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Abstract. Let W be a subset of the set of real points of a real algebraic variety X. We investigate
which functions f : W → R are the restrictions of rational functions on X. We introduce two new
notions: curve-rational functions (i.e., continuous rational on algebraic curves) and arc-rational functions
(i.e., continuous rational on arcs of algebraic curves). We prove that under mild assumptions the following
classes of functions coincide: continuous hereditarily rational (introduced recently by the first named
author), curve-rational and arc-rational. In particular, if W is semialgebraic and f is arc-rational, then
f is continuous and semialgebraic. We also show that an arc-rational function defined on an open set
is arc-analytic (i.e., analytic on analytic arcs). Furthermore, we study rational functions on products of
varieties. As an application we obtain a characterization of regular functions. Finally, we get analogous
results in the framework of complex algebraic varieties.
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1 Introduction

In this paper, a real algebraic variety is a quasi-projective variety X defined over R. We always
assume thatX is reduced but allow it to be reducible. By a subvariety we mean a closed subvariety.
The set of real points is denoted by X(R) and regarded as a topological space (with the Euclidean
topology). It is easy to see that there is an open affine subset X0 ⊂ X that contains X(R).
Thus, as in [6], one can always view X(R) as an algebraic subset of Rn for some n. In particular,
An(R) = Rn.

We are interested in real-valued functions, defined on some subset ofX(R), that are restrictions
of regular functions or rational functions on X. The precise definition is as follows.

Definition 1.1. Let X be a real algebraic variety, and f : W → R a function defined on some
subset W ⊂ X(R).

We say that f is regular at a point x ∈W if there exist a Zariski open neighborhood Xx ⊂ X
of x and a regular function Φx on Xx such that f |W∩Xx = Φx|W∩Xx . Moreover, f is called a
regular function if it is regular at every point in W . Thus, regarding X(R) as an algebraic subset
of Rn, the function f is regular at x if and only if there exist two polynomials p, q ∈ R[x1, . . . , xn]
such that q(x) 6= 0 and f = p/q on W ∩ {q 6= 0}.

Denoting by Y the Zariski closure of W in X, we see that f is regular at x if and only if
f |W∩Yx = Fx|W∩Yx for some regular function Fx defined on a Zariski open neighborhood Yx ⊂ Y
of x.

We say that f is a rational function if there exist a Zariski open dense subset Y 0 ⊂ Y and a
regular function F on Y 0 with f |W∩Y 0 = F |W∩Y 0 . In other words, f is a rational function if and
only if there exist a rational function R on Y and a Zariski open dense subset Y 0 ⊂ Y such that
Y 0 ⊂ Y \ Pole(R) and f |W∩Y 0 = R|W∩Y 0 , where Pole(R) stands for the polar set of R.
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It easily follows that each regular function on W is also a rational function.
While the definition makes sense for an arbitrary subset W , it is sensible only if W contains a

sufficiently large portion of Y (R). The key examples of interest are open subsets and semialgebraic
subsets, with W = X(R) being the most important case.

We are mainly interested in continuous rational functions on W , that is, continuous functions
which are also rational.

The following are standard examples.

Example 1.2. The function f : R2 → R, defined by

f(x, y) =
x3

x2 + y2
for (x, y) 6= (0, 0) and f(0, 0) = 0,

is continuous rational but it is not regular at (0, 0).
The function g(x, y) = 1/(1 + x2 + y2) is regular on R2.

Example 1.3. Consider the curve C := (x3 − y2 = 0) ⊂ A2 and the functions f , g defined on
C(R) by

f(x, y) =
y

x
for (x, y) 6= (0, 0) and f(0, 0) = 0,

g(x, y) =
x

y
for (x, y) 6= (0, 0) and g(0, 0) = 0.

Then f is continuous rational, whereas g is rational but it is not continuous at (0, 0).

Regular functions on W = X(R), of course, are in common use [6]. On the other hand, con-
tinuous rational functions onW = X(R) have only recently become the object of serious research.
Their algebraic and geometric properties were considered in [12, 13, 15, 24, 29]. The homotopy
and approximation properties of maps defined by continuous rational functions were studied in
[16, 17, 18, 19, 21, 31], and applications of such maps to algebraic and stratified-algebraic vector
bundles were given in [4, 20, 22, 23].

Several examples discussed in [15] show that continuous rational functions on W = X(R)
behave in a rather unusual way. To eliminate some unexpected and undesirable phenomena, the
notion of hereditarily rational function was introduced in [15]. Such functions played an important
role in [12, 20, 22, 23, 29, 31].

Definition 1.4. With notation as in Definition 1.1, f : W → R is called a hereditarily rational
function if for every real subvariety Z ⊂ X, the restriction f |W∩Z is a rational function.

If X is smooth, then every continuous rational function on W = X(R) is hereditarily rational
[15, Proposition 8]. It is not the case for singular varieties. We now recall [15, Example 2].

Example 1.5. Consider the algebraic surface

S := (x3 − (1 + z2)y3 = 0) ⊆ A3.

Then S(R) ⊂ R3 is an analytic submanifold and the function f : S(R)→ R, defined by
f(x, y, z) = (1 + z2)1/3, is analytic and semialgebraic. Furthermore, f is a continuous rational
function on S(R) since f(x, y, z) = x/y on S(R) without the z-axis. On the other hand, f
restricted to the z-axis is not a rational function. Thus f is not hereditarily rational.

It turns out that hereditarily rational functions can be characterized by restrictions to irre-
ducible real algebraic curves.

Definition 1.6. With notation as in Definition 1.1, f : W → R is said to be rational on algebraic
curves if for every irreducible real algebraic curve C ⊂ X, the function f |W∩C is rational. If,
in addition, f |W∩C is continuous, then f is said to be continuous rational on algebraic curves or
curve-rational for short.
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Our main result on curve-rational functions is the following.

Theorem 1.7. Let X be a real algebraic variety and let W ⊂ X(R) be a subset that is either open
or semialgebraic. For a function f : W → R, the following conditions are equivalent:

(a) f is continuous and hereditarily rational.

(b) f is curve-rational.

A function on Rn that is rational on algebraic curves need not be rational.

Example 1.8. Consider the transcendental curve T := (ex− y = 0) ⊂ R2. The function f : R2 →
R, defined by

f(x, y) = 0 for (x, y) ∈ T and f(x, y) = 1 for (x, y) ∈ R2 \ T,

is rational on algebraic curves but it is not rational.

In Section 3 we give a detailed description of relationships between hereditarily rational func-
tions (not necessarily continuous) and functions rational on algebraic curves.

It is convenient to have the following local variant of Definition 1.6.

Definition 1.9. With notation as in Definition 1.1, f : W → R is said to be continuous rational
on algebraic arcs or arc-rational for short if for every point x ∈ W and every irreducible real
algebraic curve C ⊂ X, with x ∈ C(R), there exists an open neighborhood Ux ⊂ W of x such
that f |Ux∩C is a continuous rational function.

In Definition 1.9, one could require only that f |Ux∩C be a rational function (not necessarily
continuous), but such a weaker notion would not be useful for us.

Clearly, any curve-rational function is arc-rational. The converse does not hold for a rather
obvious reason. For instance, consider the hyperbola H := (xy − 1 = 0) ⊆ A2. Any real-valued
function on H(R) that is constant on each connected component of H(R) is arc-rational, but it
must be constant to be rational.

Our main result on arc-rational functions concerns functions defined on connected open sets
that avoid singularities.

Let X be a real algebraic variety. We say that an open subset U ⊂ X(R) is smooth if it is
contained in X \ Sing(X), where Sing(X) stands for the singular locus of X.

Theorem 1.10. Let X be a real algebraic variety and let U ⊂ X(R) be a connected smooth open
subset. For a function f : U → R, the following conditions are equivalent:

(a) f is continuous and hereditarily rational.

(b) f is arc-rational.

The main properties of arc-rational functions on semialgebraic sets can be summarized as
follows.

Theorem 1.11. Let X be a real algebraic variety and let f : W → R be an arc-rational function
defined on a semialgebraic subset W ⊂ X(R). Then f is continuous and there exists a sequence
of semialgebraic sets

W = W0 ⊃W1 ⊃ . . . ⊃Wm = ∅

which are closed inW , such that f is a regular function on each connected component ofWi\Wi+1,
for i = 0, . . . ,m− 1. In particular, f is a semialgebraic function.

We also establish a connection between arc-rational functions and, introduced earlier in [26],
arc-analytic functions. A function ϕ : V → R, defined on a real analytic variety V , is said to be
arc-analytic if ϕ ◦ η is analytic for every analytic arc η : (−1, 1)→ V . An arc-analytic function on
Rn need not be continuous [3] and even for n = 2 it may have a nondiscrete singular set [27].
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Theorem 1.12. Let X be a real algebraic variety and let f : W → R be an arc-rational function
defined on an open subset W ⊂ X(R). Then f is continuous and arc-analytic.

The paper is organized as follows.
In Section 2, imposing a weaker condition than in Definition 1.9, we introduce functions regular

on smooth algebraic arcs. The key result is Theorem 2.4. It asserts that a function regular on
smooth algebraic arcs, defined on a connected smooth open set, is rational.

Section 3 contains several results that can be derived from Theorem 2.4. According to The-
orems 3.3 and 3.6, a function defined on an open or semialgebraic set is hereditarily rational,
provided that it is rational on algebraic curves and regular on smooth algebraic arcs. Theorem 3.8
says that a function defined on a semialgebraic set is hereditarily rational if and only if it is ratio-
nal on algebraic curves and semialgebraic. By Corollary 3.7, a function defined on a semialgebraic
set and regular on smooth algebraic arcs is semialgebraic. This latter fact is important for the
proofs of Theorems 1.7, 1.10, 1.11 and 1.12 given in Section 4. Rational functions regular on
smooth algebraic arcs need not be continuous (Example 2.3) and for this reason we introduced
arc-rational functions.

In Section 5 we investigate rational functions on products of varieties. Theorem 5.1 is a
substantial generalization of Theorem 2.4. It is one of our main results, along with the theorems
announced in this section.

Section 6 is devoted to regular functions. Theorem 6.1 says that a function defined on a
connected open subset U ⊂ Rn, with n ≥ 2, is regular if and only if its restriction to U ∩M is
regular for every 2-dimensional affine planeM ⊂ Rn. A variant of this result for functions defined
on X(R), where X is a smooth real algebraic variety, is given in Theorem 6.2.

In Section 7 we consider analogous notions in the framework of complex algebraic varieties
and obtain counterparts of the results described above.

2 Functions regular on smooth algebraic arcs

2.1 The key result

Let C be an irreducible real algebraic curve. We call any noncompact connected smooth open
subset A ⊂ C(R) a smooth algebraic arc. Thus, a subset A ⊂ C(R) is a smooth algebraic arc if
and only if it is homeomorphic to R and contained in C \ Sing(C). If, in addition, C is a curve in
a real algebraic variety X, we say that A is a smooth algebraic arc in X(R).

Definition 2.1. Let X be a real algebraic variety, and f : W → R a function defined on some
subsetW ⊂ X(R). We say that f is regular on smooth algebraic arcs if for every point x ∈W and
every smooth algebraic arc A in X(R), with x ∈ A, there exists an open neighborhood Ux ⊂W of
x such that the function f |Ux∩A is regular (equivalently, one can require that the function f |Ux∩A
be continuous rational).

Assuming that W is an open subset, we see that f is regular on smooth algebraic arcs if and
only if the restriction of f is a regular function on each smooth algebraic arc contained in W .

The following example is given just to illustrate the definition.

Example 2.2. Let W = {x ∈ R | x = 0 or x ≥ 1} and let f : W → R be defined by f(0) = 0 and
f(x) = 1/x for x ≥ 1. Then f is regular on smooth algebraic arcs. Clearly, f cannot be extended
to a regular function on R.

Any arc-rational function is regular on smooth algebraic arcs. A rational function on Rn can
be regular on smooth algebraic arcs without being even locally bounded on algebraic curves.

Example 2.3. The rational function f : R2 → R, defined by

f(x, y) =
x8 + y(x2 − y3)2

x10 + (x2 − y3)2
for (x, y) 6= (0, 0) and f(0, 0) = 0,
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has the following properties:

(1) f is not locally bounded on the curve x2 − y3 = 0;

(2) f is not arc-rational;

(3) f is regular on smooth algebraic arcs.

Conditions (1) and (2) hold since f(x, y) = 1/x2 on the curve x2 − y3 = 0 away from (0, 0). In
order to prove (3), it suffices to show that for any smooth algebraic arc A ⊂ R2, with (0, 0) ∈ A,
the function f |A is regular at (0, 0). Such an arc A has near (0, 0) a local analytic parametrization
of the form

x(t) = at+ (hot), a ∈ R,(i)
y(t) = t+ (hot)

or

x(t) = t+ (hot),(ii)

y(t) = btk + (hot), b ∈ R, k > 1,

where (hot) = higher order terms. In case (i), f(x(t), y(t)) = t + (hot) no matter whether a = 0
or a 6= 0. In case (ii),

f((x(t), y(t)) =


btk + (hot) if 2 ≤ k ≤ 3,

(b+ 1)t4 + (hot) if k = 4,

t4 + (hot) if k ≥ 5.

Thus, f |A is regular at (0, 0) as required.

The following result will play a key role in the subsequent sections.

Theorem 2.4. Let X be a real algebraic variety, U ⊂ X(R) a connected smooth open subset, and
f : U → R a function regular on smooth algebraic arcs. Then there exists a rational function R
on X such that P := U ∩ Pole(R) has codimension at least 2 and f |U\P = R|U\P .

2.2 Semialgebraic case

First we show that Theorem 2.4 holds if f is assumed to be a semialgebraic function.
In the proof of the next result, we use Bertini’s theorem [28, Theorem 3.3.1] to produce

irreducible real algebraic curves.
Given integers 1 ≤ k ≤ N , we denote by Gr(k,N) the Grassmann variety of k-dimensional

linear subspaces of PN .

Proposition 2.5. Let X be a real algebraic variety, U ⊂ X(R) a nonempty smooth open subset,
and f : U → R a function regular on smooth algebraic arcs. Assume that the function f is
semialgebraic (so U is a semialgebraic set). Then there exist a nonempty open subset U0 ⊂ U and
a rational function R on X such that U0 ⊂ X \ Pole(R) and f |U0 = R|U0.

Proof. By replacing U with a smaller subset, we may assume that X is irreducible. The assertion
holds if dimX ≤ 1, so suppose that d := dimX ≥ 2.

By definition of semialgebraic, there exist a nonempty semialgebraic open subset W ⊂ U and
an irreducible hypersurface Y ⊂ X × A1 such that the graph of f |W is contained in Y . Then
f |W is a rational function if and only if the first projection π1 : Y → X is birational. Clearly,
once we know that f |W is a rational function, we immediately obtain U0 and R with the required
properties.
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Suppose that π1 : Y → X has degreem > 1. Fix an embeddingX ⊂ PN . By Bertini’s theorem,
the set G∗ ⊂ Gr(N − d − 1, N) consisting of those linear subspaces L for which π−11 (X ∩ L) is
1-dimensional, irreducible and π−11 (X ∩ L)→ X ∩ L (the restriction of π1) has degree m is open
and dense in the Zariski topology. Thus there exists an L ∈ G∗ such that W ∩ L contains a
smooth algebraic arc A. By construction, the graph of f |A lies on the irreducible real algebraic
curve π−11 (X ∩ L), hence f |A is not regular, a contradiction.

It is not hard to extend a rational representation from an open set to a larger one.

Lemma 2.6. Let X be a real algebraic variety, U ⊂ X(R) a connected smooth open subset, and
f : U → R a function regular on smooth algebraic arcs. Assume that there exists a nonempty open
subset U0 ⊂ U and a rational function R on X such that U0 ⊂ X \ Pole(R) and f |U0 = R|U0.
Then P := U ∩ Pole(R) has codimension at least 2 and f |U\P = R|U\P .

Proof. If dimX ≤ 1, then f is a regular function, hence the assertion holds. Suppose that
d := dimX ≥ 2. The Zariski closure of U in X is an irreducible component of X, so we may
assume that X is irreducible.

First we prove that

(1) f |U\P = R|U\P .

Let A be the set of all smooth algebraic arcs in X(R) that are contained in U . We claim that each
point p ∈ U has an arbitrarily small open neighborhood U(p) ⊂ U such that any two points of
U(p) belong to an arc in A, contained in U(p). Such a neighborhood U(p) can be constructed as
follows. We can find a Zariski open neighborhood X(p) ⊂ X of p, a real morphism ϕ : X(p)→ Ad
and an open neighborhood V (p) ⊂ U of p such that ϕ(V (p)) = (−1, 1)d ⊂ Rd, ϕ(p) = 0 and
the restriction ψ : V (p) → (−1, 1)d of ϕ is a real analytic diffeomorphism. If 0 < ε < 1 and
I ⊂ (−ε, ε)d is an open interval, then ψ−1(I) ⊂ ψ−1((−ε, ε)d) is a smooth algebraic arc. We can
take U(p) := ψ−1((−ε, ε)d) for 0 < ε� 1.

Fix a point p0 ∈ U0 and let p ∈ U \ P be an arbitrary point. Let γ : [0, 1] → U be a
continuous path with γ(0) = p0 and γ(1) = p. We can cover the compact set γ([0, 1]) by a finite
collection of open sets U(p0), U(p1), . . . , U(pr) such that U(p0) ⊂ U0, pr = p, and the intersection
U(pi) ∩ U(pi+1) is nonempty for all i = 0, . . . , r − 1. Now we use induction on i to show that

(2) f |U(pi)\P = R|U(pi)\P

for i = 0, . . . , r. This is clear for i = 0. Suppose that (2) holds for i = j, where 0 ≤ j < r. Fix a
point x0 ∈ (U(pj) ∩ U(pj+1)) \ P and let x ∈ U(pj+1) \ P be an arbitrary point. We choose an
arc A in A such that A ⊂ U(pj+1) and x0, x ∈ A. The functions f |A\P , R|A\P are regular and
equal on the nonempty open subset U(pj)∩ (A \P ) of A, hence f |A\P = R|A\P and f(x) = R(x).
This completes the inductive proof of (2). Equality (1) follows.

It remains to prove that codimP ≥ 2. Suppose to the contrary that codimP = 1. Let B be an
arc in A that meets P transversally at a general point. Then f |B is a regular function satisfying

(f |B)|B\P = f |B\P = R|B\P ,

which means that R cannot have a pole along B, a contradiction.

2.3 Reduction to the semialgebraic case

Our goal now is to reduce Theorem 2.4 to the already known semialgebraic case. The problem is
rather subtle as illustrated by the following.

Example 2.7. We construct a continuous arc-semialgebraic function k : R2 → R which is not
semialgebraic. Let γ > 0 be an irrational number, and set

Γ := {(x, y) ∈ R2 : xγ − e−1/x < y < xγ + e−1/x, x ∈ (0, 1)}.
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For any semialgebraic curve C there exists ε > 0 such that

(1) C ∩ Γ ∩ ((0, ε)× R) = ∅.

This follows from the Puiseux expansion of the branches (contained in {x > 0}) of C at the origin.
Indeed, each such branch is of the form y = h(x1/q), x > 0, where q is a positive integer and
h : (−δ, δ) → R is an analytic function. Set cn = (1/n, (1/n)γ) and choose a sequence rn ↘ 0
such that each ball Bn := B(cn, rn) ⊂ Γ and all these balls are disjoint. For z ∈ Bn we define

k(z) = max{0, rn − |z − cn|}

and put k ≡ 0 on the complement of
⋃
n∈NBn. Clearly k : R2 → R is continuous but not

semialgebraic. Actually, k is semialgebraic on any compact semialgebraic set K ⊂ R2 \ {(0, 0)}.
Let ϕ : (−1, 1) → R2 be a continuous semialgebraic arc. Then by (1) its image meets only

finitely many balls Bn, hence k ◦ ϕ is a semialgebraic (and continuous) function.

For the reduction step we need a result on real analytic functions due to Siciak [30] and Błocki
[5]. The following theorem is a special case of [5, Theorem A].

Theorem 2.8. Let f : U → R be a function defined on a nonempty open subset U ⊂ Rn. Assume
that the restriction of f is analytic on any open interval contained in U and parallel to one of the
coordinate axes. Then there exists a nonempty open subset U0 ⊂ U such that the function f |U0 is
analytic.

Let X be a real algebraic variety, and U ⊂ X(R) a semialgebraic smooth open subset. Recall
that a function f : U → R is called a Nash function (or an algebraic function) if it is analytic and
semialgebraic [6].

The following result is contained in [10, p. 202, Theorem 6].

Theorem 2.9. Let U = (a1, b1) × · · · × (ad, bd) ⊂ Rd be the product of open intervals and let
f : U → R be an analytic function. Assume that the restriction of f is a Nash function on
any open interval contained in U and parallel to one of the coordinate axes. Then f is a Nash
function.

We only need the following straightforward consequence of Theorems 2.8 and 2.9.

Corollary 2.10. Let f : U → R be a function defined on a nonempty open subset U ⊂ Rn. Assume
that the restriction of f is a Nash function on any open interval contained in U and parallel to
one of the coordinate axes. Then there exists a nonempty semialgebraic open subset U0 ⊂ U such
that the restriction f |U0 is a Nash function.

After these preparations, we can prove a variant of Corollary 2.10 in the framework of real
algebraic varieties.

Lemma 2.11. Let X be a real algebraic variety, U ⊂ X(R) a nonempty smooth open subset, and
f : U → R a function regular on smooth algebraic arcs. Then there exists a nonempty semialgebraic
open subset U0 ⊂ U such that the restriction f |U0 is a Nash function.

Proof. By replacing U with a smaller subset, we may assume that U is semialgebraic and X is
irreducible. Setting d := dimX and shrinking U further if necessary, we can find a nonempty
Zariski open subset X0 ⊂ X, a real morphism ϕ : X0 → Ad and a semialgebraic open subset
V ⊂ Rd such that U ⊂ X0, ϕ(U) = V and the restriction ψ : U → V of ϕ is a Nash isomorphism.
For any open interval I ⊂ V , the inverse image A := ψ−1(I) is a smooth algebraic arc in X(R),
hence the restriction f |A is a regular function. It follows that (f ◦ ψ−1)|I is a Nash function. By
Corollary 2.10, there exists a nonempty semialgebraic open subset V0 ⊂ V such that (f ◦ ψ−1)|V0
is a Nash function. Thus, U0 := ψ−1(V0) is a nonempty semialgebraic open subset of U and the
restriction f |U0 is a Nash function, as required.

Proof of Theorem 2.4. It suffices to combine Lemma 2.11, Proposition 2.5 and Lemma 2.6.
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3 Consequences of Theorem 2.4

3.1 Hereditarily rational functions

First we record a straightforward characterization of hereditarily rational functions.

Proposition 3.1. Let X be a real algebraic variety, and W ⊂ X(R) some subset. For a function
f : W → R, the following conditions are equivalent:

(a) f is hereditarily rational.

(b) There exists a sequence of sets

W = W0 ⊃W1 ⊃ . . . ⊃Wm = ∅

such that, if Yi is the Zariski closure of Wi in X, then Wi = W ∩Yi, Yi\Yi+1 is Zariski dense
in Yi, Wi \Wi+1 ⊂ Yi \ Sing(Yi) and f |Wi\Wi+1

is a regular function for i = 0, . . . ,m− 1.

(c) There exists a sequence of sets

W = W0 ⊃W1 ⊃ . . . ⊃Wm = ∅

such that, if Yi is the Zariski closure of Wi in X, then Wi = W ∩ Yi and f |Wi\Wi+1
is a

regular function for i = 0, . . . ,m− 1.

Proof. To prove (a) ⇒ (b), suppose that (a) holds, set W0 := W and denote by Y0 the Zariski
closure of W0 in X. Since f is a rational function, we can find a real subvariety Z1 ⊂ Y0 such
that Y0 \ Z1 is Zariski dense in Y0, Y0 \ Z1 ⊂ Y0 \ Sing(Y0) and f |W0\Z1

is the restriction of a
regular function on Y0 \Z1. Set W1 := W ∩Z1 and let Y1 be the Zariski closure of W1 in X. Then
Y1 ⊂ Z1, W1 = W ∩ Y1 and f |W0\W1

is a regular function. Note that dimY0 > dimY1. Since
f |W1 is a rational function, we can repeat this construction to get W2, and so on. The process
terminates after finitely many steps with Wm = ∅, which proves (b).

It is clear that (b) ⇒ (c).
Suppose that (c) holds. Let Z ⊂ X be a real subvariety, S the Zariski closure of W ∩Z in X,

and T an irreducible component of S. We have T ⊂ Yi and T 0 := T \ Yi+1 6= ∅ for some i.
Clearly, T 0 is Zariski open dense in T . Furthermore, W ∩ T 0 ⊂ Wi \Wi+1, hence f |W∩T 0 is a
regular function. It follows that f |W∩Z is a rational function. Thus, (c) implies (a).

3.2 Functions defined on open subsets

To derive from Theorem 2.4 some global results, we have to deal with functions defined on smooth
open sets that are not necessarily connected.

Lemma 3.2. Let X be a real algebraic variety, U ⊂ X(R) a smooth open subset, and f : U → R
a function rational on algebraic curves. Let {Ui} be the family of all connected components of U .
Assume that the restrictions f |Ui are rational functions. Then the following hold:

(1) There exist a rational function R on X and a family {X0
i } of Zariski open dense subsets of

X such that X0
i ⊂ X \ Pole(R) and f |Ui∩X0

i
= R|Ui∩X0

i
for all i.

(2) f is a rational function if the family {Ui} is finite.

(3) f is a rational function if it is regular on smooth algebraic arcs.

Proof. It is clear that (1) implies (2). Furthermore, according to Lemma 2.6, (1) also implies (3).
In the proof of (1), we may assume without loss of generality that X is irreducible. The case

dimX ≤ 1 is obvious, f being rational on algebraic curves. Suppose that d := dimX ≥ 2.
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For each i, there exist a Zariski open dense subset X0
i ⊂ X and a regular function Fi on X0

i

such that

(4) f = Fi on Ui ∩X0
i .

It remains to prove that for any j, the equality Fi = Fj holds on X0
i ∩X0

j , which is equivalent to
proving that Fi = Fj on Uj ∩X0

i ∩X0
j . Suppose to the contrary that Fi(x0) 6= Fj(x0) for some

x0 ∈ Uj ∩X0
i ∩X0

j . Then Fi(x) 6= Fj(x) for all x in an open neighborhood U(x0) ⊂ Uj ∩X0
i ∩X0

j

of x0. By Bertini’s theorem, there exists an irreducible real algebraic curve C ⊂ X such that
the intersections U(x0) ∩ C and Ui ∩X0

i ∩ C contain some smooth algebraic arcs of C(R) (after
fixing an embedding X ⊂ PN , such a curve C is obtained by intersecting X with a suitable linear
subspace L ⊂ PN of dimension N − d− 1). Since f is rational on algebraic curves, there exists a
regular function G defined on a Zariski open dense subset C0 ⊂ C with

(5) f = G on U ∩ C0.

From (4) and (5), we get Fi = G on Ui ∩X0
i ∩C0, which in turn implies that Fi = G on X0

i ∩C0,
hence

(6) Fi = G on U(x0) ∩ C0.

On the other hand, (4) and (5) also yield Fj = G on Uj ∩X0
j ∩ C0, hence

(7) Fj = G on U(x0) ∩ C0.

By (6) and (7), Fi = Fj on U(x0) ∩ C0, a contradiction.

We now present the first application of Theorem 2.4.

Theorem 3.3. Let X be a real algebraic variety, U ⊂ X(R) an open subset, and f : U → R
a function rational on algebraic curves. Assume that f is regular on smooth algebraic arcs. Then
f is hereditarily rational.

Proof. It suffices to prove that f is a rational function. By replacing X with the Zariski closure
of U in X, we may assume that U is Zariski dense in X. Let W be a connected component of
V := U ∩ (X \ Sing(X)) and let Y be the Zariski closure of W in X. Then W is a smooth open
subset of Y (R). Clearly, f |W is regular on smooth algebraic arcs. Thus, by Theorem 2.4, f |W is
a rational function. According to Lemma 3.2, f |V is a rational function, hence f is also a rational
function.

Theorem 2.4 allows us also to give the following characterization of rational functions.

Proposition 3.4. Let X be a real algebraic variety and let U ⊂ X(R) be a connected smooth open
subset. For a function f : U → R, the following conditions are equivalent:

(a) f is rational.

(b) There exists a Zariski nowhere dense real subvariety Y ⊂ X such that for any smooth
algebraic arc A contained in U the restriction f |A\Y is a regular function.

Proof. It is clear that (a) implies (b).
Suppose that (b) holds. By Theorem 2.4, there exist a nonempty open subset U0 ⊂ U \ Y and

a rational function R on X such that U0 ⊂ X \ Pole(R) and f |U0 = R|U0 . Set P := Y ∪ Pole(R).
Proceeding as in the proof of Lemma 2.6, we obtain that f |U\P = R|U\P . Thus, (b) implies (a).
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3.3 Functions defined on semialgebraic subsets

Next we consider functions defined on semialgebraic sets.

Proposition 3.5. Let X be a real algebraic variety, W ⊂ X(R) a semialgebraic subset, and
f : W → R a function regular on smooth algebraic arcs. Then there exists a sequence of semialge-
braic sets

W = W0 ⊃W1 ⊃ . . . ⊃Wm = ∅

such that, if Yi is the Zariski closure of Wi in X, then for i = 0, . . . ,m−1 the following conditions
hold:

(1) Wi = W ∩ Yi;

(2) Wi \Wi+1 is a smooth open subset of Yi(R);

(3) the restriction of f is a regular function on each connected component of Wi \Wi+1;

(4) Yi \ Yi+1 is Zariski dense in Yi.

If, in addition, f is rational on algebraic curves, then the restrictions f |Wi\Wi+1
are regular func-

tions.

Proof. Set W0 := W and let Y0 be the Zariski closure of W0 in X. We now describe how to
construct W1. To this end, set M0 := Y0(R) \ Sing(Y0). Denote by W ∗0 the interior of W0 ∩M0

in M0. Then W ∗0 is a semialgebraic subset of X(R), and the Zariski closure of W0 \W ∗0 in X
is nowhere dense in Y0 [6, Chapter 2]. Let S1 be the Zariski closure of (W0 \ W ∗0 ) ∪ Sing(Y0)
in X. Setting V1 := W0 ∩ S1, we see that the semialgebraic subset W0 \ V1 ⊂ M0 is open in M0.
Clearly, f |W0\V1 is regular on smooth algebraic arcs. By Theorem 2.4, the restriction of f to each
connected component of W0 \V1 is a rational function. Since W0 \V1 has finitely many connected
components, we can find a Zariski nowhere dense real subvariety Z1 ⊂ Y0 such that S1 ⊂ Z1 and
for each connected component K of W0 \ V1, the restriction f |K\Z1

is a regular function. Set
W1 := W0 ∩ Z1 and let Y1 be the Zariski closure of W1 in X. Then Y1 ⊂ Z1, W1 = W0 ∩ Y1,
W0 \W1 ⊂ W0 \ V1, and W0 \W1 is open in M0. By construction, conditions (1), (2), (3), (4)
hold for i = 0.

Since the function f |W1 is regular on smooth algebraic arcs, we can repeat this process to
construct W2, and so on. By (4), dimYi > dimYi+1, hence we get Wm = ∅ after finitely many
steps, which proves (1), (2), (3), (4) for all i = 0, . . . ,m− 1.

If f is also rational on algebraic curves, it follows from (2), (3) and Lemma 3.2 that the
f |Wi\Wi+1

are regular functions.

Theorem 3.6. Let X be a real algebraic variety, W ⊂ X(R) a semialgebraic subset, and
f : W → R a function rational on algebraic curves. Assume that f is regular on smooth alge-
braic arcs. Then f is hereditarily rational.

Proof. It suffices to combine Propositions 3.1 and 3.5.

The following is an immediate consequence of Proposition 3.5.

Corollary 3.7. Let X be a real algebraic variety, W ⊂ X(R) a semialgebraic subset, and
f : W → R a function regular on smooth algebraic arcs. Then f is a semialgebraic function.

We now give a characterization of hereditarily rational functions defined on semialgebraic sets.

Theorem 3.8. Let X be a real algebraic variety and let W ⊂ X(R) be a semialgebraic subset.
For a function f : W → R, the following conditions are equivalent:

(a) f is hereditarily rational.
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(b) f is rational on algebraic curves and semialgebraic.

Proof. If (a) holds, then f is rational on algebraic curves. Furthermore, f is semialgebraic by
Proposition 3.1. Thus, (a) implies (b).

Suppose that (b) holds. To prove (a), it suffices to show that f is a rational function. Let Y
be the Zariski closure of W in X. Since f is semialgebraic, there exists a Zariski open dense
subset Y 0 ⊂ Y such that the restriction f |W∩Y 0 is continuous [6]. The function f |W∩Y 0 is also
rational on algebraic curves. It follows that f |W∩Y 0 is regular on smooth algebraic arcs. Thus, by
Theorem 3.6, f |W∩Y 0 is rational, which means that f is rational as well.

4 Arc-rational functions

4.1 Continuity

First we address continuity of arc-rational functions.

Proposition 4.1. Let X be a real algebraic variety and let f : W → R be an arc-rational function
defined on a subset W ⊂ X(R) that is either open or semialgebraic. Then f is continuous.

Proof. Since continuity is a local property, it suffices to consider W semialgebraic. Then f is
a semialgebraic function by Corollary 3.7. We now prove continuity of f at an arbitrary point
x0 ∈W .

We fix an embedding R ⊂ P1(R) and regard Γ(f), the graph of f , as a subset of X(R)× P1(R).
Let l ∈ P1(R) be any point such that (x0, l) belongs to the closure of Γ(f). It remains to prove
that f(x0) = l. By the Nash curve selection lemma [6, Proposition 8.1.13], there exists a Nash
arc ϕ = (γ, ψ) : (−1, 1)→ X(R)× P1(R) with

ϕ(0) = (γ(0), ψ(0)) = (x0, l) and ϕ((0, 1)) ⊂ Γ(f).

In particular,
ψ(t) = f(γ(t)) for t ∈ (0, 1).

Let C ⊂ X be the Zariski closure of the semialgebraic set γ((−1, 1)). Then, either C = {x0} or
C is an irreducible real algebraic curve with x0 ∈ C(R). Since f is arc-rational, the restriction
f |W∩C is continuous. Consequently, the function f ◦γ, which is well defined on [0, 1), is continuous
at 0, hence

lim
t→0+

f(γ(t)) = f(x0).

On the other hand,
lim
t→0

ψ(t) = l.

It follows that f(x0) = l, as required.

Proof of Theorem 1.7. It is clear that (a) implies (b).
Suppose that (b) holds. Then f is regular on smooth algebraic arcs. Hence, according to

Theorems 3.3 and 3.6, f is hereditarily rational. Furthermore, f is arc-rational, hence continuous
by Proposition 4.1. Thus (a) holds.

Proposition 4.2. Let X be a real algebraic variety, U ⊂ X(R) an open subset, and f : U → R
a continuous rational function. Then, for each irreducible real subvariety Z ⊂ X with
U ∩ (X \ Sing(X)) ∩ (Z \ Sing(Z)) 6= ∅, the restriction f |U∩Z is a rational function.

Proof. One can repeat the proof of [15, Proposition 8] with only minor modifications.
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Proof of Theorem 1.10. It is clear that (a) implies (b).
Suppose that (b) holds. According to Theorem 2.4 and Proposition 4.1, f is continuous

rational. Let Z ⊂ X be a real subvariety with U ∩Z 6= ∅ and let Y be an irreducible component
of the Zariski closure of U ∩ Z in X. Then U ∩ (Y \ Sing(Y )) 6= ∅, hence f |U∩Y is a rational
function by Proposition 4.2. Consequently, f |U∩Z is a rational function. Thus, (b) implies (a).

Proof of Theorem 1.11. It suffices to combine Propositions 3.5 and 4.1

4.2 Arc-analyticity

We now prepare to deal with arc-analyticity of arc-rational functions.

Lemma 4.3. Let X be a real algebraic variety and let f : W → R be an arc-rational function
defined on a subset W ⊂ X(R). For some ε > 0, let γ : (−ε, ε) → X(R) be a Nash arc with
γ((−ε, ε)) ⊂W . Then f ◦ γ is an analytic function.

Proof. It is harmless to assume that γ is not a constant map. Let C be the Zariski closure in X
of the semialgebraic set γ((−ε, ε)). Then C is an irreducible real algebraic curve.

Fixing t0 ∈ (−ε, ε) and setting x0 := γ(t0), we can find an open neighborhood U(x0) ⊂W of x0
such that the restriction f |U(x0)∩C is a continuous rational function. Then I(t0) := γ−1(U(x0)∩C)
is an open neighborhood of t0 in (−ε, ε), and (f ◦ γ)|I(t0) is a continuous meromorphic function.
Any continuous real meromorphic function on an open interval is analytic. It follows that f ◦ γ is
analytic on (−ε, ε).

Proof of Theorem 1.12. In view of Proposition 4.1, it remains to prove that f is arc-analytic.
Since each point in W has a semialgebraic open neighborhood, we may assume without loss of
generality that W is open and semialgebraic. Then, by Corollary 3.7 and Proposition 4.1, f is a
continuous semialgebraic function.

It is convenient to assume for the rest of the proof that X ⊂ AN , hence X(R) ⊂ RN . This is
justified since X can be replaced with an affine open subset containing X(R). As a consequence
of the Łojasiewicz inequality [6, Theorem 2.6.6], we obtain that the function f is locally Hölder.
More precisely, for any point x ∈W we can find an open neighborhood U ⊂W and two constants
ρ > 0, C > 0 such that

(1) |f(y)− f(y′)| ≤ C|y − y′|ρ for all y, y′ ∈ U.

In order to complete the proof, it suffices to show that for each analytic arc η : (−1, 1)→W ,
the function f ◦ η is analytic at 0 ∈ (−1, 1). Since f ◦ η is continuous and subanalytic (in fact it is
semianalytic by a result of Łojasiewicz, cf. [25]), it has near 0 two (possibly distinct) expansions
as convergent Puiseux series. This means that for some integer r > 0,

f(η(t)) =
∞∑
i=1

ait
i/r for 0 ≤ t� 1 and f(η(t)) =

∞∑
i=0

bi(−t)i/r for − 1� t ≤ 0,

where the Puiseux series are convergent [25, Corollary 2.7]. Thus, f ◦ η is analytic at t = 0 if and
only if

(2) ai = 0 = bi for i ∈ (N \ rN) and ai = (−1)ibi for i ∈ rN.

Suppose that f ◦ η is not analytic at t = 0, hence at least one of the conditions in (2) is violated.
It follows that there exists an integer k > 0 with the following properties: for every ε > 0 and
every analytic function h : (−ε, ε)→ R we can find a constant ch > 0 such that

(3)
either |f(η(t))− h(t)| > cht

k for 0 < t� ε

or |f(η(t))− h(t)| > ch|t|k for − ε� t < 0.
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However, this leads to a contradiction. Indeed, by [26, Lemma 2.9], or alternatively, by Artin’s
approximation theorem [6, Theorem 8.3.1], for every integer s > 0 there exist constants ε > 0,
c > 0 and a Nash arc γ : (−ε, ε)→W satisfying

(4) |η(t)− γ(t)| ≤ c|t|s for |t| � ε.

Choose s and γ so that (4) holds and sρ > k. In view of (1), with x = η(0) = γ(0), we get

|f(η(t))− f(γ(t))| ≤ C|η(t)− γ(t)|ρ ≤ cC|t|sρ for |t| � ε,

which contradicts (3) since f ◦γ is an analytic function by Lemma 4.3. The proof is complete.

5 Rational functions on products

5.1 The main result

Let X = X1 × · · · ×Xn be the product of real algebraic varieties X1, . . . , Xn and let πi : X → Xi

be the projection on the ith factor. We say that a subset K ⊂ X(R) = X1(R) × · · ·Xn(R) is
parallel to the ith factor of X if πj(K) consists of one point for each j 6= i.

The following is the main result of this section.

Theorem 5.1. Let X = X1×· · ·×Xn be the product of real algebraic varieties and let f : U → R
be a function defined on a connected smooth open subset U ⊂ X(R). Assume that the restriction
of f is regular on each smooth algebraic arc contained in U and parallel to one of the factors of X.
Then there exists a rational function R on X such that P := U ∩ Pole(R) has codimension at
least 2 and f |U\P = R|U\P .

Theorem 5.1, for n = 1, coincides with Theorem 2.4. We prove the general case by induction on
n, but this requires some preparation. First, however, we give the following immediate consequence
of Theorem 5.1.

Corollary 5.2. Let f : U → R be a function defined on a connected open subset U ⊂ Rn. Assume
that the restriction of f is a regular function on each open interval contained in U and parallel
to one of the coordinate axes. Then there exists a rational function R on An such that P :=
U ∩ Pole(R) has codimension at least 2 and f |U\P = R|U\P .

There is a related result in [10], which however is of a somewhat different nature. We recall it
below.

Let f : U → R be an analytic function defined on a connected open subset U ⊂ Rn. Assume
that the restriction of f is rational on each open interval I contained in U and parallel to one of
the coordinate axes. According to [10, p. 201, Theorem 5], f is then a rational function. Since f
is assumed to be analytic, the restriction f |I is regular. Furthermore, it easily follows that f is
regular on U (see the beginning of Section 6).

In Corollary 5.2, the function f need not be regular. In fact, Example 2.3 shows that much
stronger conditions do not imply even local boundedness of f .

Furthermore, the function f in Corollary 5.2 need not be regular on smooth algebraic arcs.

Example 5.3. The function f : R2 → R, defined by

f(x, y) =
xy

x4 + y4
for (x, y) 6= (0, 0) and f(0, 0) = 0,

is regular on any line parallel to one of the coordinate axes but it is not continuous on y = x.

Corollary 5.2 could suggest that on an algebraic surface any grid formed by 2 pencils of
algebraic curves may be enough to check rationality. The next example shows that this is not at
all the case.
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Example 5.4. On R2 consider the function f(x, y) =
√
x2 + y2 + 1. It is not rational on any

open set.
For a > 0 let Ca be the hyperbola with the equation ax2 − y2 = 1. Note that

(x2 + y2 + 1)|Ca = (1 + a)x2|Ca ,

hence f |Ca =
√

1 + a|x| is a rational function on both connected components of Ca(R). These
hyperbolas form a pencil, a unique one passing thought every point not on the y-axis.

Note further that f is invariant under rotations. We can thus rotate the hyperbolas to get in-
finitely many pencils of curves, together forming a 2-parameter family {Ca,θ : a > 0, 0 ≤ θ ≤ 2π},
such that the restriction of f to any one of these curves is rational (even regular) on both con-
nected components of Ca,θ(R). Through any given point there is now a 1-parameter family of
rotated hyperbolas {Cλ} such that the f |Cλ are rational.

More generally, if B ⊂ A2 is a curve of degree d that is tangent to the conic (x2 + y2 + 1 = 0)
at d points then (x2+y2+1)|B is a square (over C) hence f |B(R) is the absolute value of a rational
function. The family of such curves has dimension(

d+ 2

2

)
− d− 1.

Thus we get larger and larger families of curves on which f has rational restriction.

5.2 Initial steps

Our first step towards the proof of Theorem 5.1 is the following variant of Lemma 2.6.

Lemma 5.5. Let X = X1 × · · · × Xn be the product of real algebraic varieties, U ⊂ X(R) a
connected smooth open subset, and f : U → R a function whose restriction is regular on each
smooth algebraic arc contained in U and parallel to one of the factors of X. Assume that there
exist a nonempty open subset U0 ⊂ U and a rational function R on X such that U0 ⊂ U \Pole(R)
and f |U0 = R|U0 . Then P := U ∩ Pole(R) has codimension at least 2 and f |U\P = R|U\P .

Proof. If dimX ≤ 1, then f is a rational function, hence the assertion holds. Suppose that
dimX ≥ 2. The Zariski closure of U in X is an irreducible component of X, so we may assume
that X is irreducible.

First we prove that

(1) f |U\P = R|U\P .

Let A be the set of all smooth algebraic arcs contained in U and parallel to one of the factors
of X. Each point p ∈ U has an arbitrarily small open neighborhood U(p) ⊂ U of the form
U(p) = U1(p) × · · · × Un(p), where Ui(p) ⊂ Xi(R) is an open subset such that any two points of
Ui(p) belong to a smooth algebraic arc contained in Ui(p) (see the proof of Lemma 2.6). Fix a
point p0 ∈ U0 and let p ∈ U \ P be an arbitrary point. Let γ : [0, 1] → U be a continuous path
with γ(0) = p0 and γ(1) = p. We can cover the compact set γ([0, 1]) by a finite collection of open
sets U(p0), U(p1), . . . , U(pr) such that U(p0) ⊂ U0, pr = p, and the intersection U(pi) ∩ U(pi+1)
is nonempty for all i = 0, . . . , r − 1. Now we use double induction to prove that

(2) f |U(pi)\P = R|U(pi)\P

for i = 0, 1, . . . , r. Equality (2) is obvious for i = 0. Suppose that (2) holds for i = j, where
0 ≤ j < r. Set V := U(pj+1) and define V (k) recursively:

V (0) := U(pj) ∩ U(pj+1),

V (k) := ρ−1k (ρk(V (k − 1))) ∩ V for 1 ≤ k ≤ n,
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where
ρk : X → X1 × · · · ×Xk−1 ×Xk+1 × · · · ×Xn

is the canonical projection. Clearly,

V (0) ⊂ V (1) ⊂ . . . ⊂ V (n) = V

are open subsets. Moreover, (2) holds for i = j + 1 if and only if

(3) f |V (k)\P = R|V (k)\P

for k = 0, 1, . . . , n. Equality (3) is obvious for k = 0. Suppose that (3) holds for k = l, where
0 ≤ l < n, and let x ∈ V (l + 1) \ P be an arbitrary point. Pick a point x0 ∈ V (l) \ P for which
ρl+1(x0) = ρl+1(x). Then there exists an arc A ∈ A such that A ⊂ V and x0, x ∈ A. The
functions f |A\P , R|A\P are regular and equal on the nonempty open subset V (l) ∩ (A \ P ) of A,
hence f |A\P = R|A\P and f(x) = R(x). Thus, (3) holds for k = l + 1. Consequently, (3) holds
for k = 0, 1, . . . , n, and (2) holds for i = j + 1. The double induction is complete, which means
that (2) is established for i = 0, 1, . . . , r. Equality (1) follows.

It remains to prove that codimP ≥ 2. Suppose to the contrary that codimP = 1. Let B be an
arc in A that meets P transversally at a general point. Then f |B is a regular function satisfying

(f |B)|B\P = f |B\P = R|B\P ,

which means that R cannot have a pole along B, a contradiction.

We need another auxiliary result.

Lemma 5.6. Let X = X1 × · · · ×Xn be the product of real algebraic varieties and let f : U → R
be a rational function defined on a connected smooth open subset U ⊂ X(R). Assume that the
restriction of f is regular on each smooth algebraic arc contained in U and parallel to one of the
factors of X. If U0 ⊂ U is a nonempty open subset and f vanishes on some dense subset of U0,
then f is identically equal to 0 on U .

Proof. By replacing X with the Zariski closure of U in X, we may assume that X is irreducible.
Since f is rational, there exist a Zariski open dense subset X0 ⊂ X and a regular function F
on X0 such that f |U∩X0 = F |U∩X0 .

It follows that F vanishes on X0, hence f vanishes on U ∩X0. It remains to prove that

(1) f(p) = 0

for an arbitrary point p ∈ U . The argument is analogous to that used in the proof Lemma 5.5.
We choose a neighborhood V ⊂ U of p of the form V = U1 × · · · × Un, where Ui ⊂ Xi(R) is an
open subset such any two points of Ui belong to a smooth algebraic arc contained in Ui. Define
V (k) recursively:

V (0) := V ∩X0,

V (k) := ρ−1k (ρk(V (k − 1))) ∩ V

for 1 ≤ k ≤ n, where
ρk : X → X1 × · · · ×Xk−1 ×Xk+1 × · · · ×Xn

is the canonical projection. Then

V (0) ⊂ V (1) ⊂ · · · ⊂ V (n) = V

are open sets. Equality (1) holds if

(2) f |V (k) = 0
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for k = 0, 1, . . . , n. Equality (2) is obvious for k = 0. Suppose that (2) holds for k = l, where
0 ≤ l < n, and let x ∈ V (l + 1) be an arbitrary point. Pick a point x0 ∈ V (l) for which
ρl+1(x0) = ρl+1(x). Then there exists a smooth algebraic arc A ⊂ V that is parallel to one of the
factors of X and contains both points x0 and x. The function f |A is regular and equal to 0 on
the nonempty open subset V (l) ∩ A, hence f |A = 0 and f(x) = 0. Thus, (2) holds for k = l + 1.
By induction, (2) holds for k = 0, 1, . . . , n, which completes the proof.

5.3 Separately rational functions

The next two lemmas are refinements of [10, pp. 199–201].

Lemma 5.7. Let X, Y be real algebraic varieties and let V ⊂ X(R), W ⊂ Y (R) be smooth open
subsets. Assume that Y is affine and W is connected. Let f1 : V ×W → R, . . . , fr : V ×W → R
be functions such that for i = 1, . . . , r and each point x ∈ V the function

W → R, y 7→ fi(x, y)

is regular on smooth algebraic arcs and it is not identically equal to 0. Assume that there are
functions ϕ1 : Ω → R, . . . , ϕr : Ω → R, defined on some dense subset Ω ⊂ W , for which the
following two conditions hold:

r∑
i=1

ϕi(y)fi(x, y) = 0 for all x ∈ V, y ∈ Ω;(1)

r∑
i=1

ϕi(y)2 > 0 for all y ∈ Ω.(2)

Then there exist regular functions Φ1, . . . ,Φr on Y such that

(3)
r∑
i=1

Φi(y)fi(x, y) = 0 for all x ∈ V, y ∈W

and the restrictions Φi|W are not all identically equal to 0.

Proof. For x1, . . . , xr in V and y in W , consider the matrix f1(x1, y) . . . fr(x1, y)
...

...
f1(xr, y) . . . fr(xr, y)

 .
Conditions (1) and (2) imply that the determinant of this matrix is equal to 0 for all x1, . . . , xr ∈ V
and y ∈ Ω. Thus, substituting x for xr and expanding the determinant along the last row, we get
a relation

(4)
r∑
i=1

hi(x1, . . . , xr−1; y)fi(x, y) = 0 for all x1, . . . , xr−1 ∈ V, y ∈ Ω,

where hi(x1, . . . , xr−1; y) is equal to (−1)i+r multiplied by the determinant of the matrix obtained
from  f1(x1, y) . . . fr(x1, y)

...
...

f1(xr−1, y) . . . fr(xr−1, y)


by deleting the ith column.

We complete the proof in two steps.
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Case 1. Suppose that for some specific points x1 = a1, . . . , xr−1 = ar−1 in V the functions

hi : W → R, hi(y) := hi(a1, . . . , ar−1; y)

are not all identically equal to 0; say, hj is not identically 0.
By construction, the functions hi are regular on smooth algebraic arcs, hence they are rational

functions by Theorem 2.4. Since Y is an affine variety, we can find regular functions Fi, Gi
on Y such that Fi|W = (Gi|W )hi and the zeros of Gi are contained in a Zariski nowhere dense
subvariety Z ⊂ Y . Setting Φi := G1 · · ·Gi−1FiGi+1 · · ·Gr, we get from (4) a relation

(5)
r∑
i=1

Φi(y)fi(x, y) = 0 for all x ∈ V, y ∈ Ω.

For each point x ∈ V , the function

W → R, y 7→
r∑
i=1

Φi(y)fi(x, y)

is regular on smooth algebraic arcs, hence rational by Theorem 2.4. Thus, according to Lemma 5.6,
the equality in (5) holds for all x ∈ V , y ∈W . Furthermore, applying Lemma 5.6, we obtain that
Φj |W is not identically equal to 0. The proof of Case 1 is complete.

Case 2. Suppose that for i = 1, . . . , r the equality hi(x1, . . . , xr−1; y) = 0 holds for all
x1, . . . , xr−1 ∈ V , y ∈W .

Then, for some integer s satisfying 2 ≤ s < r, there is a matrix of the form fk1(xk1 , y) . . . fks(xk1 , y)
...

...
fk1(xks , y) . . . fks(xks , y)


such that its determinant is identically equal to 0 for all xk1 , . . . , xks ∈ V , y ∈ W , but at least
one minor of order s − 1 of this matrix is not identically 0. Thus, by Case 1, there exist regular
functions Φk1 , . . . ,Φks on Y such that

s∑
l=1

Φkl(y)fkl(x, y) = 0 for all x ∈ V, y ∈W

and the restrictions Φkl |W are not all identically equal to 0. We obtain (3) by inserting some Φi

identically equal to 0.

The last lemma plays a crucial role in the proof of the following.

Lemma 5.8. Let X, Y be affine real algebraic varieties and let V ⊂ X(R), W ⊂ Y (R) be con-
nected smooth open subsets. Let f : V ×W → R be a function with the following two properties:

(1) for each point x ∈ V the function

W → R, y 7→ f(x, y)

is regular on smooth algebraic arcs and it is not identically equal to 0;

(2) for each point y ∈W the function

V → R, x 7→ f(x, y)

is rational and it is not identically equal to 0 on any nonempty open subset of V .

Then there exist nonempty open subsets V0 ⊂ V , W0 ⊂ W such that the restriction f |V0×W0 is a
rational function.
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Proof. Since X is an affine real algebraic variety, the R-algebra O(X) of regular functions on X
is finitely generated. Let {Pk} be a basis for the R-vector space O(X).

According to (2), for each y ∈W we get a relation

(3)

(
m∑
i=1

ϕi(y)Pi)(x)

)
f(x, y) +

n∑
j=1

ψj(y)Pj(x) = 0 for all x ∈ V,

where m, n are positive integers depending on y, and the ϕi(y), ψj(y) are real numbers satisfying

(4)
m∑
i=1

ϕi(y)2 +

n∑
j=1

ψj(y)2 > 0.

For each pair (m,n) of positive integers, let W (m,n) denote the set of those y ∈ W for which
there is a relation (3) with property (4). Then

W =
⋃
m,n

W (m,n),

hence by Baire’s theorem, there exists a nonempty open subsetW0 ⊂W such that the intersection
W0 ∩W (m,n) is dense in W0 for some (m,n). Fix such a pair (m,n) and set Ω := W0 ∩W (m,n).
We now have functions ϕi : Ω→ R, ψj : Ω→ R such that (3) and (4) hold for all y ∈ Ω.

The subset
V0 := {x ∈ V | Pk(x) 6= 0 for all k = 1, . . . ,m+ n}

of V is nonempty and open. Define functions

f1, . . . , fm+n : V0 ×W0 → R,

by fi(x, y) = Pi(x)f(x, y) for i = 1, . . . ,m and fm+j(x, y) = Pj(x) for j = 1, . . . , n. By (1) and
Lemma 5.7, there exist regular functions Φi, Ψj on Y such that(

m∑
i=1

Φi(y)Pi(x)

)
f(x, y) +

n∑
j=1

Ψj(y)Pj(y) = 0 for all x ∈ V0, y ∈W0

and the restrictions Φi|W0 , Ψj |W0 are not all identically equal to 0. It follows that f |V0×W0 is a
rational function.

Proof of Theorem 5.1. By replacing Xi with an affine open subset containing Xi(R), we may
assume that each Xi is an affine variety.

We use induction on n. For n = 1, Theorem 5.1 coincides with Theorem 2.4.
Suppose that n ≥ 2. Let U1 ⊂ X1(R), . . . , Un ⊂ Xn(R) be connected smooth open subsets

such that U1 × · · · × Un ⊂ U . By the induction hypothesis, for each point xn ∈ Un the function

U1 × · · · × Un−1 → R, (x1, . . . , xn−1) 7→ f(x1, . . . , xn−1, xn)

is rational. Furthermore, it is clear that this function is regular on each smooth algebraic arc
contained in U1 × · · · × Un−1 and parallel to one of the factors of X1 × · · · ×Xn−1. Consider the
relation

(∗) f(x1, . . . , xn−1, xn) = 0.

Denote by ∆ the set of those points xn ∈ Un for which (∗) holds for all (x1, . . . , xn−1) in
U1 × · · · × Un−1. If ∆ is dense in Un, then f is identically equal to 0 on U1 × · · · × Un−1 × Un by
Lemma 5.6 and Theorem 2.4.
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Suppose that ∆ is not dense in Un and let W ⊂ Un be a connected open subset disjoint
from ∆. Denote by Γ the set of those points (x1, . . . , xn−1) in U1 × · · · × Un−1 for which (∗)
holds for all xn ∈ W . If Γ is dense in U1 × · · · × Un−1, then f is identically equal to 0 on
U1 × · · · × Un−1 ×W by Lemma 5.6.

Suppose that ∆ (resp. Γ) is not dense in Un (resp. U1×· · ·×Un−1) and let V ⊂ U1×· · ·×Un−1
be a connected open subset disjoint from Γ. By Lemma 5.6, the assumptions of Lemma 5.8 are
satisfied for the function f |V×W . Hence the restriction f |V0×W0 is a rational function for some
nonempty open subsets V0 ⊂ V , W0 ⊂W .

It follows from Lemma 5.5 that Theorem 5.1 holds in each of the cases considered above.

Remark 5.9. If in Theorem 5.1 dimXi = 1 for i = 1, . . . , n, then its proof given above does
not depend on Theorem 2.4. In particular, one can obtain Corollary 5.2 without making use of
Theorem 2.4 and without involving analytic functions.

6 Regular functions

As applications of Corollary 5.2 and Theorem 3.3, we obtain two results on regular functions.
For these applications we also need a characterization of real analytic functions, recalled in The-
orem 6.3. For the sake of clarity, we state explicitly the following simple observation. If X is a
smooth real algebraic variety, U ⊂ X(R) an open subset, and f : U → R a rational function which
is analytic, then f is a regular function [16, Proposition 2.1]. This can also be seen directly, since
for each point x ∈ U , the ring of germs of real analytic functions at x is faithfully flat over the
ring of germs of regular functions at x.

Theorem 6.1. Let U ⊂ Rn be a connected open subset, n ≥ 2. For a function f : U → R, the
following conditions are equivalent:

(a) f is regular.

(b) For each 2-dimensional affine planeM ⊂ Rn the restriction of f is regular on each connected
component of U ∩M .

Proof. It is clear that (a) implies (b).
Suppose that (b) holds. Then the restriction of f is a regular function on each open interval

contained in U . By Corollary 5.2, f is a rational function. Furthermore, f is also an analytic
function according to Theorem 6.3. Consequently, f is regular, being rational and analytic. Thus,
(b) implies (a).

For varieties we have the following.

Theorem 6.2. Let X be a smooth real algebraic variety of pure dimension n ≥ 2 and let U ⊂ X(R)
be an open subset. For a function f : U → R, the following conditions are equivalent:

(a) f is regular.

(b) For each irreducible real algebraic surface S ⊂ X the restriction of f is regular on
U ∩ (S \ Sing(S)).

Proof. It is clear that (a) implies (b).
Suppose that (b) holds.
First we prove that f is rational. To this end consider an irreducible real algebraic curve

C ⊂ X which has a smooth point x ∈ C(R). We can find an irreducible real algebraic surface
S ⊂ X such that C ⊂ S and x is a smooth point of S. Condition (b) implies that f |U∩C is regular
at x. Consequently, f is rational on algebraic curves and regular on smooth algebraic arcs. By
Theorem 3.3, f is rational.
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Next we show that f is analytic. For each point p ∈ U , we can find a Zariski open neighborhood
X(p) ⊂ X, a real morphism ϕ : X(p) → An and an open neighborhood U(p) ⊂ U ∩ X(p) such
that ϕ(U(p)) = (−1, 1)n ⊂ Rn and the restriction ψ : U(p) → (−1, 1)n of ϕ is a real analytic
diffeomorphism. Let M ⊂ Rn be a 2-dimensional affine plane and let S be the Zariski closure of
N := ψ−1((−1, 1)n∩M). Then S ⊂ X is an irreducible real algebraic surface and N ⊂ S\Sing(S).
Condition (b) implies that f |N is a regular function, hence (f ◦ ψ−1)|(−1,1)n∩M is an analytic
function. By Theorem 6.3, f ◦ψ−1 is an analytic function. Consequently, f |U(p) is analytic, which
means that so is f .

In conclusion, f is regular, being rational and analytic. Thus, (b) implies (a).

We have used a result of Bochnak and Siciak [7], stated below as Theorem 6.3. Since [7] is
not easily available, we show how to derive Theorem 6.3 from [9].

Theorem 6.3. Let f : U → R be a function defined on an open subset U ⊂ Rn, n ≥ 2. Assume
that for each 2-dimensional affine plane M ⊂ Rn the restriction f |U∩M is an analytic function.
Then f is analytic.

Proof. The assumption implies that for x ∈ U and k ∈ N, the function

δkxf : Rn → R, δkxf(v) :=
dk

dtk
f(x+ tv)

∣∣∣∣
t=0

is well defined. Furthermore, the restriction of δkxf to any 2-dimensional vector subspace of Rn is
a homogeneous polynomial of degree k. In particular, the restriction of δkxf to any affine line in Rn
is a polynomial function. By [8, Lemma 1] the latter property implies that δkxf is a polynomial
function. Thus, according to [9, Theorem 7.5], f is an analytic function (in [9, Thoerem 7.5] it
is also assumed that f is continuous, but this is required only for functions defined in topological
vector spaces of infinite dimension).

7 Rational functions on complex algebraic varieties

7.1 Preliminaries

Throughout this section, a complex algebraic variety is a quasi-projective variety X defined over C
(always reduced but possibly reducible). By a subvariety we mean a closed subvariety. We regard
X(C), the set of complex points of X, as a complex analytic variety. An open subset U ⊂ X(C)
is said to be smooth if it is contained in X \ Sing(X).

Our goal is to present complex counterparts of the results obtained in the preceding sections.
We restrict our attention to functions defined on some open subset W ⊂ X(C) since for complex
varieties only this case seems to be of interest.

We say that a function f : W → C is regular at a point x ∈W if for some regular function Φx

defined on a Zariski open neighborhood Xx ⊂ X of x the equality f |W∩Xx = Φx|W∩Xx holds.
Moreover, f is said to be regular if it is regular at each point in W .

We say that f is regular on smooth algebraic arcs if the restriction f |A is a regular function for
each smooth algebraic arc A ⊂W . Here A is called a smooth algebraic arc if it is a smooth open
subset of C(C), where C ⊂ X is an irreducible complex algebraic curve, that is homeomorphic to
the unit open disc D := {z ∈ C : |z| < 1}.

We say that f is a rational function if there exist a rational function R on X and a Zariski open
dense subset X0 ⊂ X such that X0 ⊂ X \Pole(R) and f |W∩X0 = R|W∩X0 . This is consistent with
Definition 1.1 since the Zariski closure of W in X is the union of some irreducible components
of X.

We are mainly interested in continuous rational functions. By the Riemann extension theorem,
if f is continuous rational and X is a normal variety, then f is regular. However if X is not normal
it can happen that f is continuous rational but not regular.
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Example 7.1. Let X(C) = (z2 − x3y = 0) and f(x, y, z) = z3

x4y
. Then |f(x, y, z)| = |xy|1/2 on

X(C). Hence f extends to a continuous rational function which is not regular at the origin.

In general, continuous rational functions are related to the notions of seminormality and semi-
normalization; see [1, 2] or [14, Section 10.2].

We say that f is continuous rational on algebraic arcs or arc-rational for short if for every
point x ∈ W and every irreducible complex algebraic curve C ⊂ X, with x ∈ C(C), there exists
an open neighborhood Ux ⊂W of x such that the function f |Ux∩C is continuous rational.

7.2 Complex regular functions

The following corresponds to Theorem 2.4.

Theorem 7.2. Let X be a complex algebraic variety, U ⊂ X(C) a connected smooth open subset,
and f : U → C a function regular on smooth algebraic arcs. Then f is a regular function.

As in the real case, it is convenient to make use of Nash functions. Recall that in the complex
setting Nash maps can be defined as follows [11]. Let X, Y be complex algebraic varieties and
let U ⊂ X(C), V ⊂ Y (C) be open subsets. A map ψ : U → V is said to be a Nash map if it is
holomorphic and each point x ∈ U has an open neighborhood Ux ⊂ U such that the graph of
f |Ux is contained in a complex algebraic subvariety of X × Y of dimension equal to dimUx (this
subvariety can be chosen irreducible if x is a smooth point of X and Ux is a connected smooth
open neighborhood of x). The composition of Nash maps is a Nash map. In case V = C, we
obtain Nash functions (also called algebraic functions).

Proof of Theorem 7.2. We may assume that X is irreducible and smooth. The case dimX ≤ 1
is obvious. Suppose that d := dimX ≥ 2. For each point x ∈ U , we can find a Zariski open
neighborhood Xx ⊂ X, a morphism ϕx : Xx → Ad and an open neighborhood Ux ⊂ U such that
Ux ⊂ Xx, ϕx(Ux) = Dd ⊂ Cd and the restriction ψx : Ux → Dd of ϕx is a Nash isomorphism.
Then f ◦ ψ−1x : Dd → C is a function of d complex variables (z1, . . . , zd), which has the following
property: for j = 1, . . . , d and every point (a1, . . . , ad) ∈ Dd, the assignment

D→ C, zj 7→ (f ◦ ψ−1x )(a1, . . . , aj−1, zj , aj+1, . . . , ad)

is a Nash function on D. By Hartogs’ theorem, f ◦ ψ−1x is a holomorphic function on Dd. Fur-
thermore, according to [10, p. 202, Theorem 6], f ◦ ψ−1x is a Nash function on Dd. Consequently,
f |Ux is a Nash function. Now, the argument used in the proof of Proposition 2.5 shows that f |Ux
is a rational function. Thus, f |Ux is a regular function, being rational and holomorphic. It easily
follows that f is a regular function.

Let X = X1 × · · · ×Xn be the product of complex algebraic varieties and let πi : X → Xi be
the canonical projection. We say that a subset K ⊂ X(C) is parallel to the ith factors of X if
πj(K) consists of one point for each j 6= i.

As a counterpart of Theorem 5.1, we get the following.

Theorem 7.3. Let X = X1 × · · · × Xn be the product of complex algebraic varieties and let
f : U → C be a function defined on a connected smooth open subset U ⊂ X(C). Assume that the
restriction of f is regular on each smooth algebraic arc contained in U and parallel to one of the
factors of X. Then f is a regular function.

Proof. We use induction on n. For n = 1, Theorem 7.3 coincides with Theorem 7.2.
Suppose that n ≥ 2. By Hartogs’ theorem, f is a holomorphic function. Clearly, each point

x ∈ U has a neighborhood in U of the form U1 × · · · × Un, where Ui ⊂ Xi(C) is a connected
smooth open subset that is contained in an affine open subset of Xi. Setting V := U1×· · ·×Un−1,
W := Un, using the induction hypothesis and applying Proposition 7.4 below, we conclude that
f |V×W is a regular function. Now it easily follows that f is a regular function.
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Proposition 7.4. Let X, Y be affine complex algebraic varieties and let V ⊂ X(C), W ⊂ Y (C)
be connected smooth open subsets. Let f : V ×W → C be a holomorphic function with the following
two properties:

(1) for each point x ∈ V the function W → C, y 7→ f(x, y) is regular;

(2) for each point y ∈W the function V → C, x 7→ f(x, y) is regular.

Then the function f is regular.

Proof. This is a straightforward generalization of [10, p. 201, Thoerem 6]. Of course, Proposi-
tion 7.4 corresponds to Lemma 5.8, but the proof in the complex setting is easier because f is
holomorphic.

Theorem 7.3 implies the following.

Corollary 7.5. Let X = X1 × · · · × Xn be the product of complex algebraic varieties, X0 ⊂ X
a Zariski open subset, and f : X0(C)→ C a function whose restriction is regular on each smooth
algebraic arc contained in X0(C) and parallel to one of the factors of X. Then f is a rational
function.

Proof. We may assume that X is irreducible, in which case X0(C) \ Sing(X) is a connected open
subset of X(C). Now it suffices to apply Theorem 7.3.

7.3 Continuous complex rational functions

Next we prove continuity of arc-rational functions.

Theorem 7.6. Let X be a complex algebraic variety and let f : W → C be an arc-rational function
defined on an open subset W ⊂ X(C). Then f is continuous.

Proof. We begin with a general remark. Identifying C with R2, one can consider semialgebraic
subsets of Y (C) for any complex algebraic variety Y .

Since continuity is a local property, it suffices to consider W open and semialgebraic. Then
W0 := W \ Sing(X) is also semialgebraic. Furthermore, we may assume that X is irreducible and
dimX ≥ 1. We now prove continuity of f at an arbitrary point x0 ∈W .

We fix an embedding C ⊂ P1(C) and regard Γ(f), the graph of f , as a subset of X(C)×P1(C).
Let l ∈ P1(C) be any point such that (x0, l) belongs to the closure of Γ(f). It remains to prove
that f(x0) = l.

We claim that Γ(f |W0) is dense in Γ(f). Indeed, for any point x ∈W there exists an irreducible
complex algebraic curve B ⊂ X with x ∈ B and W0 ∩ B 6= ∅. Then x belongs to the closure of
W0 ∩B in W ∩B. Since f is arc-rational, the restriction f |W∩B is a continuous function. Hence
(x, f(x)) belongs to the closure of Γ(f |W0) in Γ(f), which proves the claim.

According to the claim, (x0, l) belongs to the closure of Γ(f |W0). It follows from Theorem 7.2
that Γ(f |W0) is a semialgebraic subset of X(C)×P1(C). Thus, by the Nash curve selection lemma
[6, Proposition 8.1.13], there exists a Nash arc ϕ = (γ, ψ) : (−1, 1)→ X(C)× P1(C) with

ϕ(0) = (γ(0), ψ(0)) = (x0, l) and ϕ((0, 1)) ⊂ Γ(f |W0).

In particular,
ψ(t) = f(γ(t)) for t ∈ (0, 1).

Let C ⊂ X be the Zariski closure of the semialgebraic set γ((−1, 1)). Then, either C = {x0} or
C is an irreducible complex algebraic curve with x0 ∈ C(C). Since f is arc-rational, f |W∩C is
continuous. Consequently, the function f ◦ γ, which is well defined on [0, 1), is continuous at 0,
hence

lim
t→0+

f(γ(t)) = f(x0).
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On the other hand,
lim
t→0

ψ(t) = l.

It follows that f(x0) = l, as required.

We can now characterize continuous rational functions.

Theorem 7.7. Let X be a complex algebraic variety. For a function f : X(C)→ C, the following
conditions are equivalent:

(a) f is continuous rational.

(b) f is arc-rational.

Proof. It follows from Proposition 7.8 below that (a) implies (b).
Suppose that (b) holds. According to Theorem 7.6, f is continuous. If X is irreducible, then

the set X(C) \ Sing(X) is connected, hence f is rational by Theorem 7.2. Consequently, f is also
rational if X is reducible. Thus, (b) implies (a).

Proposition 7.8. Let X be a complex algebraic variety. For a function f : X(C) → C, the
following conditions are equivalent:

(a) f is continuous rational.

(b) f is continuous and Γ(f) = (X(C)× C) ∩ Γ, where Γ(f) is the graph of f and Γ ⊂ X × A1

is the Zariski closure of Γ(f).

Furthermore, if these conditions hold, then for each algebraic subvariety Z ⊂ X the restriction
f |Z(C) is a rational function.

Proof. We will make use of the following familiar fact. If Y is a complex algebraic variety and
Y0 ⊂ Y is a Zariski open dense subset, then the set Y0(C) is Euclidean dense in Y (C).

Suppose that (a) holds. Then for some Zariski open dense subset X0 ⊂ X the restric-
tion f |X0(C) is a regular function. If G ⊂ X × A1 is the Zariski closure of Γ(f |X0(C)) and
G∗ ⊂ X(C)× C is the closure of Γ(f |X0(C)), then G∗ = (X(C) × C) ∩ G. On the other hand,
G∗ = Γ(f) since X0(C) ⊂ X(C) is a dense subset and f is continuous. Consequently, G = Γ and
Γ(f) = (X(C)× C) ∩ Γ. Thus, (a) implies (b).

It is clear that (b) implies (a).
For any algebraic subvariety Z ⊂ X, we have

Γ(f |Z(C)) = Γ(f) ∩ (Z(C)× C).

Therefore f |Z(C) is a rational function, provided that (a) and (b) hold.
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