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HARMONIC SELF-MAPS OF SU(3)

ANNA SIFFERT1

Abstract. By constructing solutions of a singular boundary value problem we prove

the existence of a countably infinite family of harmonic self-maps of SU(3) with non-

trivial, i.e. 6= 0,±1, Brouwer degree.

Introduction

The energy of a smooth map ϕ :M → N between two Riemannian manifolds (M,g)

and (N,h) is defined by

E(ϕ) =

∫

M
|dϕ|2ωg,

where ωg denotes the volume measure on M . A smooth map is called harmonic if it is

a critical point of the energy functional, i.e., satisfies the Euler-Lagrange equations

τ(ϕ) = 0,

where τ(ϕ) := trace∇dϕ is the so-called tension field of ϕ. Finding solutions of this

elliptic, semi-linear partial differential equation of second order is difficult in general.

By imposing suitable symmetry conditions, the Euler-Lagrange equations sometimes

reduce to ordinary differential equations. This is the case for the following situation

which is dealt with in this paper: we consider the cohomogeneity one action

SU(3) × SU(3) → SU(3), (A,B) 7→ ABA
T

of G = SU(3) on itself, whose principal isotropy group is given by H = SO(2). For any

smooth map r :]0, π/2[→ R we define the map

ψr : G/H×]0, π/2[→ G/H × R, (gH, t) → (gH, r(t)),

which is equivariant with respect to the above action. For these maps the Euler-Lagrange

equations of the energy functional reduce to

r̈(t) = − csc2 2t
(

2 sin 4t · ṙ(t) + 4 sin2 t · sin 2r(t)− 8 cos3 t · sin r(t)
)

.

We prove that each solution of this ordinary differential equation which satisfies r(0) = 0

and r(π2 ) = (2ℓ + 1)π2 , ℓ ∈ Z, yields a harmonic self-map of SU(3). The above ordinary

differential equation and boundary value problem are henceforth referred to as ODE

and BVP, respectively.
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The goal of this paper is the construction of solutions of the BVP and the examination

of their properties. Thereby we construct and examine harmonic self-maps of SU(3).

Brouwer degree. The Brouwer degree of ψr is determined in terms of ℓ only: from

Theorem3.4 in [15] we deduce that for any solution r of the BVP with r(π2 ) = (2ℓ+1)π2
the Brouwer degree of ψr is given by degψr = 2ℓ+ 1.

By an intricate examination of the BVP we find restrictions for ℓ and thus for the

possible Brouwer degrees of ψr.

Theorem A: For each solution r of the BVP we have degψr ∈ {±1,±3,±5,±7}.
Numerical experiments indicate that for all solutions r of the BVP the Brouwer degree

of ψr is ±1 or ±3, i.e., that the cases ±5 and ±7 do not arise.

These considerations and results can be found in Section 2.

Construction of solutions. In order to find solutions of the BVP we use a shooting

method at the degenerate point t = 0. This is possible since for each v ∈ R there exists

a unique solution of the initial value problem at t = 0.

Theorem B: For each v ∈ R the initial value problem r(t)|t=0 = 0, ṙ(0) := d
dtr(t)|t=0 =

v has a unique solution rv.

We prove that we cannot increase the initial velocity v arbitrarily without increasing

the number of intersections of rv and π, the so-called nodal number. This is one of the

main ingredients for the proof of the following theorem.

Theorem C: For each k ∈ N there exists a solution of the BVP with nodal number k.

Infinitely many of the solutions constructed in TheoremC have Brouwer degree of

absolute value greater or equal to three.

These result are all contained in Section 3.

Limit configuration. We prove that the solutions of the BVP converge on every closed

interval I ⊂ (0, π2 ) against a limit configuration when the initial velocity goes to infinity:

we show that for large initial velocities rv becomes arbitrarily close to π on I.

Theorem D: For every closed interval I ⊂ (0, π2 ) and each ǫ > 0 there exists a velocity

v0 such that |rv(t)− π| < ǫ for all t ∈ I and v ≥ v0.

As a consequence we prove that the Brouwer degree of solutions rv of the BVP with

‘large’ initial velocity can only be ±1 or ±3.

These results can be found in Section 4.

The paper is organized as follows: a short introduction to those aspects of harmonic

maps needed in the present paper can be found in Section 1. We provide the preliminaries

in Section 2, where we in particular consider the Brouwer degree of the maps ψr and

prove TheoremA. In Section 3 we deal with the construction of solutions of the BVP

and prove TheoremB and TheoremC. Finally, in Section 4 we investigate the behavior
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of those solutions of the initial value problem with large initial velocities and prove that

they converge against a limit configuration, i.e., we show TheoremD.

1. Harmonic maps between Riemannian manifolds

Initiated by a paper of Eells and Sampson [7], the study of harmonic maps between

Riemannian manifolds became an active research area, see e.g. [2, 5, 6, 11, 20] and the

references therein. In this section we give a short and therefore incomplete introduction

to harmonic maps between Riemannian manifolds. The focus lies on those techniques,

papers and results which we use as inspiration for some proofs contained in this work.

For an elaborate introduction to harmonic maps we refer the reader to [8].

Problem. In order to construct harmonic maps one has to find solutions ϕ of the

semi-linear, elliptic partial differential equation τ(ϕ) = 0. Note that there is no general

solution theory for these partial differential equations.

Central question. The central question is whether every homotopy class of maps

between Riemannian manifolds admits a harmonic representative. If the target manifold

is compact and all its sectional curvatures are nonnegative Eells and Sampson gave a

positive answer to this question. However, if the target manifold also admits positive

sectional curvatures the answer to this question is only known for some special cases.

See e.g. [12] for a list of those homotopy groups of spheres which can be represented by

harmonic maps.

Reduction by imposing symmetry. By imposing symmetry conditions on the

solution ϕ of the partial differential equation τ(ϕ) = 0 one can sometimes reduce this

problem to an easier problem, for example to finding solutions of an ordinary differential

equation. For the general reduction theory we refer the reader to [8].

One special situation for which the Euler-Lagrange equations reduce to an ordinary

differential equation is the following: the equivariant homotopy classes of equivariant

self-maps of compact cohomogeneity one manifolds whose orbit space is a closed interval

form an infinite family. In [16] Püttmann and the author reduced the problem of finding

harmonic representatives of these homotopy classes to solving singular boundary value

problems for nonlinear second order ordinary differential equations.

Note that the case under consideration, namely self-maps of SU(3) which are equivariant

with respect to the cohomogeneity one action given in the introduction, clearly fits in

this scheme.

Harmonic maps between cohomogeneity one manifolds. We give a short

survey of those results of [16] which are relevant for this paper.

Notation. Let G be a compact Lie group which acts with cohomogeneity one on the

Riemannian manifold (M,g) such that the orbit space is isometric to [0, 1]. We denote

by γ a fixed normal geodesic. The isotropy groups at the regular points are constant

and will be denoted by H. Furthermore, let M(H) be the regular part of M and W the

Weyl group, i.e., the subgroup of the elements of G that leave γ invariant modulo the

subgroup of elements that fix γ pointwise. Throughout this paper we assume that γ is

closed which is equivalent to the statement thatW is finite. Let Q be a given biinvariant
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metric on G. Denote by g and h the lie algebras of G and H, respectively, and let n be

the orthonormal complement of h in g. Define the metric endomorphisms Pt : n → n by

Q(X1, Pt ·X2) = 〈X∗
1 ,X

∗
2 〉|γ(t),

where Xi ∈ g and X∗
i is the associated action field on M .

Maps. It was proved in [15] that the assignment g · γ(t) 7→ g · γ(kt) leads to a well

defined smooth self-map of M , the k-map, if k is of the form k = j|W |/2 + 1 where

j ∈ 2Z. This is even true for any integer j if the isotropy group at γ(1) is a subgroup

of the isotropy group at γ(|W |/2 + 1). In [16] Püttmann and the author examined the

harmonicy of the so-called reparametrized k-maps ψ :M(H) →M given by

ψ(g · γ(t)) = g · γ(r(t))
where r : ]0, 1[ → ]0, k[ is a smooth function with limt→0 r(t) = 0 and limt→1 r(t) = k.

Tension field. In [16] it was shown that for the reparametrized k-maps the normal

and the tangential component of the tension field are given by

τnor|γ(t) = r̈(t) + 1
2 ṙ(t) traceP

−1
t Ṗt − 1

2 traceP
−1
t (Ṗ )r(t).

and

τ tan|γ(t) =
(

P−1
r(t)

n
∑

i=1

[Ei, Pr(t)Ei]
)∗
|γ(r(t)),

respectively, where E1, . . . , En ∈ n are such that E∗
1|γ(t), . . . , E

∗
n|γ(t) form an orthonormal

basis of Tγ(t)(G · γ(t)).

Remark 1.1: (1) For the cohomogeneity one action

SU(3)× SU(3) → SU(3), (A,B) 7→ ABA
T

,

the identity τ tan = 0 holds trivially. It is proved in Section 2 that the equation

τnor = 0 reduces to the ODE.

(2) The Euler Lagrange equations associated to the cohomogeneity one action

SO(m0+1)× SO(m1+1)× S
m0+m1+1 → S

m0+m1+1, (A,B, v) 7→
(

A 0
0 B

)

v

are given by

r̈(t) = ((m1−m0) csc 2t− (m0+m1) cot 2t) ṙ(t)−m1
sin 2r(t)
2 cos2 t +m0

sin 2r(t)

2 sin2 t
.

Each solution of this ordinary differential equation which satisfies r(0) = 0 and

r(π2 ) = (2ℓ+1)π2 , ℓ ∈ Z, yields a harmonic self-map of Sm0+m1+1. This boundary

value problem was considered in [19].

2. Preliminaries

This preparatory section is structured as follows: after proving in the first two subsec-

tions that each solution of the BVP yields a harmonic self-map of SU(3), we introduce

the variable x = log tan t in the third subsection. It turns out that this variable is more

convenient than the variable t for several of our subsequent considerations. In the fourth

and fifth subsection we provide some restrictions for solutions r of the BVP. Finally, in
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the sixth subsection we prove TheoremA, i.e., that each solution r of the BVP has

Brouwer degree ±1,±3,±5 or ±7.

Throughout this section let r be a solution of the ODE.

2.1. Deduction of the ODE. The expressions τnor and τ tan depend on Pt only, see

Section 1. Hence, it is sufficient to determine this endomorphism and plug it into these

identities. Let SU(3) be endowed with the metric 〈A1, A2〉 = tr(A1A2

T

). A normal

geodesic γ is given by

γ(t) =
(

cos t − sin t 0
sin t cos t 0
0 0 1

)

.

We consider the basis {µi}7i=1 of n given by µ1 = diag (i, i,−2i), µ2 = diag (i,−i, 0) ,

µ3 =
(

0 −i
−i 0

0

)

, µ4 =
(

1
0

−1

)

, µ5 =
(

0
0 −1
1 0

)

, µ6 =
( −i

0
−i

)

, µ7 =
(

0
0 −i
−i 0

)

.

A straightfoward calculation yields

Pt = 4diag
(

1, cos2 t, cos2 t, sin2(t/2), sin2(t/2), cos2(t/2), cos2(t/2)
)

.

By plugging Pt into the equations τ tan = 0 and τnor = 0 we get that τnor = 0 is

equivalent to the ODE and the identity τ tan = 0 is satisfied trivially.

2.2. Initial value problem. We prove that each solution r of the BVP is smooth, i.e.,

we deal with the degenerate ends of the interval of definition.

In what follows we deal with the initial value problem at the left degenerate end of

the interval
(

0, π2
)

. In order to solve this initial value problem we use a theorem of

Malgrange in the version that can be found in [10].

Theorem of Malgrange (Theorem 4.7 in [10]): Consider the singular initial value

problem

ẏ = 1
tM−1(y) +M(t, y), y(0) = y0,(1)

where y takes values in R
k, M−1 : R

k → R
k is a smooth function of y in a neighborhood

of y0 and M : R×R
k → R

k is smooth in t, y in a neighborhood of (0, y0). Assume that

(i) M−1(y0) = 0,

(ii) hId − dy0M−1 is invertible for all h ∈ N, h ≥ 1.

Then there exists a unique solution y(t) of (1). Furthermore y depends continuously on

y0 satisfying (i) and (ii).

Next we finally solve the initial value problem at t = 0.

Theorem 2.1: For each v ∈ R the initial value problem r(t)|t=0 = 0, ṙ(0) := d
dtr(t)|t=0 =

v has a unique solution.

Proof. We introduce the variable s = t2 and the operator θ = s dds . Clearly, d
dt =

2√
s
θ

and d2

dt2
= −2

sθ +
4
sθ

2. In terms of s and θ the ODE is given by

θ2r = 1
2θr − s csc2(2

√
s)

(

sin(4
√
s)√

s
θr + sin2

√
s sin(2r)− 8 cos3

√
s sin r

)

=: ψ



6

Next we rewrite this ODE as a first order system

θ(r) = θr, θ(θr) = ψ

and we compute the partial derivatives of the right hand sides with respect to r and θr

at s = 0. We thus obtain
(

∂
∂rθr

∂
∂θrθr

∂
∂rψ

∂
∂θrψ

)

|s=0

=

(

0 1
1
2 −1

2

)

.

Since the eigenvalues of this matrix are given by 1
2 and −1, the Theorem of Malgrange

states that a formal power series solution of this equation converges to a unique solution

in a neighborhood of s = 0. This solution depends continuously on v. �

Similarly we deal with the initial value problem at t = π
2 . All together we thus obtain

the following theorem.

Theorem 2.2: Each solution of the BVP yields a harmonic self-map of SU(3).

2.3. The variable x. In terms of x = log tan t the BVP transforms into

r′′(x)− tanhx · r′(x) + 1+tanh x
2 sin 2r(x)− 1√

2
(1− tanhx)

3

2 sin r(x) = 0,

with limx→−∞ r(x) = 0 and limx→∞ r(x) = (2ℓ+1)π
2 , ℓ ∈ Z. We thus have moved the

endpoint of the interval of definition to +∞ and −∞, respectively. This boundary value

problem will henceforth also be referred to as BVP; it will become clear from the context

whether we consider the variable t or the variable x.

2.4. Behavior of r for positive x. This subsection is structured as follows: after fixing

some notation we introduce a Lyapunov functionW which turns out to be an important

tool. Afterwards we give a bound for the first derivative of each solution r of the BVP.

Finally, we give some restrictions for the solutions r of the BVP, e.g., we prove that each

solution of the ODE satisfies limx→∞ r(x) = ℓπ2 for a ℓ ∈ Z or limx→∞ r(x) = ±∞.

Notation. For the following considerations it is helpful to introduce the functions

f, g, i : R → R and h : R2 → R by

f : x 7→ (1 + tanhx−
√
2(1− tanhx)

3

2 )
1

2 ,

g : x 7→ coth x
(

1
2(1 + tanhx) + 1√

2
(1− tanhx)

3

2

)

,

h : (x, r) 7→ 1+tanh x
2 sin2 r −

√
2(1− tanhx)

3

2 sin2 r2 ,

i : x 7→ (−1 + tanhx+ 2
√
2(1 + tanhx)

3

2 )
1

2 .

Lyapunov function. Introduce W : R → R by

W (x) = 1
2r

′(x)2 + 1+tanh x
2 sin2 r(x)−

√
2(1− tanhx)

3

2 sin2 r(x)2 ,

which turns out to be a Lyapunov function.

Lemma 2.3: Either the function W is strictly increasing for x ≥ 0 or W ≡ 0. Fur-

thermore, W ≡ 0 if and only if r ≡ 2kπ for a k ∈ Z.
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Proof. Using the ODE we obtain

d
dxW (x) = tanhx · r′(x)2 + sech2x

(

1
2 sin2 r(x) + 3√

2
(1− tanhx)

1

2 sin2 r(x)2

)

≥ 0

for all x ≥ 0. Either d
dxW (x) > 0 for all x > 0 and then W increases strictly or there

exists a x0 > 0 such that d
dxW (x0) = 0. Thus r′(x0) = 0 and r(x0) = 2kπ for an k ∈ Z.

Hence the theorem of Picard-Lindelöf yields r ≡ 2kπ and therefore W ≡ 0. �

Bounds for the first derivative of r. In the next lemma we prove that for each solution

r of the BVP the first derivative is bounded by a constant.

Lemma 2.4: If W (x0) > 1 for one x0 ≥ 0 then limx→∞ r(x) = ±∞. In particular, if

|r′(x0)|> (2(1 +
√
2))

1

2 for a point x0 ≥ 0 then limx→∞ r(x) = ±∞.

Proof. If W (x0) > 1 for an x0 ≥ 0 then Lemma2.3 implies W (x) ≥ W (x0) > 1 for all

x ≥ x0. Since W (x) = 1
2r

′(x)2 + h(x, r(x)) we have

r′(x)2 ≥ 2W (x0)− 2h(x, r(x)) ≥ 2W (x0)− 2 > 0

for x ≥ x0. This establishes the first claim. Since |r′(x0)|> (2(1 +
√
2))

1

2 implies

W (x0) > 1, the second claim is an immediate consequence of this. �

In the next lemma we improve the result of the previous lemma for those x ≥ 0 for

which g(x) < (2(1 +
√
2))

1

2 .

Lemma 2.5: If |r′(x0)| > g(x0) for an x0 > 0 then limx→∞±r(x) = ∞.

Proof. We can assume without loss of generality r′(x0) > g(x0) for an x0 > 0. If

−r′(x0) > g(x0) for an x0 > 0, we consider −r instead of r. Consequently,

r′(x0) > g(x0) ≥ coth x0

(

1
2 (1 + tanhx0) sin 2r(x0)− 1√

2
(1 − tanhx0)

3

2 sin r(x0)
)

.

Since for x > 0 the inequality r′′(x) > 0 is equivalent to

r′(x) > coth x
(

1
2(1 + tanhx) sin 2r(x)− 1√

2
(1− tanhx)

3

2 sin r(x)
)

,

we get r′′(x0) > 0. Assume that there exists a point x1 > x0 such that r′′(x) > 0

for all x ∈ [x0, x1) and r′′(x1) = 0. Since g decreases on the positive x-axis, we get

r′(x) ≥ r′(x0) > g(x0) ≥ g(x) for x ∈ [x0, x1]. Therefore

r′(x1) > g(x1) ≥ cothx1
(

1
2 (1 + tanhx1) sin 2r(x1)− 1√

2
(1 − tanhx1)

3

2 sin r(x1)
)

.

Hence r′′(x1) > 0, which contradicts our assumption. Consequently, we have r′′(x) > 0

for all x ≥ x0 and thus r′(x) ≥ r′(x0) > 0 for x ≥ x0. Hence limx→∞ r(x) = ∞, which

establishes the claim.

The second claim follows from the first by considering −r instead of r. �

Restrictions for r. Let d+ > 0 be the unique positive solution of f(x) = g(x). It is

straightforward to verify that f increases strictly on the positive x-axis, while g decreases

strictly in this domain. Hence f(x) ≥ g(x) for all x ≥ d+.
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The next lemma states that the graph of each solution of the BVP has to be contained

in a stripe of height 3π.

Lemma 2.6: (i) If there exists a point x0 ≥ d+ with r(x0) = (4k + 1)π2 , k ∈ Z, and

r′(x0) ≥ 0 then limx→∞ r(x) = ∞.

(ii) If there exists a point x0 ≥ d+ with r(x0) = (4k + 3)π2 , k ∈ Z, and r′(x0) ≤ 0 then

limx→∞ r(x) = −∞.

Proof. It is sufficient to prove the first statement: if r(x0) = (4k + 3)π2 , k ∈ Z, and

r′(x0) ≤ 0 for an x0 ≥ d+ then −r(x0) = −(4k+3)π2 = (4(−k−1)+1)π2 and −r′(x0) ≥ 0.

Applying the first result to −r thus yields the second statement.

Assume that there exists a point x0 ≥ 0 with r(x0) = (4k+1)π2 , k ∈ Z, and r′(x0) ≥ 0.

If r is a solution of the ODE, so are r + 2πj, j ∈ Z. Consequently, we may assume

without loss of generality that k = 0. Since r(x0) =
π
2 and r′(x0) ≥ 0 the ODE implies

r′′(x0) > 0. Consequently, there exists a point x2 > x0 such that π
2 < r(x2) < π and

r′(x2) > 0. The ODE thus implies the existence of a point x1 > x0 with r(x1) = π and

r′(x1) ≥ 0. Since r′(x1) = 0 would imply r ≡ π we have r′(x1) > 0. Thus by Lemma 2.3

we have W (x1) ≥W (x0). This in turn implies

r′(x1)
2 ≥ (1 + tanhx0) + 23/2(1− tanhx1)

3

2 −
√
2(1− tanhx0)

3

2 ≥ f(x0)
2.

Since r′(x1) > 0 we get r′(x1) ≥ f(x0) ≥ g(x0) > g(x1) and thus Lemma 2.5 establishes

the claim. �

In the following lemma we prove that limx→∞ r(x) can only attain certain values.

Lemma 2.7: Either limx→∞ r(x) = k π2 for an k ∈ Z or limx→∞ r(x) = ±∞.

Proof. If r is constant then the ODE implies r ≡ jπ for a j ∈ Z and thus limx→∞ r(x) =

jπ. Therefore we may assume that r is non-constant. Hence W increases strictly by

Lemma2.3. In particular limx→∞W (x) exists, where this limit might possibly be ∞.

Let us first assume that limx→∞ r′(x) = 0. Then limx→∞W (x) = limx→∞ sin2 r(x)

exists, which in turn implies that limx→∞ r(x) exists and is finite. Thus the ODE yields

limx→∞ r′′(x) = − sin(2 limx→∞ r(x)). Consequently, limx→∞ r(x) = k π2 for an k ∈ Z

since otherwise we would obtain a contradiction to the assumption limx→∞ r′(x) = 0.

Next we assume limx→∞ r′(x) 6= 0, which implies limx→∞
d
dxW (x) 6= 0. Since W

increases strictly, we get limx→∞W (x) = ∞. This in turn implies limx→∞ r′(x)2 = ∞.

Thus for every ǫ > 0 there exists a point x0 ∈ R such that |r′(x)|> ǫ for all x > x0.

Consequently, limx→∞ r(x) = ±∞. �

The next lemma should be considered as completion of Lemma2.6: we deal with the

cases where there exists a point x0 ≥ d+ with

(1) r(x0) = (4k + 1)π2 , k ∈ Z, and r′(x0) < 0;

(2) r(x0) = (4k + 3)π2 , k ∈ Z, and r′(x0) > 0.

Lemma 2.8: The following two statements hold:

(1) If there exists a point x0 ≥ d+ with r(x0) = (4k + 1)π2 , k ∈ Z, and r′(x0) < 0 then

limx→∞ r(x) = ±∞ or limx→∞ r(x) = (4k + 1)π2 .
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(2) If there exists a point x0 ≥ d+ with r(x0) = (4k + 3)π2 , k ∈ Z, and r′(x0) > 0 then

limx→∞ r(x) = ±∞ or limx→∞ r(x) = (4k + 3)π2 .

Proof. As in the proof of Lemma 2.6 one sees that the first claim implies the second

claim.

In what follows we assume that there exists a point x0 ≥ d+ with r(x0) = (4k + 1)π2 ,

k ∈ Z, and r′(x0) < 0. If r solves the ODE, so does r+2πj, j ∈ Z. Thus we may assume

k = 0, i.e., r(x0) =
π
2 . Then either of the following three cases occurs:

(i) there exists an x1 > x0 such that r(x1) =
π
2 and r′(x1) ≥ 0,

(ii) there exists an x2 > x0 such that r(x2) = 0 and r′(x2) ≤ 0.

(iii) we have 0 < r(x) < π
2 for all x > x0,

If the first case arises, then Lemma2.6 implies limx→∞ r(x) = ∞. Next assume that

the second case occurs. SinceW increases strictly we get W (x0) < W (x2) which implies

−r′(x2) ≥ f(x0) > g(x0) > g(x2). Thus Lemma2.5 implies limx→∞ r(x) = −∞.

Finally, we deal with the third case. By Lemma2.7 we have limx→∞ r(x) = π
2 or

limx→∞ r(x) = 0. The latter case cannot occur: from x0 ≥ d+ and r(x0) = π
2 we

deduce h(x0, r(x0)) > 0 and thus W (x0) > 0. Consequently, Lemma2.3 implies that

limx→∞ r(x) = 0 is not possible and thus we have limx→∞ r(x) = π
2 .

The second statement of the lemma is proved analogously. �

Using the preceding lemma we show that each solution of the ODE with limx→∞ r(x) =

kπ oscillates infinitely many times around kπ. This result allows us later on to show

that none of the constructed solutions r of the BVP can satisfy limx→∞ r(x) = kπ.

Lemma 2.9: If limx→∞ r(x) = kπ for an k ∈ Z then r oscillates infinitely many times

around kπ.

Proof. By Lemma2.6 and Lemma2.8 we have (2k − 1)π2 < r(x) < (2k + 1)π2 for all

x ≥ d+. If r is a solution of the ODE, so are the functions r + 2πj, j ∈ Z. Hence we

may assume without loss of generality that k ∈ {0, 1}.
Let us first consider k = 0, i.e. we have limx→∞ r(x) = 0 by assumption.

We start by proving that r cannot converge against 0 ‘from above’, i.e. there cannot

exist an x0 > 0 such that r(x) ≥ 0 for all x ≥ x0 and limx→∞ r(x) = 0.

We prove this by contradiction. Let x1 > 0 such that −1+tanhx
2 + 1√

2
(1 − tanhx)

3

2 < 0

for all x > x1. By asumption there exists a x2 > x1 such that 0 < r(x2) <
π
3 and

r′(x2) < 0. The ODE thus implies

r′′(x) = tanhx r′(x) +
(

1√
2
(1− tanhx)

3

2 − (1 + tanhx) cos r(x)
)

sin r(x)

≤ tanhx r′(x) +
(

1√
2
(1− tanhx)

3

2 − (1+tanh x)
2

)

sin r(x) < 0

for all x ≥ x2 for which 0 < r(x) < π
3 . Consequently, there exists an x3 > x2 such that

r(x3) = 0 and r′(x3) < 0. Hence there exists a point x4 > x3 with r(x4) < 0, which

contradicts our assumption.

Similarly, we prove that r cannot converge against 0 ‘from below’, i.e. there cannot exist

an x0 > 0 such that r(x) ≤ 0 for all x ≥ x0 and limx→∞ r(x) = 0. More precisely, we
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show that if there exists a x5 > x1 such that −π
3 < r(x5) < 0 and r′(x5) > 0 then the

ODE implies that there exists an x6 > x5 such that r(x6) = 0 and r′(x6) > 0.

Since we have limx→∞ r(x) = 0 by assumption, the above considerations imply that

r oscillates infinitely many times around 0. The case k = 1 is treated similarly. �

2.5. Behavior of r for negative x. In this subsection we prove that there exist a

d− < 0 such that for each solution r of the ODE with limx→−∞ r(x) = 0 we have

−2π < r(x) < 2π for all x < d−. The proofs of those results which are proved in

analogy to the corresponding results of the preceding subsection are omitted.

In terms of φ(x) = r(−x)− 3π
2 the ODE transforms into

φ′′(x)− tanhx · φ′(x)− 1−tanh x
2 sin 2φ(x) + 1√

2
(1 + tanhx)

3

2 cosφ(x) = 0.(2)

For any solution φ of the ODE (2) introduce the function W φ : R → R by

W φ(x) = 1
2φ

′(x)2 − 1−tanh x
2 sin2 φ(x) +

√
2(1 + tanhx)

3

2 sin2(12φ(x)− 3π
4 ),

which turns out to be a Lyapunov function.

Lemma 2.10: The function W φ increases strictly on the non-negative x-axis. For any

solution φ of the ODE (2) with limx→∞ φ(x) = −3π
2 we have |φ′(x)|≤ 3 for x ≥ 0.

Lemma 2.11: Let φ be a solution of the ODE (2). If there exists a point x0 > 0 with

|φ′(x0)|> −g(−x0) then limx→∞±φ(x) = ∞.

Let d− > 0 be the unique positive solution of the equation i(x) + g(−x) = 0. Note

that we have i(x) ≥ −g(−x) for all x ≥ d−. Set d− := −d−.

Lemma 2.12: For each solution r of the ODE with limx→−∞ r(x) = 0 we have −2π <

r(x) < 2π for all x < d−.

Proof. Let φ solve the ODE (2) with limx→∞ φ(x) = −3π
2 . We prove that there cannot

exists a point x0 ≥ d− with φ(x0) = π
2 or φ(x0) = −7π

2 . This statement is obviously

equivalent to the claim.

Suppose φ(x0) =
π
2 for an x0 ≥ d−. Since limx→∞ φ(x) = −3π

2 , continuity of φ implies

that there exists a point x1 > x0 with φ(x1) = −π
2 . Thus W φ(x1) ≥ W φ(x0), which is

equivalent to

1
2φ

′(x1)
2 − 1

2(1− tanhx1) ≥ 1
2φ

′(x0)
2 − 1

2 (1− tanhx0) +
√
2(1 + tanhx0)

3

2 .

This in turn implies φ′(x1)2 ≥ i(x0)
2. Consequently, we either have φ′(x1) ≥ i(x0) ≥

−g(−x0) ≥ −g(−x1) or φ′(x1) ≤ −i(x0) ≤ g(−x0) ≤ g(−x1). Lemma2.11 thus yields

limx→∞ φ(x) = ±∞, which contradicts our assumption.

The case φ(x0) = −7π
2 for an x0 ≥ d− is treated analogously. �

2.6. Restrictions on the Brouwer degree. In this subsection we prove TheoremA:

by combining the results of the previous subsections we give restrictions for the possible

integers ℓ in r(π2 ) = (2ℓ + 1)π2 . Theorem3.4 in [15] implies that the Brouwer degree of

ψr is given by degψr = 2ℓ + 1. Consequently, giving a restriction for the possible ℓ is

equivalent to giving a restriction for the possible Brouwer degrees.
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Theorem 2.13: Each solution r of the BVP has Brouwer degree ±1,±3, ±5 or ±7.

Proof. The strategy for the proof is as follows.

(1) By Lemma2.12 there exists a constant d− < 0 such that all solutions r of the

BVP satisfy −2π ≤ r(x) ≤ 2π for all x ≤ d−.
(2) We prove that each solution r of the BVP satisfies −7π2 < r(d+) < 7π2 . In order

to do so we use (1) and the fact that for each solution r of the BVP the first

derivative of r is bounded by a constant

(3) Lemmas 2.6 and 2.8 imply that if there exists k ∈ Z such that (2k − 1)π2 ≤
r(d+) ≤ (2k+1)π2 , then either limx→∞ r(x) = (2k± 1)π2 or limx→∞ r(x) = ±∞.

Since by assumption r is a solution of the BVP the latter case does not occur.

By (2) and Theorem3.4 in [15] we thus have deg(ψr) ∈ {±1,±3,±5,±7}.
It remains to prove (2). Let us first consider the region d− ≤ x ≤ 0. By Lemma2.10

and Lemma2.11 we have |r′(x)|≤ 3 and r′(x) ≤ −g(x) for all d− ≤ x ≤ 0. Let x0 < 0

be such that −g(x0) = 3. Then we have

r(0) ≤
∫ x0

d−
−g(x)dx− 3x0 + r(d−).

Let us next consider the region 0 ≤ x ≤ d+. By Lemma2.4 and Lemma2.5 we have

|r′(x)|≤ (2(1 +
√
2))

1

2 and r′(x) ≤ g(x) for all 0 ≤ x ≤ d+. Let x1 > 0 be such that

g(x1) = (2(1 +
√
2))

1

2 . Then we have

r(d+) ≤ (2(1 +
√
2))

1

2x1 +

∫ d+

x1

g(x)dx + r(0).

By the above estimate for r(0) in this inequality and using the computer program Math-

ematica to evaluate the integrals, we thus obtain r(d+) < 3π
2 +r(d−) < 7π

2 . Analogously,

we prove r(d+) > −3π
2 + r(d−) > −7π

2 , which establishes (2) and thus the claim. �

The preceding result does not seem to be optimal: numerical results indicate that all

solutions of the BVP have Brouwer degree ±1 or ±3. So the following question remains.

Question: Do all solutions of the BVP have Brouwer degree ±1 or ±3?

3. Construction of infinitely many harmonic self-maps of SU(3)

First of all, note that in terms of the variable x Theorem2.1 states that for every

v ≥ 0 there is a unique solution rv : R → R of the ODE that satisfies rv(x) ≃ v exp(x)

for x→ −∞. The functions rv and rv depend continuously on v.

We introduce the nodal number N(rv) of rv as the number of intersection points of rv
with π. The function r1(x) = arctan exp x, i.e. r(t) = t, solves the BVP with N(r1) = 0.

The next lemma ensures that we cannot increase v arbitrarily without increasing the

nodal number of rv. Its proof is based on Gastel’s ideas, see Lemmas 3.3 and 4.2 in [11].

Lemma 3.1: For each k ∈ N there exists c(k) > 0 such that N(rv) ≥ k for v > c(k).

Proof. We denote by ψ : R → R the solution of the differential equation

d2

dx2
ψ(x) + d

dxψ(x) + 2 sinψ(x) = 0,
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satisfying ψ(x) ≃ −π + exp(vx) as x → −∞. There exists a unique solution with this

properties, which can be proved as in [11]. We define U(ψ, x) := ψ′(x)2 + 8 sin2 ψ(x)2 ,

where we make use of the abbreviation ψ′(x) := d
dxψ(x). By using the above differential

equation we thus obtain

d
dxU(ψ, x) = −2ψ′(x)2.(3)

Consequently, U(ψ, · ) is monotonically decreasing. Since it is also bounded from below

by 0, its limit for x→ ∞ exists, which can be only 0 by the above ordinary differential

equation and (3), i.e., we have U(ψ,∞) = 0.

A solution ψ of the above differential equation converges to 0 as x→ ∞, and so does

ψ′, because of (3). From this and the fact that ψ asymptotically solves

d2

dx2ψ(x) +
d
dxψ(x) + 2ψ(x) = 0,

we get

ψ(x) ≃ c1 exp(−x/2) sin(ωx− c2)

as x→ ∞, with constants c1, c2 ∈ R and ω = 1
2

√
7. As v → ∞, the functions

ϕv := rv − π

converge to ψ in C1(R), which is proved as in Lemma 3.3 in [11]. This in turn implies

the claim. �

We now prove TheoremC: we show that for each k ∈ N there exist a solution of the

ODE with nodal number k.

Theorem 3.2: For each k ∈ N0 there exists a solution rv of the BVP with N(rv) = k.

Infinitely many of these solutions have Brouwer degree of absolute value greater or equal

to three.

Proof. The strategy of the proof is to show that for each k ∈ N the function rvk , with

vk = sup {v |N(rv) = k}, is a solution of the BVP with nodal number k.

First Step: consider rv0 .

The function r1(x) = arctan expx solves the BVP with N(r1) = 0. Consequently,

v0 = sup {v |N(rv) = 0} is well-defined and Lemma3.1 implies v0 <∞.

We prove N(rv0) = 0 by contradiction, i.e., we assume that there exists a point x0 ∈ R

with rv0(x0) = π. We have r′v0(x0) 6= 0 since otherwise r ≡ π which contradicts our

assumption. Consequently, rv0 − π has opposite signs in the intervals (−∞, x0) and

(x0,∞), respectively. Since rv depends continuously on v there exists a sequence (ci)i∈N
with ci < v0, limi→∞ ci = v0 and N(rci) = 0. Thus each of the functions rci − π has a

different sign than rv0 − π on the interval (x0,∞). This contradicts the fact that rv − π

depends continuously on v. Consequently, N(rv0) = 0.

Second Step: there exists ǫ > 0 such that N(rv) = 1 for v ∈ (v0, v0 + ǫ).

Recall that there cannot exist a point x0 ∈ R such that rv(x0) = π and r′v(x0) = 0.

Since rv depends continuously on v, an additional node can thus only arise at infinity,

i.e., there exists ǫ > 0 such that rv−π has at least one zero z1(v) for each v ∈ (v0, v0 + ǫ)

and limvցv0 z1(v) = ∞. Clearly, r′v(z1(v)) > 0.
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Let v ∈ (v0, v0 + ǫ) and x1 ∈ R such that tanh(x) ≥ 0.99 for all x ≥ x1. Lemma2.7 im-

plies that limx→∞ rv0(x) = j π2 with j ∈ Z, j ≤ 1 or limx→∞ rv0(x) = −∞. Consequently,

for δ ∈ (0, π2 ) we can choose the above ǫ so small that min {|rv(x)−π
2 | | x ≥ x1} ≤ δ. Note

that the minimum exists since we can minimize over the compact interval [x1, z1(v)].

In other words, we can choose ǫ so small that rv becomes arbitrary close to π
2 on the

interval [x1, z1(v)]. Let x(v) ≥ 0 be such that |rv(x(v)) − π
2 |≤ δ. Clearly, x(v) < z1(v).

By Lemma2.3 we have W (z1(v)) > W (x(v)) which implies

r′v(z1(v))
2 > 2W (x(v)).

We choose δ > 0 so small that

r′v(z1(v)) ≥ 1.1.

By the ODE we thus get r′′v (x) > 0 for all x ≥ z1(v), i.e., these solution all have nodal

number equal to one. Consequently, we have shown that there exists an ǫ > 0 such that

N(rv) = 1 for v ∈ (v0, v0 + ǫ). Furthermore, v1 = sup {v |N(rv) = 1} is well-defined and

v1 > v0. Lemma3.1 implies v1 <∞.

Third Step: proceed inductively.

Lemma3.1 implies that for each k ∈ N the number vk = sup {v |N(rv) = k} is well-

defined and in particular finite. Furthermore, as in Step 2 we prove vk > vk−1. Analo-

gously to the considerations for v1 we prove that ϕvk has exactly k zeros and that there

exists ǫk > 0 such that each ϕv, v ∈ (vk, vk + ǫk), has exactly k + 1 zeros.

Fourth Step: for each k ∈ N0, rvk is a solution of the BVP.

Since N(rvk) = k, Lemma 2.9 implies that limx→∞ rk(x) = jπ for an j ∈ Z is not possi-

ble. Consequently, Lemma2.7 implies that there exists ℓ0 ∈ Z such that limx→∞ rvi(x) =

ℓ0π + π
2 or limx→∞ rvi(x) = ±∞.

Below we assume that the later case occurs. We may assume without loss of generality

limx→∞ rvk(x) = −∞. Recall N(rvk) = k and that there exists an ǫk > 0 such that

N(rv) = k + 1 for v ∈ (vk, vk + ǫk). Similarly as in Step 2 we prove that we can choose

ǫk > 0 such that limx→∞ ϕv(x) = ∞ for v ∈ (vk, vk + ǫk).

On the other hand, the fact that ϕv depends continuously on v implies that for each

v ∈ (vk, vk + ǫk) there exist k0 ∈ Z and xk0 > d+ such that ϕv(xk0) = (4k0 + 3)π2
and ϕ′

v(xk0) < 0. Lemma2.6 thus implies limx→−∞ ϕv(x) = −∞, which contradicts

the results of the preceding paragraph. Consequently, there exists ℓ0 ∈ Z such that

limx→∞ rvk(x) = ℓ0π+ π
2 and thus each rvk , k ∈ N, is a solution of the BVP with nodal

number k. This proves the first claim.

The second claim is an immediate consequence of the above construction and Theo-

rem3.4 in [15]. �

4. Limit configuration

After providing one preparatory lemma we show TheoremD.

For any solution r of the ODE we define the function W− : R → R by

W−(x) =
1
2r

′(x)2 − 1+tanh x
2 cos2(r(x)) +

√
2(1− tanhx)

3
2 cos2(12r(x)).
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The function W− decreases strictly for x ≤ 0. First we show that for every interval

of the form [x0, d
−], the energy W− of rv becomes arbitrarily small on this interval if

we chose the velocity v to be ‘large enough’. Keep in mind that the energy W− of rv
depends on v.

Lemma 4.1: For ǫ > 0 and x0 ≤ d− there exists v0 > 0 such that the energy W− of rv
satisfies W−(x) < ǫ for x0 ≤ x ≤ d− and v ≥ v0.

Proof. Since limx→−∞ r′v(x) = 0, there exists x1 ≤ d− such that r′v(x)
2 < ǫ for x ≤ x1.

Furthermore, by the proof of Lemma 3.3 in [11] we get

lim
v→∞

ϕv(x− log v) = ψ(x)(4)

for all x ∈ R, where ψ : R → R is the unique solution of the differential equation

d2

dx2
ψ(x) + d

dxψ(x) + 2 sinψ(x) = 0,

satisfying ψ(x) ≃ −π + exp(vx) as x→ −∞. Recall that we have defined ϕv := rv − π.

From [11] we further have limx→∞ ψ(x) = 0. Consequently, for a given ǫ0 > 0 there

exists x2 ∈ R such that 2|ψ(x2)|< ǫ0. By (4) there thus exists an v0 ∈ R such that

|ϕv(x2 − log v)|< ǫ0 for all v ≥ v0. We furthermore assume that v0 is chosen such that

1 + tanh(x2 − log v) < 2ǫ0 and x2 − log v0 ≤ min(x0, x1) for all v ≥ v0. We chose

ǫ0 > 0 so small that W−(x2 − log v)− 1
2r

′
v(x2 − log v)2 < 1

2ǫ for all v ≥ v0. Thus we get

W−(x2 − log v) < ǫ for v ≥ v0. Since W− decreases strictly on the negative x-axis, we

obtain the claim. �

We now show TheoremD, i.e., we verify that (ϕv(x), ϕ
′
v(x)) stays close to zero for

bounded x ≥ d− provided that v is chosen large enough. The proof of this result follows

Lemma4 in [2]. As in [2] we introduce the distance function

ρv : R → R, x 7→
√

ϕv(x)2 + ϕ′
v(x)

2,

which clearly satisfies ρv > 0.

Theorem 4.2: For any finite interval I ⊂ R and η > 0, there exists v0 ∈ R such that

v ≥ v0 implies ρv(x) < η for x ∈ I.

Proof. We assume without loss of generality that I = [x0, x1] where x0, x1 ∈ R with

x0 ≤ x1. The ODE and ϕ′
v(x)

2 ≤ ρv(x)
2, 2|ϕv(x)ϕ′

v(x)|≤ ρv(x)
2 imply that there exists

a constant c > 0 such that

ρv(x)ρ
′
v(x) ≤ cρv(x)

2.

Thus we get ρ′v(x)
ρv(x)

≤ c and integrating this inequality from a given T− ≤ min(x0, d
−) to

a point x ≥ T− implies

ρv(x) ≤ exp(c(x− T−))ρv(T−).(5)

Let ǫ > 0 be given and x2 ∈ R such that 1 + tanhx ≤ ǫ for x ≤ x2. In what follows we

assume that T− satisfies T− ≤ min(x0, x2, d
−). Lemma 4.1 guarantees the existence of a
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velocity v1 > 0 such that W−(T−) <
1
2ǫ for all v ≥ v1. We thus obtain

|r′v(T−)|<
√
2ǫ and cos2(12rv(T−)) <

1√
2
(1− tanhT−)

−3
2 ǫ

for all v ≥ v1. From this we get that r′v(T−) becomes arbitrarily small if ǫ converges to

zero. Furthermore, rv(T−) becomes arbitrarily close to −π or π.

Let us first assume that the latter case occurs. Hence, for any T+ ≥ max(x1, d
−) and

η > 0 there exists a velocity v2 > 0 such that

ρv(T−) < exp(−c(T+ − T−))η

for all v ≥ v2. Substituting this into (5) yields ρv(x) < η for T− ≤ x ≤ T+ and

v ≥ v0 := max(v1, v2), whence the claim.

In what follows we assume that rv(T−) becomes arbitrarily close to −π. In this case

we define ϕ̂v := rv + π and

ρ̂v : R → R, x 7→
√

ϕ̂v(x)2 + ϕ̂′
v(x)

2.

Similarly as above we prove that for any x0, x1 ∈ R with x0 ≤ x1 and η > 0, there exists

v0 ∈ R such that v ≥ v0 implies ρ̂v(x) < η for x0 ≤ x ≤ x1.

From the above considerations we get that for each v ≥ v0 we either have ρv(x) < η

or ρ̂v(x) < η for x0 ≤ x ≤ x1. Since rv depends continuously on v ∈ R we exactly one

of the following two cases occurs

(i) ρv(x) < η for all v ≥ v0 and for x0 ≤ x ≤ x1;

(ii) ρ̂v(x) < η for all v ≥ v0 and for x0 ≤ x ≤ x1.

We assume that the second case occurs and choose x1 ≥ d+. By the proof of Theorem3.2

there exists a velocity v4 ≥ v0 such that rv4 is a solution of the BVP with odd nodal

number. Consequently, there has to exists a point x2 ≥ x1 ≥ d+ with rv4(x0) =
π
2 and

r′(x0) ≥ 0. Lemma 2.6 thus implies limx→∞ rv4(x) = ∞. This contradicts the fact that

rv4 is a solution of the BVP. Consequently, case (ii) does not occur. �

Note that the preceding theorem does not imply limx→∞ rv(x) = π for v ≥ v0! The

following corollary is a consequence of this theorem and Lemma2.8.

Corollary 4.3: There exists a v0 ∈ R such that each solution rv of the BVP with

v0 ≥ v0 has Brouwer degree ±1 or ±3.
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