7H9 medium) with
Mtb-culture supernatant (n = 7). Data represent mean6 SEM and were analyzed using the nonparametric two-tailed Mann-Whitney test or the Wilcoxon
test (A, B, D,G, and I), *P< 0.05; **P< 0.01. For E, F, H, and J, we used the parametric two-tailed Student paired t-test (#P< 0.05; ##P< 0.01; ###P< 0.001).
a.u. = arbitrary units; Ctrl = control; WT =wild type.
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compared with B cells purified from the
blood of healthy donors or patients with
TB, indicating that this response was
particularly present in infected lungs during
disease (Figure 5D). PF B cells also
responded to type I IFN in vivo, because
they displayed an increased expression of
BST2 (bone marrow stromal cell antigen 2)
and CXCL10 (Figures 5E and 5F), two
genes belonging to the type I IFN signature
in patients with active TB (29). These
results show that B cells locally express
and respond to type I IFN in the infected
lungs during clinical TB.

Mtb-stimulated B Cells Drive
Macrophage Polarization toward an
Antiinflammatory/Regulatory Profile
in Both Mice and Humans
Considering that B cells can directly
influence the activity of cells located in their

microenvironment through cytokine
production (16, 19), are in close contact
with macrophages in TB lesions (31), and
have already been shown to modulate
macrophage activity (18, 32, 33), we next
assessed whether type I IFN produced by
Mtb-stimulated B cells could affect
macrophage polarization. Macrophages
treated with the supernatant from Mtb-
stimulated B cells exhibited an enhanced
expression of Cox2 (cyclooxygenase 2),
Nos2 (nitric oxide synthase 2), and Ym1
(Figure 6A), which depended on type I IFN
(Figure 6B). A profound IFNAR1-dependent
induction of IFN-stimulated genes, including
Ccl2 and Tnfsf10 (tumor necrosis factor
superfamily member 10), was also triggered in
treated macrophages (Figure E3). In addition,
these macrophages displayed an enhanced
expression of the regulatory/antiinflammatory
molecules PD-L1 (programmed death-ligand 1)

and IL-10 (Figure 6C and 6D, Figure E4) as
well as a decreased production of IL-1b
(Figure E4B). A similar IFNAR-
1–dependent expression profile was
triggered in macrophages treated with the
supernatant of c-di-AMP–stimulated
B cells, confirming the involvement of
type I IFN triggered by STING in this
altered macrophage polarization (Figure
E5). Similarly, supernatant of Mtb-
activated human B cells induced human
macrophages to express IFN-stimulated
genes, such as CCL2 (Figure 6E) and
PD-L1 (Figures 6F and 6G). These results
demonstrate that type I IFN produced by
Mtb-activated B cells can directly drive
macrophages toward an antiinflammatory/
regulatory phenotype and suggest that
B cells can directly influence adjacent
macrophages via the local production of
type I IFN in patients with active TB.
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Excessive production of type I IFN by
B cells is associated with altered macrophage
polarization in the lungs of Mtb-infected
mice. Because increased levels of type I IFN
were associated with clinical TB (29),
and because B cells from the PF of patients
with TB expressed high levels of type I
IFN (Figure 5D), we investigated the
consequence of type I IFN overexpression
in B cells in the mouse. To generate a
model in which only B cells overexpress
type I IFN, we took advantage of the fact
that type I IFN production by B cells was
inhibited by MyD88 signaling. Therefore,
we generated mixed bone marrow
chimera (34, 35), in which only B cells
lacked MyD88 (B-Myd882/2), as well as
their corresponding controls with wild-
type B cells (B-WT, B-CTRL). As
expected, B cells from the lungs of Mtb-
infected B-Myd882/2 mice expressed more
type I IFN transcripts than their controls
(Figure 7A). Remarkably, B-Myd882/2

mice harbored in lungs an increased
proportion of CD11bintGr1int cells (Figures
7B and 7C), resembling a population of
Mtb-permissive monocytes/macrophages
known to develop in a type I IFN–dependent
manner (36). Further characterization of
CD11bintGr1int cells from infected mice
revealed that they expressed high levels of
Arg1 (arginase 1), Cox2, iNOS (inducible
nitric oxide synthase), and Ym1 compared
with “classical” macrophages (Figure 7D).
These data suggest that B-Myd882/2 mice
display an increased accumulation of
antiinflammatory monocytes/macrophages
compared with control mice. In keeping
with this, they also showed in total lung an
increased expression of genes characteristic
of antiinflammatory and tissue repair–driving
M2 macrophages, such as Ym1 and Mrc1
(mannose receptor C-type 1) (37, 38)
(Figure 7E), with other genes associated
with M2 macrophages showing a
similar trend to increased expression
(Fizz1 [found in inflammatory zone 1])
or unaffected (Arg1) (Figure 7E),
compared with controls. In contrast,
the proinflammatory genes Ifng, Tnfa
(tumor necrosis factor a), Nos2, and
Irgm1 were expressed at lower levels
in infected chimeric animals than in
controls (Figure 7E). These data
are therefore consistent with our initial
hypothesis that B-Myd882/2 mice
would, as a result of excessive type I IFN
production by B cells, show an altered
macrophage polarization toward an
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Figure 5. Expression of IFNb in blood B cells from healthy donors after Mycobacterium tuberculosis
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**P< 0.01; ***P< 0.001) except for panels A, B, and F, where a two-tailed Student paired t-test was
used (#P< 0.05; ##P< 0.01). HD = healthy donor.
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antiinflammatory/regulatory profile.
This B cell–mediated effect specifically
affected macrophages, because similar
frequencies of infiltrating T (both CD41 and
CD81) and B cells were observed in

B-Myd882/2 mice compared with their B-WT
counterparts (Figure E6A). Of note, the
altered macrophage phenotype in
B-Myd882/2 was associated with slightly
increased Mtb loads (Figure E6B) and

reduced signs of inflammation in lungs
(Figure E6C). Collectively, our data reveal
that innate production of type I IFN by
B cells correlates with an altered polarization
of lung macrophages during Mtb infection.
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proinflammatory cytokines and antiinflammatory genes in the lung of B-WT and B-Myd882/2 mice (n = 3). Data represent mean6 SEM, are
representative of two independent experiments, and were analyzed using the two-tailed Mann-Whitney test. *P< 0.05; **P< 0.01; ***P< 0.001
except for C, where a two-tailed Student paired t-test was used (#P< 0.05). cfu = colony-forming units; CTRL = control.
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Discussion

Our study reveals that innate signaling in
B cells leads, through type I IFN production,
to the modulation of macrophage
polarization in TB. In particular, our data
demonstrate that onMtb stimulation, B cells
of murine or human origin produce type I
IFN. Although B cells produce only low
amounts of these cytokines, such low
amounts have already been reported for type I
IFN in other settings and thus appear to be a
normal feature of the type I IFN response
(39). Here, we found that type I IFN
production by Mtb-stimulated B cells was
regulated by the integration of several
pathways, whose dysregulation led to
important functional consequences in TB.
At the molecular level, we identified several
ligands, together with their corresponding
host sensors, namely STING and, to a lesser
extent, Mincle, as contributors to type I IFN
expression in B cells during Mtb
stimulation. We also show that intrinsic
MyD88 signaling, associated with either
TLR or IL-1 receptor triggering, is a potent
inhibitor of type I IFN production by
B cells, which further illustrates the
antagonism between MyD88 signaling and
IFN production (28). Whether additional
pathways such as the TRIF-dependent one
could be involved in type I IFN production
by B cells remains to be explored, yet seems
likely given the capacity of TLR3 agonist to
trigger such a response.

From a clinical viewpoint, we report
that type I IFN expression in B cells is
dramatically increased in the PF of patients
with TB compared with peripheral blood
B cells of patients with TB or healthy donors.
This is in contrast with the reported type I
IFN signature observed in blood myeloid
cells of patients with TB, compared with
latently infected individuals or healthy
subjects (29, 30, 40), but similar to the
situation reported in blood T cells of
patients with TB (31). We can think of
three possible explanations for the local
expression of type I IFN in TB. First, it
is possible that lymphocytes are in
nonresponsive state specifically in blood
in TB. This would be consistent with the
fact that peripheral B cells from patients
with TB have been reported to be
hyporesponsive to stimulation (41).
Alternatively, this might reflect a
preferential trapping of modulated
lymphocytes in the lungs and possibly

secondary lymphoid organs, whereas
modulated myeloid cells might be more
prone to circulate from the affected tissue
to the blood. Finally, this might indicate a
different threshold of activation for
B cells and myeloid cells by Mtb, so that
B cells only respond to Mtb-derived
molecules when these are present at a high
concentration such as in the infected lung,
but not in the blood, whereas myeloid cells
might be able to respond to the lower
microbial compound concentrations in
blood. Thus, our data suggest that type I
IFN production by B cells might be
important locally, at the site of TB infection
and inflammation. B cells are known to be
in close proximity to other immune cells,
including monocytes and macrophages, in
the lungs of patients with TB or infected
animals (3, 31). Our in vitro data
unambiguously demonstrate that
Mtb-stimulated B cells drive macrophage
polarization toward an antiinflammatory
profile in a type I IFN–dependent manner.
B cells were previously reported to
modulate macrophage polarization in
various models of infection, autoimmunity,
and cancer (18, 32, 42). In particular, B cells
polarized macrophages toward an
alternatively activated M2 state through
IL-10 production in a murine melanoma
model (42). By contrast, a similar action of
B cells on macrophages was reported to be
independent of IL-10 in the context of TB
(33). Our data provide direct evidence that
type I IFN produced by Mtb-stimulated
B cells contributes to macrophage
polarization in vitro, which might explain
this apparent discrepancy. This is in
agreement with our in vivo data showing
that overproduction of type I IFN by B cells
in a mouse model of B cell–restricted
Myd88 deficiency correlates with the
accumulation of antiinflammatory/
regulatory macrophages during Mtb
infection in infected lungs, which is locally
associated with increased bacterial burden
and reduced pathology.

Overexpression of type I IFN is
generally detrimental in TB (43, 44). In
particular, hypervirulent strains of Mtb
induce increased production of type I IFN
(45, 46), and patients with active TB disease
show a type I IFN–inducible gene
expression profile in their blood cells (29,
47). Among the proposed mechanisms for
the detrimental action of type I IFN in TB is
the induction of IL-10 secretion by myeloid
cells and macrophages, which leads to a

reduced expression of protective IL-12 and
tumor necrosis factor-a (28, 43), as well as
an increased induction of myeloid-derived
suppressor cells (36, 48) known to be
permissive for Mtb replication (48). Here
we show that type I IFN overproduction by
B cells in our mouse model of B cell–restricted
Myd88 deficiency is associated with an
accumulation of CD11bintGr1int cells. Myeloid
cells sharing similar phenotypic characteristics
were previously reported as Mtb-permissive
macrophages, whose accumulation depended
on type I IFN (37). Because MyD88 signaling
controls the production of IL-6 and IL-10 by
B cells (49), we cannot exclude that these
cytokines play a part in the observed
phenotype. However, beyond the fact that
the major cellular changes observed in
B-Myd882/2 mice are known to be inducible
by type I IFN, we do not favor this possibility,
because Il6 and Il10mRNA were only induced
at modest levels in B cells isolated from the
lungs of wild-type mice, and it is most likely
that their expression was even lower in
Myd88-deficient B cells.

Overall, hyperproduction of type I IFN
production by B cells correlates with
increased Mtb burden in lungs, which
suggests that this B-cell activity negatively
affects the control of bacterial replication
and is in agreement with the belief that
type I IFNs are detrimental in TB. How low
concentrations of type I IFN can induce
significant biological responses is a complex
question, whose answer likely rests on
parameters such as the diversity of type I
IFNs, their differential affinity for the
IFNAR receptor, the properties of type I IFN
signaling pathways, and the timing and
duration of expression (50). In conclusion,
our study reveals type I IFN production as a
novel antibody-independent function of
B cells in immunity to TB. n
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