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Summary \

The majority of traditional computational approaches to RNA sec-
ondary structure prediction consist of two components:
e Dynamic programming algorithm for decoding the structure, and

e a parameter inference method.

While the dynamic programming algorithm is quite similar for all these
methods parameter inference is usually either than in a probabilistic
way or using experimental thermodynamical data. A recently, (1, )

proposed probabilistic approach used a conditional maximum likeli-
hood scheme for parameter inference. This model could outperform
existing thermodynamic models. We will use a large margin method

related to Support Vector Machines. The central idea is to find a pa-
rameter vector that assigns highest score to correct and lower score
to incorrect structures.

Problem Setting \

An RNA Secondary Structure for a nucleotide sequence of length N
can be seen as a set of ordered pairs (7, 7) denoting that nucleotide
at position ¢ is paired with nucleotide at position j.

If (i, 7) and (¢, j') are two pairs (w.l.o.g i < i’), then either
oi=1iandj =7,

oi < j<i <y, or

oi < i <j <j.

So our input domainis X = >* where X = {A, C, G, U} and our output

domainis Y = {{(¢,7) : i,j,€ N,i < j}}. Based on these pairs one
can identify substructures such as stems, hairpins etc..

The Dynamic Programming Component \

e In thermodynamic models: Total free energy of y is the sum the
energies of the substructures

e In a probabilistic setting: Log probability of a structure is the sum of
the log probabillities.

These values can be expressed as a dot product between parameters
and feature (substructure) counts:
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(v : X x Y — R is a feature mapping function). As we are interested
in the highest probable structure we calculate:

y* = argmax P(g|z) = argmax(w, ¢ (z;,9))
Y y

which calculates the structure y € ) whose probability of being ex-
actly equal to the correct one y is optimal. The result of the above
maximization is usually calculated using Dynamic Programming and
Is called Viterbi decoding.

Informally the dynamic programming algorithm has to check for each
position ¢ against all remaining positions j € {1,..,n} \ {i} whether a
pair occurs between these positions. When looking at two particular
positions ¢ and ; of the nucleotide sequence we can identify several
possibilities:
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4. Bifurcation

1. i,j pair

2. iunpaired 3. j unpaired

SVM Learning for Structured Output Spaces\

The following method was proposed by (2, ) as a framework for infer-
ring structured output variables such as graphs.

Given the space of input sequences X and the space of secondary
structures ) we define the prediction function f : X — ) to be:

f($) — ngal’yeyF(xay;w) — <w,¢(x,y)>,

which is exactly the output of the Viterbi decoding.
This means we have to find a w which maximizes the score (Note that
our parameters w; can not be interpreted as probabilities anymore!)
of the correct structure.
In optimization lingo this means that we want constraints to hold such
that:

F(zi, yi;w) > Flzg, y;w) +1 Vy € Y\ y;,

which means informally: For each example (z;,v;);c; F should as-
sign highest score to the correct structure y; and a lower score to all
incorrect structures y. The +1 term is a so-called margin we enforce.

RNA Secondary Structure Prediction Using Large Margin Methods

F. De Bonal, C. S. Ong'2, A. Zien!%, G. Ratsch,

fabio@tuebingen.mpg.de

e Generating a constraint for each possible incorrect structure leads
to a number of constraints exponential in the size of the structure.

e We use a technique called column generation to approximate the
solution

This is done by using a modified viterbi which incorporates some loss
terms:

yrgn:)%@i{A@’ yi) + (w, Yz, y)) }

e Above maximization can be efficiently computed via dynamic pro-
gramming

e Resembles “standard” secondary structure calculation except the
additional loss term A(y, y;)

e Modification of textbook Viterbi needed and possible
New Viterbi for structure calculation with loss:
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OUTER(i, j) = max ¢

Why bother ?

els in lots of applications.
e What about RNA secondary structure prediction ?
e Is RNA secondary structure prediction a solved problem ?
e Are probabilistic methods “superior” ?
e Is there a single label in RNA secondary structure prediction ?

e Large-margin methods (SVMs et al) outperform probabilistic mod-

The ¢ term are contributions of the Hamming loss to the Viterbi score.
Removing these terms would lead to a “standard” Viterbi algorithm
as it is implemented in m fold and other packages. Using these ideas
and formulations we can state a convex mathematical programm
which summarizes our requirements:
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where (2 is a regularization function taking care of the complexity of
our solution w. &;.

e Problem: All structures are penalized equally.

e Better: Penalize incorrect structures according to their distance to
the real solution.

e Solution: Structural (Hamming) loss = count number of incorrect
positions.

To take the structural loss into account we can multiply the margin
with the Hamming loss A:
min
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This approach where the margin is multiplied with the Hamming loss
IS Known as margin rescaling.

It can be argued whether this is the right thing to do. Alternative:
Slack-rescaling. Formal difference between these methods: Vi Vy €

V\y; :

(Wi, yi) — (i, y))
(W(x, y:) — (i, y))

|V
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Parameters and Algorithm Details \

We want to solve:

1 C <
131? §Hw\ 2 4 . Z mayyey\,, (C(w, ¥(x, yi) — (2, y))))
’ 1=1

the algorithm for solving this problem can be sketched as follows:

O

Training Set

N

=

Tuning of our method involves:

Training pipeline

New w /

e Selection of adequate features,
e choice of regularization term, and
e choice of an adequate loss function.
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Choice of Features and Regularization \

e The total number of features: 1216.

e Features include hairpin, stem sizes,

e ocurrence of certain motifs, etc.

e Feature dependencies/relations modeled via regularization term

Our quadratic programm has a regularization term w! Pw.
e Naive regularization could be P = | (identity matrix)
e We would like to include biological prior knowledge in P, such as:

— Loop size parameters should be “smooth”,
—no difference between AU and U A.

e Coupling of the parameters: (w; — w;)?

= Proper regularization affects sensitivity / specificity by 2% (in total)
each.

Structural Loss \

What if there is no best structure ?

e Maybe the highest scoring structure is not the correct one but the
second highest scoring.
=- Achieving structural loss of zero is not possible at all.

e It might make sense to allow for certain number of positions to be
iIncorrect during training.
= A could be insensitive to a certain loss range.

We investigated several forms of this e-insensitive loss, namely
e Loss insensitive for 3 positions,
e Loss insensitive for 0.1 - length(z) positions, and

e Loss insensitive for 0.02 - length(x) at least 2 positions.

The 10% insensitive loss performed best for these 3 cases. However
only marginal better than a standard Hamming loss.

Results \

e Data set proposed in (1, ).
e Data set is a subset of the Rfam database (3, )
e Consists of 151 secondary structures

Our method is denoted with RF' P.

Method |Sensitivity Specificity
Contrafold, 0.73 0.66
CG 0.73 0.65
mfold 0.69 0.60
RFP 0.66 0.67

Results were obtained by five-fold cross validation.

Discussion \

As we have seen there is still a question to be adressed: Are proba-
bilistic models superior to large-margin methods in structure predic-
tion ?

The conditional likelihood approach and our large-margin method
have a lot in common:

e Feature set seems pretty fixed and very similar

e Regularization offers a lot of tuning possibilities but is also very
similar and reported to contribute only 2% in total.

e Objective is convex.
e Results reported with using plain Viterbi are very close.
= However there is still a gap in terms of sensitivity and specificity.

Possible explanantions:

e It was reported that maximum expected accuracy outperforms
Viterbi (1, ).

e Rfam consists of consensus structures we instead assume that
there is one correct label

Among the things we tried are:

e Different regularization terms max +2% sensitivity / specificity.
e Slack / Margin rescaling workarounds showed no benefit.

e c-insensitive structural loss function
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