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ABSTRACT

Although considerable attention has been given to neural ranking
architectures recently, far less attention has been paid to the term
representations that are used as input to these models. In this work,
we investigate how two pretrained contextualized language modes
(ELMo and BERT) can be utilized for ad-hoc document ranking.
Through experiments on Trec benchmarks, we find that several ex-
isting neural ranking architectures can benefit from the additional
context provided by contextualized language models. Furthermore,
we propose a joint approach that incorporates BERT’s classification
vector into existing neural models and show that it outperforms
state-of-the-art ad-hoc ranking baselines. We call this joint ap-
proach CEDR (Contextualized Embeddings for Document Ranking).
We also address practical challenges in using these models for rank-
ing, including the maximum input length imposed by BERT and
runtime performance impacts of contextualized language models.1

1 INTRODUCTION

Recently, there has been much work designing ranking architec-
tures to effectively score query-document pairs, with encouraging
results [5, 6, 20]. Meanwhile, pretrained contextualized language
models (such as ELMo [16] and BERT [4]) have shown great promise
on various natural language processing tasks. [4, 16] These models
work by pre-training LSTM-based or transformer-based [19] lan-
guage models on a large corpus, and then by performing minimal
task fine-tuning (akin to ImageNet [3, 23]).

Prior work has suggested that contextual information can be
valuable when ranking. ConvKNRM [1], a recent neural ranking
model, uses a convolutional neural network atop input representa-
tions, allowing the model to learn representations aware of context
in local proximity. In a similar vein, McDonald et al. [12] proposes
an approach that learns a recurrent neural network for term rep-
resentations, thus being able to capture context from the entire
text [12]. These approaches are inherently limited by the variability
found in the training data. Since obtaining massive amounts of high-
quality relevance information can be difficult [24], we hypothesize
that pretrained contextualized term representations will improve
ad-hoc document ranking performance.

We propose incorporating contextualized language models into
existing neural ranking architectures by using multiple similarity
matrices – one for each layer of the language model. We find that,
at the expense of computation costs, this improves ranking perfor-
mance considerably, achieving state-of-the-art performance on the
Robust 2004 and WebTrack 2012–2014 datasets. We also show that
1Accepted to SIGIR 2019, camera ready to follow.

combining each model with BERT’s classification mechanism can
further improve ranking performance. We call this approach CEDR
(Contextualzed Embeddings for Document Ranking). Finally, we
show that the computation costs of contextualized language models
can be dampened by only partially computing the contextualized
language model representations. Although others have successfully
used BERT for passage ranking [14] and question answering [22],
these approaches only make use of BERT’s sentence classification
mechanism. In contrast, we use the term representations.

In summary, our contributions are as follows:
- We are the first to demonstrate that contextualized word repre-
sentations can be successfully incorporated into existing neural
architectures (PACRR [6], KNRM [20], and DRMM [5]), allow-
ing them to leverage contextual information to improve ad-hoc
document ranking.

- We present a new joint model that combines BERT’s classifi-
cation vector with existing neural ranking architectures (using
BERT’s token vectors) to get the benefits from both approaches.

- We demonstrate an approach for addressing the performance
impact of computing contextualized language models by only
partially computing the language model representations.

- Our code is available for replication and future work.2

2 METHODOLOGY

2.1 Notation

In ad-hoc ranking, documents are ranked for a given query accord-
ing to a relevance estimate. Let Q be a query consisting of query
terms {q1,q2, ...,q |Q |}, and letD be a document consisting of terms
{d1,d2, ...,d |D |}. Let ranker (Q,D) ∈ R be a function that returns
a real-valued relevance estimate for the document to the query.
Neural relevance ranking architectures generally use a similarity
matrix as input S ∈ R |Q |× |D | , where each cell represents a similar-
ity score between the query and document: Si, j = sim(qi ,dj ). These
similarity values are usually the cosine similarity score between
the word vectors of each term in the query and document.

2.2 Contextualized similarity tensors

Pretrained contextual language representations (such as those from
ELMo [16] and BERT [4]) are context sensitive; in contrast to more
conventional pretrained word vectors (e.g., GloVe [15]) that gener-
ate a single word representation for each word in the vocabulary,
these models generate a representation of each word based on its

2https://github.com/Georgetown-IR-Lab/cedr
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context in the sentence. For example, the contextualized representa-
tion of word bank would be different in bank deposit and river bank,
while a pretrained word embedding model would always result in a
single representation for this term. Given that these representations
capture contextual information in the language, we investigate how
these models can also benefit general neural ranking models.

Although contextualized language models vary in particular
architectures, they typically consist of multiple stacked layers of
representations (e.g., recurrent or transformer outputs). The intu-
ition is that the deeper the layer, the more context is incorporated.
To allow neural ranking models to learn which levels are most im-
portant, we choose to incorporate the output of all layers into the
model, resulting in a three-dimensional similarity representation.
Thus, we expand the similarity representation (conditioned on the
query and document context) to SQ,D ∈ RL×|Q |× |D | where L is
the number of layers in the model. This is akin to the channel in
image processing. Let contextQ,D(t , l) ∈ RD return the contextual-
ized language model representation for token t in layer l , given the
context of Q and D. Given these definitions, let the contextualized
representation be:

SQ,D[l ,q,d] = cos(contextQ,D(q, l), contextQ,D(d, l)) (1)

for each query term q ∈ Q , document term d ∈ D, and layer
l ∈ [1..L]. Note that when q and d are identical, they will likely not
receive a similarity score of 1, as their representation depends on
the surrounding context of the query and document. The layer di-
mension can be easily incorporated into existing neural models. For
instance, soft n-gram based models, like PACRR, can perform convo-
lutions with multiple input channels, and counting-based methods
(like KNRM and DRMM) can count each channel individually.

2.3 Joint BERT approach

Unlike ELMo, the BERT model encodes multiple text segments
simultaneously, allowing it to make judgments about text pairs. It
accomplishes this by encoding two meta-tokens ([SEP] and [CLS])
and using text segment embeddings (Segment A and Segment B).
The [SEP] token separates the tokens of each segment, and the
[CLS] token is used for making judgments about the text pairs.
During training, [CLS] is used for predictingwhether two sentences
are sequential – that is, whether Segment A immediately precedes
Segment B in the original text. The representation of this token
can be fine-tuned for other tasks involving multiple text segments,
including natural language entailment and question answering [22].

We explore incorporating the [CLS] token’s representation into
existing neural ranking models as a joint approach. This allows
neural rankers to benefit from deep semantic information from
BERT in addition to individual contextualized token matches. For
models using dense combination (e.g., PACRR, KNRM), we propose
concatenating the [CLS] vector to the model’s signals (e.g., n-gram
or kernel scores). For models that sum query term scores (e.g.,
DRMM), we include the [CLS] vector in the dense calculation of
each term score (i.e., during combination of bin scores).

We hypothesize that this approach will work because the BERT
classificationmechanism and existing rankers have different strengths.
The BERT classification benefits from deep semantic understanding
based on next-sentence prediction, whereas ranking architectures

traditionally assume query term repetition indicates higher rele-
vance. In reality, both are likely important for relevance ranking.

3 EXPERIMENT

3.1 Experimental setup

Datasets. We evaluate our approaches using two datasets: Trec
Robust 2004 and WebTrack 2012–14. For Robust, we use the 5 folds
from [7] with training and validation sets rotating in a round-robin
fashion. For WebTrack, we test on 2012–14, training each year indi-
vidually on all remaining years (including 2009–10), and validating
on 2011. (For instance, when testing on WebTrack 2014, we train
on 2009–10 and 2012–13, and validate on 2011.) Robust uses Trec
discs 4 and 53, WebTrack 2009–12 use ClueWeb094, and WebTrack
2013–14 uses ClueWeb125 as document collections. We evaluate
the results using the official metrics for each dataset: nDCG@20 /
P@20 for Robust04, and nDCG@20 / ERR@20 for WebTrack.

Models. Rather than building new models, in this work we use
existing model architectures to test the effectiveness of various
input representations. We evaluate our methods on three neural rel-
evance matching methods: PACRR [6], KNRM [20], and DRMM [5].
Relevance matching models have generally shown to be more ef-
fective than semantic matching models, while not requiring mas-
sive amounts of behavioral data (e.g., query logs). For PACRR, we
increase kmax = 30 to allow for more term matches and better
back-propagation to the language model.

Contextualized languagemodels.Weuse the pretrained ELMo
(Original, 5.5B) and BERT (BERT-Base, Uncased) language models
in our experiments. For ELMo, the query and document are en-
coded separately. Since BERT enables encoding multiple texts at
the same time using Segment A and Segment B embeddings, we
encode the query (Segment A) and document (Segment B) simultane-
ously. Because the pretrained BERT model is limited to 512 tokens,
longer documents are split such that document segments are split
as evenly as possible, while not exceeding the limit when combined
with the query and control tokens. (Note that the query is always
included in full.) BERT allows for simple classification fine-tuning,
so we also experiment with a variant that is first fine-tuned on the
same data using the Vanilla BERT classifier (see baseline below),
and further fine-tuned when training the ranker itself.

Training and optimization. We trained all models using pair-
wise loss in line with prior work that has found it effective [2]. We
train each model for 100 epochs, each with 32 batches of 16 training
pairs. Gradient accumulation is employed when the batch size of
16 is too large to fit on a single GPU. We use the validation metric
P@20 on Robust and nDCG@20 on WebTrack to select the best-
performing model on the validation set. At inference time, the top
100 documents from BM25 are re-ranked. The neural re-ranking ap-
proach is more practical than ranking all qrels, as demonstrated by
the fact that major search engines employ a pipeline approach [18].
All models are trained using Adam [8] with a learning rate of 0.001

3520k documents; https://trec.nist.gov/data_disks.html
41B web pages, https://lemurproject.org/clueweb09.php/
5733M web pages, https://lemurproject.org/clueweb12/

https://trec.nist.gov/data_disks.html
https://lemurproject.org/clueweb09.php/
https://lemurproject.org/clueweb12/
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with BERT layers are trained at a rate of 2e-5.6 Following prior
work [6], all documents are truncated to the first 800 tokens.

Baselines.We compare contextualized language model perfor-
mance to the following strong baselines:
- BM25 and SDM [13], as implemented by Anserini [21]. Fine-
tuning is conducted on the test set, representing the maximum
performance of the model when using static parameters over
each dataset.7 We do not report SDM performance onWebTrack
due to its high cost of retrieval on the large ClueWeb collections.

- Vanilla BERT ranker. We fine-tune a pretrained BERT model
(BERT-Base, Uncased) with a linear combination layer stacked
atop the classifier [CLS] token. This network is optimized the
same way our models are, using pairwise loss and the Adam
optimizer. We use the approach described above to handle doc-
uments longer than the capacity of the network, and average
the [CLS] vectors from each split.

- TREC-best: We also compare to the top-performing automatic
topic-only TREC submission for each track in terms of nDCG@20.
We use uogTrA44xu for WT12 ([10], a learning-to-rank based
run), clustmrfaf for WT13 ([17], a clustering-based approach),
UDInfoWebAX for WT14 ([11], an entity expansion approach),
and pircRB04t3 for Robust04 ([9], a query expansion approach
using Google search results).8

- ConvKNRM [1], our implementation with the same training
pipeline as the evaluation models.

- Each evaluation model when using GloVe [15] vectors.9

3.2 Results & analysis

Table 1 shows the ranking performance using our approach. We
first note that the Vanilla BERT method significantly outperforms
the tuned BM25 and ConvKNRM baselines on its own. This is en-
couraging, and shows the matching power of the Vanilla BERT
model. When using contextualized language term representations
without tuning, PACRR and DRMM performance is comparable
to that of GloVe, while KNRM sees a modest boost. This might be
due to KNRM’s ability to train its matching kernels, tuning to spe-
cific similarity ranges produced by the models. (In contrast, DRMM
uses fixed buckets, and PACRR uses maximum convolutional filter
strength, both of which are less adaptable to new similarity score
ranges.) When fine-tuning BERT, all three models see a signifi-
cant boost in performance compared to the GloVe-trained version.
PACRR and KNRM see comparable or higher performance than
the Vanilla BERT model. This indicates that fine-tuning contex-
tualized language models for ranking is important. This boost is
further enhanced when using the CEDR (joint) approach, with
the CEDR models always outperforming Vanilla BERT, and nearly
always outperforming the non-joint versions. This suggests that
term counting methods (such as KNRM and DRMM) are comple-
mentary to BERT’s classification mechanism. Similar trends for
both Robust04 and WebTrack 2012–14 indicate that our approach
is generally applicable to ad-hoc document retrieval tasks.

6Pilot experiments showed that a learning rate of 2e-5 was more effective on this task
than the other recommended values of 5e-5 and 3e-5 by [4].
7k1 in 0.1–4 (by 0.1), b in 0.1–1 (by 0.1), SDM weights in 0–1 (by 0.05).
8We acknowledge limitations of the TREC experimentation environment.
9glove.42B.300d, https://nlp.stanford.edu/projects/glove/
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Figure 1: Example similarity matrix excerpts from GloVe,

ELMo, and BERT for relevant and non-relevant document

for Robust query 435. Lighter values indicate higher simi-

larity.

(a) (b)

Figure 2: (a) Processing rates by document length for GloVe,

ELMo, and BERT using PACRR. (b) Processing rate and dev

performance of PACRRwhen using a subset of BERT layers.

To gain a better understanding of how the contextual language
model helps enhance the input representation, we plot example
similarity matrices based on GloVe word embeddings, ELMo rep-
resentations (layer 2), and fine-tuned BERT representations (layer
5). In these examples, two senses of the word curb (restrain, and
edge of street) are encountered. The first encounter is relevant to
the query, as it’s discussing attempts to restrain population growth.
The second is not relevant, as it discusses street construction. Both
the ELMo and BERT models give a higher similarity score to the
correct sense of the term for the query. This ability to distinguish
different senses of terms is a strength of contextualized language
models, and likely can explain some of the performance gains of
the non-joint models.

Although the contextualized language models yield ranking
performance improvements, they come with a considerable cost
at inference time—a practical issue ignored in previous ranking
work [14, 21]. To demonstrate this, in Figure 2(a) we plot the pro-
cessing rate of GloVe, ELMo, and BERT.10 Note that the processing
rate when using static GloVe vectors is orders of magnitude faster
than when using the contextualized representations, with BERT
outperforming ELMo because it uses the more efficient Transformer
instead of an RNN. In an attempt to improve the running time of
these systems, we propose limiting the number of layers processed
by the model. The reasoning behind this approach is that the lower
the layer, the more abstract the matching becomes, perhaps be-
coming less useful for ranking. We show the runtime and ranking
performance of PACRR when only processing a certain number
of layers in Figure 2(b). It shows that most of the performance
10Running time measured on commodity hardware: single GeForce GTX 1080 Ti GPU,
pairs per-processed and in memory.

https://nlp.stanford.edu/projects/glove/
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Table 1: Ranking performance on Trec Robust04 and WebTrack 2012–14. Significant improvements compared to [B]M25, [C]onvKNRM,

[V]anilla BERT, the model trained with [G]lOve embeddings, and the corresponding [N]on-CEDR system are indicated in brackets (paired

t-test, p < 0.05).

Robust04 WebTrack 2012–14

Ranker Input Rep. P@20 nDCG@20 nDCG@20 ERR@20

BM25 n/a 0.3123 0.4140 0.1970 0.1472
SDM [13] n/a 0.3749 0.4353 - -
TREC-Best n/a 0.4386 0.5030 0.2855 0.2530

ConvKNRM GloVe 0.3349 0.3806 [B] 0.2547 [B] 0.1833
Vanilla BERT BERT (fine-tuned) [BC] 0.4042 [BC] 0.4541 [BC] 0.2895 [BC] 0.2218

PACRR GloVe 0.3535 [C] 0.4043 0.2101 0.1608
PACRR ELMo [C] 0.3554 [C] 0.4101 [BG] 0.2324 [BG] 0.1885
PACRR BERT [C] 0.3650 [C] 0.4200 0.2225 0.1817
PACRR BERT (fine-tuned) [BCVG] 0.4492 [BCVG] 0.5135 [BCG] 0.3080 [BCG] 0.2334
CEDR-PACRR BERT (fine-tuned) [BCVG] 0.4559 [BCVG] 0.5150 [BCVGN] 0.3373 [BCVGN] 0.2656

KNRM GloVe 0.3408 0.3871 [B] 0.2448 0.1755
KNRM ELMo [C] 0.3517 [CG] 0.4089 0.2227 0.1689
KNRM BERT [BCG] 0.3817 [CG] 0.4318 [B] 0.2525 [B] 0.1944
KNRM BERT (fine-tuned) [BCG] 0.4221 [BCVG] 0.4858 [BCVG] 0.3287 [BCVG] 0.2557
CEDR-KNRM BERT (fine-tuned) [BCVGN] 0.4667 [BCVGN] 0.5381 [BCVG] 0.3469 [BCVG] 0.2772

DRMM GloVe 0.2892 0.3040 0.2215 0.1603
DRMM ELMo 0.2867 0.3137 [B] 0.2271 0.1762
DRMM BERT 0.2878 0.3194 [BG] 0.2459 [BG] 0.1977
DRMM BERT (fine-tuned) [CG] 0.3641 [CG] 0.4135 [BG] 0.2598 [B] 0.1856
CEDR-DRMM BERT (fine-tuned) [BCVGN] 0.4587 [BCVGN] 0.5259 [BCVGN] 0.3497 [BCVGN] 0.2621

benefits can be achieved by only running BERT through layer 5;
the performance is comparable to running the full BERT model,
while running more than twice as fast. While we acknowledge that
our research code is not completely optimized, we argue that this
approach is generally applicable because the processing of these
language model layers are necessarily sequential, query-dependent,
and dominate the processing time of the entire model. We rec-
ommend this approach for future work as a simple and practical
time-saving measure.

4 CONCLUSION

We demonstrated that state-of-the-art re-ranking performance can
be achieved on two datasets by using contextualized word rep-
resentations with existing neural ranking architectures. We also
proposed a joint ranking model using approach using BERT’s clas-
sification token, further boosting performance by combining the
strengths of each model, and suggested an approach for imporoving
runtime performance by limiting the number of layers processed.
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