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Abstract

Let Lg be the subcritical GJMS operator on an even-dimensional compact manifold

(X, g) and consider the zeta-regularized trace Trζ(L
−1
g ) of its inverse. We show that

if kerLg = 0, then the supremum of this quantity, taken over all metrics g of fixed

volume in the conformal class, is always greater than or equal to the corresponding

quantity on the standard sphere. Moreover, we show that in the case that it is strictly

larger, the supremum is attained by a metric of constant mass. Using positive mass

theorems, we give some geometric conditions for this to happen.

1 Introduction

On any compact Riemannian manifold (X, g), there exists a sequence of natural confor-

mally covariant differential operators L
(m)
g = ∆m

g + lower order, named GJMS operators
after Graham, Jenne, Mason and Sparling, who first constructed them [GJMS92]. Here
the order 2m can be arbitrary if the dimension n of X is odd, but if n is even, one has
the restriction 1 ≤ m ≤ n

2
in general. In particular, for m = 1, we have L

(1)
g = Yg, the

Yamabe operator, which is famously connected to the problem of finding a conformal
metric on X with constant scalar curvature. The operator L

(n/2)
g of order 2m = n is often

referred to as the critical GJMS operator; similarly, we will usually refer to the operator
of order 2m = n − 2 as the subcritical GJMS operator. This subcritical case will be our
main object of study. Notice that the Yamabe operator is subcritical in dimension four,
while the so-called Paneitz operator L

(2)
g is subcritical in dimension six.

The main purpose of this paper is to prove the following result regarding the zeta-
regularized trace of the inverse of the subcritical GJMS operator in even dimensions which
says that the round sphere minimizes the quantity supTrζ(L

−1
g ) among all Riemannian
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manifolds, when the supremum is taken over all conformal metrics of volume equal to the
volume of the sphere.

Theorem A. Let (X, g0) be a Riemannian manifold of even dimension n ≥ 4 and let

Lg0 = L
(n/2−1)
g0 be the subcritical GJMS operator. Suppose that kerLg0 = 0. Then we have

supTrζ(L
−1
g ) ≥ Trζ(L

−1
gstd

), (1.1)

where Lgstd denotes subcritical GJMS operator on the standard sphere (Sn, gstd) and the
supremum is taken over all metrics g in the conformal class of g0 with volume equal to
ωn, the volume of the standard sphere. Moreover, if X is connected and the inequality
(1.1) is strict, then the infimum is realized by a metric g ∈ [g0] that has constant mass.

Here, Trζ(L
−1
g ) denotes the zeta-regularized trace of the inverse of Lg, which we define

by Trζ(L
−1
g ) := f.p.s=1ζLg

(s), the finite part of the zeta function of Lg at s = 1. The
motivation to call this quantity a trace comes from the observation that by the usual
definition ζLg

(s) =
∑

λj 6=0 λ
−s
j for Re(s) large (where λj are the eigenvalues of Lg), the

value ζLg
(1) is formally the sum of the eigenvalues of L−1

g . For general values of m in even
dimensions n, the zeta function of the m-th GJMS operator has a pole at s = 1 so one
needs to subtract this singularity to make Trζ(L

−1
g ) well-defined. However, it turns out

that in the subcritical case 2m = n− 2 we consider, the zeta function is regular at s = 1,
so that Trζ(L

−1
g ) = ζLg

(1).
Before we comment on the notion of mass, we mention that Thm. A above should be
compared to the following result regarding the critical GJMS operator [Oki08a].

Theorem (Okikiolu). Let (X, g0) be a Riemannian manifold of even dimension n and

let Lg0 = L
(n/2)
g0 the critical GJMS operator. Suppose that kerLg0 = {constants}. Then

we have
inf Trζ(L

−1
g ) ≤ Trζ(L

−1
gstd

), (1.2)

where Lgstd denotes critical GJMS operator on the standard sphere (Sn, gstd) and the supre-
mum is taken over all metrics g in the conformal class of g0 with volume equal to ωn.
Moreover, if the inequality (1.2) is strict, then the infimum is realized by a metric g ∈ [g0]
that has constant mass.

We remark that the critical GJMS operator L
(n/2)
g does not have a constant term, and that

its kernel consists of the constant functions seems to be the generic situation. Similarly,
the generic situation in the subcritical case seems to be kerL

(n/2−1)
g = 0, which is precisely

the assumption from Thm. A.
Notice that in comparison with Thm. A, the supremum has been replaced by an infimum
and the standard sphere now maximizes the quantity inf Trζ(L

−1
g ). In fact, as g varies

over conformal metrics with fixed volume, Trζ(L
−1
g ) is unbounded below in the case of the

critical GJMS operator while it is unbounded above in the subcritical case. If analogues
of the above theorems hold in the case n − 2m = 4, 6, . . . , we expect this alternating
behavior to continue.
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The mass of a GJMS operator Lg (which can also be defined for more general elliptic
operators) is the function onX defined by mg(x) = f.p.s=1ζLg

(s, x), where ζLg
(s, x) denotes

the local zeta function of Lg. Again, in our subcritical case 2m = n− 2, we have mg(x) =
ζLg

(1, x), because the local zeta function turns out to be regular at s = 1.
In odd dimensions, the local zeta function is regular at s = 1 for GJMS operators Lg of
any order 2m, so one always has mg(x) = ζLg

(1, x). It has been shown by the author that
in odd dimensions, the mass transforms very nicely under a conformal change h = e2ϕg,
namely

mh(x) = e(2m−n)ϕ(x)
mg(x), (1.3)

provided that kerLg = 0 [Lud17]. This is not true in even dimensions, where in order
to calculate mh(x) from mg(x), also the first n − 2m derivatives of ϕ at x are needed.
However, we show below that in the case 2m = n− 2, n even, one define the normalized
mass m

nor
g by

m
nor
g := mg + bnscalg, (1.4)

to obtain a quantity which transforms under a conformal change exactly by formula (1.3)
(here bn is a dimensional constant, explicitly given in (2.11) below). It is natural to wonder
if also in the case n− 2m = 4, 6, . . . , one can modify mg by a curvature term to obtain a
quantity that transforms with the formula (1.3). It seems intriguing to think that these
corrections might be given by higher Q-curvatures.

The normalized mass defined in (1.4) is used in the following theorem, which gives a
sufficient condition for the inequality (1.1) to be strict.

Theorem B. Let (X, g0) be a compact Riemannian manifold of even dimension n ≥ 4
and let mnor

g0
be the normalized mass of the GJMS operator of order 2m = n− 2. Then if

m
nor
g0

(x0) > 0 for some x0 ∈ X, the equality (1.1) is strict.

Using positive mass theorems, one can obtain geometric conditions for Thm. B to hold.
For example, suppose that (X, g) is a four-dimensional manifold with positive Yamabe

invariant. Then L
(n/2−1)
g0 = Yg0, the Yamabe operator, and we can use the positive mass

theorem of Ammann and Humbert [AH05, Section 3] to conclude that m
nor
g0

(x) > 0 for
each x ∈ X unless (X, g0) is conformally equivalent to the standard sphere (in which case
the normalized mass is identically zero, cf. Lemma 2.6 below).
Similarly, if (X, g) is a six-dimensional manifold with positive Yamabe invariant and

(semi-)positive Q-curvature, then L
(n/2−1)
g0 = L

(2)
g0 , the Paneitz operator, and we can use

the corresponding positive mass theorem (see [HR09] and [GM15, Prop 2.9]) to conclude
that mnor

g0
(x) > 0 for each x ∈M unless (X, g0) is conformally equivalent to the standard

sphere.
In any even dimension, we can at least say that when (X, g) is conformally equivalent to
real projective space RP n, the normalized mass m

nor
g0

(x) of the GJMS operator of order
n− 2 is positive for every x ∈ X (cf. Thm. 6.9 in [Lud17]).
In all these cases, we obtain that the inequality (1.1) is strict and that the supremum
is attained by a metric of constant mass. Sadly, our results to not allow to make these
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conclusions in the case that the mass is everywhere non-positive. On the other hand,
little is known about the mass of manifolds with negative Yamabe constant. However,
there are negative-mass theorems by Okikiolu concerning the critical GJMS operator on
surfaces of positive genus [Oki08b], [Oki09].

Using the formulas for the conformal change of the mass obtained below in the special
case of the sphere, we can compute the zeta-regularized trace of the subcritical GJMS
operator of any conformal metric on Sn in terms of the conformal factor.

Theorem C. Let g = u
4

n−2 gstd be a metric on Sn in the conformal class of the standard
sphere. Then the trace of the subcritical GJMS operator with respect to the metric g =

u
4

n−2 gstd on Sn is

Trζ(L
−1
g ) = −cn

(
ˆ

Sn

u∆u dVgstd +
n(n− 2)

4

ˆ

Sn

u2 dVgstd

)

, (1.5)

where cn is a dimensional constant, given explicitly in (2.7) below.

Using this formula, it is easy to see that our Thm. A implies the standard Sobolev in-
equality on Sn

ˆ

Sn

u∆gstdu dVgstd +
n(n− 2)

4

ˆ

Sn

u2 dVgstd ≥
n(n− 2)

4
ω2/n
n ‖u‖2p,

just as Okikiolu’s theorem above implies the sharp logarithmic Hardy-Littlewood Sobolev
inequality on Sn using Morpurgo’s formula [Mor96, Thm. 1], which is the analog of (1.5)
for the critical GJMS operator (cf. [Oki08a]). Compare also to the results in Section 5 of
[Mor02].

The structure of this paper is as follows. In Section 2, we discuss the behavior of the mass
of the subcritical GJMS operators under a conformal change and introduce the normalized
mass. In Section 3, we will introduce a functional, which we name mass functional, that
turns out to be very useful to study the variational problem of the trace. We will see
that this functional is closely related to the Yamabe functional, so that the task of finding
a metric of constant mass can be solved in way similar to the solution of the Yamabe
problem. In this section, we prove that a metric of constant mass exists in case that the
inequality (1.1) is strict, as well as Thm. C. In Section 4, we finish the proof of Thm. A
and Thm. B by constructing suitable test functions for the mass functional.

Acknowledgements. The author would like to thank the Max Planck Institute for
Mathematics in Bonn for its hospitality and financial support.

2 The Mass of GJMS Operators

Let (X, g) be an n-dimensional Riemannian manifold. It is well-known that under a
conformal change h := e2ϕg, the Laplace-Beltrami operator ∆g transforms according to
the formula

∆hf = e−2ϕ
(

∆gf − (n− 2)〈dϕ, df〉
)

, (2.1)
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while if

Ygf = ∆gf + anscalgf, with an =
n− 2

4(n− 1)

denotes the Yamabe operator, Yg has the simpler transformation formula

Yhf = e−
n+2

2
ϕYg

(

e
n−2

2
ϕf

)

. (2.2)

This raises the question whether one could also add lower order terms to powers ∆m
g of

the Laplacian to make them obey a transformation law similar to (2.2) under a conformal
change. In their seminal paper [GJMS92], Graham, Jenne, Mason and Sparling answered
this question positively by constructing a natural family of such differential operators
L
(m)
g , which are nowadays called GJMS operators. They exist on general Riemannian

manifolds in the case that 1 ≤ m ≤ n
2

if n is even and for m arbitrary if n is odd and
satisfy the transformation law

L
(m)
h f = e−

n+2m
2

ϕL(m)
g

(

e
n−2m

2
ϕf

)

,

similar to (2.2). The GJMS operators have the form Lg = ∆m
g + lower order, where the

lower order terms are quantities locally determined by the curvature of (X, g). Explicit
formulas become more and more complicated for increasing m and have only been worked
out for small m. For example, we have L

(1)
g = Yg, the Yamabe operator; L

(2)
g is usually

called the Paneitz operator, see [Pan08]; explicit formulas for m = 3, 4 can be found e.g. in
[Juh13]. However, the GJMS operators have a recursive structure which was investigated
by Juhl [Juh16].

All GJMS operators are semi-bounded, elliptic differential operators, and hence one can
consider their local spectral zeta function

ζLg
(s, x) =

∑

λj 6=0

λ−s
j φj(x)

2, (2.3)

where λj runs over all non-zero eigenvalues of Lg with a corresponding orthonormal system
of eigenfunctions φj (this definition makes sense for Re(s) large and for other values of
s, ζLg

(s, x) is defined by analytic continuation). The zeta-regularized trace of L−1
g is now

defined by the formula

Trζ(L
−1
g ) := f.p.s=1ζLg

(s) =

ˆ

X

f.p.s=1ζL(s, x) dVg(x). (2.4)

Notice that formally plugging s = 1 in (2.3), the right hand side of (2.4) is formally the
sum over the eigenvalues of L−1

g (except for the fact that we have to take the finite part
as ζLg

(s,x) might have a pole at s = 1). In the case that n is odd, this coincides with
the Kontsevich-Vishik trace of L−1

g (see [KV95, Section 7.3]). In the case that n is even,
then the residue ress=1ζLg

(s) is equal to the Wodzicki non-commutative residue [Wod84],
while the Kontsevich-Vishik trace is not defined. In this case, Trζ(L

−1
g ) coincides with the
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quasi-trace functional C0(L
−1
g , Lg) discussed by discussed by Grubb(see [Gru05, Section 2]

and the references therein).

The mass of a GJMS operator Lg (and of other suitable elliptic differential operators) at
x ∈ X is defined as the finite part of the local zeta function at s = 1,

mg(x) := f.p.s=1ζLg
(s, x) =

d

ds

∣

∣

∣

s=1
(s− 1)ζLg

(s, x) (2.5)

i.e. the constant term in its Laurent expansion at s = 1. If n is odd, then ζLg
is regular at

s = 1 so that mg(x) := ζLg
(1, x). In even dimensions, the local zeta function ζLg

(s, x) has
a pole at s = 1, with residue is given by the so-called logarithmic singularity, which was
investigated e.g. in [Pon14] in great detail. However, in the subcritical case 2m = n − 2,
this logarithmic singularity is zero (see Thm. 7.5 in [Pon14]) so that also in this case,
mg(x) := ζLg

(1, x).

Remark 2.1. The mass of Lg can also be defined as the constant term in the asymptotic
expansion of its Green’s function near the diagonal. This definition was used e.g. in
[AH05], [Hab01], [HR09], [HH16] and other places. It is shown in [Lud17] (cf. Thm. 5.4)
and certainly has been realized before by other people, that this notion coincides with the
definition above.

Remark 2.2. The reason for calling the number mg(x) mass is that in the case of the
Yamabe operator, this is related to the ADM mass of asymptotically flat manifolds, a
concept from mathematical physics. Therefore, from a physicist’s point of view, positiv-
ity results can be expected in presence positive energy. See Section 6 in [Lud17] for a
discussion of this, as well as the references therein.

Let us now discuss how the mass changes under conformal transformations. As remarked
in the introduction, if n is odd and kerLg = 0, the mass of L

(m)
g at x ∈ X transforms

according to the simple formula (1.3) under a conformal change h = e2ϕg. In even
dimensions n, this is not true, but we can at least characterize the infinitesimal behavior
of the mass under a conformal change. Namely, if we set gt := e2tϕ for ϕ ∈ C∞(X), we
have (still under the assumption kerLg = 0)

d

dt
mgt(x) = (2m− n)ϕ(x)mgt(x) + 2m(Qgtϕ)(x), (2.6)

where Qg is a certain differential operator of the form c∆
n/2−m
g + lower order [Lud17,

Thm. 7.1]. These operators Qg are formed, following a complicated recipe, out of the
derivatives of heat kernel coefficients of the operator Lg and hence theoretically can be
explicitly computed from the formula given in the proof of Lemma 7.6 in [Lud17]. In
practice, however, as n − 2m increases, one needs more and more knowledge of the heat
kernel coefficients of the operators in question, which are generally very hard to compute.
For n− 2m = 2, the formula is still manageable and the operator Qg is given as follows.
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Lemma 2.3. If n− 2m = 2, the operator Qg from (2.6) is given explicitly by

Qg = −cn∆g, where cn =
(n− 2)

6(4π)n/2
(

n
2

)

!
. (2.7)

Proof. To explicitly calculate Qg brute force by the formula in the proof of Lemma 7.6
in [Lud17], one needs the knowledge of the heat kernel coefficients Φ0 and Φ1 on the
diagonal, along with the derivatives of Φ0. This is not too involved. One can be a bit
more clever, however: It is not hard to show that all these Q operators are self-adjoint
and have the heat kernel coefficient Φn/2−m of Lg, evaluated at the diagonal, as constant
term (which equals the logarithmic singularity of [Pon14] up to a dimensional factor). By
Thm. 7.5 in [Pon14], the logarithmic singularity is zero in the case n−2m = 2, so that Qg

is a constant multiple of ∆g. The constant depends only on m and n and can be explicitly
calculated using the formulas from the Lemma 7.6 mentioned above. In particular, for
2m = n− 2, one calculates this constant to be −cn.

1
�

This explicit formula for Qg in the case 2m = n − 2 now allows us to integrate (2.6) in
order to obtain a non-infinitesimal version of the equation in this case.

Proposition 2.4. If 2m = n− 2, we have

m
u

4
n−2 g

= −u−
n+2

n−2Pgu, (2.8)

u ∈ C∞(X) with u > 0, where the operator Pg is defined by Pgf := cn∆gf −mgf . Under
a conformal change, Pg from above transforms according to

Pe2ϕgf = e−
n+2

2
ϕPg(e

n−2

2
ϕf), (2.9)

just as the Yamabe operator.

Proof. Set gt := e2tϕg as above. Then integrating the relation (2.6), we have

mg1 = e−2ϕ

(

mg + (n− 2)

ˆ 1

0

e2tϕQgtϕdt

)

.

Because of Lemma 2.3 and the formula (2.1) for the behavior of the Laplacian under a
conformal change, Qg transforms according to

Qgtf = −cn∆gtf = −cne
−2tϕ

(

∆gf − (n− 2)t〈dϕ, df〉
)

.

Hence

(n− 2)

ˆ 1

0

e2tϕQgtϕdt = −(n− 2)cn

ˆ 1

0

(

∆gϕ− (n− 2)t|dϕ|2
)

dt

= −(n− 2)cn

(

∆gϕ−
n− 2

2
|dϕ|2

)

,

1The proof of Lemma 7.6 of [Lud17] is erroneous in the printed version. For the correct formulas,
appeal to the arxiv version.
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so that

me2ϕg = e−2ϕ

(

mg − (n− 2)cn

(

∆ϕ−
n− 2

2
|dϕ|2

))

(2.10)

Writing e2ϕ = u
4

n−2 , we have

∆gϕ−
n− 2

2
|dϕ|2 =

1

n− 2

∆gu

u
,

which implies (2.8).
To see how Pg transforms under a conformal change, calculate using (2.1) again

Pe2ϕgf = cn∆e2ϕgf −me2ϕgf

= e−2ϕ

(

cn

(

∆gf − (n− 2) 〈dϕ, df〉
)

−mgf + (n− 2)cn

(

∆ϕ−
n− 2

2
|dϕ|2

)

f

)

= e−2ϕ
(

cne
−n−2

2
ϕ∆g(e

−n−2

2
ϕf)−mgf

)

= e−
n+2

2
ϕPg(e

−n−2

2
ϕf),

where we also used (2.10) and the product rule for the Laplacian. �

Corollary 2.5. Defining

m
nor
g := mg + bnscalg with bn = ancn =

(n− 2)2

24(n− 1)(4π)n/2
(

n
2

)

!
(2.11)

we obtain that this normalized mass m
nor
g transforms under a conformal change according

to
m

nor
e2ϕg = e−2ϕ

m
nor
g , (2.12)

similar to formula (1.3) in odd dimensions.

Proof. It is well known [Yam60, (1.8)] that the scalar curvature of u
4

n−2 g is given by

αnscal
u

4
n−2 g

= u−
n+2

n−2Ygu = u−
n+2

n−2 (∆gu+ anscalgu).

Setting u = e
n−2

2
ϕ, i.e. e2ϕ = u

4

n−2 , we have using (2.8) and (2.9)

m
nor

u
4

n−2 g
= m

u
4

n−2 g
+ bnscal

u
4

n−2 g

= −u−
n+2

n−2Pgu+ bnu
−n+2

n−2

(

a−1
n ∆gu+ scalgu

)

= u−
n+2

n−2

(

mgu− (cn − bna
−1
n )∆gu+ bnscalgu

)

= u−
4

n−2m
nor
g .

This finishes the proof. �
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The following lemma suggests that this is the "right" definition of the normalized mass.

Lemma 2.6. On the standard sphere with the round metric gstd, we have m
nor
gstd

≡ 0.

Proof. Let x0 ∈ Sn. Let g be a metric on Sn that is flat near x0 and satisfies gstd = e2ϕg
for some function ϕ ∈ C∞(M). Now by (2.12) and the fact that scalg(x0) = 0, we
have m

nor
gstd

= e−2ϕ(x0)
m

nor
g (x0) = e−2ϕ(x0)

mg(x0). On the other hand, (Sn, g) is simply
connected, locally conformally flat and flat near x0. By [Lud17, Thm. 6.9], this implies
that mg(x0) = 0. �

It would be nice to use a similar strategy as in the proof of Prop. 2.4 also in the cases that
n − 2m = 4, 6, . . . etc. to obtain a non-infinitesimal version of (2.6). However, in these
cases, we could not obtain an explicit formula such as (2.3) yet; already for m = 2, the
formula for Qg given in [Lud17] becomes incredibly complicated and involves the second
heat kernel coefficient, second derivatives of the first heat kernel coefficient and fourth
derivatives of the index zero heat kernel coefficient.

3 The Mass Functional

Let (X, g) be a compact Riemannian manifold of dimension n ≥ 4 and let Lg = L
(m)
g be

a GJMS operator of order 2m. To study the variational problem for the trace of Lg, it is
natural to consider the mass functional

M(m)(X, g) :=

´

X
m

(m)
g (x)dVg(x)

vol(X, g)
2m
n

(3.1)

In odd dimensions, dividing by the volume to the power of 2m
n

makes the functional
scale invariant by (1.3), and we will see that the same is true in the case that n is even,
2m = n− 2 and kerLg = 0. Notice furthermore that by the definition (2.5) of the mass,
the functional M(m) is related to the zeta-regularized trace via

Trζ(L
−1
g ) = M(m)(X, g) · vol(X, g)

2m
n , (3.2)

so that the mass functional seems to be a suitable tool to vary the trace among metrics
of fixed volume.
We now restrict to the case that 2m = n − 2. Fixing a metric g, we define Mg(u) :=

M(n−2)(X, u
4

n−2 g) for u ∈ C∞(X). Then by definition, we have

sup
g∈[g0]

M(n−2)(X, g) = sup
u∈C∞(X)

u>0

Mg(u),

for any metric g ∈ [g0]. From Prop. 2.4, we now obtain the following more explicit formula
for the mass functional. Using Lemma 2.6, this proposition directly implies Thm. C, with
a view on (3.2).
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Proposition 3.1. Let (X, g) be a compact Riemannian manifold of even dimension n ≥ 4
and let Lg be the GJMS operator of order 2m = n − 2, with associated mass functional
Mg. Assume kerLg = 0. Then we have

Mg(u) = −

´

X
uPgu dVg

‖u‖2p
=

´

X
m

nor
g u2 dVg

‖u‖2p
− bnYg(u), (3.3)

where p = 2n
n−2

, ‖u‖p denotes the Lp norm with respect to the metric g and

Yg(u) =
1

an

´

X
uYgu dVg

‖u‖2p
(3.4)

is the Yamabe functional.

Proof. By Prop. 2.4,

Mg(u) =

´

X
m

u
4

n−2 g
(x)dV

u
4

n−2 g
(x)

vol(X, u
4

n−2 g)
2m
n

= −

´

X
u−

n+2

n−2 (Pgu)u
2n
n−2dVg(x)

(

´

X
u

2n
n−2dVg

)
2m
n

= −

´

X
uPgu dVg

‖u‖2p
.

Furthermore, by (2.11), we have

Pg = cn∆g −mg = cn∆g + bnscalg −m
nor
g = bna

−1
n Yg −m

nor
g .

This proves the proposition. �

Using that by (3.3), the mass functional can be written as an energy functional associated
to a second order elliptic differential operator, it is a standard observation that we have

sup
g∈[g0]

M(n−2)(X, g) = sup
u∈C∞(X)

Mg(u),

for any metric g ∈ [g0]. That is, we do not necessarily have to take positive functions u
as our test functions.

By the relation (3.2), the following proposition proves one half of Thm. A; the other half
is proven by Prop. 4.1 below by constructing a test function for the mass functional.

Proposition 3.2. Let (X, g0) be a closed connected Riemannian manifold of even dimen-
sion n ≥ 4 and let Lg0 be the GJMS operator of order 2m = n− 2. Assume kerLg0 = 0.
Then if

sup
g∈[g0]

M(n−2)(X, g) >M(n−2)(Sn, gstd),

the supremum is attained by a metric g ∈ [g0], and this metric has constant mass.

10



Proof. By formula (3.3), differentiating the functional Mg(u) yields

d

ds

∣

∣

∣

s=0
Mg(u+ sv) = −

2

‖u‖2p

ˆ

X

(

Pgu−
Mg(u)

‖u‖p−2
p

|u|p−2u

)

v dVg.

Therefore, since any positive smooth minimizer u is necessarily a critical point of Mg,
such a minimizer necessarily satisfies the partial differential equation

Pgu = Λup−1, (3.5)

for some Λ ∈ R, which implies together with (2.8) that the metric u
4

n−2 g has constant
mass.
We now discuss the problem of finding a minimizer. For a general operator Pg of the form
Pg = c∆g + f for f ∈ C∞(X), c ∈ R, consider the functional

Pg(u) :=

´

X
uPgu dVg

‖u‖2p

From the combined efforts of Yamabe [Yam60], Trudinger [Tru68] and Aubin [Aub76a,
Aub76b], we know how to construct a minimizer of such a functional: a smooth and
positive minimizer exists in the case that

inf
u∈C∞(X)

´

X
uPgu dVg

‖u‖2p
< canY(Sn, gstd),

where Y(Sn, gstd) ≡ n(n − 1)ω
2/n
n is the Yamabe constant of the standard sphere. This

result is usually formulated in the case that c = 1 and f = anscal in which Pg is the
Yamabe operator, but following e.g. the proof in Section 4 of [LP87] gives the same result
in this more general setting.
In our case, c = cn = bna

−1
n , f = −mg. Then Mg(u) = −Pg(u) by (3.3), so that a smooth,

positive maximizer u of the mass functional exists, provided

sup
g∈[g0]

Mg(u) > −bnY(Sn, gstd).

Finally by Lemma 2.6, we have m
nor
gstd

≡ 0 on Sn with the standard metric gstd. Hence by

(3.3), we have −bnY(Sn, gstd) = M(n−2)(Sn, gstd), which finishes the proof. �

Proposition 3.3. Within the conformal class of the standard metric on Sn, the mass
functional is maximized precisely at the standard metric and its images under conformal
diffeomorphisms.

Proof. By Lemma 2.6, we have m
nor
gstd

≡ 0 on Sn with the standard metric gstd and by
the conformal transformation law (2.12) of the normalized mass, the same is true for any
metric g ∈ [gstd]. Therefore, from (3.3), we obtain

−bnY(Sn, g) = M(n−2)(Sn, g) (3.6)

for all g ∈ [gstd]. Hence the proposition follows directly from the corresponding fact for
the Yamabe functional (cf. [LP87, Thm. 3.2]. �

11



4 A Test Function Estimate

In this section, we finish the proof of Thm. A as well as Thm. B, by constructing suitable
test functions for the mass functional.

With a view on (3.2), Thm. A follows from Prop. 3.2 together with the following assertion.

Proposition 4.1. Let (X, g0) be a closed connected Riemannian manifold of even dimen-
sion n ≥ 4. Suppose that kerLg0 = 0, where Lg0 is the GJMS operator of order 2m = n−2.
Then we have

sup
g∈[g0]

M(n−2)(X, g) ≥ M(n−2)(Sn, gstd)

for the corresponding mass functionals.

Proof. Let g ∈ [g0] be a metric such that in Riemannian normal coordinates around x0, we
have det(gij) ≡ 1. Such a metric, called conformal normal coordinates, is well known to
exist (cf. [LP87, Section 5], [G9̈3]). Moreover, we can choose the conformal factor relating
g and g0 to be equal to one at x0, so that mnor

g (x0) = m
nor
g0 (x0) by the transformation law

(2.12). Another feature of conformal normal coordinates around x0 is that one has

|scalg| ≤ Cr2, (4.1)

for some C > 0, where r denotes the distance function from x0 [LP87, Thm. 5.1]. These
observations will simplify several calculations.
The proof now consists of finding a suitable family of test functions for the functional
Mg(u). The construction of these will be very similar to the approach in [LP87, Section 3].
For α > 0, define uα ∈ C∞(Rn) by

uα(x) :=

(

|x|2 + α2

α

)
2−n
2

.

For a suitable value of α, this is the conformal factor that relates the standard metric in
R

n to the round metric of Sn when the latter is pushed forward to R
n via the stereographic

projection. One of the features of this family of functions uα is that for p = 2n
n−2

, the Lp

norm ‖uα‖p is independent of α; in fact ‖uα‖
p
p ≡ 2−nωn.

For ε > 0 small, let furthermore η be a smooth function on R
n which satisfies η(x) = 1

for |x| < ε and η(x) = 0 for |x| > 2ε. Finally, given Riemannian normal coordinates x
around x0, defined on U ⊂ X, we set on U

ψα := x∗(η · uα)

and extend ψα by zero to a function on all of X. Here we choose ε so small that B2ε(x0) ⊂
U , meaning that ψα ∈ C∞(X).
We need to estimate

ˆ

X

ψαPgψαdVg = cn

ˆ

X

|dϕα|
2dVg + bn

ˆ

X

scalgψ
2
αdVg −

ˆ

X

m
nor
g ψ2

αdVg (4.2)

12



from below by ‖ψα‖
2
p. Notice that in normal coordinates, we have grr = 1, hence since ϕα

is a radial function, we have

ˆ

X

|dϕα|
2dVg =

ˆ

B2ε(x0)

grr(∂rϕα)
2dVg =

ˆ

Rn

(

∂r(η · uα)
)2
dx

=

ˆ

Rn

(

η2|duα|
2 + 2ηuα(∂rη)(∂ruα) + (∂rη)

2u2α

)

dx.

(4.3)

Here we also used that det(gij) ≡ 1 on a neighborhood of x0 so that x∗dVg = dx on U .
For the second term of (4.3), we have

2

ˆ

Rn

ηuα(∂rη)(∂ruα)dx ≤ C

ˆ

B2ε(0)\Bε(0)

∣

∣uα · ∂ruα
∣

∣dx

= Cωn−1(n− 2)

ˆ 2ε

ε

rn−1
∣

∣uα(r) · ∂ruα(r)
∣

∣dr

≤ (n− 2)αn−2

ˆ 2ε

ε

rn−1(r2 + α2)
2−n
2 (r2 + α2)−

n
2 rdr

≤ (n− 2)αn−2

ˆ 2ε

ε

rn−1r2−nr−nrdr

≤ Cαn−2

Here and in the following, C denotes some positive constant (independent of α), the exact
value of which is unimportant and may change from line to line. Similarly, we have

ˆ

Rn

(∂rη)
2u2αdx ≤ Cαn−2.

Hence the latter two terms in (4.3) can both be estimated by Cαn−2 and we obtain

cn

ˆ

X

|dϕα|
2dVg ≤ cn‖duα‖

2
2 + Cαn−2 = bnY(Sn, gstd)‖uα‖

2
p + Cαn−2, (4.4)

where we used that we have ‖duα‖
2
2 = anY(Sn, gstd)‖uα‖

2
p for any α > 0 (compare by

[LP87, Thm. 3.3]).
To estimate the other terms of (4.2), we need the following calculus lemma (this can be
found as Lemma 3.5 in [LP87]; the proof is simple and we do not repeat it here).

Lemma 4.2. Suppose k > −n. Then as α→ 0, the integral

ˆ ε

0

uα(r)
2rk+n−1dr

is bounded above and below by constant multiples of αk+2 if n > k + 4, αk+2 log(1/α) if
n = k + 4 and αn−2 if n < k + 4.
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Now we can estimate using Lemma 4.2 with k = 0
ˆ

X

(

bnscalg −m
nor
g

)

ψ2
αdVg ≤ C

ˆ

B2ε(x0)

ψ2
αdVg ≤ C

ˆ

B2ε(0)

uα(x)
2dx

= Cωn−1

ˆ 2ε

0

uα(r)
2rn−1dr

≤

{

Cα2 n ≥ 6

Cα2 log(α) n = 4

}

≤ Cα,

(4.5)

where the third integral is over the 2ε-ball in R
n. We also need an estimate of ‖ϕα‖p from

below. Here, again because we are working in conformal normal coordinates, we have

‖ϕα‖
p
p =

ˆ

B2ε(x0)

ϕα(x)
pdVg(x) =

ˆ

Bε(0)

η(x)puα(x)
pdx = ‖ηuα‖

p
p.

Now (r2 + 1)−n ≤ r−2n for r > 0 so that

‖(1− η)uα‖
p
p ≤

ˆ

Rn\Bε(0)

uα(x)
pdx = ωn−1

ˆ ∞

ε

αnrn−1

(r2 + α2)n
dr

= ωn−1

ˆ ∞

ε/α

rn−1

(r2 + 1)n
dr ≤ ωn−1

ˆ ∞

ε/α

r−1−ndr =
ωn−1

nεn
αn,

hence
‖ψα‖

2
p = ‖ηuα‖

2
p =

(

‖uα‖
p
p − ‖(1− η)uα‖

p
)2/p

≥ ‖uα‖
2
p (1− Cαn)2/p . (4.6)

Plugging (4.4) and (4.5) into (4.2) and using that ‖uα‖p is independent from α then yields
for α small

ˆ

X

ψαPgψαdVg ≤
(

bnY(Sn, gstd) + Cαn−2 + Cα
)

‖uα‖
2
p

≤
(

bnY(Sn, gstd) + Cαn−2 + Cα
)

(

1− Cαn
)−2/p

‖ψα‖
2
p.

We obtain the desired estimate

− sup
α>0

Mg(ψα) = inf
α>0

−Mg(ψα) = inf
α>0

´

X
ψαPgψαdVg

‖ψα‖2p
≤ bnY(Sn, gstd).

This finishes the proof with a view on (3.6). �

We now proceed to the proof of Thm. B. We remark that with a view on (3.3), Thm. B
is obvious in the case that m

nor(x) ≥ 0 for all x ∈M , as then

sup
g∈[g0]

M(n−2)(X, g) ≥ − inf
g∈[g0]

bnY(X, g),

and it is well-known that the infimum over Y(X, g) is strictly smaller than Y(Sn, gstd)
unless (X, g) is conformal to the standard sphere (see Thm. B and C in [LP87]), so that
Thm. B follows in this case with a view on (3.6).
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Proof (of Thm. B). We will use the same test function ψα as in the proof of Prop. 4.1
above. However, in the case that mnor

g (x0) > 0, we can obtain a better result by estimating
the second and the third term on the right hand side in (4.2) separately. For the second
term, we use (4.1) and Lemma 4.2 with k = 2 to obtain

bn

ˆ

X

scalgψ
2
α,dVg ≤ C

ˆ

B2ε(x0)

r2ψ2
αdVg ≤ C

ˆ 2ε

0

rn+1uα(r)
2dr

≤











Cα4 n ≥ 8

Cα4 log(1/α) n = 6

Cα2 n = 4

.

(4.7)

Regarding the third term, notice that since m
nor
g (x0) > 0, the same is true for small

neighborhoods of x0, so we can assume that ε was chosen so small that

inf
x∈B2ε(x0)

m
nor
g (x) =: µ > 0.

Then using Lemma 4.2 with k = 0 for a lower estimate, we obtain

−

ˆ

X

m
nor
g ψ2

αdVg ≤ −µ

ˆ

X

ψ2
αdVg ≤ −µωn−1

ˆ ε

0

uα(r)
2rn−1dr

≤

{

−µδα2 n ≥ 6

−µδα2 log(1/α) n = 4

(4.8)

for some small δ > 0. Plugging the three individual estimates (4.4), (4.7) and (4.8)
into (4.2) and then using the estimate (4.6) on ‖ψα‖

2
p (where we remember that ‖uα‖p is

independent of α and thus may be swallowed by the constants) gives in the case n ≥ 8

ˆ

X

ψαPgψαdVg ≤
bnY(Sn, gstd) + Cαn−2 + Cα4 − µδ‖u1‖

−2
p α2

(1− Cαn)2/p
‖ψα‖

2
p.

If n = 6, we get
ˆ

X

ψαPgψαdVg ≤
bnY(Sn, gstd) + Cα4 + Cα4 log(1/α)− µδ‖u1‖

−2
p α2

(1− Cαn)2/p
‖ψα‖

2
p,

while if n = 4, the result is
ˆ

X

ψαPgψαdVg ≤
bnY(Sn, gstd) + Cα2 + Cα2 − µδ‖u1‖

−2
p α2 log(1/α)

(1− Cαn)2/p
‖ψα‖

2
p,

In any case, as α→ 0, the negative term involving µ decays slower in absolute value than
the other α-dependent terms. Thus for α small enough, the negative term dominates so
that we obtain

ˆ

X

ψαPgψαdVg < bnY(Sn, gstd)‖ψα‖
2
p.

The theorem follows with a view on (3.1) and (3.6). �
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