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Dynamische Polarisationskontrolle in der Röntgenquantenoptik

Wann immer mit polarisiertem Licht gearbeitet wird, können Situationen auf-

treten, bei denen eine andere als die gegebene Polarisation erforderlich ist. Im

optischen Bereich existieren Wellenplättchen, die eine Konvertierung von Pola-

risationen ermöglichen. Das Funktionsprinzip solcher Wellenplättchen basiert

auf relativen Unterschieden von Brechungsindizes. Weil es für Röntgenstrahlung

nicht einfach ist, ausreichend unterschiedliche Brechungsindizes zu erhalten,

ist es schwierig dieses Prinzip auf den Röntgenbereich zu übertragen.

In dieser Arbeit schlagen wir einen neuen Ansatz vor, um die benötigten

Phasenshifts zu erhalten, unter Verwendung von Kernstreuung. Das präsentierte

Setup hat den Vorteil, dass die Polarizationen dynamisch kontrolliert werden

können.

Wir diskutieren zunächst das Funktionsprinzip unseres neuen Ansatzes. Da-

bei gehen wir neben analytischen Erklärungen auch auf numerische Simulatio-

nen und Optimierungen mit dem python-Paket pynuss ein. Weitere Anwen-

dungsmöglichkeiten unseres Ansatzes wie ein zirkulärer Polarisationsfilter, λ
2
-

Plättchen, schnelle Lichtschalter und präzise Messungen von Verschiebungen

werden vorgestellt. Abschließend wird unser Setup mit existierenden optischen

Elementen verglichen.

Dynamical polarisation control in X-ray quantum optics

Whenever working with polarized light, there might be situations, in which

another than the given polarization is required. In the optical regime, there

exist wave plates, which are able to convert polarizations. The working prin-

ciple of such wave plates is based on relative differences of refractive indices.

Since it is hard to achieve sufficiently different refractive indices for X-rays, it

is difficult to mimic this approach in the X-ray regime.

In this thesis, we propose a new approach to produce the necessary phase

shift in the X-ray regime, by employing nuclear forward scattering. The sug-

gested setup has the advantage, that the polarization can be dynamically

controlled.

First, we discuss the working principle of our new approach. This includes

analytical explanations as well as numerical simulations and optimization with

the python-package pynuss. Subsequently, further applications such as circu-

lar polarization filters, λ
2
-wave plates, fast light switches and precise displace-

ment measurements will be presented. We conclude this thesis by a comparison

with existing optical elements.
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1. Introduction

Many experiments working with X-rays use synchrotron radiation (e.g. [1]). Unfortu-

nately, these sources only deliver light with a fixed polarization. In some cases, it might

be interesting to change the polarization in order to do other experiments. In the opti-

cal range, wave plates are a well established technique to convert polarizations into each

other. A crystal with two different diffraction indices in different directions is used in

order to give a relative phase shift between the two directions. As will be explained in

chapter 2, a phase shift of π
2

converts linear polarization into circular one and vice versa.

Unfortunately, in the X-ray domain all refractive indices are close to 1 ([2]). Thus, it is

much more difficult to achieve the necessary phase shift. Nevertheless, it was possible to

build a λ
4
-wave plate for X-rays (see [3]). In their approach, the same principle as in the

optical regime is used. In a diamond single-crystal it was possible to achieve a sufficient

difference in the two diffraction indices.

In this thesis, a completely new technique to transform polarizations and dynamically

control them will be introduced. The idea is based on the work of P. Reiser, K.P. Heeg

et. al. ([1], [4] and [5]) and uses nuclear forward scattering with synchrotron radiation.

Shifting a sample by parts of the resonant wavelength right after its excitation makes it

possible to dynamically modify the real part of the refractive index while the imaginary

part remains unaffected. This way, relative phase shifts between the scattered and unscat-

tered synchrotron pulse of order π can be achieved. While without motion, the scattered

and unscattered light would interfere destructively, by applying a shift of λ
2
, where λ is

the resonant wave length, the scattered light obtains a phase shift of π resulting in con-

structive interference. With this technique, the intensity at the resonant wave length can

be increased. This entire process will be explained in more detail in chapter 3.

The new idea is, to use this formalism to apply a phase shift of π
4
. As we will explain

in section 3.3, this enables us to transform linearly into circularly polarized light and

vice versa. We will discuss this transformation, that has a similar result like a λ
4
-wave

plate, as a first example of adaptive optics realized by motion in detail in chapter 4.

Since synchrotrons commonly deliver linearly polarized light (in our experiments), let

us focus on the conversion of linear into circular polarization. Nevertheless, the entire

calculations also apply to the transformation of circular into linear polarization. By

controlling the motion of the sample, the phase shift and consequently the polarization

can be dynamically controlled in frequency space. In principle, arbitrary phase shifts can

1



1. Introduction

be used. This makes it possible to construct elements which have similar functions as λ
2
-

wave plates and polarization filters. Also λ
2
-wave plates can be used for a fast light switch.

Besides, the setup could be used to do highly sensitive measurements of displacement.

We will discuss these ideas in section 4.5.

In the future, we will try to better understand the time spectra in order to achieve more

control about the time behavior of the polarizations. Hence, our idea could be further

developed into an element, which has the same functionality as a Pockels cell.

The new technique was originally developed for the X-ray regime. Nevertheless, it could

also function with electronic instead of nuclear transitions and a line splitting due to the

Zeemann-effect. Hence, the proposed setup could also work in the optical range. Despite

all discussed optical elements being available in the optical range, there could be some

new effects, e.g. the sensing, that might also be interesting to have in this regime.

While presenting the theoretical descriptions and investigations, we always wish to keep

the experimental possibilities in mind.

2



2. Theoretical basics

In this chapter, the theoretical basics to do calculations with polarizations will be intro-

duced. Furthermore, the function of a ordinary λ
4
- and λ

2
-wave plate will be explained.

Particular focus is given to investigate the influence of the effect of different phase shifts

and angles at which the wave plates are positioned.

2.1. General definitions

We need a general description for polarizations of electromagnetic-waves and how to

modify them. Besides, we want to be able to assign a scalar value to a given polarization.

That way, we can characterize it by a single value, which makes it easier to compare the

result for varying parameters.

2.1.1. Jones vectors and matrices

To describe the optical setup, we will use the so-called Jones vectors and matrices. All

equations in this section are adapted from [6, chap. 9].

Considering a light beam in z-direction, any electromagnetic wave can be described as

~E(z, t) = ~J · ei·(kz−ωt). (2.1)

The Jones vector ~J represents the polarization in the xy-plane, the wavenumber k and

the frequency ω. Since there is cannot be any polarization in the direction of propagation,

we can focus on the xy-plane. For linear (π0) and perpendicular linearly (π0,⊥)as well as

circularly right (σ+) and left (σ−) polarized light the Jones vectors are:

π0 : ~J0 =

(
1

0

)
, π0,⊥ : ~J0,⊥ =

(
0

1

)
, σ± : ~J± =

1√
2

(
1

±i

)
. (2.2)

Whenever the direction of the linear polarization does not matter, we will call it just π.

Because of (−1)2 = 12 is does not matter whether we take the polarization vector in its

original or opposite direction. We allow the opposite vector as an equivalent description

~J ≡ − ~J. (2.3)

3



2. Theoretical basics

Besides describing the electromagnetic wave, we also have to describe the optical elements.

A phase retarder is represented by

Φ(φx, φy) =

(
exp(iφx) 0

0 exp(iφy)

)
. (2.4)

It provides a phase shift φx in x-direction and φy in y-direction. A circular polarization

filter can be formulated as

Σ± =
1

2

(
1 ±i
∓i 1

)
. (2.5)

It filters out σ± polarized light. If an optical element M0 is rotated by the angle α, it can

be written as

M(α) = R(−α)M0R(α), (2.6)

with the rotation matrix

R(α) =

(
cos(α) sin(α)

− sin(α) cos(α)

)
. (2.7)

2.1.2. Intensity and purity

As we focus on the electric field, the intensity I is given by

I(z, t) =
∣∣∣ ~E(z, t)

∣∣∣2 =
∣∣∣ ~J∣∣∣2 · (ei(kz−ωt))2︸ ︷︷ ︸

I0

, (2.8)

where I0 is the intensity of the electric field before manipulating the polarizations.

To make comparisons between different configurations especially in the numerical anal-

ysis easier, we require a scalar measure for the kind of polarization, i.e. σ+, π or σ−.

Hence, we define the purity

P =
I+ − I−
I+ + I−

, (2.9)

with I± being the intensities that would be measured after the application of a σ± polar-

ization filter like eq. (2.5). With I± = I0 and I∓ = 0 for σ± as well as I+ = I− = I0
2

for

π, the purity for circular and linear polarization can be calculated to be

σ− : P = −1 , π0/π0,⊥ : P = 0 , σ+ : P = +1 . (2.10)

It can be easily seen, that P ∈ [−1, ]. All other values indicate a mixture of these special

cases. It can be directly seen, that with this measure we cannot distinguish between the

two types of linear polarization. As we focus on linear polarization being converted into

circular one, this is not a problem for our analysis. If it would be important to distinguish

between the two linear polarizations, instead of the intensities after circular polarization

4



2.2. Standard λ
4
- and λ

2
-wave plate

slow axis

fast axis

~JLab

~Jfast

~Jslow

Figure 2.1.: In this figure the eigenbasis of the wave plate is shown (black). In addition,

an arbitrary polarization vector of incoming light ~JLab is displayed (red) as
well as its projections onto the eigenvectors (cyan).

filters, the intensities after two perpendicular linear polarization filters could be employed

to define purity. In this case, the distinguishability between the two circular polarization

filters would be lost.

2.2. Standard λ
4
- and λ

2
-wave plate

Standard λ
4
- and λ

2
-wave plates use crystals that have different refractive indices in par-

ticular directions. Along the axis with the lower refractive index, the speed of light in the

medium is higher resulting in a relative phase shift between the light beams along the two

axis. If this phase shift is applied properly, linearly polarized light will be transformed

into circularly polarized light.

2.2.1. Functionality

First, as it can be seen in eq. (2.8), for the intensity absolute phases do not matter. The

relative phase shift due to different refractive indices is given by (see [7, chap. 8])

∆φ =
d

λ
· 2π · (nslow − nfast) , (2.11)

with the thickness of the wave plate d, the wavelength of the light to be converted λ and

the refractive indices nfast and nslow. It can be most easily described in the eigenbasis

of the wave plate. A schematic can be seen in fig. 2.1. Here, we employ the axes with

different refractive indices as a coordinate system. In this eigenbasis of the wave plate, the

Jones-vector ~JLab of an incoming polarization in the laboratory system can be uniquely

decomposed
~JLab = ~Jfast + ~Jslow. (2.12)

5



2. Theoretical basics

Applying this decomposition, only one direction receives the relative phase shift. Hence,

eq. (2.4) becomes

ΦEigen(∆φ) =

(
1 0

0 exp(i∆φ)

)
, (2.13)

in the eigenbasis. To transform the matrices back into the laboratory system, we apply

eq. (2.6) and thereby rotate the wave plate by an angle of α. Here, α is the angle between

the x-axis of the laboratory system and the slow axis of the eigenbasis of the wave plate.

We can then formulate the Jones matrix of a wave plate causing a phase shift ∆φ and

being rotated by an angle of α relative to the laboratory system

ΦLab(∆φ, α) =

(
cos2(α) + exp(i∆φ) sin2(α) cos(α) sin(α) [1− exp(i∆φ)]

cos(α) sin(α) [1− exp(i∆φ)] exp(i∆φ) cos2(α) + sin2(α)

)
. (2.14)

in the laboratory system.

The polarization after such a wave plate is then given by

~J ′ = ΦLab(∆φ, α) · ~J, (2.15)

where ~J is the incoming polarization. To implement eq. (2.14), we first consider two

special cases:
λ

4
-wave plate: ∆φ =

π

2
, α =

π

4
,

λ

2
-wave plate: ∆φ = π, α =

π

4
.

(2.16)

General values for α and ∆φ will be discussed in the next subsection. In the two cases

eq. (2.15) becomes for the separate polarizations

λ

4
: ~J0

′
=

1

2

(
1 + i

1− i

)
= R

(
−π

4

)
~J−,

~J ′0,⊥ =
1

2

(
1− i
1 + i

)
= R

(
−π

4

)
~J+,

~J+

′
=

1√
2

(
1 + i

0

)
= exp

(π
4
i
)
~J0,

~J−
′
=

1√
2

(
0

1− i

)
= exp

(
−π

4
i
)
~J0,⊥.

(2.17)
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2.2. Standard λ
4
- and λ

2
-wave plate

Incoming polarization: π0 π0,⊥ σ+ σ−

Polarization after λ
4
-wave plate: σ− σ+ π0,⊥ π0

Polarization after λ
2
-wave plate: π0,⊥ π0 σ− σ+

Table 2.1.: The effect of the two wave plates for α = π
4

on different polarizations.

Similarly:
λ

2
: ~J ′0 = ~J0,⊥,

(
arbitrary α : ~J ′0 = R(−2α) ~J0

)
~J ′0,⊥ = ~J0,

(
arbitrary α : ~J0,⊥

′
= R(−2α) ~J0,⊥

)
~J ′+ =

1√
2

(
i

1

)
= ~J−,

~J ′− =
1√
2

(
−i
1

)
= ~J+.

(2.18)

Later, we will interested in the intensity and not into the electromagnetic field. In this

case the global phase can be ignored. Hence, a λ
4
-wave plate interchanges circularly and

linearly polarized light while the λ
2
-wave plate changes handedness for circularly polarized

light and rotates linearly polarized light by 2α. A summary of the effects of both types

of wave plates on the different polarization can be found in table 2.1.

2.2.2. Effect of angle α and phase shift ∆φ

As said before, we will now have a closer look on arbitrary angles α and phase shifts

∆φ. The result of eq. (2.15) with arbitrary angles α and phase shifts ∆φ in eq. (2.14)

on ~J0 = (1, 0)T is calculated. Then the purity (see eq. (2.9)) is calculated and shown

in fig. 2.2 color-coded. Yellow indicates a polarization close to σ+, blue close to σ− and

green close to π. We see that we have a periodicity of ∆α = π, which we expect because

of eq. (2.3). We also observe a periodicity in the phase shift of π, which we would also

expect intuitively due to exp(iφ) = exp(i (φ+ 2π)), which results in a positive or negative

sign in eq. (2.13). For α = −n
2
, n ∈ Z we cannot achieve any conversion of polarization at

all. For n · π, this can be easily seen because eq. (2.14) reduces to eq. (2.13), that has no

effect on π0. In the
(

1
2

+ n
)
π case, eq. (2.13) reduces to exp(i∆φ) · Φeigen(−∆φ). With

absolute phases being negligible, this also has no effect on π0. For all the other angles, the

purity depends on the phase shift. The already discussed configurations (see eq. (2.17))

α = ±π
4

and ∆φ = ±π
2

7



2. Theoretical basics

Figure 2.2.: In this figure the dependency of the purity on the angle α and phase shift ∆φ
is shown. The calculation are done in the Jones formalism using the matrices
introduced in section 2.1.1.

lead to the a purity of P = ±1. But also the configurations with ±π
2

added onto

α as well as the ones with ±π added onto ∆φ deliver P = ±1. This is because of

sin(α) = − sin(α ± π
2
) and cos(α) = − cos(α ± π

2
) just giving signs in eq. (2.6) respec-

tively because of exp (iφ) = − exp (i (φ± π)) in eq. (2.13). This is also the explanation

for the purity flipping sign when displacement or angle flips sign. For ∆φ = n · π we

get the λ
2
-configuration (see eq. (2.18)), that only rotates the angle of linear polarization.

Therefore, this results P = 0 as we would expect for linearly polarized light.

2.3. Combination of two wave plates

2.3.1. Description in Jones formalism

Later, we wish to apply a phase shift of π
2

to convert linear into circular polarizations

and vice versa and a phase shift of π to increase the intensity. As we have learned in

eq. (2.16), these are the cases of a λ
4
- respectively a λ

2
-wave plate. Note that later in our

approach, the phase shift has to be dynamical in contrast to the static one of an ordinary

wave plate. Nevertheless, let us calculate the combination of two wave plates in the static

case. In section 4.2 we will compare this to our dynamical approach.

Successive application of wave plates, corresponds to multiplication of Jones matrices

~J ′ = Φ(∆φ2, α2)Φ(∆φ1, α1) ~J. (2.19)

As it will be explained in section 3.3, the transformation works with a phase shift of π
2
, we

8



2.3. Combination of two wave plates

will associate the transformation (T) with the λ
4
-wave plate. In the same way, we identify

the intensity increase (I) with the λ
2
-wave plate as both work with a phase shift of π. At

first, we now have two different possibilities to arrange the two wave plates:

Config IT: ∆φ1 = π and ∆φ2 =
π

2
, α1 = −α2 =

π

4
,

Config TI: ∆φ1 =
π

2
and ∆φ2 = π, α1 = −α2 =

π

4
.

(2.20)

In the first configuration, we could choose the first angle α1 in an arbitrary way and

ensure that the second one has an angle of π
4

with the rotated polarization. In the second

configuration, the first angle needs to be chosen to be α1 = π
4

+ n · π
2
, n ∈ Z as we have

seen in eq. (2.20). Then the second angle can be chosen in an arbitrary way. We choose

α1 = −α2, so that for the λ
4
-wave plate the angle is different in the two configurations.

This will make it easier to detect differences of the two configurations as in one case

the transformation takes place with an angle α1 (TI) and in the other case with −α1

(IT), which results in a relative sign. For the λ
2
-wave plate there is no distinction among

α1 = α2 and α1 = −α2. This is because we are merely interested in whether we have

linearly polarized light or not and not interested in getting ~J or − ~J .

In principle, also arbitrary angles αi and phase shifts ∆φi could be chosen. However, we

will focus on the two configurations given above because the setup is easier to understand,

if both wave plates have their own role. With other phase shifts or angles, that do not

have the periodicity shown in fig. 2.2 (i.e. add π
2

on αi or ∆φi), the roles would be mixed

up and it would be much harder to intuitively understand what happens.

Using eq. (2.19) for the parameters in eq. (2.20) we get the following Jones vectors

σ+ : ~J ′IT = exp

(
−i3π

4

)
~J0,⊥ ≡ ~J0,⊥ and ~J ′TI = exp

(
i
3π

4

)
~J0 ≡ ~J0,

σ− : ~J ′IT = exp

(
i
3π

4

)
~J0 ≡ ~J0 and ~J ′TI = exp

(
i
π

4

)
~J0,⊥ ≡ ~J0,⊥,

π0 : ~J ′IT = −R
(π

4

)
~J+ ≡ ~J+ and ~J ′TI = −R

(
−π

4

)
~J− ≡ ~J−,

π0,⊥ : ~J ′IT = −R
(π

4

)
~J− ≡ ~J− and ~J ′TI = −R

(
−π

4

)
~J+ ≡ ~J+.

(2.21)

Because of absolute phases and the rotation of the circular polarization vectors ~J ′± having

no physical meaning, we can ignore them. The differences of the two configurations are

due to the choice of the angles α1 and α2. Comparing these results with table 2.1, we see

that even with the additional λ
2
-wave plate, the results look similar to those of a single

λ
4
-wave plate, despite some additional minus-signs in TI. They are caused by the λ

2
-wave

plate and cancel with the minus-sign of α2 for IT.

In this section, we have seen, that an additional λ
2
-wave plate with a phase shift of

∆φ = π does not harm the transformation of linear into circular polarization.

9



2. Theoretical basics

Figure 2.3.: In this figure the purity is shown for different phase shifts. The angles are
chosen to be α1 = π

4
and α2 = −π

4
.

2.3.2. Effect of different phase shifts ∆φ1

To understand the effect of different phase shifts φ1 and φ2, we choose the configuration

in eq. (2.20) and vary the phase shifts. As the two configurations only differ in phase

shifts, it is sufficient to consider them as one configuration. Similar to the analysis of one

sample, eq. (2.14) is used to calculate the polarization behind the setup with eq. (2.19)

for varying ∆φi. Then the purity can be calculated and is displayed in fig. 2.3. Yellow

areas indicate σ+-, blue areas σ−- and green areas π-polarization. It can be seen, that

there is a periodicity of ∆φi = 2π for both phase shifts in the purity values as discussed

in case of one sample (see fig. 2.2). If we would exchange the two phase shifts φ1 and φ2,

i. e. switching the axis in fig. 2.3, the purity would flip its sign. This is due to our choice

of different angles α1 = −α2 = −π
4
, which gives an additional minus-sign in the second

component ofeq. (2.14). Furthermore, we see that for every ∆φi-step of π
2

the purity

changes sign. This due to exp (iφ) = − exp
(
i
(
φ+ π

2

))
, which leads to an additional

minus sign in eq. (2.13).

2.3.3. Effect of different angles αi

We can now explore the effect of different angles αi for both of the two configurations

in eq. (2.20). Again, eq. (2.14) and eq. (2.19) were used to calculate the polarization for

varying angles α1 and α2. The resulting purity is shown in fig. 2.4. As before, yellow

indicates σ+-, blue σ−- and green π-polarization. We can understand the lines of high

purity:

10



2.3. Combination of two wave plates

Figure 2.4.: The dependency of purity on the angles α1 and α2 of the two samples is
shown. On the left side it is ∆φ1 = π

2
and ∆φ2 = π (TI), on the right side

∆φ1 = π and ∆φ2 = π
2

(IT).

• TI:

In this case, the λ
4
-wave plate is in the first position. It transforms linear polarization

into circular one. The angles of the subsequent λ
2
-wave plate can be positioned at an

arbitrary angle because a λ
2
-wave plate changes the kind (σ±) of circular polarization

(see table 2.1) .

• IT:

In this configuration, we have a λ
2
-wave plate in first position that rotates the linear

polarization by 2α (see eq. (2.18)). Therefore, the λ
4
-wave plate in second position

has to have an angle of π
4

to the rotated linear polarization in order to fully transform

the entering linear polarization into circular polarization. Hence, we expect high

purity for α2 = 2α1 + (2n+1)π
4

, n ∈ Z, which results in tilted lines. For all other

angles, this setup of wave plates does merely perform incomplete transformation.

11



3. Quantum optical description of the

new approach

After investigating the functionality and effects of angles and phase shifts of a standard
λ
4
- and λ

2
-wave plate, in this chapter we will introduce our new approach. We start

by looking at nuclear transitions of 57Fe. Subsequently, we will briefly explain how the

intensity increase works. We conclude this exposition by elaborating our new approach

for polarization transformation.

3.1. Nuclear transitions of 57Fe

As we want to use 57Fe in our setup, we will discuss nuclear resonances on the example of

this atom. This iron-isotope is a Mössbauer-active element. These kinds of element have

a nearly recoil-free, resonant absorption and emission of γ-rays making energy resolution

on a neV-scale possible (see [8]).

In fig. 3.1 the level scheme of 57Fe can be seen. In absence of a magnetic field, this atom

can be regarded as a simple two-level-system with transition frequency ω0 = 14.4 keV and

line width γ = 4.7 neV (see [5]). Besides, the nuclear spins are Ig = 1
2

and Ie = 3
2

for

the ground and excited state, respectively. Consequently, due to the effect that already

a weak magnetic field is able to align the internal magnetic field of about 33 T, magnetic

hyper fine splitting can occur. In the case of an internal magnetic field of 33 T, we

have a splitting of δg = 39.7 γ and δe = 22.5 γ for the ground and the excited state

respectively. Because of the selection rules for magnetic dipoles, only the transitions with

me−mg = 0,±1 can be driven (see [8, chap. 4]). The properties of the six resulting lines

are given in table 3.1. These six transitions have different energy differences ∆E resulting

in different detunings ∆ω = ω0 − ωtransition. Furthermore, the six transitions have three

different types of polarization. We will focus on the linear transitions (n = 2 and n = 5)

because it is easier to understand what happens in the system than for the circular ones.

The have transition energy difference of

∆E = ±31.05γ ≈ ±146 neV. (3.1)

Hence, it can be seen, that the energy difference in the magnetic hyper fine splitting

12



3.2. Phase modulation through moving sample

Figure 3.1.: The level scheme of 57Fe taken from [5, p. 22]. On the left side, the transitions
without a magnetic hyper fine splitting can be seen. On the right side, those
with the hyper fine splitting are displayed.

(146 neV) is many orders of magnitude smaller than the energy of the transition (14.4 keV).

Therefore, we will only be interested in the detuning ∆E and not in the absolute value

E from now on.

3.2. Phase modulation through moving sample

We will now have a closer look at the phase modulation which was performed in [1, 4]. In

these works, a displacement of the sample right after the excitation by a synchrotron pulse

gives the possibility to redistribute the energy in frequency space. How this is done, will

be explained in this section as well as the effects an arbitrary phase shift causes. Thereby,

we only calculate the scalar case without consideration of polarizations in detail. By

n Transition ∆E Polarization

1 |g1〉 ↔ |e1〉 −δg/2− 3/2δe σ−
2 |g1〉 ↔ |e2〉 −δg/2− 1/2δe π0

3 |g1〉 ↔ |e3〉 −δg/2 + 1/2δe σ+

4 |g2〉 ↔ |e2〉 δg/2− 1/2δe σ−
5 |g2〉 ↔ |e3〉 δg/2 + 1/2δe π0

6 |g2〉 ↔ |e4〉 δg/2 + 3/2δe σ+

Table 3.1.: Properties of the six transition lines of 57Fe adapted from [5].

13



3. Quantum optical description of the new approach

using an angle of the magnetic dipole of α = π
4
, we can select only the linear lines (see

eq. (3.20)). Hence, we focus on these lines and ignore the other lines in this section. The

considerations of polarizations ill be included in section 3.3.

3.2.1. Calculation of frequency spectra

In the calculations of this subsection, we will follow [4, sec. 2.2] closely.

Static case. First, we can describe a synchrotron pulse as a δ(t)-pulse in time space,

because on the characteristic time scale of the system γ−1 = 141 ns, these pulses are very

short (bunch length of 44 psec at PETRA III, [9]). In frequency space, the spectrum of

the scattered light can be calculated by multiplying the initial spectrum E0(ω) by the

response function of the scattering sample R(ω) (see [10])

E ′(ω) = R(ω) · E0(ω). (3.2)

The response function for forward scattering of a layer of resonant nuclei is given by (see

[10])

R(τ, d) = δ(τ)−
√
b

τ
J1(2
√
bτ)e−iω0τe−γτθ(τ), (3.3)

with the Bessel function of first kind J1, the frequency ω0 and line width γ of the transition,

the retarded time τ = t − z
c

and a material constant b = T γ
2
, with the optical thickness

T = ρfRσ0d. It is ρ the sample density, z the sample thickness, σ0 the absorption cross

section at resonance and fR the Lamb-Mössbauer factor.

For t < 4
b
, i. e. short times or thin samples, we can use a Taylor expansion

J1(2
√
bt)√

bt
≈ 1− bt

2
+
b2t2

12
+O

(
b3t3
)
. (3.4)

With these approximations eq. (3.3) becomes

R(t) ≈ δ(t)− be(−iω0t)e−(γ+ b
2)tθ(t). (3.5)

Transforming this into frequency space and applying eq. (3.2) then gives

E ′ω0
(ω) = E0

(
1− ib

ω − ω0 + i
(
γ + b

2

)) . (3.6)

For two transition frequencies ω0 and ω′0 we can simply add the respective electric fields

E(ω) = Eω0(ω) + Eω′
0
(ω). (3.7)
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3.2. Phase modulation through moving sample

Figure 3.2.: The intensity is plotted against the detuning for the linear transitions accord-
ing to eq. (3.6). The parameters in this equation are chosen to be b = 1.4,
ω0 = −31.1γ and ω′0 = 31.1γ. For better comparison, a horizontal line repre-
senting I0 as well as vertical lines at ω0 and ω′0 are displayed.

The intensity I(ω) = |E(ω)|2 corresponding to eq. (3.6) is shown in fig. 3.2. Here ω0 and

ω′0 are chosen to be ±31.1 γ, because this is where the interesting lines occur (see eq. (3.1).

For a 57Fe-foil b = 1.4 is a realistic value for a sample thickness in the range of d = 1µm.

We can clearly see dips in the intensity at ω = ±31.1 γ. This makes sense because these

are the transition frequencies, where light is absorbed to excite the nucleus.

Dynamical case. Now, let us include the sample shift which is electronically controllable.

We consider the easiest case (ideal motion), in which the sample does an instantaneous

jump

∆z(t) = ∆z0 · θ(t− tshift), (3.8)

where tshift is the time between the prompt synchrotron pulse and the jump and ∆z0 the

amplitude of the displacement. Because of ∆φ = ω0 · ∆t = ω0 · ∆z
c

, a displacement ∆z

results in a phase shift of

∆φ =
∆z

λ
· 2π, (3.9)

with the wavelength of the transition without hyper fine splitting

λ = 8.6× 10−11 m = 0.86�A. (3.10)

In principle, one has to employ the wavelength of the actual transition in the splitted

system. However, as the energy splitting is many orders smaller than the transition

energy in the two-level system, λsplitted ≈ λunsplitted for all six transitions. It is important
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3. Quantum optical description of the new approach

to note that while the phase shift ∆φ is of order π, the time shift ∆t = ∆z
c
≈ 10−10 ns is

negligible, with c being the speed of light. Hence, we can assume, that the scattered and

the unscattered light do not have a time difference. Our motion in eq. (3.8) results in a

phase shift of

∆φ(t) = ∆φ0 · θ(t− tshift), (3.11)

with ∆φ0 = ∆z0
λ
·2π as stated in eq. (3.9). It is important, that the time shift is negligible

while the phase shift is of order 1. To consider an arbitrary, phase shift of ∆φ(t) we can

just multiply it into the scattering part of the response function in time domain.

R∆φ0(t, z) = δ(t)− ei∆φ0·θ(t−tshift))

√
b

t
J1(2
√
bt)e−iω0te−γtθ(t). (3.12)

This is convenient, because of the scattering taking place wherever the sample is in

the beam. The motion just gives a relative phase shift in the scattered light as this

is moved right after the excitation by the synchrotron pulse. With a constant phase shift

of eq. (3.11) the response function eq. (3.12) becomes

R0(t) ≈ δ(t)− ei∆φ0·θ(t−tshift))be−iω0t exp

[
−
(
γ +

b

2

)
t

]
θ(t). (3.13)

By applying eq. (3.2) the approximation in eq. (3.4) and another Taylor expansion for

t < 4
b

exp

(
− b

2
t

)
≈ 1− bt

2
+
b2t2

8
+O

(
b3t3
)
, (3.14)

we get the final result for the scattered electric field

Eφ(ω) = E0 ·R(ω, φ(t))

= E0

(
1− ib

ω − ω0 + i
(
γ + b

2

) [1 +
(
ei∆φ0 − 1

)
e[ω−ω0+i(γ+ b

2)]itshift
])

.
(3.15)

Also with the included phase shift eq. (3.7) still holds, because ω is independent of the

phase shift that occurs in time space. Consequently, the electric field is additive and we

can investigate the single fields, i. e. the single transitions.

3.2.2. I(ntensity increase) and T(ransformation)

Now, that we know how to include an instantaneous phase shift ∆φ0 into the electric field

(see eq. (3.15)), we can see what happens for the phase shift ∆φ0 = π (I) and ∆φ0 = π
2

(T). The corresponding intensities I ′ = |E ′|2 are shown in fig. 3.3. The considerations are

still scalar, i. e. without considering the polarization.
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3.2. Phase modulation through moving sample

Figure 3.3.: The intensities I ′ = |E ′|2 corresponding to the electric field in eq. (3.15) for
different φ0 are shown. The blue (dashed) curve represents φ0 = π

2
(Fano

shape, T) and for the green (dotted) curve φ0 = π (Lorentz shape, I) was
taken. The parameters are chosen to be b = 1.4, ω0 = −31.1γ, ω′0 = 31.1γ
and tshift = 0.1

2γ
. For better comparison, a horizontal line representing I0 as

well as vertical lines at ω0 and ω′0 are displayed.

Intensity increase. For ∆z = λ
2
⇔ ∆φ = π, we get a symmetric Lorentz-shaped peak

at the former absorption line at ω = ±31.1 γ. We see that the intensity is redistributed.

In some regions, the intensity is lower than before. However, around ω = ±31.1 γ it is

much higher.

Transformation. For ∆z = λ
4
⇔ ∆φ = π

2
, we obtain an asymmetric so-called Fano

line. It can be clearly seen, that intensity increase is not as high as it is in the Lorentz-

shape case. Besides, at ω = ±31.1 γ, there is no intensity gain at all, but I ′ = I0. This

results in a shift of the maximum relative to the detuning of the linear lines. We will

come back to this in section 4.1.3. Furthermore, we see that the slopes of the peaks on

the left and right side of ∆ = ±31.1 γ are different. The decrease is faster in the direction

towards ∆ = 0. Additionally we see, that on the right side of ∆ = ±31.1 γ there is a

maximum, while on the left side in the same distance there is a minimum.

3.2.3. Combination of two samples.

As explained before (see chapter 1), we will combine two samples in our new setup.

Therefore, we want to formulate the combination of two samples. In frequency space, we
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3. Quantum optical description of the new approach

Figure 3.4.: The resulting intensities I ′ = |E ′|2 of eq. (3.15) are shown for ∆φ = π (green,
dotted line) and ∆φ′ = π

2
(blue, dashed line) as well as the intensity of

their combination according to eq. (3.16)(red, solid line). The parameters are
chosen to be b = 1.4, ω0 = −31.1γ, ω′0 = 31.1γ, γ = 1 and tshift = 0.1

2γ

can just multiply the electric fields of both samples.

E(ω) = Eφ(ω) · Eφ′(ω). (3.16)

If two different transitions shall be considered as in eq. (3.7), this must be done on the

stage of the single samples, i. e. before combining two samples by multiplication as in

eq. (3.16). Because we did not consider any angles αi at the moment and eq. (3.16)

being commutative, the two configurations IT and TI are equivalent. The intensity of the

resulting electric field for ∆φ = π and ∆φ′ = π
2

or vice versa can be seen in fig. 3.4. Due

to the shift of the maximum for the Fano line, also the product of Fano and Lorentz-line

has a shifted maximum relative to ω = 31.1 γ. In addition, the intensity increase is just

a little bit higher, than for a single Fano line. Furthermore, the minima are weaker, the

peaks are thinner and the whole spectrum is less asymmetric than it was before.

3.2.4. Time spectra

After looking at the system in frequency space, we can now have a short look at the

spectrum in the time domain. We apply a Fourier transform on eq. (3.15). In fig. 3.5, the

time spectrum is shown for two different sample widths. An overall decrease of intensity

can be clearly observed. This decrease is expected because of the decay of the excited

states and implemented in eq. (3.12) as the term exp(−γt). Besides, we see a periodic

structure with a repeating time of about 12 ns, due to the term exp(−iω0t) in eq. (3.12).
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3.3. New approach for polarization conversion

Figure 3.5.: A typical time spectrum can be seen. Besides the decreasing intensity, the
dynamical beats can be seen. The blue (dashed) line is for a sample thickness
of d = 2µm, the red (solid) one for d = 5µm.

These are the so-called quantum beats. The dips at t ≈ 50 ns and t ≈ 175 ns in the

red curve are the so called dynamical beats. They are caused by the roots of the Bessel

function J1 in eq. (3.12) and depend on the sample thickness d since it is b ∼ d. The

thinner the thickness, the later the first quantum beat.

3.3. New approach for polarization conversion

In this section we will now introduce our new quantum optical approach in detail. We will

combine two samples that have a similar function as the two wave plates in section 2.3.

One of these samples is supposed to transform the polarization, the other one is supposed

to increase the intensity. Because of 57Fe having a magnetic transition M1, we will from

now on use the angle of the magnetic dipole instead of the electric one. The two descrip-

tions are equivalent if we keep in mind that there is an angle of π
2

between the angle of

the magnetic dipole αM and the electric one αE

αM = αE +
π

2
. (3.17)

As said in chapter 1, we focus on the conversion of linearly polarized light into circularly

polarized one. In principle, the setup that will be discussed in this section can also be

used to convert polarizations the other way around. For simplicity, we will calculate only
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3. Quantum optical description of the new approach

~M1
~M2∆z1 ∆z2

sample 1 sample 2

detector

laser beam
α1 α2

~Jin

z

x

y

Figure 3.6.: This is the setup of our quantum optical approach for polarization conversion.
A beam in z-direction with linear polarization in x-direction enters the setup
(red). It passes through two very thin (d = 1µm) samples (green). Mounting
them on piezos allows a displacement of ∆zi of order λ. In the end, we detect
the intensity for a given polarization at a detector (black). At the samples
there is a magnetic field applied to arrange the internal electric field. The
angle of magnetization ~Mi in the xy-plane with the y-axis is the magnetic
angle αi (blue). For simplicity, the magnets, that are used to arrange the
internal magnetic field, are not displayed.

the special case of linear into circular polarization.

3.3.1. Setup

Our proposed setup is shown in fig. 3.6. It consists of two 57Fe foils, that are mounted

onto a piezo element. That way, the samples can be displaced by fractions of the resonant

wavelength λ of the magnetic transition discussed in section 3.1. As discussed before (see

eq. (3.9)), this results in a phase shift of order π. Both samples are placed in a magnet

to align the internal magnetic field. In principle, it would also be possible to expose the

samples to a magnetic field before mounting them in order to orientate the internal field,

but then the magnetization could be easily changed by weak fields. Therefore, it is better

to install magnets permanently in order to make the whole system more stable. The

angles of the magnetic dipole moment with the x-axis are αM,i and will be just called αi

if it is clear that the magnetic angle is meant. We assume linearly polarized light (π0)

entering the setup in z-direction. This then scatters with the first sample and afterwards

with the second one. For the analysis in this thesis, a detector is placed after the second

sample. It is able to detect the intensities I± for the circular polarizations σ±.
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3.3. New approach for polarization conversion

3.3.2. Functionality

Now, we take all lines in table 3.1 into account again. It is clear that for discussing the

transformation of polarizations, we cannot ignore them anymore. Therefore, we need to

expand our scalar model developed in section 3.2.

Because we have to consider a magnetic transition, we cannot just consider the polar-

izations in the xy-plane perpendicular to the beam propagation, but have to consider all

three dimensions. If the magnetization is perpendicular to the beam polarization along

the y-axis, i. e. αM = π
2
, we can write the polarizations in the following way (see [8,

chap.4])
~JM,0
0 =

(
1
0
0

)
, ~JM,0

0,⊥ =
(

0
1
0

)
and ~JM,0

± =
(

0
1
±i

)
. (3.18)

In our setup, it is αM = π
4
. Thus we need to rotate the polarizations by an angle of π

4

around the z-axis and find

~JM
0 =

1√
2

(
1
−1
0

)
, ~JM

0,⊥ =
1√
2

(
1
1
0

)
and ~JM

± =
1√
2

(
1
1
±i

)
. (3.19)

The coupling is then given by (see [5, chap. 3])

g ∼ ~JM
transition · ~JM

in , (3.20)

where ~JM
transition is the polarization of the transition and ~JM

in the one of the incoming light.

In our setup it is ~JM
in = (1, 0, 0)T .

We can implement the different coupling by multiplying the respective electric field by

the coupling constant

E ′(ω) =
6∑
i=1

gi · E∆φ,ω′
i
(ω). (3.21)

Because of the electric field being additive (see eq. (3.7)), we can look at each transitions

separately.

One sample. Let us focus on the linear transitions again. Similarly to section 2.2, we

can decompose the incoming polarization

~Jin = ~J|| + ~J⊥, (3.22)

into one vector ~J|| parallel to the magnetic polarization vector of the linear transition

giving g|| ∼ 1 and ~J⊥ perpendicular to that giving g⊥ = 0 (see eq. (3.20)). As the

coupling for ~J⊥ is g⊥ = 0, this component is not affected by the sample as no interaction

takes place. Therefore, the phase shift caused by the motion of the piezo is only applied

to ~J||. This vector is along the magnetic dipole moment.

Using the basis of ~J|| and ~J⊥ in the xy-plane instead of the eigenbasis of the wave plate
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3. Quantum optical description of the new approach

Polarization of transition: π0 π0,⊥ σ+ σ−

Polarization after λ
4
-config: σ− σ+ σ+ σ+

Polarization after λ
2
-config: π0,⊥ π0 π0 π0

Table 3.2.: The effect of our setup on π0-polarized light interacting with the different
transitions is shown for α = π

4
.

and converting the angles of electric respectively magnetic dipole αE and αM according

to eq. (3.17), we can apply eq. (2.13)-(2.18) to our setup. That way, we can convert

polarizations into each other in a similar way as a λ
4
-wave plate does. If we choose

αM = π
4
, we are able to transform linearly polarized light into circularly polarized one

as discussed in section 2.2. Hence, we would expect that our setup has a similar angular

and displacement dependency as a λ
4
-wave plate. In particular, we find the following

transformations:

α =
π

4
,∆z =

λ

4
: π0 → σ+ and π0,⊥ → σ−,

α =
π

4
,∆z =

λ

2
: π0 → π0,⊥ and π0,⊥ → π0.

(3.23)

As it can be seen from eq. (3.18), the circular polarizations can be written as a superpo-

sition
~JM
± = ~JM

0,⊥ ± i
(

0
0
1

)
, (3.24)

of linear polarization perpendicular to the one of our incoming light and another vector,

that will not couple to linearly polarized incoming light for any angle αM as it is

( a b 0 ) ·
(

0
0
1

)
= 0, ∀a, b ∈ R. (3.25)

For this reason, the circular lines behave as if they would have a π0,⊥-polarization. Hence,

the argumentation for π0 polarization from above can be applied. That way we get

α =
π

4
,∆z =

λ

4
: σ± → σ− ,

α =
π

4
,∆z =

λ

2
: σ± → π0 .

(3.26)

A summary of the effect of our setup on linearly polarized light (π0) interacting with the

different transitions is shown in table 3.2. The circular polarizations behave exactly like

π0,⊥-polarizations.

Two samples. As we have seen in eq. (3.16) to combine two sample, we just need to

multiply their electric fields. Choosing the decomposition in eq. (3.22), the phase shift is

only in one component of the polarization vector ~J . Therefore, the single components can
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3.3. New approach for polarization conversion

still be described by the scalar case. Hence, we can combine two samples by multiplying

the phase shift matrices for the respective angles αi (eq. (2.14)). That way, our setup can

be described by the equations of section 2.3. Hence, our setup will in principle behave

similarly to a system of two standard wave plates.
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4. Results

After introducing our new approach in section 3.3, we now want to further discuss the

angular and displacement dependency as well as what happens for different sample thick-

nesses. Besides, we will look at other applications of our setup. To do so, we will calculate

the spectra in frequency and time space. The equations in chapter 3 are just for illustrat-

ing the principle function of our setup. To discuss our approach we will use the python

library pynuss. It is is based on conuss ([11]) and works with the layer-formalism (see

[8]). That way, multiple other effect will be included into the numerical calculations that

where not in section 3.3.

Until stated otherwise, the parameters in table 4.1 are used: Basically, if just circularly

polarized light is wanted, any of the six transition frequencies could be taken. Because of

linear lines being a bit more intuitive as they do not behave as another polarization, we

stay with these lines for the analysis of our setup.

As we have seen in chapter 3, in frequency space the calculations are mostly multi-

plications. According to the convolution theorem, a multiplication in frequency space

corresponds to a convolution in time space, which is the respective Fourier space. Hence,

calculations in frequency space will be much more intuitively understandable than in time

space. Therefore, most of the analysis of our setup is done in frequency space.

4.1. One sample and general effects

In this section, the spectra for only one sample are calculated in order to investigate only

the transformation from linear into circular polarization without the intensity increase.

This makes the system easier for the beginning. Besides, some effects that occur for one

and more samples are discussed.

4.1.1. Frequency spectrum of one sample

Let us start by investigating the spectrum of a single sample. As we have seen before

(see eq. (3.23)), we need a phase shift of π
2

to convert linearly polarized into circularly

polarized light. To better see, how the spectrum for a moving sample, in fig. 4.1 the

spectrum of only one sample in the static case is shown for α = π
4

(code: appendix A.1.1).

The absorption lines at the transition frequencies can be clearly seen. As we have seen in
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4.1. One sample and general effects

Parameter Value

Beam direction (0, 0, 1)T

Beam polarization ~J = (1, 0, 0)T

Motion ideal as in eq. (3.8)
Thickness of the samples d = 1µm
Internal magnetic field B = 33 T
Resonant wavelength λ = 8.6× 10−10 m
Detuning of the linear lines ∆ = ±31.1 γ
Magnetic angle (sample 1) α1 = π

4

Magnetic angle (sample 2) α2 = −π
4

Displacement (sample 1) ∆z1 = 0.25λ
Displacement (sample 2) ∆z2 = 0.5λ

Table 4.1.: Standard parameters for the calculation of spectra.

section 3.3, the circular transitions behave as if they would have a polarization of π0,⊥.

Therefore, the purity is P = 0 for all lines in the static case. Because of the intensity

after a σ±-polarization filter I± satisfies I± = I0
2

for linear polarized light, the spectra for

I± would look the same as the total spectrum I scaled by a factor of 1
2
.

In fig. 4.2 the spectrum of the dynamical case

λ

4
-configuration: α =

π

4
and ∆z =

λ

4
(4.1)

can be seen. This configuration converts π0-polarization into σ+ and σ± into σ− (see

eq. (3.23)). Instead of absorption dips as in fig. 4.1, the spectrum has even local maxima

at detuning = ±31.1γ for the σ+-detector. For linear polarized light, a σ±-detector would

measure I = 0.5I0. In the figure, the intensity is way higher than I = 0.5I0. That shows,

that the linear polarized light is in fact transformed into circularly polarized light. For the

purities, we observe that the original purity (static case) P = 0, becomes P ≈ 1 after our

Figure 4.1.: The spectrum for the parameters in table 4.1, but with one unmoved sample
is shown. The magnetic field is rotated by π

4
against the polarization of the

beam.
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4. Results

Figure 4.2.: The spectrum for parameters in table 4.1, but with only one sample is dis-
played. The intensities (left) and purity (right) for the λ

4
-configuration are

shown. The blue (solid) line shows the spectrum after a σ+-polarization filter,
the green (dotted) line after a σ− one.

setup for a detuning of ±31.1 γ. For all the circular transitions, we get σ− polarization.

Despite a little loss in the purity this is the result we expected. Later on (see section 4.3)

we will try to reduce that loss. If we ignore all σ± polarized lines for a moment, the

spectrum looks pretty much similar to fig. 3.4. It can be clearly seen, that the proposed

setup indeed changes linearly to circularly polarized light at a detuning of 31.1γ. We also

already have an intensity increase at this special frequency. Nevertheless, we will increase

this even more with a second sample later on (see section 4.2).

4.1.2. Real vs. ideal motion

Until now we have calculated everything using an ideal motion (see eq. (3.8)). A realistic

piezo would never move as prescribed by a step function because it works as a capacity.

A more realistic motion using the error function erf would be

φ(t) =
1

2

[
1 + erf

(
t− tshift

trise

)]
(4.2)

where trise is the rise time and tshift is the time between the motion and the excitation by a

synchrotron pulse. An ideal motion as well as a more realistic one are shown in fig. 4.3 for

two different rise times trise. The height of the phase shift can be scaled to get arbitrary

shifts.
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4.1. One sample and general effects

time [ns]

∆z

Figure 4.3.: Three different motions are plotted. The red one is an ideal motion, the blue
(trise = 15 ns) and cyan (trise = 2 ns) are more realistic motions as shown in
eq. (4.2). It is tshift = 10 ns.

A rise time of trise = 15 ns is possible in experiments (see [1]), but it should be possible

to decrease the rise time with faster reacting piezos. Then the step-function would become

an even better approximation.

In fig. 4.4 the spectra are plotted for the motions in fig. 4.3 (code: appendix A.1.1). As

one can see for trise = 2 ns (dashed line) there is not really a difference between ideal and

more realistic motion at all. For trise = 15 ns the approximation with an ideal motion is

quite good around the transition frequencies. As we are particularly interested in these

region, we will stick to the ideal motion to make thing easier.

4.1.3. Shift of intensity of maximum

We detect a shift of up to ±0.5γ between the detuning with maximal intensity and the

detuning of the linear transitions for the Fano lines (code: appendix A.1.1). We observed

an even bigger shift for two samples. The shift is caused by the asymmetric Fano lines,

which do not have a maximum at ∆ = 31.1 γ (see section 3.2.2). Hence, we will also detect

this shift for two samples because multiplying a Fano line by a Lorentz line leads to a

shifted maximum. Despite the shift being small, it has a big impact on the calculations

due to the sharp lines. When we want to compare different sets of parameters to each

other, we need a scalar value for intensity and purity, that represent the spectrum in the

interesting detuning range. The first idea would be to just take the intensity and purity

at ∆ = 31.1 γ. But due to the shift, this will not be the maximum of intensity and purity

for every set of parameters. Instead, there are a number reasonable possibilities to define

the detuning, at which we evaluate intensity and purity. Among others, there are the

following approaches:

• Theoretical value

Here, we take the theoretical value of the linear line ∆ = 31.1γ and evaluate intensity
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4. Results

Figure 4.4.: The spectra for the parameters in table 4.1, but with only one sample and
different types of motion are shown. The solid line is of the ideal motion,
whereas the dotted (trise = 15 ns) and dashed (trise = 2 ns) lines are of the
more realistic motion in eq. (4.2).

and purity there. Because of the shift, this does not give the best intensity and purity

we could have in the neighborhood of the theoretical value. In an experiment the

frequency would also be set at a given frequency.

• Maximum of intensity

In this approach, we take the detuning, where the intensity has a maximum in

the neighborhood of the theoretical value, for the detuning, on which intensity and

purity are evaluated. This causes problems for the Fano lines. They occur at the
λ
4
-configuration and do not have a maximum at the interesting linear frequency, but

a root. Despite that, this measure would be better than the Theoretical value to

compare the numerical results in this chapter with the analytical ones in chapter 2,

because here the shift of the maximum does not play a role.

• Fitting

In this case, we would fit the square of the electric field in eq. (3.15) for two samples

to the spectrum. This would the give back the theoretical value of ∆ = ±31.1 γ.

But this would need much more effort, whereas the precision is limited to the step

width (here step width 0.5 γ) nevertheless.

• Maximum of |purity|
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4.1. One sample and general effects

Figure 4.5.: The spectra for the parameters in table 4.1, but with only one sample and
different thicknesses are shown. The blue lines indicate I+, the red ones I−.
The dotted lines represent a sample thickness of d = 0.1µm, the dashed lines
of d = 1µm and the solid lines of d = 10µm.

This is similar to Maximum of intensity, despite searching for the maximum of the

absolute value of purity instead of intensity. When scanning over different angles α

and phase shifts ∆φ, we will have situation, in which the lines are converted into

circular lines (P ≈ ±1), and situations, in which they are converted into linear lines

(P = 0). In the first case, we are indeed searching for a maximum, but in the second

we would expect a root. Hence, this method works for the interesting transition,

but gives wrong results for some other parameter sets.

In the end, we decided to use the Theoretical value because in most applications the

wavelength, and with that the detuning, is defined. For our analysis, we keep in mind,

that for this choice we will not always get the highest intensity or purity. The actual

results can be even better.

4.1.4. Influence of thickness of targets d

We will now investigate the effect of the thickness of the foils (code: appendix A.1.1).

The dynamical spectra for a sample thickness of d = 0.1µm, d = 1µm and d = 10µm are

shown in fig. 4.5. It can be clearly seen, that a thickness of d = 1µm gives the highest

intensities. As this also has clear peaks and is accessible in experiments, our choice of

taking d = 1µm is appropriate. For a thinner sample the intensity is much smaller

because less photons scatter. For a thicker sample the spectrum looks quite different. If
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4. Results

Figure 4.6.: Purity (colors) and intensity (contour lines) are shown for one sample with
different magnetic angles and displacements. All other parameters are like in
table 4.1.

the sample is this thick, the dynamical beat comes to early and the intensity increase

does not work properly, resulting in dips in the middle of the peaks.

4.1.5. Influence of magnetic angles α and displacement ∆z

Before starting the investigation of two samples, we want to investigate the influence of the

magnetization angle α and the displacement ∆z for one sample. From a theoretical point

of view (see chapter 2) we would expect an optimal configuration for the λ
4
-configuration

(eq. (4.1)). To investigate that behavior, we first calculate the spectrum for different

angles and displacements. We then take the intensity and purity at ∆ = −31.1 γ (code:

appendix A.1.1). The result is shown in fig. 4.6. As in the pictures in chapter 2, the

purity is color coded. Yellow indicates pure σ+-, blue pure σ−- and green π-polarization.

The intensity is shown as white contour lines. Comparing the analytical expectation (see

fig. 2.2) to the numerical results, we see that in fact we have a high purity at the positions

with α = π
4

+ nπ
2

and ∆z = λ
4

+ mλ
2

with m,n ∈ Z. But there is a high tendency of the

purity smearing out towards α = ±π
2

and ∆z = −1, 0, 1. Thus far, we do not understood

the origin of this effect. However, it allows to employ this setup as a high precision sensor.

This it will be discussed in section 4.5.3. Furthermore, as we would expect with a look

back at fig. 3.3 we find the regions with high intensity for ∆z = ±0.5 So already here

we see that the regions with high purity are not the same as the one with high intensity.
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4.2. Two samples

Experimental applications thus have to pick between a high intensity or high purity.

4.2. Two samples

After investigating the simple case with just one sample, we will now go one step further

and include a second sample to increase the intensity even more as discussed in section 3.2.

We will then investigate the effects of different parameters.

4.2.1. Frequency spectrum of two samples

To combine the two samples there are two possibilities as discussed before (see eq. (2.20)):

First λ
2

(I), second λ
4

(T) or the other way around:

Config IT: ∆z1 =
λ

2
, ∆z2 =

λ

4
, α1 =

π

4
and α2 = −π

4
,

Config TI: ∆z1 =
λ

4
, ∆z2 =

λ

2
, α1 =

π

4
and α2 = −π

4
.

(4.3)

These angles have been chosen because they are admissible for both of the above config-

urations as it can be seen in chapter 2)

A spectrum is shown in fig. 4.7 for both configurations (code: appendix A.1.1). As for

one sample, we can see, that the conversion into circular polarization has taken place at

all transitions in both cases. This can be seen from the intensities I+ and I−, that have

minima or maxima at the transition frequencies depending on the output polarization.

Besides, it can be deduced from the purity that is P ≈ ±0.75 6= 0 at the respective

frequencies. But we also see, that we do not get pure circularly polarized light because

P 6= ±1. For one sample the purity was higher, but the intensity was lower (see fig. 4.2).

We will optimize purity and intensity in section 4.3. Besides, if we compare the spectra

to the ones of one sample, we see that for two samples, the spectra are more symmetric.

This is expected because in this case a Fano line is multiplied with a Lorentz line resulting

in a more symmetric spectrum (see fig. 3.4).

When comparing the two configurations IT and TI to each other, it can be clearly seen,

that they have opposite purity. This is caused by our choice of α1 = π
4

= −α2. For the

intensity increase (I) this makes no difference because of ~J ≡ − ~J (see eq. (2.3)). The

intensity increase leads to a rotation of ~J by π
2

respectively −π
2

leading to ~J respectively

− ~J . For the transformation (T) our choice of angles has a big effect. As it is cos
(
π
4

)
=

cos
(−π

4

)
= sin

(
π
4

)
= − sin

(
−π

4

)
, plugging that into eq. (2.14) results in an additional

minus-sign in the second component of the polarization vector ~J . Hence, the purity of

circularly polarized light is changed. Because of the transformation taking place with

one of the two angles, the handedness is different for the two configurations. Despite the

different polarization, we also find that the intensities are higher for the (IT) configuration.
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4. Results

Figure 4.7.: On the left side the spectra for ∆z1 = λ
2

and ∆z2 = λ
4

(IT), on the right
side the ones for ∆z1 = λ

4
and ∆z1 = λ

2
(TI) is shown. All other parameters

are like in table 4.1. The blue, dotted and green, dashed lines represent the
intensities I+ and I−, whilst the red, solid lines indicate the purity.
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4.2. Two samples

(a) (b)

Figure 4.8.: The spectra for the parameters in table 4.1 with varying displacements are
investigated. On the left side the influence of on purity (colors) and intensity
(contour lines) is shown. On the right, it the numerical purity (colors) is
compared to the analytical prediction in fig. 2.3 (colored contour lines). The
colors of the lines represent the purity in the same way as the color bar on
the right does. It is α1 = π

4
and α2 = −π

4
.

In our illustrative calculations in chapter 3, the two samples were commutative. As pynuss

includes more effects, we see that they will not be commutative in reality.

4.2.2. Influence of different displacements ∆zi

Because of the two different configuration TI and IT (see eq. (4.3)) having the same set

of angles (α1 = π
4
, α2 = −π

4
), we do not need to distinguish between them to investigate

the influence of different displacements ∆φi. As before, the spectra are calculated for

different displacements (code: appendix A.1.1). Then purity and intensity are taken at

∆ = 31.1 γ and plotted as color plot respectively white contour lines in fig. 4.8a. We see,

that the regions of high purity (yellow and blue) are not at the same place as the region

of high intensity (middle). This is due to the fact, that intensity increase and polarization

transformation need different phase shifts. The region with the highest intensity is at

∆z1 = ∆z2 = λ
2
, which corresponds to intensity increase at both samples.

Furthermore, we see that the configurations in eq. (4.3) do not deliver the highest

absolute purity. Hence, there is some space for optimization. Besides, we see that the

two configurations with their respective neighborhoods have opposite purity as it was

discussed in the context of fig. 4.7.

To make it easier to compare numerical result to the analytical one in fig. 2.3, in
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4. Results

Figure 4.9.: The spectra for the parameters in table 4.1 are investigated for different an-
gles. On the left side the angular dependency for ∆z1 = λ

2
and ∆z2 = λ

4
(IT),

on the right side the one for ∆z1 = λ
4

and ∆z1 = λ
2

(TI) is shown. The white
contour lines represent the intensity while the colors indicate the purity.

fig. 4.8b, the numerical purity is plotted as a color plot with the analytical purity as

colored contour lines inside. The colors of the contour lines have the same interpretation

as the ones in the color map, i. e. yellow indicating pure σ+-polarization et cetera. We

see that the behavior is roughly the way it would be expected from a λ
4
-wave plate: We

have P = 0 at the diagonal ∆z1 = ∆z2 and P = 1 (P = −1) below (above) that line.

But these are the only similarities.

We also see, that the regions of high purity are shifted towards the corners of the figure

in the numerical case. Furthermore, at the edge, i. e. ∆1/2 ≈ 0orλ, the purity is also P = 0.

This means, that now conversion into circular polarization has taken place. Besides, we

see that the numerical regions with high purity are more widespread ranges instead of

thin lines. Thus, also small variations in the displacement would still lead to high purity.

These effects might probably be connected, but have not yet been understood.

4.2.3. Influence of different angles αi

Because of the two configurations TI and IT having different displacements (see eq. (4.3)),

we need to investigate them separately. The numerical results (code: appendix A.1.1) are

shown in fig. 4.9. The white contour lines represent the intensity, the colors the purity.

Comparing the two configurations shows big differences. While for IT (left side) the

second angle α2 seems to have a much bigger effect on the purity than α1 has, for TI

(right side) they have more or less the same influence. Also the forms of regions with

high absolute purity are quite different. Furthermore, the shapes of the regions of high
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4.3. Optimization

n —P— α1 [π] α2 [π] ∆z1 [λ] ∆z2 [λ] I [I0]

1 0.5 0.35 -0.4 0.65 0.45 3.066
2 0.6 0.3 -0.4 0.65 0.4 2.909
3 0.7 -0.35 0.3 0.60 0.35 2.716
4 0.75 0.3 -0.35 0.65 0.35 2.598
5 0.8 -0.35 0.3 0.60 0.30 2.5
6 0.85 -0.35 0.3 0.65 0.30 2.316
7 0.9 -0.35 0.3 0.70 0.30 2.093
8 0.95 0.35 -0.3 0.25 0.65 1.914
9 0.99 0.35 -0.3 0.25 0.70 1.678

Table 4.2.: The parameters, that produce the highest intensity for two samples, are dis-
played for nine degrees of absolute purity.

intensity are quite different. Nevertheless, the regions with highest purity and the ones

with highest intensity are roughly at the same position. Besides, the regions of high purity

are large. Hence, small variations in the angles have no big influence on the purity. If we

would interchange the angles α1 and α2 for IT, so that the phase shift is always combined

with the angle α1, we would transform the configuration IT into TI. In fact, we would

then have roughly, but not exactly, the same behavior on the angles as int the original

plot of TI (fig. 4.9), right side). This indicates, that interchanging the samples does not

lead to equivalent setups, in contrast to our assumption in chapter 3. Again this is due

to pynuss considering more effects that our calculation did.

Comparing the numerical results to the analytical ones in fig. 2.4 shows big differences.

As mentioned before, in configuration IT the purity depends much more on α2, while in

the analytical calculations it depends on both angles in a similar way. For TI we can

more or less identify the analytical horizontal lines. Nevertheless, while there is nearly

no dependency on α2 in the analytical figure, the influence of α1 is not negligible in the

numerical result. This is due to additional effects included in pynuss.

4.3. Optimization

In fig. 4.11 the spectrum is shown for this configuration.

During our investigations in the previous sections, we have seen that there might be

some space for optimizing the angles αi and displacements ∆zi in order to get higher

purity and higher intensity. Because of people not always wanting to have P ≈ ±1, if

this can only be realized with less intensity, the optimization is done for different degrees

of purity. To optimize our setup, we loop over αi ∈
[
−π

2
, π

2

]
and ∆zi ∈ [0, λ] in steps of

0.05π and 0.05λ respectively (code: appendix A.1.1). The result is shown in fig. 4.10.

On the x-axis the demanded degree of absolute purity is displayed, on the y-axis the

highest intensity that is possible with the varied parameters for this degree of purity. We
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4. Results

Figure 4.10.: Out of the parameters in table 4.1 the angles αi and displacements ∆zi are
optimized. For a given degree of absolute purity the maximal intensity is
shown. The blue4 are the values for two samples, the red5 for one sample.

Figure 4.11.: The intensities (left) and purity for the optimal configuration (eq. (4.4)) are
shown. The other parameters are taken as in table 4.1. The blue, solid line
shows the spectrum after a σ+ polarization filter, the green, dotted line after
a σ− one. The purity is indicated by the red, solid curve.
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4.4. Behavior in time space

see that including a second sample has a really big effect on the intensity. As we would

expect because of the regions of high purity being different from that of high intensity (see

section 4.2), the intensity decreases for a higher degree of purity. Still, we get an intensity

of 1.7I0 for P = 0.99 when using two samples. In the optimization we cannot achieve

P = 1 due to numerical rounding errors. The best configurations for two sample are shown

in table 4.2. We see that the highest intensity is neither for the IT-configuration nor for the

TI-configuration, but for a configuration, in which the none of the two samples does only

intensity increase or transformation. Furthermore, while for a low degree of freedom the

parameters tend towards the λ
2
-configuration (see eq. (2.16)), for high degrees of absolute

purity they tend towards the λ
4
-configuration for the single samples.

The highest intensity at highest degree of absolute purity is realized by setup 9

optimum config.: α1 = 0.35π α2 = −0.3π ∆z1 = 0.25λ ∆z2 = 0.7λ. (4.4)

It can be seen, that the spectrum in fig. 4.11 is much more symmetric than the spectra

in fig. 4.7. Additionally, we see, that we get even an increasing factor of 2 close to the

resonant line. Furthermore, at the circular lines we see absorption dips again in I+. So not

only are the linear lines quite intense and pure, but also the circular lines are suppressed

in I+. This results in a very clean spectrum with roughly only two peaks at ∆ = ±31.1γ.

In consequence, this leads to quite a clear time spectrum as we will see in the next section.

4.4. Behavior in time space

Until now, we have only investigated the spectra in frequency space because we want to

modify the behavior of the light at a specific detuning. By modifying the spectrum accord-

ingly in the frequency space, we can also control polarizations in time space. Therefore, in

this section we will have a short look at the spectra in time space (code: appendix A.1.2).

We can ask for the time behavior of the total intensity, regarding all frequencies, as well

as for the behavior at a certain detuning, here at ∆ = −31.1γ.

4.4.1. All frequencies

In fig. 4.12 the time behavior of intensities and purity are shown for the optimal config-

uration. When looking at the total intensity I, we can see the quantum beats. Because

of our sample being quite thin, there is no dynamical beat visible in the considered time

range. We see, that I+ has a periodicity as proposed with the frequency spectrum of the

optimal configuration. The minima of I+ have a time difference of

∆t = 14.0± 0.6 ns . (4.5)

37



4. Results

Figure 4.12.: The time spectrum of the optimum configuration (eq. (4.4)) is shown. All
other parameters are as in table 4.1. Here the blue line indicates I, the green
one I− and the red one I+.

Figure 4.13.: The time dependency of the purity (top) and its Fourier transform (bottom)
are shown for the total spectrum. The parameters are as in table 4.1, but
with the angles and displacements of the optimal configuration in eq. (4.4).
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4.5. Other applications

This is also the time scale on which the purity is changing. Unfortunately, I−, that is not

that periodic, is on a similar intensity level resulting in a quite heavy oscillating purity

in the region around P ≈ +1, while the periodicity of I+ is dominant at P ≈ −1. By

comparing the minima of purity and intensity, we observe that nearly all points of minimal

purity, i. e. these where light is σ− polarized instead of σ+, also the intensity is very low.

That means, that in the time domain, we get more or less pulses of length ∆t with purity

P ≈ 1.

To further analyze the time dependence, we Fourier transform the purity. This trans-

formation is not the inverse of the Fourier transform that produced the time spectrum.

This is because in the original transformation the electric field was transformed instead

of its square, which defines purity. The Fourier transform is shown in fig. 4.13. We can

identify the peaks with the frequencies of the nuclear transitions (see table 3.1). Besides,

the two main peaks correspond to the linear lines. So we see, that the frequencies of the

linear lines dominate the time spectra as it would be expected.

In experiment, it should be possible to block out certain frequencies in order to obtain

a cleaner time spectrum.

4.4.2. Around -31.1γ

By calculating two-dimensional energy-time-spectra, it is possible to look at the time

behavior of one frequency. Here, we choose to look at the linear line by integrating up

the intensities of the two-dimensional spectrum in the interval [−32.1 γ,−30.1 γ]. We

choose this integration range, because we do not wanted to observe artefacts of the other

transitions nor do we want to see effects of small oscillations which might occur along a

very small range of detuning. The intensities I+ and I− are displayed in fig. 4.14. We

cannot see any periodicity in the intensities I= and I− in the figure. Therefore, we apply

a Fourier transform to find any hidden structures. The time dependency of the purity

and its Fourier transform are displayed in fig. 4.15. To make the identification of the

frequencies easier, also vertical lines are plotted at the transition frequencies. We can

identify the prominent peaks with the six transitions. If we compare the result of the

Fourier analysis to the result for the whole detuning range (see fig. 4.13), we see that the

peaks of the linear transitions are smaller in contrast to the other ones. For the small

detuning range, they are nearly as high as the outer circular lines. Therefore, the time

dependency looks so complicated.

4.5. Other applications

After investigating the λ
4
-wave plate in detail, we will now look at some other applications

of our setup. We only provide a proof of principle in this thesis. A deeper investigation
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4. Results

Figure 4.14.: The time dependency of the integrated intensities I+ (blue, solid line) and I−
(green, dashed line) at the integration range of [−32.1 γ,−30.1 γ] are shown.

Figure 4.15.: The time dependency of the purity (top) and its Fourier transform (bottom)
integrated over [−32.1 γ,−30.1 γ] are shown. The parameters are as in ta-
ble 4.1, but with the angles and displacements of the optimal configuration
eq. (4.4).
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4.5. Other applications

Figure 4.16.: We choose the IT-configuration (see eq. (4.3)) to realize a polarization filter.
The other parameters are as in table 4.1. On the left side, the spectrum
for a beam with polarization σ+ is shown. On the right side we display the
spectrum for a beam with σ−. The blue (dashed) line is the spectrum of a
detector with polarization π0, the red (dotted) line of one with π0,⊥.

is reserved for future work.

4.5.1. Circular polarization filter

In the previous sections, we discussed the conversion of linearly polarized light into cir-

cularly polarized light. However, our setup can also be used the other way around, i. e.

to analyze circularly polarized light by transforming it into linearly polarized light. The

so-obtained linearly polarized light can then be analyzed by a linear polarization filter,

that exists (see [12]).

In fig. 4.16 the principle function of a polarization filter as realized by our setup is

shown (code: appendix A.2.1). We chose the IT setup because then the intensity increase

takes in circularly polarized light and the angle α1 can be arbitrary. It can be clearly

seen, that the incoming circularly polarized light is transformed into π0 or π0,⊥ polarized

light, depending on the handedness. Applying a linear polarization filter in the right angle

behind our setup, results in filtering out one handedness of circularly polarized light.

4.5.2. λ
2

-wave plate and light switch

As it can be seen in eq. (2.18), one can also use our setup to build a λ
2
-wave plate, that

rotates the linearly polarized light by 2α, where α is the angle of the magnetic dipole

moment. Again, one sample would be enough to rotate the polarization as it was for
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4. Results

Figure 4.17.: The spectra for a λ
2
-wave plate are shown. On the left side for using one

sample (α = π
4

and ∆z = λ
2
), on the right side for two samples (α1 = π

4
,

α2 = π
2

and ∆z1 = ∆z2 = λ
2
). The blue (dashed) line is the intensity of

the detector in the beam polarization direction (π0), the green (solid) for a
perpendicular one (π0,⊥).

the transformation of polarization for the λ
4
-wave plate. The rotation of polarization

and the intensity increase both need a phase shift of π. Thus, the intensity increase

is already included in the rotation. If another sample should be applied for a higher

intensity increase, the angles should be chose to be α2 = 2α1. Then the angle of the

rotated polarization is not affected by the second intensity increase as it is ~J ≡ − ~J (see

eq. (2.3)).

Exemplary, the spectrum for a rotation of π
2

(α = π
4
)is shown for one sample and two

samples in fig. 4.17 (code: appendix A.2.2). To make the rotation visible, the intensities

I|| and I⊥ corresponding the detectors with linear polarization filters parallel respectively

perpendicular to the incoming polarization are taken for the calculation instead of the

intensities I±. For no rotation, it should be I⊥ = 0. For the dynamical case of one and

two samples as shown in the figure, it clearly is I⊥ 6= 0. Hence, the rotation has worked.

For two samples it is even I|| ≈ 0, which means, that the polarization of nearly all light

has been rotated.

Oftentimes, the experimental construction allows to be rotated and no λ
2
wave plate

is needed. However, it might be useful to have fast time control on the angle of linear

polarization.

Nevertheless, a λ
2
-wave plate can be used to construct a fast light switch. Consider a

polarimeter (see [12]) to filter out the unscattered synchrotron pulse that is not wanted in

forward scattering synchrotron experiments. The basic setup of the polarimeter respec-
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light beam

pol. filter 1 pol. filter 2

our setup

�

Figure 4.18.: The setup of a fast light switch is shown. It consists of two linear polarization
filters perpendicular to each other (blue) and our setup (black), respectively
some nuclei in the original polarimeter setup, that rotates the polarization
(solid red arrow) or not (dashed red arrow). The polarizations are also shown
(small arrows).

tively the light switch is shown in fig. 4.18. It basically consists of a first polarization filter

in the direction of the beam polarization, next some nuclei which rotate the polarization

by π
2

and finally a second polarization filter perpendicular to the first one. Then only the

scattered, i.e. the rotated, light can get through the second polarization filter while the

prompt pulse is blocked out. Currently this setup has big losses at the rotation. With our
λ
2
-wave plate, we could rotate the polarization between the two polarization filters with

even an increase of intensity. This combination of a polarimeter and our λ
2
-wave plate

could then also be used to switch on and off a light beam on a fast time scale by changing

the polarization so that the second polarization filter lets the beam through or blocks it

out.

4.5.3. Highly precise displacement measurement

As we have seen in fig. 4.6, our setup is quite sensible to variations in angle or displacement

at around ∆α = π
2

and ∆z = 0. This could be used to measure variations of angle and

displacement. Because of it being more common to measure highly precise displacements,

we will look at this case in the following. The variation of angles could be detected in a

similar way.

We again take two samples in order to increase the intensity. This is because the

intensities are quite small in this region otherwise. We choose the first angle to be α1 = π
4

and the second angle close to α = π
2

(here α2 = 0.52π). The displacement of first sample

is taken as ∆z1 = λ
2

and we slightly vary the displacement ∆z2. The result is shown in

fig. 4.19 (code: appendix A.1.1).

It can be seen, that the two points of high purity have a distance of ∆z ≈ 0.2λ < λ
2
,

which is normally the border of resolution for a measurement with wavelength λ. By

varying ∆z1, the range where the variation it easy to measure should able to be shifted

by parts of λ, as it can be seen in the right part of fig. 4.19.

To use this application in experiments, the knowledge of two out of the three intensities
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4. Results

Figure 4.19.: On the left side, purity (red) and the intensities I (blue) and I+ (green)
are shown for ∆z1 = 0.5λ. On the right side we have the same plot for
∆z1 = 0.3λ. The angles are chosen to be α1 = π

4
, α2 = 0.52π. All other

parameters are as in table 4.1.

I0, I+ and I− is needed. Otherwise, the purity cannot be calculated.

For a first proof of principle experiment instead of purity the intensity I+ can be mea-

sured. It also differs for varying displacements, but the magnitude is much lower than

that of the purity (see fig. 4.19).
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In this chapter, we compare our new approach to already existing technologies in the

optical regime.

5.1. Standard wave plate

As we wanted to create an element, that converts linear into circular polarization, it is

interesting to look at advantages and disadvantages in contrast to a standard λ
4
-wave

plate.

Intensity. While for an ideal common λ
4
-wave plate we get the same intensity in front

of and behind the wave plate. In experiments, the intensity is slightly decreased after

passage through the plate. In our approach we even obtain an increased intensity after

the wave plate for the wavelength of interest. The increase depends on the required purity.

For P = 0.995 it is increased by a factor of 1.7.

Wavelength. As we have seen in eq. (2.11), standard λ
4
-wave plates have a wavelength

dependency. Nevertheless, it is possible to cover a big range, e.g. from 310 nm to 1100 nm

(see [13]), by using achromatic crystals. In our approach, the transformation can only

be done at the linear lines that are really thin. This is fairly limitating. This limitation

can be reduced by using different sample materials because they have different resonant

wavelengths

Flexibility. If a common λ
4
-wave plate is adjusted, it is fixed and it requires a lot of effort

to change the handedness of circularly polarized light or the angle of linearly polarized

one. Our setup in contrast is very flexible in this aspect. This is because the purity can

be controlled electronically. It makes it possible to change the purity on a time scale of

the reaction time of the piezo. Concrete, it is possible to achieve these variations on a

time scale of ≈ 10 ms.

With the λ
2
wave plate setup we can control the angle of polarization instead of the

purity. This can also be achieved on the same time scale.
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Time. Despite the intensity difference, the time dependence might be the biggest dif-

ference. The effect of a standard λ
4
-wave plate is constant in time. In contrast our setup

allows to control the polarization in time space.

5.2. Pockels cells

In optics Pockels Cells are applied in order to do fast and arbitrary polarization changes.

In these elements, the diffraction index is changed by an electric field due to the Pockels

effect. Unfortunately, until now there are no Pockels cells in the X-ray regime, but only in

optical domain. Standard Pockels cells work on the time scale of milliseconds (see [14]).

Our setup has the potential of achieving a similar functionality. Depending on the

reaction time of the piezo, we could achieve even shorter shorter response times than

standard Pockels cells. However, we do not already have enough time control on our setup

to use it as a similar element as a Pockels cell, even though we already have dynamical

polarization control and can achieve arbitrary polarizations by arbitrary phase shifts.

Hence, our proposed setup would fill the gap of an element with the functionality of a

Pockels cell in the X-ray regime.
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In this thesis, an approach for dynamical polarization control in X-ray quantum optics

by using nuclear forward scattering was proposed. As the main application, the trans-

formation of linear into circular polarization was discussed. Nuclear forward scattering

is used to produce a phase shift of the scattered light relative to the unscattered one.

Selecting a magnetization, that is not perpendicular to the beam polarization, is used in

order to decompose the incoming polarization into one part, that obtains a phase shift,

whilst the other part remains uneffected. By modelling the phase shift by a suitable in-

stantaneous displacement and by choosing the angle of the magnetization appropriately,

we can achieve arbitrary polarization conversion.

At first, the function of a standard wave plate as well as its dependency on angle and

phase shift were discussed for one and two combined plates (chapter 2). After this, our

setup was introduced and explained (chapter 3). Subsequently, this setup was investigated

numerically (chapter 4) by use of the python library pynuss. Most effects were especially

explored at the nuclear transitions with linear polarization. It could be seen, that the

setup works in principle and that an intensity increase could be realized by use of a

second sample. For the influence of angle and phase shift we obtained similar results

for the numerical (chapter 4) and analytical calculations (chapter 3) for one sample.

For two samples we found some similarities in the angular and displacement behavior

respectively. However, there appeared big differences, that originate from the effects that

are included in pynuss. The regions of high purity are shifted with respect to the analytical

calculations. The purity structure for the different angles looked much more complicated

than analytically expected. In the future, we would like to understand the origin of these

effects. An optimization of the parameters of angle α1 and α2 and displacement ∆z1 and

∆z2 showed, that for a purity of P = +0.99 an intensity of I+ = 1.7I0 could be achieved.

This means, that very high purities with a significant intensity increase can be obtained.

We have also seen, that we have a varying purity in time space. By blocking out certain

frequencies, it should be possible to have time control of the purity.

As further applications of our setup a polarization filter, a λ
2
-wave plate, a light switch

and a high precision sensor were discussed in section 4.5. As of now, we have merely

provided a proof of principle. If these proposed setups were to be applied, they should be

further investigated.

A comparison with a standard wave plate and a Pockels cell showed, that our setup
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6. Summary and Outlook

has nearly all features of a wave plate combined with the ones of a Pockels cell – at

least in frequency space. Our distinct disadvantage compared to standard Pockels cells

and wave plates is that our setup has a much smaller range of operational wavelength

because we have to focus on resonance lines. It can be faced by using different materials.

Nevertheless, it is probably not possible to get as big wavelength ranges as for ordinary

wave plates.

In the future, we want to further develop the control in time space. Besides, it would

be interesting to further investigate the features of the other applications, especially the

displacement measurement. Furthermore, it might be worthwhile to think about trans-

ferring the approach into the optical regime. Despite good optical with similar functions

exist, the sensitivity of our setup might be interesting.

Besides, the setup should be tested in experiments. A first proof of principle experiment

was conducted during a beamtime at DESY. The spectrum of one sample in the λ
4
-

configuration could be analyzed by another 57Fe-foil that was mounted on a Mössbauer

drive. For linear polarization (static case) the spectrum should depend on the angle of the

magnetization of the second foil, while for circular polarization in the xy-plane (dynamical

case) there should be no dependency. Unfortunately, the measured data show very small

effects. We believe, that this was due to technical problems in the experimental setup.

A detailed data evaluation of the obtained measurements, a repetition of this proof of

principle experiment as well as first experimental tests of the mentioned applications are

reserved for future work.
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A. Used python-scripts

In this chapter, all the used scripts are displayed.

A.1. Analysis of polarization transformation

With these two scripts the calculations of the analysis of the polarization conversion was
done.

A.1.1. Frequency space

For better understanding, the script, that was used for the analysis in frequency space, is
divided into different parts.

Preamble

1 import f u n c t o o l s
import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b . c o l o r s import LogNorm
import s c ipy . s p e c i a l
import pynuss
from matp lo t l i b . cm import get cmap
from matp lo t l i b . c o l o r s import Normalize
from s c ipy . opt imize import c u r v e f i t
from s c ipy . s i g n a l import f i nd peak s

11 import datet ime

# get cur rent f i l ename
import sys
import os
f i l e n a m e = os . path . basename ( sys . argv [ 0 ] )

# measure running time
import time
s t a r t = time . time ( )

Parameters

### gene ra l parameters

# cons id e r only one sample
one sample = False

# r e a l or i d e a l motion
mot ion rea l = Fal se
t r i s e = 2 . #15 . exper imenta l
t r i s e = 15 .0

10

# samples
l a y e r t h i c k n e s s 1 = 1e−6 # m
l a y e r t h i c k n e s s 2 = 1e−6 # m
l a y e r t h i c k n e s s 3 = 1e−12 #m ( no sample )
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i n t e r n a l m a g n e t i c f i e l d = 33 # Tesla

# method to f i n d extremum
20 p o s o f p u r i t y = −(39.7+22.4) /2 # t h e o r e t i c a l p r e d i c t i o n

#method = ’ extremum 2 ’ # extremum of i n t e n s i t y
method = ’ t h e o r e t i c a l v a l u e ’
#method = ’ f i t ’
#method = ’ pur i ty ’
#method = ’ pur i ty2 ’

### parameters f o r the d i f f e r e n t par t s ( i f not set , the paramters o f ”no loop ” are taken )
30

# loops
no loop = True
loop d i sp lacement = False
l o o p t h i c k n e s s = Fal se
l oo p a ng l e = False
l o o p a n g l e d i s = Fal se
l oop eve ry th ing = False
l oop d i s 1D = False
#loop ang le 1D = False

40

# no loop
alpha1 = np . p i ∗0 .35
alpha2 = −np . p i ∗0 .3

d isp lacement1 = 0.25 # times resonant wavelength
disp lacement2 = 0 .7

s a v e p i c = ” p i c t u r e s / opt ”
50

i d e a l v s r e a l = Fal se

# . . . over d i sp lacements
d i s 1 s t a r t = −0.0 #r e s . wavelength
d i s1 end = 1.01
d i s 1 s t e p = 0.01
d i s 2 s t a r t = −0.0
d i s2 end = 1.01
d i s 2 s t e p = 0.01

60
f i l e n a m e d i s = ’ f i l e s / d i s 2 0 ’

# . . . over t h i c k n e s s e s
t h i c k n e s s e s l o o p = [ 1 e−7, 1e−6, 1e−5]
s a v e p i c t h i c k n e s s e s = ’ p i c t u r e s / t h i c k n e s s e s o n e ’

# . . . over d i f f e r e n t r e l a t i v e phase s h i f t s
70 s h i f t s t a r t = −0.5

s h i f t e n d = 0 .5
s h i f t s t e p = 0 .1
d i s 1 s h i f t = 0 .3

# . . . over d i f f e r e n t abso lu t e phase s h i f t s
d i s s t a r t = 0 .0
d i s end = 1 .1
d i s s t e p = 0 .1

80 p h a s e s h i f t = 0 .25

# . . . over d i f f e r e n t ang l e s
a n g l e 1 s t a r t = −1 #pi
ang le1 end = 1.00001
a n g l e 1 s t e p = 0.025
a n g l e 2 s t a r t = −1.0
ang le2 end = 1.00001
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a n g l e 2 s t e p = 0.025
90

disp1 = 0 .5
d i sp2 = 0.25

f i l e n a m e a n g l e s = ’ f i l e s / ang l e s 21 ’

#. . . over one ang le and disp lacement
f i r s t f i x e d = False

100 a n g l e s t a r t = −1 #pi
ang le end = 1.0001 #pi
a n g l e s t e p = 0.01

d i s p l a c e m e n t s t a r t = −1
disp lacement end = 1.0000001
d i sp l a cement s t ep = 0.01

a n g l e f i x e d = np . p i /4
d i s p l a c e m e n t f i x e d = 0.25

110
f i l e n a m e a n g l e d i s = ’ f i l e s / a n g l e d i s 6 ’

# . . . loop over everyth ing
t h i c k n e s s e s = np . array ( [ 1 e−6])
ang l e s1 = np . arange (−0.5∗ np . pi , 0 .501 ∗np . pi , 0 .025∗np . p i )
ang l e s2 = np . arange (−0.5∗ np . pi , 0 .501 ∗np . pi , 0 .025∗np . p i )
d i sp lacements1 = np . arange (0 , 1 .000001 , 0 .0025)
d i sp lacements2 = np . arange (0 , 1 .000001 , 0 .0025)

120
i f one sample == True :

d i sp lacements2 = np . arange (0 , 1 , 1)
ang l e s2 = np . arange (0 , 1 , 1)

min pur i ty = np . array ( [ 0 . 5 , 0 . 6 , 0 . 7 , 0 . 7 5 , 0 . 8 , 0 . 85 , 0 . 9 , 0 . 95 , 0 . 99 , 0 . 995 , 0 . 999 , 1 ] )

f i l e n a m e e v e r y t h i n g = ” f i l e s / l oop one samp l e 025 3 merged r e su l t s . txt ”

130 # . . . loop d i s 1D ( one sample )
d i s 1 D s t a r t = −0.2
dis 1D end = 0 .2
d i s 1D s t ep = 0.001

ang l e d i s 1D = 0.52 ∗ np . p i

a lpha1 d i s 1D = np . p i /4
d i s 1 d i s 1D = 0.3

140 f i l e n a m e d i s 1 D = ’ p i c t u r e s / d i s 1D 5 ’

Definition of functions

1 ### FUNCTIONS FOR CALCULATIONS ###

### check whether f o l d e r ’ p i c t u r e s ’ and ’ f i l e s ’ e x i s t and c r e a t e them
i f not os . path . e x i s t s ( ’ p i c t u r e s ’ ) :

os . makedirs ( ’ p i c t u r e s ’ )
i f not os . path . e x i s t s ( ’ f i l e s ’ ) :

os . makedirs ( ’ f i l e s ’ )

### combine paramtere acoord ing ly f o r c a l c u l a t i o n

11 ### s e t up beam and de t e c t o r
Beam = pynuss . Beam ( [ 0 , 0 , 1 ] )
De t e c to r p lu s = pynuss . Detector (Beam)
Detector minus = pynuss . Detector (Beam)
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# s e t p o l a r i z a t i o n s
Beam . S e t L i n e a r P o l a r i z a t i o n ( [ 1 , 0 , 0 ] )
De t e c to r p lu s . S e t C i r c u l a r F i l t e r (+1)
Detector minus . S e t C i r c u l a r F i l t e r (−1)

21 beam direc t ion = [ 0 , 0 , 1 ]

magnet i sa t i on po l1 = [ np . cos ( alpha1 ) , np . s i n ( alpha1 ) , 0 ]
magnet i sa t i on po l2 = [ np . cos ( alpha2 ) , np . s i n ( alpha2 ) , 0 ]

# ar rays
# . . . over d i f f e r e n t d i sp lacements
d i s 1 = np . arange ( d i s 1 s t a r t , d i s1 end , d i s 1 s t e p )
d i s 2 = np . arange ( d i s 2 s t a r t , d i s2 end , d i s 2 s t e p )

31
# . . . over d i f f e r e n t r e l a t i v e phase s h i f t s
s h i f t s = np . arange ( s h i f t s t a r t , s h i f t e n d , s h i f t s t e p )

# . . . over d i f f e r e n t abso lu t e phase s h i f t s
d i sp lacements = np . arange ( d i s s t a r t , d i s end , d i s s t e p )

# . . . over d i f f e r e n t ang l e s
angle1 = np . arange ( a n g l e 1 s t a r t , angle1 end , a n g l e 1 s t e p ) ∗ np . p i
ang le2 = np . arange ( a n g l e 2 s t a r t , angle2 end , a n g l e 2 s t e p ) ∗ np . p i

41
# . . . over ang le and disp lacement
ang le = np . arange ( a n g l e s t a r t , angle end , a n g l e s t e p ) ∗ np . p i
d i sp lacement = np . arange ( d i sp l a c ement s ta r t , d isplacement end , d i sp l acement s t ep )

# . . . over d i s 1D
dis 1D = np . arange ( d i s 1D s ta r t , dis 1D end , d i s 1D s t ep )

beam pol = str ( [ 1 , 0 , 0 ] )
51

# func t i on to c r e a t e samples
def de f ine samp le ( th i cknes s , magnet izat ion , i n t f i e l d ) :

eFe = pynuss . ResonantElement . fromTemplate ( ’ Fe57 ’ )
eFe . Magnet icHyper f ineFie ld = i n t f i e l d
eFe . Se tMagnet i za t i onDi rec t i on ( magnet izat ion )
mFe = pynuss . Mater ia l . fromElement ( eFe )
lFe = pynuss . Layer (mFe, t h i c k n e s s )
return lFe

61
def F i t g a u s s i a n (x , A, mu, sigma , o f f s e t ) :

return A∗np . exp (−0.5∗((x−mu) /sigma ) ∗∗2) + o f f s e t

# algor i thm to d e f i n e p o s i t i o n where pur i ty and i n t e n s i t y are taken
def d e f i n e p o s i t i o n ( method loc , pos0 , I , pur i ty , Detuning ) :

# t h e o r e t i c a l va lue
po s i t i on Det = pos0 # t h e o r e t i c a l p r e d i c t i o n

# p o s i t i o n index
71 s tep Det = Detuning [1]−Detuning [ 0 ]

p o s i t i o n = int ( len ( Detuning ) /2 + pos i t i on Det / step Det )

maxima det = 0

i f ’ extremum 2 ’ == method loc :
pos2 = np . argmax ( I n t e n s i t y F [ po s i t i on −10: p o s i t i o n +10]) − 10
p o s i t i o n = p o s i t i o n + pos2
maxima det = ( p o s i t i o n − len ( Detuning ) /2) ∗ s tep Det

81 i f ’ pur i ty ’ == method loc :
p o s i t i o n = np . argmax (abs ( pur i ty ) )
p o s i t i o n v a l u e = True
method = ”max | pur i ty | ”

maxima det = ( p o s i t i o n − len ( Detuning ) /2) ∗ s tep Det

i f ’ pur i ty2 ’ == method loc :
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i f (abs ( pur i ty [ p o s i t i o n ] ) > 0 . 2 ) : # no Fano l i n e , no l i n e a r po l
p o s i t i o n r e l a t i v e = np . argmax (abs ( pur i ty [ int ( po s i t i on −3/step Det ) : int ( p o s i t i o n +3/

↪→ s tep Det ) ] ) ) −3
91 p o s i t i o n = p o s i t i o n r e l a t i v e + p o s i t i o n

maxima det = ( p o s i t i o n − len ( Detuning ) /2) ∗ s tep Det

return pos i t i on , maxima det

# c a l c u l a t e the spectrum
def c a l c u l a t e s p e c t r a ( d i sp lacement 1 , d i sp lacement 2 ) :

def MotionSmoothStep1 ( t ) :
# Times in ns

101 tR i se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement 1 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

def MotionSmoothStep2 ( t ) :
111 # Times in ns

tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement 2 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

121
# s e t up frequency domain c a l c u l a t i o n
fw1 p lus = pynuss . ForwardScatter ing (Beam, Detec tor p lus , lFe1 ) # normal spectrum
fw2 p lus = pynuss . ForwardScatter ing (Beam, Detec tor p lus , lFe2 )
fw1 minus = pynuss . ForwardScatter ing (Beam, Detector minus , lFe1 ) # spectrum with other

↪→ handedness
fw2 minus = pynuss . ForwardScatter ing (Beam, Detector minus , lFe2 )

i f one sample == True :
# combine samples , d e t e c t o r p lus (
c s p l u s = pynuss . t o o l s . CombineSamples (

131 ( fw1 p lus . TransmissionMatrix , MotionSmoothStep1 ) , # sample 1
)
# combine samples , d e t e c t o r minus (
cs minus = pynuss . t o o l s . CombineSamples (

( fw1 minus . TransmissionMatrix , MotionSmoothStep1 ) , # sample 1
)

else :
# combine samples , d e t e c t o r p lus (
c s p l u s = pynuss . t o o l s . CombineSamples (

( fw1 p lus . TransmissionMatrix , MotionSmoothStep1 ) , # sample 1
141 ( fw2 p lus . TransmissionMatrix , MotionSmoothStep2 ) # sample 2

)

# combine samples , d e t e c t o r minus (
cs minus = pynuss . t o o l s . CombineSamples (

( fw1 minus . TransmissionMatrix , MotionSmoothStep1 ) , # sample 1
( fw2 minus . TransmissionMatrix , MotionSmoothStep2 ) # sample 2

)

151 # compute ResponseMatrix
Detuning = c s p l u s . DetuningGrid (100 , 0 . 5 , 800 , 0 . 2 )
DetuningStep = Detuning [ 1 ] − Detuning [ 0 ]
RM F stat plus = c s p l u s . ResponseStat i c ( Detuning ) # s t a t i c re sponse
RM F stat minus = cs minus . ResponseStat i c ( Detuning ) # s t a t i c re sponse
RM F dyn plus = c s p l u s . ResponseWithMotion ( Detuning ) # dynamic re sponse
RM F dyn minus = cs minus . ResponseWithMotion ( Detuning ) # dynamic response

# compute i n t e n s i t y
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I n t e n s i t y F s t a t p l u s = RM F stat plus . I n t e n s i t y ( )
161 I n t e n s i t y F s t a t m i n u s = RM F stat minus . I n t e n s i t y ( )

I n t e n s i t y F d y n p l u s = RM F dyn plus . I n t e n s i t y ( )
Intens i ty F dyn minus = RM F dyn minus . I n t e n s i t y ( )

# Transform in to time domain
RM T stat plus , TStep = pynuss . t o o l s . FreqToTime ( RM F stat plus , DetuningStep )
RM T stat minus , TStep = pynuss . t o o l s . FreqToTime ( RM F stat minus , DetuningStep )
RM T dyn plus , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn plus , DetuningStep )
RM T dyn minus , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn minus , DetuningStep )
Times = np . arange ( len ( Detuning ) ) ∗ ( TStep )

171
# compute i n t e n s i t y in time domain
I n t e n s i t y T s t a t p l u s = RM T stat plus . I n t e n s i t y ( )
I n t e n s i t y T s t a t m i n u s = RM T stat minus . I n t e n s i t y ( )
In t en s i t y T dyn p lu s = RM T dyn plus . I n t e n s i t y ( )
Intens i ty T dyn minus = RM T dyn minus . I n t e n s i t y ( )

# compute t o t a l i n t e n s i t y
I n t e n s i t y F s t a t = I n t e n s i t y F s t a t p l u s + I n t e n s i t y F s t a t m i n u s
I n t e n s i t y T s t a t = I n t e n s i t y T s t a t m i n u s + I n t e n s i t y T s t a t m i n u s

181 In t ens i ty F dyn = I n t e n s i t y F d y n p l u s + Intens i ty F dyn minus
Intens i ty T dyn = Int en s i t y T dyn p lu s + Intens i ty T dyn minus

# compute pur i ty
pur i ty F = ( I n t e n s i t y F d y n p l u s − Intens i ty F dyn minus ) / In tens i ty F dyn
pur ity T = ( In t en s i t y T dyn p lu s − Intens i ty T dyn minus ) / Intens i ty T dyn
p u r i t y F s t a t = ( I n t e n s i t y F s t a t p l u s − I n t e n s i t y F s t a t m i n u s ) / I n t e n s i t y F s t a t
p u r i t y T s t a t = ( I n t e n s i t y T s t a t p l u s − I n t e n s i t y T s t a t m i n u s ) / I n t e n s i t y T s t a t

v a l u e s F s t a t = [ I n t e n s i t y F s t a t p l u s , I n t en s i t y F s ta t m inus , I n t e n s i t y F s t a t ,
↪→ p u r i t y F s t a t ]

191 v a l u e s T s t a t = [ I n t e n s i t y T s t a t p l u s , In t en s i ty T s ta t minus , I n t e n s i t y T s t a t ,
↪→ p u r i t y T s t a t ]

# i n t e n s i t y array to re turn
I n t e n s i t y = [ Intens i ty F dyn , In t en s i ty F dyn p lu s , Intens i ty F dyn minus , va lue s F s ta t ,

↪→ Intens i ty T dyn , In tens i ty T dyn p lus , Intens i ty T dyn minus , v a l u e s T s t a t ]

return I n t en s i t y , pur ity F , purity T , Detuning , Times

# f u n c t i o n s f o r t h e r e o t i c a l c a l c u l a t i o n
def r o t a t i o n ( alpha ) :

201 return np . array ( [ [ np . cos ( alpha ) , −np . s i n ( alpha ) ] , [ np . s i n ( alpha ) , np . cos ( alpha ) ] ] )

def waveplate ( alpha , phi ) :
M = np . array ( [ [ 1 , 0 ] , [ 0 , np . exp (1 j ∗ phi ) ] ] )
return r o t a t i o n (−alpha ) . dot (M. dot ( r o t a t i o n ( alpha ) ) )

def p o l f i l t e r ( s i gn ) :
return 1/2∗np . array ( [ [ 1 , −1 j ∗ s i gn ] , [ 1 j ∗ s ign , 1 ] ] )

Spectrum

i f no loop == True :
# c r e a t e samples
lFe1 = de f ine samp le ( l a y e r t h i c k n e s s 1 , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine samp le ( l a y e r t h i c k n e s s 2 , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d )

# Calcu la te spec t ra
7 I n t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( displacement1 ,

↪→ disp lacement2 )

I n t e n s i t y F = I n t e n s i t y [ 0 ]
I n t e n s i t y F d y n p l u s = I n t e n s i t y [ 1 ]
Intens i ty F dyn minus = I n t e n s i t y [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t en s i t y T dyn p lu s = I n t e n s i t y [ 5 ]
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Intens i ty T dyn minus = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]

17
i f i d e a l v s r e a l == True :

# r e a l vs i d e a l motion
mot ion rea l = Fal se
I n t e n s i t y i d e a l , p u r i t y F i d e a l , pu r i t y T idea l , Detun ing idea l , T imes idea l =

↪→ c a l c u l a t e s p e c t r a ( displacement1 , d i sp lacement2 )

mot ion rea l = True
t r i s e = 2 .0
I n t e n s i t y r e a l , p u r i t y F r e a l , pu r i t y T rea l , Detuning rea l , T imes rea l =

↪→ c a l c u l a t e s p e c t r a ( displacement1 , d i sp lacement2 )

27 t r i s e = 15 .0
I n t e n s i t y r e a l 2 , p u r i t y F r e a l 2 , pu r i ty T rea l 2 , Detuning rea l2 , Times rea l2 =

↪→ c a l c u l a t e s p e c t r a ( displacement1 , d i sp lacement2 )

# s h i f t o f maximum
posit ion num = d e f i n e p o s i t i o n ( ’ extremum 2 ’ , p o s o f p u r i t y , In t en s i ty F dyn p lu s ,

↪→ pur i ty F array , Detuning ) [ 0 ]
p o s i t i o n r e a l = (−len ( Detuning ) //2 + posit ion num ) ∗( Detuning [1]−Detuning [ 0 ] )
print ( ’ s h i f t : ’ , round( p o s i t i o n r e a l−p o s o f p u r i t y , 3 ) )

### plo t
37 # spec t ra f o r t h e s i s

# i n t e n s i t i e s
f i g , ax1 = p l t . subp lo t s ( f i g s i z e = ( 3 . 5 , 5 ) )

ax1 . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
ax1 . s e t y l a b e l ( ’ I n t e n s i t y [ $ I 0$ ] ’ )

ax1 . s e t x l i m ([−100 , 10 0 ] )

47 ax1 . p l o t ( Detuning , In t en s i ty F dyn p lu s , l a b e l=’ Moving , $ I +$ ’ , l i n e s t y l e = ”−” , c o l o r = ” blue
↪→ ” )

ax1 . p l o t ( Detuning , Intens i ty F dyn minus , l a b e l=’ Moving , $ I −$ ’ , l i n e s t y l e = ”−−” , c o l o r = ”
↪→ green ” )

f i g . s a v e f i g ( s a v e p i c+’ i n t ’ , bbox inches=’ t i g h t ’ )

# pur i ty
f i g , ax1 = p l t . subp lo t s ( f i g s i z e = ( 3 . 5 , 5 ) )

ax1 . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
ax1 . s e t y l a b e l ( ’ Pur ity ’ )

57
ax1 . s e t x l i m ([−100 , 10 0 ] )
ax1 . s e t y l i m ( [ −1 .1 , 1 . 1 ] )

ax1 . p l o t ( Detuning , ( I n t e n s i t y F d y n p l u s − Intens i ty F dyn minus ) /( I n t e n s i t y F d y n p l u s +
↪→ Intens i ty F dyn minus ) , l a b e l=’ $\\ f r a c { I +−I −}{ I + + I −}$ ’ , l i n e s t y l e = ”−” , c o l o r =
↪→ ” red ” )

f i g . s a v e f i g ( s a v e p i c+’ pur ’ , bbox inches=’ t i g h t ’ )

# r e a l vs i d e a l motion
i f i d e a l v s r e a l == True :

67 f i g , axes = p l t . subp lo t s ( nrows=1, nco l s =2, f i g s i z e =(7 .4 ,5) )

ax1 = axes [ 0 ]
ax2 = axes [ 1 ]

ax1 . s e t x l a b e l ( ’ Detuning [ gamma] ’ )
ax1 . s e t y l a b e l ( ’ I n t e n s i t y ’ )
ax1 . s e t x l i m ([−100 , 1 00 ] )

ax1 . p l o t ( Detuning , I n t e n s i t y i d e a l [ 1 ] , l i n e s t y l e = ”−” , c o l o r = ” green ” )
77 ax1 . p l o t ( Detuning , I n t e n s i t y i d e a l [ 2 ] , l i n e s t y l e = ”−” , c o l o r = ” blue ” )

ax1 . p l o t ( Detuning , I n t e n s i t y r e a l [ 1 ] , l i n e s t y l e = ”−−” , c o l o r = ” green ” )
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ax1 . p l o t ( Detuning , I n t e n s i t y r e a l [ 2 ] , l i n e s t y l e = ”−−” , c o l o r = ” blue ” )

ax1 . p l o t ( Detuning , I n t e n s i t y r e a l 2 [ 1 ] , l i n e s t y l e = ” : ” , c o l o r = ” green ” )
ax1 . p l o t ( Detuning , I n t e n s i t y r e a l 2 [ 2 ] , l i n e s t y l e = ” : ” , c o l o r = ” blue ” )

ax2 . s e t x l a b e l ( ’ Detuning [ gamma] ’ )
ax2 . s e t y l a b e l ( ’ Pur ity ’ )

87 ax2 . s e t x l i m ([−100 , 1 00 ] )
ax2 . s e t y l i m ( [ −1 .1 , 1 . 1 ] )

ax2 . p l o t ( Detuning , p u r i t y F i d e a l , l a b e l=’ idea l , pur i ty ’ , l i n e s t y l e = ”−” , c o l o r = ” red ” )
ax2 . p l o t ( Detuning , p u r i t y F r e a l , l a b e l=’ r ea l , pur i ty ’ , l i n e s t y l e = ”−−” , c o l o r = ” red ” )
ax2 . p l o t ( Detuning , p u r i t y F r e a l 2 , l a b e l=’ r ea l , pur i ty ’ , l i n e s t y l e = ” : ” , c o l o r = ” red ” )

f i g . s u b p l o t s a d j u s t ( wspace =0.4)
p l t . s a v e f i g ( s a v e p i c+’ IvR ’ , bbox inches=’ t i g h t ’ )

Different displacements

i f l oop d i sp lacement == True :
2 print ( ” loop over d i sp lacements ” )

print ( alpha1 , alpha2 )
print ( ” wr i t t en in to ” , f i l e n a m e d i s )

# c r e a t e samples
lFe1 = de f ine samp le ( l a y e r t h i c k n e s s 1 , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine samp le ( l a y e r t h i c k n e s s 2 , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d )

ph i theo1 = d i s1 ∗2∗np . p i
ph i theo2 = ( d i s2 ) ∗2∗np . p i

12 o f f s e t a l p h a 1 = np . p i /2
o f f s e t a l p h a 2 = np . p i /2
l i n = np . array ( [ 1 , 0 ] )

maxima det = [[−100 for x in range ( len ( d i s 2 ) ) ] for y in range ( len ( d i s 1 ) ) ]
pur i ty = [[−2 for x in range ( len ( d i s 2 ) ) ] for y in range ( len ( d i s 1 ) ) ]
pu r i t y theo = [[−2 for x in range ( len ( d i s 2 ) ) ] for y in range ( len ( d i s 1 ) ) ]

22 for i in range ( len ( d i s 1 ) ) :
for j in range ( len ( d i s 2 ) ) :

# n i c e c o n t r o l in te rmina l
end = time . time ( )
cu r r en t t ime = round( end−s t a r t )
cur r ent t ime fo rm = str ( datet ime . t imede l ta ( seconds=cur r ent t ime ) )
percentage = ( i ∗ len ( d i s 1 )+j ) /( len ( d i s 1 ) ∗ len ( d i s 2 ) ) ∗100
i f percentage != 0 :

remain ing t ime = round ( (100/ percentage −1)∗ cur r en t t ime )
remain ing t ime form = str ( datet ime . t imede l ta ( seconds=remain ing t ime ) )

32 else :
r emain ing t ime form = ’ ’

print ( ’ completed : { 0 : . 3 f }%, running : {1 :6} s , remaining : {2 :6} s \ r ’ . format ( percentage ,
↪→ current t ime form , remain ing t ime form ) )

# Calcu la te spec t ra
In t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( d i s 1 [ i ] ,

↪→ d i s2 [ j ] )

I n t e n s i t y F = I n t e n s i t y [ 0 ]
I n t e n s i t y F d y n p l u s = I n t e n s i t y [ 1 ]

42 Intens i ty F dyn minus = I n t e n s i t y [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t en s i t y T dyn p lu s = I n t e n s i t y [ 5 ]
Intens i ty T dyn minus = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]
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pos i t i on , maxima det [ i ] [ j ] = d e f i n e p o s i t i o n ( method , p o s o f p u r i t y , In t ens i ty F ,
↪→ pur i ty F array , Detuning )

pur i ty [ i ] [ j ] = pur i ty F ar ray [ p o s i t i o n ]
52

# c a l c u l a t e t h e o r e t i c a l pur i ty
l i n 2 = waveplate ( alpha1+o f f s e t a l p h a 1 , ph i theo1 [ i ] ) . dot ( l i n )
l i n 4 = waveplate ( alpha2+o f f s e t a l p h a 2 , ph i theo2 [ j ] ) . dot ( l i n 2 )

p o l p l u s = p o l f i l t e r (+1) . dot ( l i n 4 )
pol minus = p o l f i l t e r (−1) . dot ( l i n 4 )
I p l u s = np . s q r t (abs ( p o l p l u s [ 0 ] ) ∗∗2 + abs ( p o l p l u s [ 1 ] ) ∗∗2)
I minus = np . s q r t (abs ( pol minus [ 0 ] ) ∗∗2 + abs ( pol minus [ 1 ] ) ∗∗2)

62 pur i t y theo [ i ] [ j ] = ( I p lu s−I minus ) / ( I p l u s + I minus )

# wr i t e in to f i l e
f p u r = open( f i l e n a m e d i s+’ p u r i t y . txt ’ , ”a” )
f i n t = open( f i l e n a m e d i s+’ i n t e n s i t y . txt ’ , ”a” )
f t h e o = open( f i l e n a m e d i s+’ p u r i t y t h e o . txt ’ , ”a” )

# s e t t i n g s
72 s e t t i n g s = [ ”# angle 1 : ” + str ( alpha1 ) , ”# angle 2 : ” + str ( alpha2 ) , ”# t h i c k n e s s 1 : ”+str (

↪→ l a y e r t h i c k n e s s 1 ) , ”# t h i c k n e s s 2 : ” + str ( l a y e r t h i c k n e s s 2 ) , ”# r e a l motion : ”+str (
↪→ mot ion rea l ) , ”# method to f i n d p o s i t i o n : ”+str ( method ) , ”# used code : ”+str ( f i l e n a m e )
↪→ ]

f p u r . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )
f i n t . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )
f t h e o . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )

for item in s e t t i n g s :
f p u r . wr i t e ( ”%s \n” % item )
f i n t . wr i t e ( ”%s \n” % item )
f t h e o . wr i t e ( ”%s \n” % item )

82
# x−a x i s
np . save txt ( f pur , np . array ( d i s 2 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f i n t , np . array ( d i s 2 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f theo , np . array ( d i s 2 ) [ None ] , d e l i m i t e r=’ , ’ )
# y−a x i s
np . save txt ( f pur , np . array ( d i s 1 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f i n t , np . array ( d i s 1 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f theo , np . array ( d i s 1 ) [ None ] , d e l i m i t e r=’ , ’ )

92 pur = np . array ( pur i ty )
in ten = np . array (maxima)
pur theo = np . array ( pu r i t y theo )
np . save txt ( f pur , pur , d e l i m i t e r = ’ , ’ )
np . save txt ( f i n t , inten , d e l i m i t e r = ’ , ’ )
np . save txt ( f theo , pur theo , d e l i m i t e r = ’ , ’ )

# c l o s e f i l e s
f p u r . c l o s e ( )
f i n t . c l o s e ( )

102 f t h e o . c l o s e ( )

Different thicknesses

1 i f l o o p t h i c k n e s s == True :
I p l u s = [ 0 for x in range ( len ( t h i c k n e s s e s l o o p ) ) ]
I minus = [ 0 for x in range ( len ( t h i c k n e s s e s l o o p ) ) ]
pur i ty = [ 0 for x in range ( len ( t h i c k n e s s e s l o o p ) ) ]

for i in range ( len ( t h i c k n e s s e s l o o p ) ) :
# c r e a t e samples
lFe1 = de f ine samp l e ( t h i c k n e s s e s l o o p [ i ] , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine samp l e ( t h i c k n e s s e s l o o p [ i ] , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d )
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11 # c a l c u l a t e spec t ra
In t en s i t y , pur i ty [ i ] , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( displacement1 ,

↪→ disp lacement2 )

I p l u s [ i ] = I n t e n s i t y [ 1 ]
I minus [ i ] = I n t e n s i t y [ 2 ]

# p lo t r e s u l t s
s t y l e = [ ’ : ’ , ’−− ’ , ’− ’ ]
p l t . f i g u r e ( f i g s i z e =(6 ,4) )

21 for i in range ( len ( t h i c k n e s s e s l o o p ) ) :
p l t . p l o t ( Detuning , I p l u s [ i ] , c o l o r = ’ red ’ , l i n e s t y l e = s t y l e [ i ] )
p l t . p l o t ( Detuning , I minus [ i ] , c o l o r = ’ blue ’ , l i n e s t y l e = s t y l e [ i ] )

p l t . xl im (−100 ,100)
p l t . x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
p l t . y l a b e l ( ’ I n t e n s i t y [ $ I 0$ ] ’ )
p l t . s a v e f i g ( s a v e p i c t h i c k n e s s e s , bbox inches=’ t i g h t ’ )
print ( ’ saved ’ )

Different angles

i f l o o p a ng l e == True :
print ( ” loop over ang l e s ” )
print ( disp1 , d i sp2 )

4 print ( ” wr i t t en in to ” , f i l e n a m e a n g l e s )

# c r e a t e samples
ph i theo1 = disp1 ∗2∗np . p i
ph i theo2 = disp2 ∗2∗np . p i
o f f s e t a l p h a 1 = np . p i /2
o f f s e t a l p h a 2 = np . p i /2
l i n = np . array ( [ 1 , 0 ] )

maxima det = [ [ 0 for x in range ( len ( ang le2 ) ) ] for y in range ( len ( ang le1 ) ) ]
14 pur i ty = [ [ 0 for x in range ( len ( ang le2 ) ) ] for y in range ( len ( ang le1 ) ) ]

pu r i t y theo = [ [ 0 for x in range ( len ( ang le2 ) ) ] for y in range ( len ( ang le1 ) ) ]

for i in range ( len ( ang le1 ) ) :
for j in range ( len ( ang le2 ) ) :

# n i c e c o n t r o l in te rmina l
end = time . time ( )
cu r r en t t ime = round( end−s t a r t )
cur r ent t ime fo rm = str ( datet ime . t imede l ta ( seconds=cur r ent t ime ) )

24 percentage = ( i ∗ len ( ang le1 )+j ) /( len ( ang le1 ) ∗ len ( ang le2 ) ) ∗100
i f percentage != 0 :

remain ing t ime = round ( (100/ percentage −1)∗ cur r en t t ime )
remain ing t ime form = str ( datet ime . t imede l ta ( seconds=remain ing t ime ) )

else :
r emain ing t ime form = ’ ’

print ( ’ completed : { 0 : . 3 f }%, running : {1 :6} s , remaining : {2 :6} s \ r ’ . format ( percentage
↪→ , cur rent t ime form , remain ing t ime form ) )

# c r e a t e samples
alpha1 = angle1 [ i ]

34 alpha2 = angle2 [ j ]
mag pol1 = [ np . cos ( alpha1 ) , np . s i n ( alpha1 ) , 0 ]
mag pol2 = [ np . cos ( alpha2 ) , np . s i n ( alpha2 ) , 0 ]

lFe1 = de f ine sampl e ( l a y e r t h i c k n e s s 1 , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine sampl e ( l a y e r t h i c k n e s s 2 , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d )

# Calcu la te spec t ra
In t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( disp1 , d i sp2

↪→ )
44
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I n t e n s i t y F = I n t e n s i t y [ 0 ]
I n t e n s i t y F d y n p l u s = I n t e n s i t y [ 1 ]
Intens i ty F dyn minus = I n t e n s i t y [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t en s i t y T dyn p lu s = I n t e n s i t y [ 5 ]
Intens i ty T dyn minus = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]

54 # c a l c u a l t e p u r i d i t y at g iven p o s i t i o n

po s i t i on Det = −(39.7+22.4) /2 # t h e o r e t i c a l p r e d i c t i o n
p o s i t i o n = int ( len ( Detuning ) /2 + pos i t i on Det ∗ 2) # p o s i t i o n index

pos i t i on , maxima det [ i ] [ j ] = d e f i n e p o s i t i o n ( method , p o s o f p u r i t y , In t ens i ty F ,
↪→ pur i ty F array , Detuning )

# c a l c u l a t e t h e o r e t i c a l pur i ty
64 l i n 2 = waveplate ( ang le1 [ i ]+ o f f s e t a l p h a 1 , ph i theo1 ) . dot ( l i n )

l i n 4 = waveplate ( ang le2 [ j ]+ o f f s e t a l p h a 2 , ph i theo2 ) . dot ( l i n 2 )

p o l p l u s = p o l f i l t e r (+1) . dot ( l i n 4 )
pol minus = p o l f i l t e r (−1) . dot ( l i n 4 )
I p l u s = np . s q r t (abs ( p o l p l u s [ 0 ] ) ∗∗2 + abs ( p o l p l u s [ 1 ] ) ∗∗2)
I minus = np . s q r t (abs ( pol minus [ 0 ] ) ∗∗2 + abs ( pol minus [ 1 ] ) ∗∗2)

pur i t y theo [ i ] [ j ] = ( I p lu s−I minus ) / ( I p l u s + I minus )

74
# wri t e in to f i l e

f p u r = open( f i l e n a m e a n g l e s+’ p u r i t y . txt ’ , ”a” )
f i n t = open( f i l e n a m e a n g l e s+’ i n t e n s i t y . txt ’ , ”a” )
f t h e o = open( f i l e n a m e a n g l e s+’ p u r i t y t h e o . txt ’ , ”a” )

# s e t t i n g s
s e t t i n g s = [ ”# disp lacement 1 : ” + str ( d i sp1 ) , ”# disp lacement 2 : ” + str ( d i sp2 ) , ”# t h i c k n e s s

↪→ 1 : ”+str ( l a y e r t h i c k n e s s 1 ) , ”# t h i c k n e s s 2 : ” + str ( l a y e r t h i c k n e s s 2 ) , ”# r e a l motion :
↪→ ”+str ( mot ion rea l ) , ”# method to f i n d p o s i t i o n : ”+str ( method ) , ”# used code : ”+str (
↪→ f i l e n a m e ) ]

f p u r . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )
84 f i n t . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )

f t h e o . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )

for item in s e t t i n g s :
f p u r . wr i t e ( ”%s \n” % item )
f i n t . wr i t e ( ”%s \n” % item )
f t h e o . wr i t e ( ”%s \n” % item )

# x−a x i s
np . save txt ( f pur , np . array ( ang le2 ) [ None ] , d e l i m i t e r=’ , ’ )

94 np . save txt ( f i n t , np . array ( ang le2 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f theo , np . array ( angle2 ) [ None ] , d e l i m i t e r=’ , ’ )
# y−a x i s
np . save txt ( f pur , np . array ( ang le1 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f i n t , np . array ( ang le1 ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f theo , np . array ( angle1 ) [ None ] , d e l i m i t e r=’ , ’ )

pur = np . array ( pur i ty )
in ten = np . array (maxima)
pur theo = np . array ( pu r i t y theo )

104 np . save txt ( f pur , pur , d e l i m i t e r = ’ , ’ )
np . save txt ( f i n t , inten , d e l i m i t e r = ’ , ’ )
np . save txt ( f theo , pur theo , d e l i m i t e r = ’ , ’ )

# c l o s e f i l e s
f p u r . c l o s e ( )
f i n t . c l o s e ( )
f t h e o . c l o s e ( )
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Different angle and displacement

i f l o o p a n g l e d i s == True :
print ( ’ ang le and d i s ’ )
print ( ’ saved in to ’ , f i l e n a m e a n g l e d i s )

5 # c r e a t e samples
i f one sample == True :

f i r s t f i x e d = False

i f f i r s t f i x e d == True :
d i s 1 = d i s p l a c e m e n t f i x e d
alpha1 = a n g l e f i x e d

else :
d i s 2 = d i s p l a c e m e n t f i x e d
alpha2 = a n g l e f i x e d

15
maxima det = [ [ 0 for x in range ( len ( d i sp lacement ) ) ] for y in range ( len ( ang le ) ) ]
pur i ty = [ [ 0 for x in range ( len ( d i sp lacement ) ) ] for y in range ( len ( ang le ) ) ]

for i in range ( len ( ang le ) ) :
for j in range ( len ( d i sp lacement ) ) :

# n i c e c o n t r o l in te rmina l
end = time . time ( )
cu r r en t t ime = round( end−s t a r t )
cur r ent t ime fo rm = str ( datet ime . t imede l ta ( seconds=cur r ent t ime ) )

25 percentage = ( i ∗ len ( ang le )+j ) /( len ( ang le ) ∗ len ( d i sp lacement ) ) ∗100
i f percentage != 0 :

remain ing t ime = round ( (100/ percentage −1)∗ cur r en t t ime )
remain ing t ime form = str ( datet ime . t imede l ta ( seconds=remain ing t ime ) )

else :
r emain ing t ime form = ’ ’

print ( ’ completed : { 0 : . 3 f }%, running : {1 :6} s , remaining : {2 :6} s \ r ’ . format ( percentage
↪→ , cur rent t ime form , remain ing t ime form ) )

# c r e a t e sample
35 i f f i r s t f i x e d == True :

alpha2 = angle [ i ]
d i s 2 = disp lacement [ j ]

else :
a lpha1 = angle [ i ]
d i s 1 = disp lacement [ j ]

mag pol1 = [ np . cos ( alpha1 ) , np . s i n ( alpha1 ) , 0 ]
mag pol2 = [ np . cos ( alpha2 ) , np . s i n ( alpha2 ) , 0 ]

45 lFe1 = de f ine sampl e ( l a y e r t h i c k n e s s 1 , mag pol1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine sampl e ( l a y e r t h i c k n e s s 2 , mag pol2 , i n t e r n a l m a g n e t i c f i e l d )

# Calcu la te spec t ra
In t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( dis1 , d i s 2 )

I n t e n s i t y F = I n t e n s i t y [ 0 ]
I n t e n s i t y F d y n p l u s = I n t e n s i t y [ 1 ]
Intens i ty F dyn minus = I n t e n s i t y [ 2 ]

55 I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t en s i t y T dyn p lu s = I n t e n s i t y [ 5 ]
Intens i ty T dyn minus = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]

po s i t i on Det = −(39.7+22.4) /2 # t h e o r e t i c a l p r e d i c t i o n
p o s i t i o n = int ( len ( Detuning ) /2 + pos i t i on Det ∗ 2) # p o s i t i o n index

65 pos i t i on , maxima det = d e f i n e p o s i t i o n ( method , p o s o f p u r i t y , In t ens i ty F ,
↪→ pur i ty F array , Detuning )

pur i ty [ i ] [ j ] = pur i ty F ar ray [ p o s i t i o n ]
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# wri t e in to f i l e
f p u r = open( f i l e n a m e a n g l e d i s+’ p u r i t y . txt ’ , ”a” )
f i n t = open( f i l e n a m e a n g l e d i s+’ i n t e n s i t y . txt ’ , ”a” )

75 # s e t t i n g s
s e t t i n g s = [ ”# angle f i x e d : ” + str ( a n g l e f i x e d ) , ”# disp lacement f i x e d : ” + str (

↪→ d i s p l a c e m e n t f i x e d ) , ’# one sample : ’+str ( one sample ) , ’# f i r s t f i x e d : ’+str (
↪→ f i r s t f i x e d ) , ”# t h i c k n e s s 1 : ”+str ( l a y e r t h i c k n e s s 1 ) , ”# t h i c k n e s s 2 : ” + str (
↪→ l a y e r t h i c k n e s s 2 ) , ”# r e a l motion : ”+str ( mot ion rea l ) , ”# method to f i n d p o s i t i o n : ”+
↪→ str ( method ) , ”# used code : ”+str ( f i l e n a m e ) ]

f p u r . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )
f i n t . wr i t e ( ”%s \n” % len ( s e t t i n g s ) )

for item in s e t t i n g s :
f p u r . wr i t e ( ”%s \n” % item )
f i n t . wr i t e ( ”%s \n” % item )

85 # x−a x i s
np . save txt ( f pur , np . array ( d i sp lacement ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f i n t , np . array ( d i sp lacement ) [ None ] , d e l i m i t e r=’ , ’ )
# y−a x i s
np . save txt ( f pur , np . array ( ang le ) [ None ] , d e l i m i t e r=’ , ’ )
np . save txt ( f i n t , np . array ( ang le ) [ None ] , d e l i m i t e r=’ , ’ )

pur = np . array ( pur i ty )
in ten = np . array (maxima)
np . save txt ( f pur , pur , d e l i m i t e r = ’ , ’ )

95 np . save txt ( f i n t , inten , d e l i m i t e r = ’ , ’ )

# c l o s e f i l e s
f p u r . c l o s e ( )
f i n t . c l o s e ( )

Optimization

i f l o op eve ry th ing == True :

max angle1 array = [ [ 0 for x in range ( len ( min pur i ty ) ) ] for y in range ( len ( t h i c k n e s s e s ) ) ]
max angle2 array = [ [ 0 for x in range ( len ( min pur i ty ) ) ] for y in range ( len ( t h i c k n e s s e s ) ) ]
max dis1 array = [ [ 0 for x in range ( len ( min pur i ty ) ) ] for y in range ( len ( t h i c k n e s s e s ) ) ]
max dis2 array = [ [ 0 for x in range ( len ( min pur i ty ) ) ] for y in range ( len ( t h i c k n e s s e s ) ) ]
max value array = [ [ 0 for x in range ( len ( min pur i ty ) ) ] for y in range ( len ( t h i c k n e s s e s ) ) ]

9 for i in range ( len ( t h i c k n e s s e s ) ) :
print ( t h i c k n e s s e s [ i ] )
print ( ” wr i t t en in to ” , f i l e n a m e e v e r y t h i n g )

max angle1 = [ 0 for x in range ( len ( min pur i ty ) ) ]
max angle2 = [ 0 for x in range ( len ( min pur i ty ) ) ]
max dis1 = [ 0 for x in range ( len ( min pur i ty ) ) ]
max dis2 = [ 0 for x in range ( len ( min pur i ty ) ) ]
max value = [ 0 for x in range ( len ( min pur i ty ) ) ]

19 for k in range ( len ( ang l e s1 ) ) :
for l in range ( len ( ang l e s2 ) ) :

# n i c e c o n t r o l in te rmina l
end = time . time ( )
cu r r en t t ime = round( end−s t a r t )
cur r ent t ime fo rm = str ( datet ime . t imede l ta ( seconds=cur r ent t ime ) )
percentage = ( k∗ len ( ang l e s2 )+l ) /( len ( ang l e s1 ) ∗ len ( ang l e s2 ) ) ∗100
i f percentage != 0 :

remain ing t ime = round ( (100/ percentage −1)∗ cur r en t t ime )
remain ing t ime form = str ( datet ime . t imede l ta ( seconds=remain ing t ime ) )

29 else :
r emain ing t ime form = ’ ’

print ( ’ completed : { 0 : . 3 f }%, running : {1 :6} s , remaining : {2 :6} s \ r ’ . format (
↪→ percentage , current t ime form , remain ing t ime form ) )
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# c r e a t e samples
alpha1 = ang l e s1 [ k ]
alpha2 = ang l e s2 [ l ]
mag pol1 = [ np . cos ( alpha1 ) , np . s i n ( alpha1 ) , 0 ]
mag pol2 = [ np . cos ( alpha2 ) , np . s i n ( alpha2 ) , 0 ]

39 lFe1 = de f ine samp le ( l a y e r t h i c k n e s s 1 , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d
↪→ )

lFe2 = de f ine samp le ( l a y e r t h i c k n e s s 2 , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d
↪→ )

for m in range ( len ( d i sp lacements1 ) ) :
for n in range ( len ( d i sp lacements2 ) ) :

# Ca lcu la te spec t ra
In t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a (

↪→ di sp lacements1 [m] , d i sp lacements2 [ n ] )

I n t e n s i t y F = I n t e n s i t y [ 0 ]
49 I n t e n s i t y F d y n p l u s = I n t e n s i t y [ 1 ]

Intens i ty F dyn minus = I n t e n s i t y [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t en s i t y T dyn p lu s = I n t e n s i t y [ 5 ]
Intens i ty T dyn minus = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]

po s i t i on , maxima det = d e f i n e p o s i t i o n ( method , p o s o f p u r i t y , In t ens i ty F ,
↪→ pur i ty F array , Detuning )

59

# f i n d max i n t e n s i t y f o r g iven pur i ty
for o in range ( len ( min pur i ty ) ) :

i f ( I n t e n s i t y F [ p o s i t i o n ] > max value [ o ] ) and (abs ( pur i ty F ar ray [
↪→ p o s i t i o n ] ) > min pur i ty [ o ] ) :
max angle1 [ o ] = ang l e s1 [ k ]
max angle2 [ o ] = ang l e s2 [ l ]
max dis1 [ o ] = di sp lacements1 [m]
max dis2 [ o ] = di sp lacements2 [ n ]
max value [ o ] = I n t e n s i t y F [ p o s i t i o n ]

69

# wri t e in to f i l e
f = open( f i l e name eve ry th ing , ”a” )
for o in range ( len ( min pur i ty ) ) :

r e s u l t s = [ t h i c k n e s s e s [ i ] , min pur i ty [ o ] , max angle1 [ o ] , max angle2 [ o ] , max dis1 [ o ] ,
↪→ max dis2 [ o ] , max value [ o ] ]

r e s u l t s = np . array ( r e s u l t s )

# a c t u a l l y wr i t e i n to f i l e
79 np . save txt ( f , r e s u l t s [ None ] , d e l i m i t e r=’ , ’ )

f . c l o s e ( )

Due to running long times, the optimization for two samples was paralllized and done on
the cluster of MPI for Nuclear Physics.

Highly precise displacement measurement

i f l oop d i s 1D == True :
one sample = False

3 print ( ’ d i s 1D ’ )
print ( ’ saved in to ’ , f i l e n a m e d i s 1 D )

pur i ty = [ 0 for x in range ( len ( dis 1D ) ) ]
i n t e n s i t y v a l u e = [ 0 for x in range ( len ( dis 1D ) ) ]
i n t e n s i t y p l u s = [ 0 for x in range ( len ( dis 1D ) ) ]
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# c r e a t e samples
mag pol1 = [ np . cos ( a lpha1 d i s 1D ) , np . s i n ( a lpha1 d i s 1D ) , 0 ]

13 mag pol2 = [ np . cos ( ang l e d i s 1D ) , np . s i n ( ang l e d i s 1D ) , 0 ]
lFe1 = de f ine samp le ( l a y e r t h i c k n e s s 1 , mag pol1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine samp le ( l a y e r t h i c k n e s s 2 , mag pol2 , i n t e r n a l m a g n e t i c f i e l d )

for i in range ( len ( dis 1D ) ) :
# n i c e c o n t r o l in te rmina l
end = time . time ( )
cu r r en t t ime = round( end−s t a r t )
cur r ent t ime fo rm = str ( datet ime . t imede l ta ( seconds=cur r ent t ime ) )
percentage = i / len ( dis 1D ) ∗100

23 i f percentage != 0 :
remain ing t ime = round ( (100/ percentage −1)∗ cur r en t t ime )
remain ing t ime form = str ( datet ime . t imede l ta ( seconds=remain ing t ime ) )

else :
r emain ing t ime form = ’ ’

print ( ’ completed : { 0 : . 3 f }%, running : {1 :6} s , remaining : {2 :6} s \ r ’ . format ( percentage ,
↪→ current t ime form , remain ing t ime form ) )

# Calcu la te spec t ra
In t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( d i s1 d i s 1D ,

↪→ dis 1D [ i ] )

33 I n t e n s i t y F = I n t e n s i t y [ 0 ]
I n t e n s i t y F d y n p l u s = I n t e n s i t y [ 1 ]
Intens i ty F dyn minus = I n t e n s i t y [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t en s i t y T dyn p lu s = I n t e n s i t y [ 5 ]
Intens i ty T dyn minus = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]

po s i t i on , maxima det = d e f i n e p o s i t i o n ( method , p o s o f p u r i t y , In t ens i ty F , pur i ty F array ,
↪→ Detuning )

43
pur i ty [ i ] = pur i ty F ar ray [ p o s i t i o n ]
i n t e n s i t y v a l u e [ i ] = I n t e n s i t y F [ p o s i t i o n ]
i n t e n s i t y p l u s [ i ] = I n t e n s i t y F d y n p l u s [ p o s i t i o n ]

# minpos − maxpos
min pos = np . argmin ( pur i ty )
max pos = np . argmax ( pur i ty )
d i f f = round ( ( min pos−max pos ) ∗ di s 1D step , 3 )

53 print ( ’ \n min pos − max pos : ’ , d i f f )

# p lo t
p l t . f i g u r e ( f i g s i z e = (5 , 5 ) )
p l t . p l o t ( dis 1D , pur ity , l a b e l = ” pur i ty ” , c o l o r = ’ red ’ )
p l t . p l o t ( dis 1D , i n t e n s i t y v a l u e , l a b e l = ” i n t e n s i t y ” , c o l o r = ’ blue ’ )
p l t . p l o t ( dis 1D , i n t e n s i t y p l u s , c o l o r = ’ green ’ )
p l t . p l o t ( [ dis 1D [ min pos ] , dis 1D [ max pos ] ] , [−1 .1 ,−1 .1 ] , marker = ’+’ , c o l o r = ’ black ’ )
p l t . t ex t ( dis 1D [ ( max pos+min pos ) //2 ] , −1, str ( d i f f )+’ $\ lambda$ ’ , ho r i zonta l a l i gnment=’ cent e r

↪→ ’ )

63
p l t . x l a b e l ( ’ $\Delta z 2 \ l e f t [ \ lambda \\ r i g h t ] $ ’ )
p l t . y l a b e l ( ’ Pur ity / I n t e n s i t y [ $ I 0$ ] ’ )

p l t . s a v e f i g ( f i l e name d i s 1D , bbox inches=” t i g h t ” )

A.1.2. Time space

import f u n c t o o l s
import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b . c o l o r s import LogNorm
import s c ipy . s p e c i a l
import pynuss
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7 from matp lo t l i b . cm import get cmap
from matp lo t l i b . c o l o r s import Normalize
from s c ipy . opt imize import c u r v e f i t
from s c ipy . s i g n a l import f i nd peak s
from s c ipy . f f t p a c k import f f t , i f f t , f f t f r e q , f f t s h i f t
from s c ipy . i n t e g r a t e import simps

# get cur rent f i l ename
import sys

17 import os
f i l e n a m e = os . path . basename ( sys . argv [ 0 ] )

# measure running time
import time
s t a r t = time . time ( )

### PARAMETERS ###

27
##################################################################################

# cons id e r only one sample
one sample = False

# r e a l or i d e a l motion
mot ion rea l = Fal se
t r i s e = 15 .

37 # p o l a r i s a t i o n s
ang l e coo rd = −np . p i ∗ 0
alpha1 = 1.099557 #np . p i /4 .0
alpha2 = −0.942478 #−np . p i /4 .0

# samples
l a y e r t h i c k n e s s 1 = 1e−6 # m
l a y e r t h i c k n e s s 2 = 1e−6 # m
l a y e r t h i c k n e s s 3 = 1e−12 #m ( no sample )
i n t e r n a l m a g n e t i c f i e l d 1 = 33 # Tesla

47 i n t e r n a l m a g n e t i c f i e l d 2 = 33 # Tesla

d isp lacement1 = 0.25#0 .5 # times resonant wavelength
disp lacement2 = 0.65#0.75

s l i c e f r e q = −(39.7+22.4) /2# t h e o r e t i c a l va lue o f abs l i n e
#r a n g e f r e q = np . arange ( 0 , 2 , 0 . 2 5 ) # gamma around s l i c e f r e q
r a n g e f r e q = [ 1 ] # gamma around s l i c e f r e q

57
###############################################################################

### CALCUALTIONS AND PLOTTING ###

# p o l a r i s a t i o n s
beam direc t ion = [ 0 , 0 , 1 ]

67 beam po l l i n = [ np . cos ( ang l e coord ) , np . s i n ( ang l e coo rd ) , 0 ]
d e t e c t o r p o l c i r c 1 = +1 #(+ i s l e f t )
d e t e c t o r p o l c i r c 2 = −1 #(+ i s l e f t )
magnet i sa t i on po l1 = [ np . cos ( alpha1 + ang l e coord ) , np . s i n ( alpha1 + ang l e coo rd ) , 0 ]
magnet i sa t i on po l2 = [ np . cos ( alpha2 + ang l e coord ) , np . s i n ( alpha2 + ang l e coo rd ) , 0 ]

### s e t up beam and de t e c t o r
Beam = pynuss . Beam( beam direc t ion )
Detector1 = pynuss . Detector (Beam)

77 Detector2 = pynuss . Detector (Beam) # no p o l a r i s a t i o n s
Detector minus = pynuss . Detector (Beam)
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# s e t p o l a r i z a t i o n s
Beam . S e t L i n e a r P o l a r i z a t i o n ( beam po l l i n )
beam pol = str ( beam po l l i n )
Detector1 . S e t C i r c u l a r F i l t e r ( d e t e c t o r p o l c i r c 1 )
Detector minus . S e t C i r c u l a r F i l t e r ( d e t e c t o r p o l c i r c 2 )
d e t e c t o r p o l 1 = str ( d e t e c t o r p o l c i r c 1 )
EVectorOut = [ 1 , d e t e c t o r p o l c i r c 1 ∗complex ( 0 , 1 ) , 0 ]

87
### d e f i n e samples
def de f i n e samp l e s ( th i cknes s1 , th i cknes s2 , th i cknes s3 , mag1 , mag2) :

# sample 1
eFe1 = pynuss . ResonantElement . fromTemplate ( ’ Fe57 ’ )
eFe1 . Magnet icHyper f ineFie ld = i n t e r n a l m a g n e t i c f i e l d 1
eFe1 . SetMagnet i za t i onDi rec t i on (mag1)
mFe1 = pynuss . Mater ia l . fromElement ( eFe1 )
lFe1 = pynuss . Layer (mFe1 , th i ckne s s 1 )

97 # sample 2
eFe2 = pynuss . ResonantElement . fromTemplate ( ’ Fe57 ’ )
eFe2 . Magnet icHyper f ineFie ld = i n t e r n a l m a g n e t i c f i e l d 2
eFe2 . SetMagnet i za t i onDi rec t i on (mag2)
mFe2 = pynuss . Mater ia l . fromElement ( eFe2 )
lFe2 = pynuss . Layer (mFe2 , th i ckne s s 2 )

# sample 3 ( near ly empty sample )
lFe3 = pynuss . Layer (mFe2 , th i ckne s s 3 )
return lFe1 , lFe2 , lFe3

107

########################
### Calcu la te spectrum
#######################

lFe1 , lFe2 , lFe3 = de f i n e samp l e s ( l a y e r t h i c k n e s s 1 , l a y e r t h i c k n e s s 2 , l a y e r t h i c k n e s s 3 ,
↪→ magnet i sa t ion po l1 , magnet i s a t i on po l2 )

def MotionSmoothStep1 ( t ) :
117 # Times in ns

tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement1 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

127

def MotionSmoothStep2 ( t ) :
# Times in ns
tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement2 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
137 else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

# s e t up frequency domain c a l c u l a t i o n
fw1 = pynuss . ForwardScatter ing (Beam, Detector1 , lFe1 ) # normal spectrum
fw2 = pynuss . ForwardScatter ing (Beam, Detector1 , lFe2 )
fw minus = pynuss . ForwardScatter ing (Beam, Detector minus , lFe1 ) # spectrum with other handedness
fw4 = pynuss . ForwardScatter ing (Beam, Detector minus , lFe2 )

147 f w i n i t i a l = pynuss . ForwardScatter ing (Beam, Detector1 , lFe3 ) # i n i t i a l beam
fw no po l1 = pynuss . ForwardScatter ing (Beam, Detector2 , lFe1 ) # no p o l a r i s a t i o n s −> whole spectrum
fw no po l2 = pynuss . ForwardScatter ing (Beam, Detector2 , lFe2 ) # no p o l a r i s a t i o n s −> whole spectrum

i f one sample == True :
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# combine samples , d e t e c t o r 1 (
cs = pynuss . t o o l s . CombineSamples (

( fw1 . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
)

157 # combine samples , d e t e c t o r 3 (
cs minus = pynuss . t o o l s . CombineSamples (

( fw minus . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
)

cs none = pynuss . t o o l s . CombineSamples (
( fw no po l1 . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
)

else :
# combine samples , d e t e c t o r 1 (+)

167 cs = pynuss . t o o l s . CombineSamples (
( fw1 . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( fw2 . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

)

# combine samples , d e t e c t o r 3 (−)
cs minus = pynuss . t o o l s . CombineSamples (

( fw minus . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( fw4 . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

)
177

# combine samples , d e t e c t o r 2 ( none )
cs none = pynuss . t o o l s . CombineSamples (

( fw no po l1 . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( fw no po l2 . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

)

# compute ResponseMatrix
Detuning = cs . DetuningGrid (40 , 0 . 5 , 800 , 0 . 2 )

187 DetuningStep = Detuning [ 1 ] − Detuning [ 0 ]
RM F stat = cs . ResponseStat i c ( Detuning ) # s t a t i c re sponse
RM F dyn = cs . ResponseWithMotion ( Detuning ) # dynamic response
RM F dyn minus = cs minus . ResponseWithMotion ( Detuning ) # dynamic response
RM in i t i a l = f w i n i t i a l . Transmiss ionMatrix ( Detuning )
RM no pol = fw no po l1 . Transmiss ionMatrix ( Detuning )

# compute i n t e n s i t y
I n t e n s i t y F s t a t = RM F stat . I n t e n s i t y ( )
In t ens i ty F dyn = RM F dyn . I n t e n s i t y ( )

197 Intens i ty F dyn minus = RM F dyn minus . I n t e n s i t y ( )
I n t e n s i t y F i n i t i a l = RM in i t i a l . I n t e n s i t y ( )
I n t e n s i t y F n o p o l = RM no pol . I n t e n s i t y ( )
I n t e n s i t y F i n i t i a l = f w i n i t i a l . Transmi s s i on Int ens i ty ( Detuning )

# Transform in to time domain
RM T stat , TStep = pynuss . t o o l s . FreqToTime ( RM F stat , DetuningStep )
RM T dyn , TStep = pynuss . t o o l s . FreqToTime (RM F dyn , DetuningStep )
RM T dyn minus , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn minus , DetuningStep )
RM T init ia l , TStep = pynuss . t o o l s . FreqToTime ( RM ini t ia l , DetuningStep )

207 RM T no pol , TStep = pynuss . t o o l s . FreqToTime ( RM no pol , DetuningStep )
Times1 = np . arange ( len ( Detuning ) ) ∗ ( TStep )

# compute i n t e n s i t y in time domain
I n t e n s i t y T s t a t = RM T stat . I n t e n s i t y ( )
Intens i ty T dyn = RM T dyn . I n t e n s i t y ( )
Intens i ty T dyn minus = RM T dyn minus . I n t e n s i t y ( )
I n t e n s i t y T i n i t i a l = RM T init ia l . I n t e n s i t y ( )
I n t e n s i t y T n o p o l = RM T no pol . I n t e n s i t y ( )

217 I n t e n s i t y = [ I n t e n s i t y F i n i t i a l , I n t e n s i t y T i n i t i a l , I n t e n s i t y F n o p o l , In t en s i t y T no po l ,
↪→ I n t e n s i t y F s t a t , I n t e n s i t y T s t a t , Intens i ty F dyn , Intens i ty F dyn minus , Intens i ty T dyn
↪→ , Intens i ty T dyn minus ]

p u r i t y a l l = ( Intens i ty T dyn − Intens i ty T dyn minus ) /( Intens i ty T dyn+Intens i ty T dyn minus )

# angle between J and J +
length = np . s q r t ( Intens i ty T dyn ∗∗2 + Intens i ty T dyn minus ∗∗2)
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ang le = np . a r c co s ( Intens i ty T dyn / length )

### analyze the peaks
s t ep t ime = Times1 [1]−Times1 [ 0 ]

227 peaks , = f i nd peak s (− p u r i t y a l l [ 0 : int (200/ s t ep t ime ) ] , prominence = 0 . 8 , d i s t ance = 4 , he ight =
↪→ 0 . 5 )

Times peaks = np . z e r o s ( len ( peaks ) )
pur i ty peaks = np . z e r o s ( len ( peaks ) )
for i in range ( len ( peaks ) ) :

Times peaks [ i ] = Times1 [ peaks [ i ] ]
pu r i ty peaks [ i ] = p u r i t y a l l [ peaks [ i ] ]

# d i s t anc e between peaks
d i s t ance = np . d i f f ( Times peaks )

237 mean dist = np . mean( d i s t anc e )
s t d d i s t = np . std ( d i s t ance )
print ( ’ $\Delta$ t : ’ , mean dist , ’ $\pm$ ’ , s t d d i s t )

### Four ie r a n a l y s i s o f t o t a l spectrum

# d e f i n e v a r i a b l e s
s c a l i n g = 1/( Times1[−1]−Times1 [ 0 ] ) ∗ len ( Times1 ) #time −> index
# exc lude promt pu l s e

247 xl im u = int (10∗ s c a l i n g )
x l im o = len ( Times1 )

N = len ( Times1 [ xl im u : x l im o ] )
T = Times1 [1]−Times1 [ 0 ]
x = np . l i n s p a c e ( 0 . 0 , N∗T, N)
y = Intens i ty T dyn [ xl im u : x l im o ]
y2 = (np . s i n (2∗np . p i /28∗x−2.3∗ s c a l i n g ) ∗∗2)
y3 = p u r i t y a l l [ x l im u : x l im o ]
y4 = Intens i ty T dyn minus [ x l im u : x l im o ]

257
# c a l c FT
t s t ep = T / 141
f s t e p = 2∗np . p i / ( len ( y ) ∗ t s t ep )
norm = np . s q r t (2∗np . p i ) / f s t e p
y f = i f f t ( y ) ∗norm
yf2 = i f f t ( y2 ) ∗norm
yf3 = i f f t ( y3 ) ∗norm
yf4 = i f f t ( y4 ) ∗norm
xf = np . arange(−N/2 , N/2 , 1) ∗ f s t e p

267
# s h i f t 0 to middle
x f = f f t s h i f t ( x f )
y f = f f t s h i f t ( y f )
y f2 = f f t s h i f t ( y f2 )
y f3 = f f t s h i f t ( y f3 )
y f4 = f f t s h i f t ( y f4 )

# p lo t
f i g , axes = p l t . subp lo t s (2 , f i g s i z e =(7 ,6 .5) )

277 axes [ 0 ] . p l o t (x , y3 , c o l o r = ’ red ’ , l a b e l = ’$P$ ’ )
axes [ 1 ] . p l o t ( xf , np . abs ( y f3 ) , c o l o r =’ red ’ , l a b e l = ’$P$ ’ )
axes [ 1 ] . s e t x l i m ( [ −100 ,100 ] )
axes [ 1 ] . s e t y l i m ( [ 0 , 0 . 2 ] )
axes [ 0 ] . s e t x l i m ( [ 0 , 2 0 0 ] )
axes [ 0 ] . s e t x l a b e l ( ’Time [ ns ] ’ )
axes [ 0 ] . s e t y l a b e l ( ’ Pur ity ’ )
axes [ 1 ] . s e t y l a b e l ( ’ Amplitude [ a . u . ] ’ )
axes [ 1 ] . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
p l t . s a v e f i g ( ’ t i m e s p e c a l l ’ , bbox inches=’ t i g h t ’ )

287

###########################
### Energy time spec t ra ###
###########################
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### c r e a t e ana lyze r
mSS = pynuss . Mater ia l . fromChemicalFormula ( ’ {57Fe}55 Cr25Ni20 ’ , 7900)

297 Analyzer = pynuss . Layer (mSS, 6e−6)
fw p lus = pynuss . ForwardScatter ing (Beam, Detector1 , Analyzer )
fw none = pynuss . ForwardScatter ing (Beam, Detector2 , Analyzer )
fw minus = pynuss . ForwardScatter ing (Beam, Detector minus , Analyzer )

T plus = fw p lus . Transmiss ionMatrix
T none = fw none . Transmiss ionMatrix
T minus = fw minus . Transmiss ionMatrix

307 ### perform actua l c a l c u l a t i o n o f EnergyTimeSpectrum

# +
MBDetuningMax = 150 # gamma
MBDetuningStep = 0.25
TimeRange = 800 # ns
TimeStep = 0 .5
MBDetunings , Times , RM = cs none . EnergyTimeSpectrum (

T none , MBDetuningMax , MBDetuningStep , TimeRange , TimeStep )

317 RM. Beam . S e t L i n e a r P o l a r i z a t i o n ( [ 1 , 0 , 0 ] )
Grid none = RM. I n t e n s i t y ( )

RM. Detector . S e t C i r c u l a r F i l t e r (+1)
Gr id p lus = RM. I n t e n s i t y ( )

RM. Detector . S e t C i r c u l a r F i l t e r (−1)
Grid minus = RM. I n t e n s i t y ( )

327
f i g , axes = p l t . subp lo t s (2 , f i g s i z e =(7 ,6 .5) )
c o l o r s = [ ’ red ’ , ’ orange ’ , ’ lawngreen ’ , ’ green ’ , ’ b lue ’ ]
### s l i c e to have time dependence at s p e c i f i c f requency
for j in range ( len ( r a n g e f r e q ) ) :

# s l i c e f r e q in s tep un i t s o f MBDetunings
s t e p d e t = ( MBDetunings [1]−MBDetunings [ 0 ] )
s l i c e r a n g e = np . array ( [ s l i c e f r e q − r a n g e f r e q [ j ] , s l i c e f r e q +r a n g e f r e q [ j ] ] )
p o s s l i c e f r e q = len ( MBDetunings ) /2 .0 + s l i c e r a n g e / s t e p d e t

337 Time spec none = Grid none [ : ] [ int ( p o s s l i c e f r e q [ 0 ] ) ]
Time spec p lus = Gr id p lus [ : ] [ int ( p o s s l i c e f r e q [ 0 ] ) ]
Time spec minus = Grid minus [ : ] [ int ( p o s s l i c e f r e q [ 0 ] ) ]

for i in range ( len ( p o s s l i c e f r e q )−1) :
Time spec none += Grid none [ : ] [ int ( p o s s l i c e f r e q [ i +1]) ]
Time spec p lus += Grid p lus [ : ] [ int ( p o s s l i c e f r e q [ i +1]) ]
Time spec minus += Grid minus [ : ] [ int ( p o s s l i c e f r e q [ i +1]) ]

pur i ty = ( Time spec plus−Time spec minus ) /( Time spec p lus+Time spec minus )
347

# Four i e r a n a l y s i s o f one f requency

# d e f i n e v a r i a b l e s
s c a l i n g = 1/( Times[−1]−Times [ 0 ] ) ∗ len ( Times ) #time −> index
xl im u = int (10∗ s c a l i n g )
x l im o = len ( Times )
N = len ( Times1 [ xl im u : x l im o ] )
# sample spac ing
T = Times [1]−Times [ 0 ]

357 x = np . l i n s p a c e ( 0 . 0 , N∗T, N)
y = Time spec p lus [ x l im u : x l im o ] / Time spec p lus [ int (10∗ s c a l i n g ) ]
y2 = (np . s i n (2∗np . p i /28∗x−2.3∗ s c a l i n g ) ∗∗2)
y4 = Time spec minus [ x l im u : x l im o ] / Time spec minus [ int (10∗ s c a l i n g ) ]
y3 = pur i ty [ x l im u : x l im o ]

# c a l c FT
t s t ep = T / 141
f s t e p = 2∗np . p i / ( len ( y ) ∗ t s t ep )

367 norm = np . s q r t (2∗np . p i ) / f s t e p
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yf = i f f t ( y ) ∗norm
yf2 = i f f t ( y2 ) ∗norm
yf3 = i f f t ( y3 ) ∗norm
yf4 = i f f t ( y4 ) ∗norm
xf = np . arange(−N/2 , N/2 , 1) ∗ f s t e p

# s h i f t 0 to middle
x f = f f t s h i f t ( x f )
y f = f f t s h i f t ( y f )

377 yf2 = f f t s h i f t ( y f2 )
y f3 = f f t s h i f t ( y f3 )
y f4 = f f t s h i f t ( y f4 )

axes [ 0 ] . p l o t (x , y3 , c o l o r = c o l o r s [ j%len ( c o l o r s ) ] , l a b e l =str ( r a n g e f r e q [ j ] ) )

axes [ 1 ] . p l o t ( xf , np . abs ( y f3 ) , c o l o r = c o l o r s [ j%len ( c o l o r s ) ] , l a b e l = str ( r a n g e f r e q [ j ] ) )

axes [ 1 ] . s e t x l i m ( [ −100 ,100 ] )
387 axes [ 1 ] . s e t y l i m ( [ 0 , 0 . 0 8 ] )

axes [ 0 ] . s e t x l i m ( [ 0 , 2 0 0 ] )

axes [ 0 ] . s e t x l a b e l ( ’Time [ ns ] ’ )
axes [ 0 ] . s e t y l a b e l ( ’ Pur ity ’ )
axes [ 1 ] . s e t y l a b e l ( ’ Amplitude [ a . u . ] ’ )
axes [ 1 ] . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
i f ( len ( r a n g e f r e q )>1) :

axes [ 1 ] . l egend ( l o c=’ best ’ )
p l t . s a v e f i g ( ’ t i m e s p e c f r e q r a n g e ’ , bbox inches=’ t i g h t ’ )

397

f i g , axes = p l t . subp lo t s (1 , f i g s i z e =(7 ,3) )
axes . semi logy (x , y , l a b e l = ’ $ I +$ ’ , c o l o r = ’ blue ’ )
axes . semi logy (x , y4 , l a b e l = ’ $ I −$ ’ , c o l o r = ’ green ’ , l i n e s t y l e = ’−− ’ )
axes . s e t x l i m ( [ 0 , 2 0 0 ] )

axes . s e t x l a b e l ( ’Time [ ns ] ’ )
axes . s e t y l a b e l ( ’ I n t e n s i t y [ $ I 0$ ] ’ )
p l t . s a v e f i g ( ’ t i m e s p e c f r e q i n t ’ , bbox inches=’ t i g h t ’ )

407

# p i c t u r e s f o r t h e s i s
f i g = p l t . f i g u r e ( f i g s i z e =(7 ,3) )
p l t . semi logy ( Times1 , Intens i ty T dyn + Intens i ty T dyn minus , c o l o r = ’ blue ’ , l i n e s t y l e = ’−− ’ )
p l t . semi logy ( Times1 , Intens i ty T dyn minus , c o l o r = ’ green ’ , l i n e s t y l e = ’ : ’ )
p l t . semi logy ( Times1 , Intens i ty T dyn , c o l o r = ’ red ’ )

p l t . xl im (0 , 200)
417 p l t . x l a b e l ( ’Time t [ ns ] ’ )

p l t . y l a b e l ( ’ I n t e n s i t y [ a . u . ] ’ )

p l t . s a v e f i g ( ’ a l l t i m e i n t ’ , bbox inches=’ t i g h t ’ )

f i g , ax1 = p l t . subp lo t s ( f i g s i z e =(7 ,3) )
ax1 . semi logy ( Times1 , Intens i ty T dyn + Intens i ty T dyn minus , c o l o r = ’ blue ’ , l i n e s t y l e = ’−− ’ )
ax1 . s e t x l i m (0 , 200)
ax1 . s e t x l a b e l ( ’Time t [ ns ] ’ )

427 ax1 . s e t y l a b e l ( ’ I n t e n s i t y [ a . u . ] ’ )

ax2 = ax1 . twinx ( )
ax2 . p l o t ( Times1 , p u r i t y a l l , c o l o r = ’ red ’ )
ax2 . s e t y l a b e l ( ’ Pur ity ’ )

p l t . s a v e f i g ( ’ a l l t i m e p u r ’ , bbox inches=’ t i g h t ’ )
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A.2. Applications

With these scripts, the additional applications of our setup where calculated.

A.2.1. Circular polarization filter

import f u n c t o o l s
import numpy as np
import matp lo t l i b . pyplot as p l t
import s c ipy . s p e c i a l
import pynuss

6 from s c ipy . opt imize import c u r v e f i t
import datet ime

# get cur rent f i l ename
import sys
import os
f i l e n a m e = os . path . basename ( sys . argv [ 0 ] )

# measure running time
import time

16 s t a r t = time . time ( )

### PARAMETERS ###

##################################################################################

26 ### gene ra l parameters

# cons id e r only one sample
one sample = False

# r e a l or i d e a l motion
mot ion rea l = Fal se
t r i s e = 2 . #15 . exper imenta l

36 # samples
l a y e r t h i c k n e s s 1 = 1e−6 # m
l a y e r t h i c k n e s s 2 = 1e−6 # m
i n t e r n a l m a g n e t i c f i e l d = 33 # Tesla

### parameters f o r the d i f f e r e n t par t s ( i f not set , the paramters o f ”no loop ” are taken )

# loops
no loop = True

46
# no loop
alpha1 = np . p i /4 .0
alpha2 = −np . p i /4 .0

d isp lacement1 = 0 .5 # times resonant wavelength
disp lacement2 = 0.25

s a v e p i c = ” s p e c t r u m f o r t h e s i s p o l f i l t e r 2 s a m p l e s ”

56

###############################################################################

### CALCUALTIONS AND PLOTTING ###

### combine paramtere acoord ing ly f o r c a l c u l a t i o n
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66 ### s e t up beam and de t e c t o r
Beam plus = pynuss . Beam ( [ 0 , 0 , 1 ] )
Beam minus = pynuss . Beam ( [ 0 , 0 , 1 ] )

# s e t p o l a r i z a t i o n s
Beam plus . S e t C i r c u l a r P o l a r i z a t i o n (+1)
Beam minus . S e t C i r c u l a r P o l a r i z a t i o n (−1)

beam direc t ion = [ 0 , 0 , 1 ]

76 # p o l a r i s a t i o n s
magnet i sa t i on po l1 = [ np . cos ( alpha1 ) , np . s i n ( alpha1 ) , 0 ]
magnet i sa t i on po l2 = [ np . cos ( alpha2 ) , np . s i n ( alpha2 ) , 0 ]

def de f ine samp le ( th i cknes s , magnet izat ion , i n t f i e l d ) :
eFe = pynuss . ResonantElement . fromTemplate ( ’ Fe57 ’ )
eFe . Magnet icHyper f ineFie ld = i n t f i e l d
eFe . Se tMagnet i za t i onDi rec t i on ( magnet izat ion )
mFe = pynuss . Mater ia l . fromElement ( eFe )

86 lFe = pynuss . Layer (mFe, t h i c k n e s s )
return lFe

### d e f i n e motion
def MotionSmoothStep1 ( t ) :

# Times in ns
tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m

96 x0 = disp lacement1 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − ( t S h i f t +1) ) , 0 . 5 )

def MotionSmoothStep2 ( t ) :
# Times in ns
tRi se = t r i s e

106 t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement2 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

def F i t g a u s s i a n (x , A, mu, sigma , o f f s e t ) :
return A∗np . exp (−0.5∗((x−mu) /sigma ) ∗∗2) + o f f s e t

116

def c a l c u l a t e s p e c t r a (Beam, disp lacement 1 , d i sp lacement 2 ) :
# d e f i n e de t e c t o r
D e t e c t o r l i n = pynuss . Detector (Beam)
D e t e c t o r l i n p e r p = pynuss . Detector (Beam)
D e t e c t o r l i n . S e t L i n e a r F i l t e r ( [ 1 , 0 , 0 ] )
D e t e c t o r l i n p e r p . S e t L i n e a r F i l t e r ( [ 0 , 1 , 0 ] )

def MotionSmoothStep1 ( t ) :
126 # Times in ns

tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement 1 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

136
def MotionSmoothStep2 ( t ) :
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# Times in ns
tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement 2 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

146 return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

# s e t up frequency domain c a l c u l a t i o n
f w 1 l i n = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n , lFe1 ) # normal spectrum
f w 2 l i n = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n , lFe2 )
f w 1 l i n p e r p = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n p e r p , lFe1 ) # spectrum with other

↪→ handedness
f w 2 l i n p e r p = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n p e r p , lFe2 )

i f one sample == True :
156 # combine samples , d e t e c t o r 1 (

c s l i n = pynuss . t o o l s . CombineSamples (
( f w 1 l i n . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample

)

# combine samples , d e t e c t o r 3 (
c s l i n p e r p = pynuss . t o o l s . CombineSamples (

( f w 1 l i n p e r p . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
)

else :
166 # combine samples , d e t e c t o r 1 (

c s l i n = pynuss . t o o l s . CombineSamples (
( f w 1 l i n . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( f w 2 l i n . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

)

# combine samples , d e t e c t o r 3 (
c s l i n p e r p = pynuss . t o o l s . CombineSamples (

( f w 1 l i n p e r p . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( f w 2 l i n p e r p . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

176 )

# compute ResponseMatrix
Detuning = c s l i n . DetuningGrid (100 , 0 . 5 , 800 , 0 . 2 )
DetuningStep = Detuning [ 1 ] − Detuning [ 0 ]
RM F stat = c s l i n . ResponseStat i c ( Detuning ) # s t a t i c re sponse
RM F stat perp = c s l i n p e r p . ResponseStat i c ( Detuning ) # s t a t i c re sponse
RM F dyn lin = c s l i n . ResponseWithMotion ( Detuning ) # dynamic response
RM F dyn lin perp = c s l i n p e r p . ResponseWithMotion ( Detuning ) # dynamic re sponse

186
# compute i n t e n s i t y
I n t e n s i t y F s t a t = RM F stat . I n t e n s i t y ( ) + RM F stat perp . I n t e n s i t y ( )
I n t e n s i t y F d y n l i n = RM F dyn lin . I n t e n s i t y ( )
I n t e n s i t y F d y n l i n p e r p = RM F dyn lin perp . I n t e n s i t y ( )

# Transform in to time domain
RM T stat , TStep = pynuss . t o o l s . FreqToTime ( RM F stat , DetuningStep )
RM T stat perp , TStep = pynuss . t o o l s . FreqToTime ( RM F stat perp , DetuningStep )
RM T dyn lin , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn lin , DetuningStep )

196 RM T dyn lin perp , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn lin perp , DetuningStep )
Times = np . arange ( len ( Detuning ) ) ∗ ( TStep )

# compute i n t e n s i t y in time domain
I n t e n s i t y T s t a t = RM T stat . I n t e n s i t y ( ) + RM T stat perp . I n t e n s i t y ( )
I n t e n s i t y T d y n l i n = RM T dyn lin . I n t e n s i t y ( )
I n t e n s i t y T d y n l i n p e r p = RM T dyn lin perp . I n t e n s i t y ( )

In t ens i ty F dyn = I n t e n s i t y F d y n l i n + I n t e n s i t y F d y n l i n p e r p
Intens i ty T dyn = I n t e n s i t y T d y n l i n + I n t e n s i t y T d y n l i n p e r p

206
pur i ty F = ( I n t e n s i t y F d y n l i n − I n t e n s i t y F d y n l i n p e r p ) / Intens i ty F dyn
pur ity T = ( I n t e n s i t y T d y n l i n − I n t e n s i t y T d y n l i n p e r p ) / Intens i ty T dyn
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I n t e n s i t y = [ Intens i ty F dyn , I n t e n s i t y F d y n l i n , I n t e n s i t y F d y n l i n p e r p , I n t e n s i t y F s t a t ,
↪→ Intens i ty T dyn , I n t e n s i t y T d y n l i n , I n t e n s i t y T d y n l i n p e r p , I n t e n s i t y T s t a t ]

return I n t en s i t y , pur ity F , purity T , Detuning , Times

216 ##########################################
### compute spectra , one s e t o f parameter
##########################################

i f no loop == True :
# c r e a t e samples
lFe1 = de f ine samp le ( l a y e r t h i c k n e s s 1 , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine samp le ( l a y e r t h i c k n e s s 2 , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d )

# Calcu la te spec t ra
226 I n t e n s i t y p l u s , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( Beam plus ,

↪→ displacement1 , d i sp lacement2 )

I n t e n s i t y F = I n t e n s i t y p l u s [ 0 ]
I n t e n s i t y F d y n l i n = I n t e n s i t y p l u s [ 1 ]
I n t e n s i t y F d y n l i n p e r p = I n t e n s i t y p l u s [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y p l u s [ 3 ]
Intens i ty T dyn = I n t e n s i t y p l u s [ 4 ]
I n t e n s i t y T d y n l i n = I n t e n s i t y p l u s [ 5 ]
I n t e n s i t y T d y n l i n p e r p = I n t e n s i t y p l u s [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y p l u s [ 7 ]

236
Intens i ty minus , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a ( Beam minus ,

↪→ displacement1 , d i sp lacement2 )

Intens i ty F minus = Intens i ty minus [ 0 ]
I n t e n s i t y F d y n l i n m i n u s = Intens i ty minus [ 1 ]
I n t e n s i t y F d y n l i n p e r p m i n u s = Intens i ty minus [ 2 ]
I n t e n s i t y F s t a t m i n u s = Intens i ty minus [ 3 ]
Intens i ty T dyn minus = Intens i ty minus [ 4 ]
I n t en s i t y T dyn l i n minus = Intens i ty minus [ 5 ]
I n t en s i t y T dyn l i n pe rp minus = Intens i ty minus [ 6 ]

246 I n t e n s i t y T s t a t m i n u s = Intens i ty minus [ 7 ]

### plo t
# spec t ra f o r t h e s i s

f i g , axes = p l t . subp lo t s ( nrows = 1 , nco l s = 2 , f i g s i z e = ( 8 . 5 , 4 ) )
ax1 = axes [ 0 ]
ax2 = axes [ 1 ]

ax1 . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
256 ax1 . s e t y l a b e l ( ’ I n t e n s i t y [ $ I 0$ ] ’ )

ax2 . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
ax2 . s e t y l a b e l ( ’ I n t e n s i t y [ $ I 0$ ] ’ )

ax1 . s e t x l i m ([−100 , 10 0 ] )
ax2 . s e t x l i m ([−100 , 10 0 ] )

ax1 . p l o t ( Detuning , I n t e n s i t y F d y n l i n , l a b e l=’ $ | | $ ’ , l i n e s t y l e = ”−−” , c o l o r = ” blue ” )
ax1 . p l o t ( Detuning , I n t e n s i t y F d y n l i n p e r p , l a b e l=’ $\perp$ ’ , l i n e s t y l e = ” : ” , c o l o r = ” red ” )

266 ax2 . p l o t ( Detuning , In t en s i t y F dyn l in minus , l a b e l=’ $ | | $ ’ , l i n e s t y l e = ”−−” , c o l o r = ” blue ” )
ax2 . p l o t ( Detuning , In t en s i t y F dyn l i n pe rp minus , l a b e l=’ $\perp$ ’ , l i n e s t y l e = ” : ” , c o l o r = ”

↪→ red ” )

f i g . s u b p l o t s a d j u s t ( wspace =0.4)
f i g . s a v e f i g ( save p i c , bbox inches=’ t i g h t ’ )

A.2.2. λ
2

-wave plate and light switch

import f u n c t o o l s
import numpy as np
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import matp lo t l i b . pyplot as p l t
import s c ipy . s p e c i a l
import pynuss
from s c ipy . opt imize import c u r v e f i t
import datet ime

9 # get cur rent f i l ename
import sys
import os
f i l e n a m e = os . path . basename ( sys . argv [ 0 ] )

# measure running time
import time
s t a r t = time . time ( )

19
### PARAMETERS ###

##################################################################################

### gene ra l parameters

# cons id e r only one sample
29 one sample = True

# r e a l or i d e a l motion
mot ion rea l = Fal se
t r i s e = 2 .

# samples
l a y e r t h i c k n e s s 1 = 1e−6 # m
l a y e r t h i c k n e s s 2 = 1e−6 # m
i n t e r n a l m a g n e t i c f i e l d = 33 # Tesla

39

### parameters f o r the d i f f e r e n t par t s ( i f not set , the paramters o f ”no loop ” are taken )

alpha1 = np . p i ∗0 .25 #1.099557#np . p i /4 .0
alpha2 = np . p i ∗0 .5 #−0.942478#−np . p i /4 .0

d isp lacement1 = 0 .5 # times resonant wavelength
disp lacement2 = 1

49 s a v e p i c = ” spec t rum fo r the s i s l ambda2 one ”

###############################################################################

### CALCUALTIONS AND PLOTTING ###

59 ### combine paramtere acoord ing ly f o r c a l c u l a t i o n

### s e t up beam and de t e c t o r
Beam = pynuss . Beam ( [ 0 , 0 , 1 ] )

# s e t p o l a r i z a t i o n s
Beam . S e t L i n e a r P o l a r i z a t i o n ( [ 1 , 0 , 0 ] )
beam direc t ion = [ 0 , 0 , 1 ]

magnet i sa t i on po l1 = [ np . cos ( alpha1 ) , np . s i n ( alpha1 ) , 0 ]
69 magnet i sa t i on po l2 = [ np . cos ( alpha2 ) , np . s i n ( alpha2 ) , 0 ]

# d e f i n e samples
def de f ine samp le ( th i cknes s , magnet izat ion , i n t f i e l d ) :

eFe = pynuss . ResonantElement . fromTemplate ( ’ Fe57 ’ )
eFe . Magnet icHyper f ineFie ld = i n t f i e l d
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eFe . Se tMagnet i za t i onDi rec t i on ( magnet izat ion )
mFe = pynuss . Mater ia l . fromElement ( eFe )
lFe = pynuss . Layer (mFe, t h i c k n e s s )

79 return lFe

def F i t g a u s s i a n (x , A, mu, sigma , o f f s e t ) :
return A∗np . exp (−0.5∗((x−mu) /sigma ) ∗∗2) + o f f s e t

def c a l c u l a t e s p e c t r a (Beam, disp lacement 1 , d i sp lacement 2 ) :
# d e f i n e de t e c t o r
D e t e c t o r l i n = pynuss . Detector (Beam)
D e t e c t o r l i n p e r p = pynuss . Detector (Beam)

89 D e t e c t o r l i n . S e t L i n e a r F i l t e r ( [ 1 , 0 , 0 ] )
D e t e c t o r l i n p e r p . S e t L i n e a r F i l t e r ( [ 0 , 1 , 0 ] )

def MotionSmoothStep1 ( t ) :
# Times in ns
tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m
x0 = disp lacement 1 ∗ lambda0
i f mot ion rea l == True :

99 return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

def MotionSmoothStep2 ( t ) :
# Times in ns
tRi se = t r i s e
t S h i f t = 10 .
lambda0 = 8.60254801 e−11 # m

109 x0 = disp lacement 2 ∗ lambda0
i f mot ion rea l == True :

return x0 ∗ (1 + sc ipy . s p e c i a l . e r f ( ( t − t S h i f t ) / tRi se ) ) / 2 .
else :

return x0 ∗ np . h e a v i s i d e ( ( t − t S h i f t −1) , 0 . 5 )

# s e t up frequency domain c a l c u l a t i o n
f w 1 l i n = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n , lFe1 ) # normal spectrum
f w 2 l i n = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n , lFe2 )

119 f w 1 l i n p e r p = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n p e r p , lFe1 ) # spectrum with other
↪→ handedness

f w 2 l i n p e r p = pynuss . ForwardScatter ing (Beam, D e t e c t o r l i n p e r p , lFe2 )

i f one sample == True :
# combine samples , d e t e c t o r 1 (
c s l i n = pynuss . t o o l s . CombineSamples (

( f w 1 l i n . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
)

# combine samples , d e t e c t o r 3 (
129 c s l i n p e r p = pynuss . t o o l s . CombineSamples (

( f w 1 l i n p e r p . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
)

else :
# combine samples , d e t e c t o r 1 (
c s l i n = pynuss . t o o l s . CombineSamples (

( f w 1 l i n . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( f w 2 l i n . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

)

139 # combine samples , d e t e c t o r 3 (
c s l i n p e r p = pynuss . t o o l s . CombineSamples (

( f w 1 l i n p e r p . TransmissionMatrix , MotionSmoothStep1 ) , # moving sample
( f w 2 l i n p e r p . TransmissionMatrix , MotionSmoothStep2 ) # moving sample

)

# compute ResponseMatrix
Detuning = c s l i n . DetuningGrid (100 , 0 . 5 , 800 , 0 . 2 )
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DetuningStep = Detuning [ 1 ] − Detuning [ 0 ]
149 RM F stat = c s l i n . ResponseStat i c ( Detuning ) # s t a t i c re sponse

RM F stat perp = c s l i n p e r p . ResponseStat i c ( Detuning ) # s t a t i c re sponse
RM F dyn lin = c s l i n . ResponseWithMotion ( Detuning ) # dynamic response
RM F dyn lin perp = c s l i n p e r p . ResponseWithMotion ( Detuning ) # dynamic re sponse

# compute i n t e n s i t y
I n t e n s i t y F s t a t = RM F stat . I n t e n s i t y ( ) + RM F stat perp . I n t e n s i t y ( )
I n t e n s i t y F d y n l i n = RM F dyn lin . I n t e n s i t y ( )
I n t e n s i t y F d y n l i n p e r p = RM F dyn lin perp . I n t e n s i t y ( )

159 # Transform in to time domain
RM T stat , TStep = pynuss . t o o l s . FreqToTime ( RM F stat , DetuningStep )
RM T stat perp , TStep = pynuss . t o o l s . FreqToTime ( RM F stat perp , DetuningStep )
RM T dyn lin , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn lin , DetuningStep )
RM T dyn lin perp , TStep = pynuss . t o o l s . FreqToTime ( RM F dyn lin perp , DetuningStep )
Times = np . arange ( len ( Detuning ) ) ∗ ( TStep )

# compute i n t e n s i t y in time domain
I n t e n s i t y T s t a t = RM T stat . I n t e n s i t y ( ) + RM T stat perp . I n t e n s i t y ( )
I n t e n s i t y T d y n l i n = RM T dyn lin . I n t e n s i t y ( )

169 I n t e n s i t y T d y n l i n p e r p = RM T dyn lin perp . I n t e n s i t y ( )
In t ens i ty F dyn = I n t e n s i t y F d y n l i n + I n t e n s i t y F d y n l i n p e r p
Intens i ty T dyn = I n t e n s i t y T d y n l i n + I n t e n s i t y T d y n l i n p e r p

pur i ty F = ( I n t e n s i t y F d y n l i n − I n t e n s i t y F d y n l i n p e r p ) / Intens i ty F dyn
pur ity T = ( I n t e n s i t y T d y n l i n − I n t e n s i t y T d y n l i n p e r p ) / Intens i ty T dyn

I n t e n s i t y = [ Intens i ty F dyn , I n t e n s i t y F d y n l i n , I n t e n s i t y F d y n l i n p e r p , I n t e n s i t y F s t a t ,
↪→ Intens i ty T dyn , I n t e n s i t y T d y n l i n , I n t e n s i t y T d y n l i n p e r p , I n t e n s i t y T s t a t ]

179 return I n t en s i t y , pur ity F , purity T , Detuning , Times

##########################################
### compute spectra , one s e t o f parameter
##########################################

# c r e a t e samples
lFe1 = de f ine samp le ( l a y e r t h i c k n e s s 1 , magnet i sa t ion po l1 , i n t e r n a l m a g n e t i c f i e l d )
lFe2 = de f ine samp le ( l a y e r t h i c k n e s s 2 , magnet i sa t ion po l2 , i n t e r n a l m a g n e t i c f i e l d )

189
# Calcu la te spec t ra
In t en s i t y , pur i ty F array , purity T , Detuning , Times = c a l c u l a t e s p e c t r a (Beam, displacement1 ,

↪→ disp lacement2 )

I n t e n s i t y F = I n t e n s i t y [ 0 ]
I n t e n s i t y F d y n l i n = I n t e n s i t y [ 1 ]
I n t e n s i t y F d y n l i n p e r p = I n t e n s i t y [ 2 ]
I n t e n s i t y F s t a t = I n t e n s i t y [ 3 ]
Intens i ty T dyn = I n t e n s i t y [ 4 ]
I n t e n s i t y T d y n l i n = I n t e n s i t y [ 5 ]

199 I n t e n s i t y T d y n l i n p e r p = I n t e n s i t y [ 6 ]
I n t e n s i t y T s t a t = I n t e n s i t y [ 7 ]

### plo t
# spec t ra f o r t h e s i s
f i g , axes = p l t . subp lo t s ( f i g s i z e = ( 3 . 5 , 5 ) )
ax1 = axes

ax1 . s e t x l a b e l ( ’ Detuning [ $\gamma$ ] ’ )
209 ax1 . s e t y l a b e l ( ’ I n t e n s i t y [ $ I 0$ ] ’ )

ax1 . s e t x l i m ([−100 , 1 0 0 ] )

ax1 . p l o t ( Detuning , I n t e n s i t y F d y n l i n , l i n e s t y l e = ” : ” , c o l o r = ” blue ” )
ax1 . p l o t ( Detuning , I n t e n s i t y F d y n l i n p e r p , l i n e s t y l e = ”−” , c o l o r = ” green ” )

f i g . s a v e f i g ( s a v e p i c , bbox inches=’ t i g h t ’ )
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Highly precise displacement measurement

See appendix A.1.1.
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