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Abstract. We improve the error terms of some estimates related
to counting lattices from recent work of L. Fukshansky, P. Guerzhoy
and F. Luca (2017). This improvement is based on some analytic
techniques, in particular on bounds of exponential sums coupled
with the use of Vaaler polynomials.

1. Introduction

1.1. Background. For integer T ≥ 1, we let

F(T ) = {a/b : (a, b) ∈ Z2, 0 ≤ a < b ≤ T, gcd(a, b) = 1}
be the set of Farey fractions. We also define

I(T ) = F(T ) ∩ [0, 1/2] .

Now, following [6], we consider the quantity

C(T ) =
∑

a/b∈I(T )

#Ca,b(T ),

where
Ca,b(T ) = F(T ) ∩ [1− a2/b2, 1].

The quantity C(T ) appears naturally in some counting problems
for two-dimensional lattices. More precisely, every similarity class of
planar lattices can be parametrised by a point τ = x0 + iy0 in

R = {τ = x0 + iy0 : 0 ≤ x0 ≤ 1/2, y0 ≥ 0, |τ | ≥ 1} ⊆ C,
where one identifies τ ∈ R with the lattice

Λτ =

(
1 x0
0 y0

)
Z2.

Further, similarity classes of arithmetic planar lattices correspond to
Λτ , where

τ = a/b+ i
√
c/d
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for integers a, b, c, d such that

gcd(a, b) = gcd(c, d) = 1, 0 ≤ a ≤ b/2, d > 0, c/d ≥ 1− a2/b2.

The class is semistable if furthermore c ≤ d. With these conventions,
the quantity C(T ) counts the number of similarity classes of semi-
stable arithmetic planar lattices of height at most T , that if for which
max{a, b, c, d} ≤ T .

1.2. Previous results and motivation. The following result appears
as [6, Lemma 3.2]:

(1.1) C(T ) =
3

8π4
T 4 +O(T 3 log T ).

Our goal here is to sharpen the error term in the asymptotic for-
mula (1.1). Furthermore, some of motivation comes from the intention
to introduce into the investigation of this question several results and
techniques of analytic number theory, which have not been employed
in the derivation of (1.1).

Besides, our approach leads us to some interesting and apparently
new questions about Farey fractions, which we address here as well.

1.3. Our results. Here we give a direct improvements of (1.1) and
show that that error term can be reduced by about (log T )1/3+o(1) (see
Corollary 1.3 below for a precise result). However, it seems to be more
natural to express the main term via some general quantities related to
Farey fractions and then try to minimize the error term. In particular,
we outline some results on counting Farey fractions in Section 2.2.

Here, we accept this point of view and thus express the main term
of the asymptotic formula for #C(T ) via the cardinality

F (T ) = #F(T )

of the set of of Farey fractions and also second moment of the Farey
fractions in [0, 1/2]:

G(T ) =
∑

ξ∈F(T )
ξ≤1/2

ξ2, ν = 0, 1, . . . .

It is also convenient to define

(1.2) M(t) =
∑
1≤k≤t

µ(k).

As usual A = O(B), A� B, B � A are equivalent to |A| ≤ c|B| for
some absolute constant c > 0, whereas A = o(B) means that A/B → 0.
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Theorem 1.1. We have

C(T ) = F (T )G(T ) +O
(
T 11/4+o(1) + T 3δ(T 1/2) log T

)
,

where δ(t) is any decreasing function such that

|M(t)| ≤ tδ(t)

holds.

By the classical bound of Walfisz [23, Chapter V, Section 5, Equa-
tion (12)] one can take

(1.3) δ(t) = exp(−c(log t)3/5(log log t)−1/5)

for absolute constant c > 0, hence immediately producing the bound
O(T 3 exp(−c0(log T )3/5(log log T )−1/5)) for some constant c0 > 0 on
the error term in Theorem 1.1.

In (2.8) below we obtain an approximation to G(T ) via F (T ) which
implies the following result.

Corollary 1.2. We have

C(T ) =
1

24
F (T )2 +O(T 3).

Finally, using the asymptotic formula for F (T ) with the error term
given by (2.4), we obtain the following direct improvement of (1.1):

Corollary 1.3. We have

C(T ) =
3

8π4
T 4 +O(T 3(log T )2/3(log log T )4/3)

as T →∞.

Under the Riemann Hypothesis, we can take [1, 20]

(1.4) δ(t) = t−1/2ρ(t),

where

(1.5) ρ(t) = exp
(
(log t)1/2(log log t)5/2+o(1)

)
.

Without ρ(t), the inequality (1.4) is known as a conjecture of Mertens
which has been refuted by Odlyzko and te Riele [17].

In particular, under the Riemann Hypothesis, the error term of The-
orems 1.1 becomes T 11/4+o(1). However, in this case a different approach
leads to a better result.

Theorem 1.4. Assume the Riemann Hypothesis. Then

C(T ) = F (T )G(T ) +O
(
T 752/283ρ(T ) log T

)
,

where ρ is defined in (1.5) above.
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Note that
11

4
= 2.75, and

752

283
= 2.65724 . . . ,

and the proofs of both Theorems 1.1 and 1.4 are based on bounds of
exponential sums, however of quite different shape in each of proofs. In
particular, Theorem 1.4 is a based on an application of a new exponent
pair

(1.6) (k, `) =

(
13

84
,
55

84

)
due to Bourgain [2]. Although we have taken care of minimising the
power of T in Theorem 1.4 it is quite possible that with more thorough
optimisation one can get a slight improvement of this power. It is also
interesting to note that the classical exponent pair (1/2, 1/2) of van
der Corput combined with the optimisation algorithm of Graham and
Kolesnik [7, Chapter 5] lead to a slightly higher value of the power of
T , namely to

2R + 1 = 2.65804 . . . ,

where R is the so-called Ranking constant , see [7, Section 5.4]. We also
note under the exponent pair conjecture that for any ε > 0, the pair
(ε, 1/2 + ε) is admissible, the result of Theorem 4.2 below leads to the
error term O(T 5/2+o(1)) in Theorem 1.4.

We remark that improving the error term in Corollary 1.3 is probably
impossible until the bound (2.4) below is improved. However, it is
plausible that one can improve (2.8) and thus obtain a stronger version
of Corollary 1.2, which we pose as an open question.

2. Main Term

2.1. Initial transformations. Our treatment of the main term is the
same for Theorems 1.1 and 1.4.

By a result of Niederreiter [15], for any integers 0 ≤ a < b the
following formula holds

(2.1) #Ca,b(T )− a2

b2
F (T ) = −

T∑
n=1

∑
d|n

µ(n/d){da2/b2},

where µ(k) is the Möbius function (see [9, Equation (1.16)]) and {α}
is the fractional part of a real α.

We rewrite (2.1) as

#Ca,b(T )− a2

b2
F (T ) = −

T∑
d=1

{da2/b2}M(T/d),
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where M(t) is given by (1.2). We now write

(2.2) C(T )−M(T ) = E(T ),

where

M(T ) = F (T )
∑

a/b∈I(T )

a2

b2
= F (T )G(T ),

E(T ) = −
∑

a/b∈I(T )

T∑
d=1

{da2/b2}M(T/d).

(2.3)

Using either of the bounds (1.3) and (1.4) gives the boundO(T ) for each
inner sum in the definition of the error term E(T ) (see, for example, the
proof of [15, Lemma 2]), and thus yields the conclusion of Theorem 1.1
with an error term O(T 3). Thus, to do better, we need to investigate
the cancellations between these sums.

2.2. Counting Farey fractions. Here, we collect some known facts
about Farey fractions.

The set F(T ) has been the subject of a lot of research. Writing ϕ(n)
for the Euler function of the positive integer n, we have

F (T ) =
∑
b≤T

ϕ(b) =
3

π2
T 2 +R(T ).

The error term R(T ) above has also been the subject of a lot of research.
For example, by the classical result of Mertens [13] (that dates back
to 1874), we have

R(T ) = O(T log T ).

This has been improved by Walfisz [23, Chapter V, Section 5, Equa-
tion (35)]

(2.4) R(T ) = O
(
T (log T )2/3(log log T )4/3

)
as T →∞. Note that Saltykov [19] has announced a slightly stronger
result, however the proof appears to be wrong, see [18].

Erdős and Shapiro [5] have shown that

R(T ) = Ω±(T log log log log T ),

which means that for some positive constant c, each of the inequalities

R(T ) > cT log log log log T and R(T ) < −cT log log log log T

holds infinitely often, while Montgomery [14] has sharpened this to

R(T ) = Ω±(T (log log T )1/2).
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Average values and moments of R(T ) have also been considered. For
example,

(2.5)
∑
m≤T

R(m) =
3T 2

2π2
+O(T 2η(T ))

(see [21]), and

(2.6)
∑
m≤T

R(m)2 =

(
1

6π2
+

2

π4

)
T 4 +O(T 3η(T )),

(see [4]), where in both (2.5) and (2.6)

η(T ) = exp(−A(log T )3/5(log log T )−1/5)

for some constant A > 0 (not necessarily the same one in both (2.5)
and (2.6)).

We remark that for the second (and other) moments of Farey frac-
tions one can obtain asymptotic formulas via the general bounds on
the difference between sums of continuous functions on Farey fractions
and the corresponding integrals (see [3, 24]).

Unfortunately, these results do not seem to apply to the sum G(T ).
On the other hand, one can, via elementary but rather tedious argu-
ments, relate G(T ) to F (T ) and then show that

(2.7) G(T ) =
1

8π2
T 2 +O

(
T (log T )2/3(log log T )4/3

)
as T →∞. However, here we use some general results to derive (2.7).
We start with recalling the bound

∆(T ) = O(T−1)

of Niederreiter [15] on the discrepancy

∆(T ) = sup
0≤α≤1

|# (F(T ) ∩ [0, α])− αF (T )|

of the Farey fractions.
Since the function

f(z) =

{
z2 if z ∈ [0, 1/2],
0 if z ∈ (1/2, 1],

is of bounded variation, by the classical Koksma inequality (see, for
example, [16, Theorem 2.9]), we have

G(T ) =
∑

ξ∈F(T )

f(ξ)

= F (T )

∫ 1

0

f(z)dz +O (F (T )∆(T )) =
1

24
F (T ) +O(T ),

(2.8)
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which together with (2.4) implies the estimate (2.7).
Finally, the asymptotic formulas (2.4) and (2.7) imply Corollary 1.3.

3. Proof of Theorem 1.1

3.1. Some sums with the Möbius function. In handling the sums
M(T ) and E(T ) we often appeal to a result of Gupta [8]:

Lemma 3.1. For any integer m ≥ 1, we have
T∑
d=1

gcd(d,m)=1

µ(d) bT/dc =
∑
d|m`

d≤T

1,

where

` =

⌊
log T

log 2

⌋
.

Note that after changing the order summations, Lemma 3.1 yields∑
b≤T

∑
d|b

gcd(d,m)=1

µ(d)d =
T∑
d=1

gcd(d,m)=1

µ(d) bT/dc =
∑
d|m`

d≤T

1.

Thus, using it for m = 1, we obtain:

Corollary 3.2. For the following sum we have∑
b≤T

∑
d|b

µ(d)d = 1.

We remark, that somewhat related sums have also appeared in the
work of Kunik [10, 11]. However, these sums are independent and thus
our approach is different and in particular allows for a power saving,
while the sums in [11] are estimated with a much weaker saving.

3.2. Vaaler polynomials. We define the functions

ψ(u) = {u} − 1/2 and e(u) = exp(2πiu).

By a result of Vaaler [22] (see also [7, Theorem A.6]), we have:

Lemma 3.3. For any integer H ≥ 1 there is a trigonometric polyno-
mial

ψH(u) =
∑

1≤|h|≤H

ah
−2iπh

e(hu)

with coefficients ah ∈ [0, 1] and such that

|ψ(u)− ψH(u)| ≤ 1

2H + 2

∑
|h|≤H

(
1− |h|

H + 1

)
e(hu).
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We now note that, by Lemma 3.3, we have

(3.1)
T∑
d=1

∑
a/b∈I(T )

{da2/b2}M(T/d) = E0 +O(E1 + E2 + T 3/H),

where

E0 =
1

2

∑
a/b∈I(T )

1×
T∑
d=1

M(T/d),

E1 =
∑

1≤|h|≤H

|ah|

∣∣∣∣∣∣
∑

a/b∈I(T )

T∑
d=1

M(T/d)e(a2dh/b2)

∣∣∣∣∣∣ ,
E2 = H−1

∑
1≤|h|≤H

∣∣∣∣∣∣
∑

a/b∈I(T )

T∑
d=1

M(T/d)e(a2dh/b2)

∣∣∣∣∣∣
(note that T 3/H comes from the contribution of the term with h = 0
on the right hand side of the inequality of Lemma 3.3).

Clearly,

E0 = −
(

1

4
F(T ) +O(1)

) T∑
d=1

M(T/d).

Rearranging, for every integer T ≥ 1, we obtain

(3.2)
T∑
d=1

M(T/d) =
T∑
k=1

µ(k) bT/kc = 1,

by Corollary 3.2. Hence,

(3.3) E0 � T 2.

Substituting (3.3) in (3.1) and combining this with (2.2) we obtain

(3.4) E(T )� E1 + E2 + T 3/H + T 2,

3.3. Bounds of exponential sums. Let

J =

⌊
log T

log 2

⌋
.

We also fix two more positive integer parameters H ≤ T and I ≤ J , to
be determined later.

Define

Di = Z ∩
[
2i,max{T, 2i+1}

]
, i = I, . . . , J.
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Using the definition of δ(t), we have

E1 �
∑

1≤|h|≤H

1

h

J∑
i=I

|Wh,i|+ T 3δ(T/2I) logH,

E2 �
1

H

∑
1≤|h|≤H

J∑
i=I

|Wh,i|+ T 3δ(T/2I),

(3.5)

where

Wh,i =
∑

a/b∈I(T )

∑
d∈Di

M(T/d)e(a2dh/b2), i = I, . . . , J.

We fix i ∈ [I, J ] and write

Wh,i =
∑
d∈Di

M(T/d)
T∑
b=1

∑
1≤a≤b/2
gcd(a,b)=1

e(a2dh/b2).

We estimate M(T/d) trivially as

|M(T/d)| ≤ T/d� T2−i,

and obtain

Wh,i = T2−i
∑
d∈Di

T∑
b=1

∣∣∣∣∣∣∣∣
∑

1≤a≤b/2
gcd(a,b)=1

e(a2dh/b2)

∣∣∣∣∣∣∣∣ .
Using that #Di � 2i, by the Cauchy inequality, we obtain

|Wh,i|2 � T 32−i
T∑

d∈Di

T∑
b=1

∣∣∣∣∣∣∣∣
∑

1≤a≤b/2
gcd(a,b)=1

e(a2dh/b2)

∣∣∣∣∣∣∣∣
2

.

Squaring out and changing the order of summations yields

|Wh,i|2 � T 32−i
T∑
b=1

∑
1≤a,c≤b/2
gcd(ac,b)=1

∑
d∈Di

e((a2 − c2)dh/b2).

For integer q and u define

〈u〉q = ‖u− qZ‖ = min
k∈Z
|u− kq|
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as the distance to the closest integer which is a multiple of q. Then∑
d∈Di

e((a2 − c2)dh/b2)� min

{
2i,

b2

〈(a2 − c2)h〉b2

}
(see [9, Bound (8.6)]). Thus,

|Wh,i|2 � T 32−i
T∑
b=1

∑
1≤a,c≤b

min

{
2i,

b2

〈(a2 − c2)h〉b2

}

� T 32−i
T∑
b=1

∑
1≤a,c≤b

min

{
2i,

b2

〈(a2 − c2)h〉b2

}
,

where we have dropped the coprimality condition and extended the
summation up to b (only for the sake typographical simplicity).

It is convenient to estimate separately the contribution from the
diagonal a = c, which leads to

(3.6) |Wh,i|2 � T 32−i
T∑
b=1

∑
1≤a<c≤b

min

{
2i,

b2

〈(a2 − c2)h〉b2

}
+ T 5.

Now for every integer b ∈ [1, T ] we define the set

Z0(b) =
{
z ∈ Z : |z| ≤ 2−ib2

}
.

Furthermore, for j = 0, . . . , J , we define the sets

Zj(b) =
{
z ∈ Z ∩ [−b2/2, b2/2] : 2j−ib2 < |z| ≤ 2j−i+1b2

}
.

Next, we fix some h in the interval 1 ≤ h ≤ H and define the sets:

Aj(b) = {(a, c) ∈ Z2 : 1 ≤ a < c ≤ b,

(a2 − c2)h ≡ z (mod b2) for some z ∈ Zj}.

In particular,

(3.7)
∑

1≤a<c≤b

min

{
2i,

b2

〈(a2 − c2)h〉b2

}
�

J∑
j=0

2i−j#Aj(b).

To estimate #Aj(b) we note that for each z the congruence

(a2 − c2)h ≡ z (mod b2)

puts a2− c2 in gcd(h, b2) arithmetic progressions modulo b2. Since 0 <
c2−a2 < b2, each of these progressions, leads to an equation c2−a2 = k
with some positive integer k ≤ b2 ≤ T 2. Using the classical bound on
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the divisor function τ(m) of the integer m (see [9, Equation (1.81)]),
we obtain

#Aj(b) ≤ gcd(h, b2)#Zj(b) max{τ(k) : k ≤ T 2}
≤ gcd(h, b2)#cZj(b)T

o(1)

= gcd(h, b2)
(
2j−ib2 + 1

)
T o(1)

≤ gcd(h, b2)2j−iT 2+o(1),

as T →∞. Using this in (3.7), we obtain∑
1≤a<c≤b

min

{
2i,

b2

〈(a2 − c2)h〉b2

}
� J gcd(h, b2)T 2+o(1) � gcd(h, b2)T 2+o(1),

where we ignored the J factor because of the presence of the factor
T o(1).

With this notation, we infer from (3.6) that

(3.8) |Wh,i|2 � T 5+o(1)2−i
T∑
b=1

gcd(h, b2) + T 5.

3.4. Concluding the proof. Since obviously

1

H

∑
1≤|h|≤H

J∑
i=I

|Wh,i| ≤
∑

1≤|h|≤H

1

h

J∑
i=I

|Wh,i|,

we derive from (3.4), (3.5) and (3.8) (and absorbing the term T 2 into
T 3/H as H ≤ T ), that

(3.9) E(T )� 2−I/2T 5/2+o(1)Σ+JT 5/2 logH+T 3δ(T/2I) logH+T 3/H,

where

Σ =
∑

1≤|h|≤H

1

h

(
T∑
b=1

gcd(h, b2)

)1/2

.

Writing h−1 = h−1/2h−1/2 and using the Cauchy inequality, we obtain

Σ2 � logH
∑

1≤|h|≤H

1

h

T∑
b=1

gcd(h, b2).
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Furthermore, changing the order of summation and collecting together,
for each divisor d | b2, the values h with gcd(h, b2) = d, we obtain∑
1≤|h|≤H

1

h

T∑
b=1

gcd(h, b2) =
T∑
b=1

∑
1≤|h|≤H

1

h
gcd(h, b2)

≤
T∑
b=1

∑
d|b2

d
∑

1≤|k|≤H/d

1

dk
=

T∑
b=1

∑
d|b2

∑
1≤|k|≤H/d

1

k

≤ logH
T∑
b=1

τ(b2)� T (logH)(log T )2.

For the last estimate above, we apply the main result of [12] to the
function f(n) = τ(n2) which satisfies the conditions of that theorem
with k = 3. Substituting this in (3.9), we obtain

E(T )� 2−I/2T 3+o(1) + T 3δ(T/2I) logH + T 5/2(logH)2.

Choosing now H = T 1/2 and defining I by the inequalities

2I−1 < T 1/2 ≤ 2I ,

we get the conclusion of Theorem 1.1.

4. Proof of Theorem 1.4

4.1. Preliminaries. Let α ≥ 0 and Ψα be the (generalized) Dedekind
totient function defined by Ψα(1) = 1 and, for any integer n ≥ 2

Ψα(n) = nα
∑
d|n

µ(d)2

dα
= nα

∏
p|n

(
1 +

1

pα

)
.

We also define

γ(α) =

{
1, if α = 0;

0, if α > 0.

Note that Ψ0 = 2ω and it is customary to set Ψ1 = Ψ. First we
record the following bound

(4.1)
∑
n≤x

Ψα(n)

nα
� x (log x)γ(α) ,

where the implied constant depends on α, which holds for any real
x ≥ 2. Indeed, from the definition above, we have∑

n≤x

Ψα(n)

nα
=
∑
d≤x

µ(d)2

dα

⌊x
d

⌋
� x

∑
d≤x

1

dα+1
� x (log x)γ(α) .
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4.2. Exponent pairs. Let N ≥ 1 be a large integer and let a function
f ∈ C∞ [N, 2N ] have the property that there exists T > 0 such that,
for any x ∈ [N, 2N ] and any non-negative integer j,

∣∣f (j)(x)
∣∣ � T N−j.

Let (k, `) be an exponent pair. From [7, Definition p. 31], we have
0 ≤ k ≤ 1

2
≤ ` ≤ 1 and, for any integer N1 ∈ (N, 2N ]

∑
N<n≤N1

e(f(n))� T kN `−k +NT −1.

Note that, for any s ∈ (0, 1], this implies

(4.2)
∑

N<n≤N1

e(f(n))� T kN `−k +NT −s.

Indeed, if T ∈ (0, 1), then NT −s > N which is the trivial bound, and
if T ≥ 1, then NT −s ≥ NT −1. The following result is similar to [7,
Lemma 4.3].

Lemma 4.1. Let d, a ∈ N and let T ≥ 1 be sufficiently large. If (k, `)
is an exponent pair, then

(log T )−1
∑

2a≤b≤T
gcd(b,a)=1

ψ

(
a2d

b2

)

� T 2

d1/2
Ψ(a)

a2
+


(
dka`

)1/(k+1) Ψ`−k(a)

a`−k
, if ` ≤ 2k;(

dka2kT `−2k
)1/(k+1) Ψ`−k(a)

a`−k
, if ` ≥ 2k.

Proof. Let B ∈ [2a, T ]. As before, we apply Lemma 3.3, and see that
for any integer H ≥ 1 we have

∑
B<b≤2B
gcd(b,a)=1

ψ

(
a2d

b2

)
� B

H

ϕ(a)

a
+
∑
h≤H

1

h

∣∣∣∣∣∣∣∣
∑

B<b≤2B
gcd(b,a)=1

e

(
a2dh

b2

)∣∣∣∣∣∣∣∣
� B

H

ϕ(a)

a
+
∑
h≤H

1

h

∑
δ|a

µ(δ)2

∣∣∣∣∣∣
∑

B/δ<b≤2B/δ

e

(
a2dh

δ2b2

)∣∣∣∣∣∣ .
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Now (4.2) with T = a2dhB−2 and s = 1
2

yields

∑
B<b≤2B
gcd(b,a)=1

ψ

(
a2d

b2

)

� B

H

ϕ(a)

a
+
∑
h≤H

1

h

∑
δ|a

µ(δ)2
(
B`−3k (a2dh)k δk−` +

B2

aδ(dh)1/2

)

� B

H

ϕ(a)

a
+B`−3k(Hda2)k

Ψ`−k(a)

a`−k
+

B2

d1/2
Ψ(a)

a2
.

Assume first that B1−`+3k ≥ (a2d)
k

(note that 1 − ` + 3k ≥ 0) and
choose

H =
⌊(
B1−`+3ka−2kd−k

)1/(k+1)
⌋
.

Then H ≥ 1 and∑
B<b≤2B
gcd(b,a)=1

ψ

(
a2d

b2

)
�
(
dka2kB`−2k)1/(k+1) Ψ`−k(a)

a`−k
+

B2

d1/2
Ψ(a)

a2
.

If B1−`+3k > (a2d)
k
, then

(
dka2kB`−2k)1/(k+1)

> B and the result is
trivially true in that case. We complete the proof by using the usual
argument, splitting the whole range of summation into dyadic intervals.

ut

4.3. Concluding the proof. From now on, we assume the Riemann
Hypothesis. Theorem 1.4 is a consequence of the following more general
result.

Theorem 4.2. Assume the Riemann Hypothesis and let (k, `) be an
exponent pair. For any sufficiently large T

E(T )� T (3k+`+2)/(k+1)ρ(T )(log T )2,

and if

(k, `) 6=
(

1

2
,
1

2

)
,

then the exponent of log T may be reduced to 1.
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Proof. Recalling the definition of E(T ) in (2.3) and then using (3.2),
we derive

E(T ) = −
∑

a/b∈I(T )

∑
d≤T

M

(
T

d

){
da2

b2

}

= −
∑

a/b∈I(T )

∑
d≤T

M

(
T

d

)
ψ

(
da2

b2

)
− 1

2

∑
a/b∈I(T )

∑
d≤T

M

(
T

d

)
= S(T ) +O

(
T 2
)
,

where

S(T ) = −
∑

a/b∈I(T )

∑
d≤T

M

(
T

d

)
ψ

(
da2

b2

)
.

Let (k, `) be an exponent pair such that ` ≤ 2k. Lemma 4.1 and the
Riemann Hypothesis, implying the inequality (1.4), now yield

S(T )� T 1/2ρ(T )
∑
d≤T

1

d1/2

∑
a≤T/2

∣∣∣∣∣∣∣∣
∑

2a≤b≤T
gcd(b,a)=1

ψ

(
a2d

b2

)∣∣∣∣∣∣∣∣
� T 1/2ρ(T )

∑
d≤T

1

d1/2∑
a≤T/2

((
dka`

)1/(k+1) Ψ`−k(a)

a`−k
+

T 2

d1/2
Ψ(a)

a2

)
log T

� T 1/2ρ(T ) log T∑
d≤T

1

d1/2

((
T k+`+1dk

)1/(k+1)
(log T )γ(`−k) +

T 2

d1/2
log T

)
� T (3k+`+2)/(k+1)ρ(T )(log T )1+γ(`−k) + T 5/2ρ(T )(log T )3

� T (3k+`+2)/(k+1)ρ(T )(log T )1+γ(`−k),

where we have used the bound (4.1). The argument is similar in the
case ` ≥ 2k. The proof of Theorem 4.2 is complete. ut

Now Theorem 1.4 follows from using Theorem 4.2 with the exponent
pair

(k, `) = BA2

(
13

84
,
55

84

)
=

(
76

207
,
110

207

)
,

which in turn is derived from the exponent pair (1.6) of Bourgain [2],
where A and B denote applications of A- and B-processes, see [7].
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[5] P. Erdős and H. N. Shapiro, ‘On the changes of sign of a certain error function’,
Canad. J. Math., 3 (1951), 375–384. (p. 5)

[6] L. Fukshansky, P. Guerzhoy and F. Luca, ‘On arithmetic lattices in the plane’,
Proc. Amer. Math. Soc., 145 (2017), 1453–1465. (pp. 1 and 2)

[7] S. W. Graham and G. Kolesnik, Van der Corput’s method of exponential sums,
Cambridge Univ. Press, 1991. (pp. 4, 7, 13, and 15)
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