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1 Introduction

String theory plays a prominent role in extracting the non-perturbative dynamics of super-
symmetric gauge theories. Indeed, due to the existence of various dualities, sometimes it is
easier to solve a problem in string theory and then to take the so called rigid ltmit, in which
gravity decouples and one recovers a gauge theory description [1, 2]. A particularly fruitful
playground for this are theories with 8 supercharges corresponding to N = 2 supersymme-
try in 4 dimensions. In such case, the dynamics of compactified string theory is captured at
low energies by effective supergravity which comprises, besides the gravitational multiplet,
also vector and hypermultiplets. The kinetic couplings of the former are encoded in the
vector multiplet moduli space My, which is a projective (also called local) special Kéhler
manifold. In the rigid limit it directly reduces to a simpler rigid special Kahler manifold,
whose prepotential contains all information about the solution of the corresponding gauge
theory. Due to this, previous works mostly concentrated on the vector multiplet sector of
string compactifications [3-6], and one can say that the procedure of extracting the rigid
limit there is understood fairly well (see [7] for a recent discussion).

Let us recall that My is only one component of the moduli space of N = 2 supergravity.
The second one is the hypermultiplet (HM) moduli space My, and it is natural to ask
what happens to this space after decoupling gravity. The local supersymmetry restricts
My to be quaternion-Kéhler (QK) [8], i.e. a 4n real dimensional manifold with holonomy
group SU(2) x Sp(n). For such manifolds the Riemann curvature tensor decomposes as

R;u/pa = K'2Ruupa + Wuupaa (11)

where k? = 87TM1§12 is the gravitational coupling, prg is the dimensionless SU(2) part
of the curvature, and W, is the Weyl tensor. Thus, one can expect that in the rigid
limit only the second contribution survives and one ends up with a Ricci-flat manifold with
holonomy group Sp(n), i.e. a hyperkdhler (HK) manifold. This is indeed a very natural
expectation because such manifolds are known to play an important role in the low energy
description of theories with global supersymmetry. For instance, they appear as Higgs
branches of 4d N = 2 gauge theories. However, the metric on these Higgs branches is
classically exact. For this reason, and since My does receive quantum corrections, we
do not expect them to be relevant in our context. A more interesting and, as we will
see, relevant example is provided by target spaces of N = 4 non-linear sigma models in 3
dimensions [9], some of which can also be viewed as circle compactifications of 4d N = 2
gauge theories [10].

Unfortunately, it turns out that the naive decoupling leads to a flat hyperkéahler ge-
ometry, and to get a non-trivial limit it is necessary to introduce an additional mass scale,
which is kept finite as kK — 0. As a result, no general treatment of the rigid limit for QK
spaces exists in the literature, and a non-trivial limit was produced only in a number of
particular cases [11-15]. At the same time, the rigid limit, used to extract information
about gauge theories from the vector multiplet sector of string compactifications, usually
has a geometric realization as a local limit on the compactification manifold ) where one
zooms in on the region near some singularity in the moduli space [4, 5]. Since the met-



ric on both moduli spaces, My and My, is completely determined by the geometry of
), it is natural to ask whether this zooming procedure is sufficient to induce the rigid
limit of the HM moduli space. This is the question that we investigate in this paper for
compactifications of type IIB string theory on a Calabi-Yau (CY) threefold ).

The advantage of considering this type of compactifications is that in recent years
substantial progress has been made towards understanding the complete non-perturbative
description of the corresponding HM moduli space (see [16, 17] for reviews). As a result, we
now have access to the metric on Mg which includes most of the non-perturbative correc-
tions. In the type IIB formulation, the latter include Dp-brane instantons (with p = —1,1,3
and 5) and NS5-brane instantons. Only contributions of five-branes remain not well un-
derstood (although some partial results can be found in [18-20]), whereas all D-instantons
have been incorporated [21, 22] using a twistorial description of QK geometry [23, 24]. For-
tunately, it turns out that in any local limit the unknown five-brane contributions always
decouple and one remains with a metric which is completely under our control.

The last statement however needs a refinement. Although the twistorial description,
used to obtain the cited results, is very powerful, it is also somewhat implicit because it
encodes the QK metric into the contact structure on the twistor space Zyq, a CP! bundle
over the original manifold, and it is not so easy to extract it. Recently this problem was
solved [25] only for mutually local D-instantons, i.e. a subset of all D-instantons whose
charges v have vanishing symplectic products (7,+’). In this paper we seize on the oppor-
tunity to improve the situation and calculate the explicit HM metric, which includes all
mutually non-local D-instanton corrections and is parametrized by topological data on the
CY, such as its triple intersection numbers x4y, Euler characteristic xy and generalized
Donaldson-Thomas (DT') invariants €2 .

Having at hand the explicit metric, we can study its behavior in the local limit. To
define it, we fix a set of ns vectors ¢4 belonging to the boundary of the Ké&hler cone
of ). They correspond to the directions in the moduli space along which some of the
(dimensionless) Kéahler moduli are sent to infinity, thereby introducing a new scale A.
Geometrically, they fix a set of 2-cycles which shrink in the local limit and have vanishing
intersection with the divisors defined by ¥'4.

Then, evaluating the HM metric in the so-defined limit, we show that, besides a non-
trivial finite part, it also features a divergent part. This leads to the freezing of some moduli,
including those which are sent to infinity. As a result, all moduli can be split into 3 groups:

e moduli appearing only in the vanishing part of the metric and thus dropping out in
the limit;
e frozen moduli;

e moduli appearing in the finite, but not in the divergent parts of the metric and thus
remaining dynamical.

Only the latter moduli parametrize the limiting manifold M";, which therefore has al-
ways a smaller dimension than the original Mpy. More precisely, the dimension of M/,
is given by 4n’ where n’ is the number of Kahler moduli remaining dynamical. We show
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Figure 1. Geometric construction of the rigid limit via the Swann bundle and hyperkahler quotient.

that n’ coincides with the dimension of the intersection of the kernels for the matrices
My ap = Kabev- Note that the possibility of having a non-empty common kernel is a very
non-trivial condition on both the vectors ¥4 and the triple intersection numbers, so that
far from any CY allows for a non-trivial rigid limit even with n., = 1.

Furthermore, we prove that M/, is an HK manifold and can be constructed from Mg
in a pure geometric way (see figure 1). To this end, one should first note that the local
limit induces on My a set of n — n’ commuting isometries where n = h'*'(2)) + 1 is the
quaternionic dimension of Mpy. These isometries are present in the perturbative metric,
but are broken in general by instanton corrections. However, the relevant corrections vanish
exponentially fast in our limit and thus can be ignored. Next, one constructs a canonical
C?/Zs bundle Spq, known as Swann bundle [26] or hyperkihler cone in the physics litera-
ture [27]. Saq is an HK manifold, which immediately brings us in the realm of hyperkéhler
geometry with all its available methods. Finally, M/; is obtained by performing n —n'+1
hyperkahler quotients along the set of commuting isometries, which include those men-
tioned above plus one additional isometry corresponding to a U(1) symmetry on the fiber
of the Swann bundle.

Interestingly, at an intermediate step of this quotient construction, one finds the HK
manifold M$" which is associated with Mpy by the so called QK/HK correspondence.
This correspondence establishes a one-to-one map between, on one hand, QK spaces with
a quaternionic isometry and, on the other hand, HK spaces of the same dimension with
a rotational isometry, equipped with a hyperholomorphic line bundle [28-30]. Its physical
interpretation is in fact very close to the subject of this paper: it translates into a formal
correspondence between the D-instanton corrected HM moduli space My and the moduli
space of a 4d N = 2 gauge theory compactified on a circle, described by the same holomor-
phic prepotential as the CY. In particular, the D-instantons are mapped into the gauge
theory instantons produced by BPS particles wrapping the circle. In a sense, our rigid



Figure 2. Duality map and rigid limit of moduli spaces in string and gauge theories.

limit is a close analogue of this formal mathematical correspondence, with the additional
property that both sides realize concrete physical systems.

One should note that a similar geometric prescription for the rigid limit was already
given in [31] for a particular compactification on an elliptically fibered CY. Here we extend it
to the full non-perturbative level, prove it by carefully analyzing the metric, and generalize
it to a generic CY.

The work [31] also suggests a physical interpretation of the HK manifold M/, it
is expected to describe the non-perturbative moduli space of a 5d N = 1 gauge theory
compactified on a torus, where the complex structure of the torus is identified with the
frozen axio-dilaton of compactified type IIB string theory. Indeed, the chain of dualities,
shown on figure 2 and explained in detail in section 3.1, demonstrates that M is the same
moduli space which is obtained by first compactifying M-theory on the same CY %) and
then compactifying its vector multiplet sector on a torus. Since the torus compactification
is expected to commute with the rigid limit, the alternative way to get M/, is to start from
5d supergravity obtained from M-theory on 2), take the rigid limit in its vector multiplet
sector, and only then compactify on 72. Then the above gauge theory interpretation
immediately follows.

This interpretation opens the possibility to derive non-perturbative effects in compact-
ified 5d gauge theory, such as dyonic and stringy instantons, from the known results on



D-instantons in CY string theory compactifications. Although we leave the detailed study
of this problem to a future research, here we discuss various implications of this possibility.

The organization of the paper is as follows. In the next section we study the rigid limit
of the HM moduli space My. First, in section 2.1 we provide the definition of the limit.
Then in section 2.2 we show how it works on the example of the classical moduli space
where the derivation is particularly explicit, but contains all the features of the general
construction. In section 2.3 we present the rigid limit for the full non-perturbative moduli
space and in section 2.4 provide its geometric interpretation. The physical interpretation
is elaborated in section 3, which starts from a discussion of string dualities suggesting the
interpretation in terms of 5d gauge theories (section 3.1), proceeds with a brief review of
these theories (section 3.2), their compactification on a torus (section 3.3), and finishes with
a discussion of implications for dyonic and stringy instantons (section 3.4). In section 4
we provide several examples of our construction and in section 5 discuss the results of
the paper. A few appendices contain details on special geometry (section A), calculations
of the D-instanton corrected HM metric (section B), of the rigid limit (section C) and
of compactification on a torus (section D), and toric data for the examples presented in
section 4 (section E).

2 Rigid limit
In this section we study the rigid limit of the HM moduli space Mg of type IIB string
theory compactified on a CY threefold ). We recall that the moduli space comprises

e the axio-dilaton 7 = 7 +im = ¥ +1i/gs;

e the Kihler moduli 2% = b% +it? (a = 1,...,h%1()) parametrizing the deformations
of the complexified Kahler structure of 9);

e the RR-fields ¢, ¢4, ¢, corresponding to periods of the RR 2-form, 4-form and 6-form
on a basis of H*V*"(2),Z);

e and the NS-axion 1 dual to the Kalb-Ramond two-form B in four dimensions.

We will use C* and D, to denote a basis in the space of curves H2(2),Z) and divisors
Hy(9,7), respectively, and w, for the basis of harmonic 2-forms dual to D, so that the
expansion of the Kahler form reads J = t%w,. These objects satisfy

CaﬂDbZ/ wp = 6, Damech:/wa/\wb/\wc:Habc- (2.1)
@ 2

Finally, note that in this paper we work in terms of dimensionless moduli. Therefore,
the dimensionful volumes are obtained by dividing integrals of the Kéahler form by a mass
(squared) scale A. For instance, for 2-cycles one has

Vol(CY) =A~1 [ J=A"1t2 (2.2)

Ca

In the rigid limit, this scale is sent to infinity together with Mp; so that the shrinking cycles
correspond to the finite Kéahler parameters, whereas the cycles of finite volume correspond
to the moduli scaling as A.



2.1 Definition

Our aim here is to provide a definition of a local limit of the CY manifold. Usually, this
is done by specifying either a set of shrinking 4-cycles or 2-cycles. On the other hand, to
apply it to the metric on the moduli space, we need a workable definition in terms of the
Kahler moduli. Therefore, instead of shrinking cycles, let us start from a set of ny, linearly
independent vectors U4 belonging to the Kéhler cone of ). Given these vectors, we define
a set of matrices

Maap = KabeV (2.3)

which in turn allow to introduce another set of vectors ¥y — a basis for the common kernel
of My, i.e. linearly independent vectors satisfying

My apvh = 0. (2.4)

We denote their number (i.e. the number of values taken by index I') by n/. We assume that
n’ > 0 and that the two sets, U4 and o7, are linearly independent. Already at this point it
becomes clear that ¥4 must belong to the boundary of the Kéhler cone because it is well
known that for any vector inside the cone its contraction with the intersection numbers
defines a non-degenerate matrix of signature (1,h%!(2)) — 1). Thus, to have n’ > 0, all
vectors ¥4 must belong to the boundary.! Finally, we complete these sets to a basis in
H5(),R), which can be done by providing an additional set of A" —n., —n’ = ng vectors
vx. This allows to expand the Kéhler moduli in the new basis

t* = 0% i 4 0% 5 o2 = o 20, (2.5)

where we combined three indices A, X and I into one index b. Then our local limit is
defined by taking the moduli £ to scale as A, whereas X and ¢! to stay finite (see the
comment below (2.2)). It is important that this definition of the limit does not depend on
the choice of 7x. Indeed, changing #'x in (2.5) can at most shift £4 and ¢/ by a combination
of ¢X. But this does not affect which variables grow with A and which of them do not.

Let us show that the above definition is equivalent to the usual one in terms of shrinking
cycles. First, we define a rotated basis of divisors D, = ngb. It is easy to see that Dy
are the divisors shrinking in the limit, whereas the divisors D i» Where we introduced a
combined index A = (A4, X), remain with a finite volume. Indeed,

. 1 1
Vol(Dr) = 35 /D JNANT = == 0% Kapett ~ A2,
I

272
R 1 1 1 (2.6)
VOI(DA) = W \/D JNJT = W 'Uf% /iabctbtc ~ W ’l)f% MB’ab'l)gvtBtC ~ 1,
A

where the first result follows from (2.4), whereas the second is due to that none of vectors
74 belongs to the common kernel of My.2

!This has a simple physical explanation. In a local limit one usually zooms in around a point in the
moduli space where CY becomes singular, and the vectors U4 are supposed to point towards such singularity.
But CY can develop a singularity only when its moduli approach the boundary of the Kéhler cone, which
implies the condition on ¥a.

2We consider a generic point in the moduli space so that no accidental cancellations are possible due to
contraction with 4.



Second, we define a rotated basis of curves C% = (v—l)gcb. Their volumes are given
by A~1¢% and therefore C4 has a finite volume, whereas ol , where we introduced another
combined index [ = (I, X), are shrinking. It is important to note that all shrinking curves
can be characterized by their orthogonality to the divisors Dy,

ClnbDy =0, (2.7)

since due to (2.1) the Lh.s. is evaluated to (v™1)Iv% = 0.

Thus, our definition of the local limit is equivalent to specifying either the set of shrink-
ing divisors Dy or the set of shrinking curves C1. Both sets are in one-to-one correspondence
with vectors v4, and both their definitions Dy = v$D, as well as the orthogonality rela-
tion (2.7) do not depend on ¥x. Of course, to talk about a local limit, one must have at
least one shrinking divisor, which gives the condition n’ > 0. Thus, the condition of having
a non-trivial limit is that the common kernel of M4 is non-empty.

Finally, we impose an additional condition on the vectors U4 that nabcvjv%vé is non-
zero at least for some A, B,C. It ensures that the volume of the CY, V = %ﬁabct“tbtc,
scales as A3 in the local limit. As we will show below, under these conditions the three

sets of moduli appearing in (2.5) acquire in the limit a very different status:

e i become frozen and do not enter the finite part of the metric;

tX are also frozen, but appear in the finite part;

e ¢! remain dynamical.

Correspondingly, their physical interpretation in the dual gauge theory will also be different:
while ¢! are associated with the Coulomb branch moduli, #¥ provide its physical parameters
such as masses and the gauge coupling.

In the following, to simplify notations, we assume that the rotation of the basis (2.5)
has already been done and drop hats on the moduli adapted to the limit, i.e. consider ¢t
to be of order A, whereas tX and t! as finite variables. Then (2.4) implies that in this basis
the intersection numbers possess the following property

Kaar =0, (2.8)

whereas the matrix M ;35 = £ Bctc is non-degenerate. In section 4 we will return back
to the original basis and discuss in more detail the conditions for the existence of a
non-trivial limit.

2.2 Example: classical c-map

Before attacking the problem of taking the rigid limit of the non-perturbative HM moduli
space, let us consider how it works at the classical level where all quantum corrections in
o' and g5 are ignored. In this approximation the metric on My is given by the local c-
map [32, 33] which is a QK manifold constructed in a canonical way from the holomorphic
prepotential F(X?*) (A = 0,...,h" (D)) on the Kihler moduli space of . It has the
simplest form in terms of the fields of type ITA string theory compactified on the mirror



CYy Q_j, which comprise the four-dimensional dilaton 7 = e?, the complex structure moduli
2%, the RR-scalars (2, ¢, corresponding to periods of the RR 3-form on a basis of H? (@, Z),
and the NS-axion ¢ dual to the B-field. In these coordinates the metric reads

o dr* 1 AS (45 M (a7 § s
A% = o = 5 AN () = Nyped¢ ) (ads = Nissrd(™) )

1 - s \2 7
+ 1o (47 + Gadch = (Ml ) + 4z,
where K is the Kahler potential on the special Kéhler space of complex structure deforma-

tions of 9 (we set 2 = (1, 29))
K = —log [i(Z Fy — 2" Fy)], (2.10)

Fr, K,
is the matrix of the gauge couplings defined in (A.1). We refer to appendix A for the details

etc. denote derivatives of the corresponding quantities without indices, and Ny,

on the special geometry encoded by the prepotential F'.

To return to the type IIB fields, which we used to define the rigid limit, one should
apply the mirror map. In the classical approximation it was found in [34] and identifies
the complex structure moduli z* with the complexified Kéhler moduli as well as

7_22 0 a a a
r=2v, CO=mn, =,

1 . 1
Ca=tCat Fapeb?(c© — b)), (o =& — G Fapeb™ D0 (€ — 1), (2.11)

1 1
o= -2 (11) + 5 7'160> + Co(c® — b)) — G ﬁabcb“cb(cc — 71b°).

The classical prepotential to be used in (2.9) is completely determined by the triple inter-

section numbers of )
1 Xexbxe
Let us now plug in this prepotential and the change of variables (2.11) into the c-map

(2.12)

metric. Then, using the expressions (A.7) for the gauge coupling matrix and its inverse,
after straightforward, but a bit tedious manipulations the metric can be brought to the
following form

(dr)? dr?

ds? . = +

1
M%_ r2 2

T

+4K 5 [dtadthr (dc“—Tdb“)(dcb—%dbbﬂ

2
T3

Kb /o1 p J o1 p 4
+ v <dca+2,@acd (chb —bede >> <dcb+2mbfg (c ab9—b dcg)> s

1 1 ?
+—— <d60+badéa+n b ba(cbdbC—bbch))
3V? 6 "
2
T [dz/z+ﬁdég—(c“—nba) <d6 L b (bbch—cbdbC)H
T4 V2 6
Using (2.11) and (A.6), the first three terms can be rewritten as

|dr|? 3/2\2  Kabel® a b
2 (dlos(Va))" = 22 AV AV, (2.14)




whereas the last two terms can be reorganizied in the following way

|dyp+7déo* +

(*—7b) <d5a— émabc(bbdcc—cbdbc)>

1 2
2.15
7-51‘/2 ] ( )

1
4v2

This rewriting makes it manifest that the whole metric is invariant under the SL(2,R)

1

[(d¢+7dco)(c — 7+ (d¢+%déo)(c“—7b“)} <déa—6ﬁabc(bbdcc—cbdb0)>.

isometry group acting on the type IIB fields as

ar +b
H b
ct+d

(ZZ) - (Z Z) (ZZ> > <w0> . < ‘4 —;) (;) | (2.16)

where a, b, ¢, d are the parameters of the transformation (CCL b) € SL(2,R) with ad — bec = 1.

t* v ter + d|, Co > Cq

This symmetry descends from the S-duality group of type IIB supergravity in 10 dimen-
sions, but is broken to the discrete subgroup SL(2,Z) by quantum corrections [35]. It is
this symmetry that fixed the form of the mirror map (2.11) and it will play an important
role in the physical interpretation of the rigid limit.

To extract this limit from the metric (2.13), it is enough to understand the behavior
of the special Kahler metric K ; and its inverse. This can be done using the representa-
tion (A.6) valid in the classical approximation. It involves the matrix kg = Kapet® and its
inverse, so first we establish the scaling for them. Using notations for indices from the pre-
vious subsection, the restriction on intersection numbers (2.8), the matrix M ; 5 introduced

below it, the matrix gr7 = —k, , 2 K and their inverse MAB and g1/ , one finds
9 1K g
My kg, 0tE Al
Kab & ABK AJK ~ , (2.17)
HIBR’t —9g1J 11
AB AX L KJ -1 A—1
Kk A M s L B N (2.18)
gIKHXKLtLMXB —gl’ Al g
Plugging these results into (A.6), one obtains
VK =7 =Mt My (tAM B ~ A RO —MAB 45468 7 ~AT
AT TAB T 4y T AAT TUBE ’ 4v 2V
1 KyL -1 IB KasXB -1
AV 5~ WMBCt Kigpitht ~AT, 4VIC ~ —g! /@JXKt M ~AT,
A 1 _
o~ 4K 2 opeld o 1T
4VICIj~ —Kriit ~1, 4V]C R g ~1.

(2.19)
On the basis of these scaling results, the bosonic Lagrangian defined by the met-
ric (2.13) can be split into three contributions?

Lhos = ————— °3/2 (Li+ Lo+ L), (2.20)
2r2V T,

3The overall minus sign comes from that we work in the ‘most plus’ signature (—, 4+, +, +).



where

v T2 aba e\’ 2
= (2 22 bt 0t
£ 27,/ k OuTat g7 Fabel "t O ) +Oum) }
~ A 1 ~ ~ A N
+278 VK 45 [8NtA6“tB+T2 (Ouc* ~r00%) (O“CB—fa“bB>] , (2.21a)
2

Lo=472VE, , [autfaﬂté + L (0uc —ra,b) G )]
73

1 1J
278V Ky, [8ut16“t‘]+ = (8t =70, b0 (0! —Fomp” )] + ’Cl—/zymyf‘, (2.21b)
81y "V

T2
1 AB 1B . -1 b b i
L = m K yAMyB“%—QlC yruy gl +4 (8#00+baﬁuca—l—6mabcba(c 0,b° =0 8uc°)>
T2
4 ~ a a ~ 1 b c b c ?
+—5 | Outp+T10,uC0 — (" —T10%) aﬂca—gmabc(b 0yt —c"0,,b°) , (2.21c¢)
)

and we denoted

1
Yap = OuCa + 5 Habe (cbﬁubc — bbaucc) . (2.22)

Let us take the gravitational coupling x? scaling as A~ so that x?V remains constant.
Then, as the notations suggest, £, corresponds in our limit to the divergent part of the
Lagrangian, Lo stays finite, and £_ vanishes. As a result, the fields ¢, ¢y and ¢ 4, appearing
only in £_, simply drop out from the theory, whereas the divergent part imposes its
equations of motion as strong constraints. These leads to the freezing of the moduli 7, tA,
b4 and CA, which means that their fluctuations vanish or at least scale as A~!, and thus
these fields can be considered as constant. Taking this into account in Lg, one obtains that

its non-vanishing part is determined by the following metric

1 1
2 1. 3/2 I 47 I IN(Aed _=apd
dsig =572 917 [dt dt +722 (de’ —7db")(de” —7db )] (2.23)

+£ 4k A(cﬁde—bﬁch) e+ 2k A<cNdbM—bNch)
0 1/2 ITH KL IS RIMN :
2

Note that it is manifestly SL(2,R) invariant. It is to keep this invariance we included the

3/

factor 7, % into the rescaling of the Lagrangian in (2.20).

The metric (2.23) describes the rigid limit of the classical HM moduli space. The space
MfHCl where it leaves on is parametrized by 4n/ coordinates t!, b!, ¢! and é;, whereas 7, tX,
bX and ¢X also appearing in the metric play the role of fixed parameters. The geometric
meaning of this metric can be elucidated by going back to the analogue of the type ITA

variables. Using the inverse mirror map relations (2.11), the metric can be rewritten as

1 . -
NG |31 = az 4 (Tm f) (a8 = fiedc™ ) (as—Fhach) | (2:24)
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where the new prepotential is

fd(zl) = —é Hfjszzjzk. (2.25)
One recognizes in (2.24) the well known rigid c-map [32], which describes an HK space con-
structed as a canonical bundle over the rigid special Kéhler base with the holomorphic pre-
potential f°(z7). Typically, it arises as the classical target space of three-dimensional non-
linear o-models obtained by compactifications of gauge theories with eight supercharges.
The parameter 1o controls the radius of compactification, but can be absorbed by the
I _ I

redefinition u %2 2t

Furthermore, it is easy to see that M’]f[l can be obtained from a larger rigid c-map space,

which we call M and which is determined by the prepotential f9(u) = F¢(u?). The
space M%’Cor has quaternionic dimension n = h'1(9))+1, and its metric is given by exactly
the same metric (2.24) (after the rescaling mentioned above) where however the indices
I,J,... should be replaced by A, ¥, ... running over 0,...,h"1(2). As any rigid c-map,
M%,l’cor has a set of commuting isometries acting by shifts of Cx, with the triplet of moment
maps given in the chiral basis by (p%,p%, p3) = (u*,@*,¢*). Then performing n — n’
hyperkihler quotients along (o and ¢ 4 fixes the moment maps g 0 and ﬁA and gives us
back the manifold M’[?Il The decoupling of the variables fixed by 74 is ensured by the
condition (2.8). In particular, the prepotential F' Cl(uA), up to an overall factor and an
irrelevant constant contribution, reduces to (2.25) after identifying the moment maps of
the first isometry as (2, %, 7).

In turn, the rigid c-map M%’Cor is known to be related to the local c-map M$ by the
QK/HK correspondence [29]. It proceeds via construction of the Swann bundle Sy over
the QK space with an isometry and subsequent hyperkahler quotient along the isometry
inherited on Spq. In the case of the local c-map (2.9), the role of such isometry is played by
shifts of the NS-axion . As a result, we arrive at the precise realization of the geometric
scheme shown on figure 1.

2.3 Rigid limit of the non-perturbative HM moduli space

2.3.1 Quantum corrections

To extract the rigid limit of the full non-perturbative moduli space My, let us first recall
what kinds of quantum corrections affect the classical c-map metric considered in the
previous subsection. There are two classes of such corrections: one comes from quantum
effects on the string worldsheet and is weighted by o/, and the other comes from physics
in the target space and is weighted by gs. All o/-corrections are captured as corrections to
the holomorphic prepotential, and therefore the o/-corrected HM metric still falls into the
class of metrics given by the local c-map. However, the prepotential is now a deformation

4/\/{3}’“” has an isometry which acts by multiplying all u* by a phase. It can be used to cancel the phase
of the moment maps pY, this is why it is always possible to choose them to be real.
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of the simple classical function (2.12), which is known to have the following form [36, 37]°

3 XO 2 XO 2 ) " w0
F(X) _ Fcl(X) o XSZJC(2(>2(7T1)3) o Ezﬂ_l%g Z n](i) Lig (ekaaX /X > 7 (226)
kaCEH (D)

where the second term describes a perturbative o'-correction, whereas the third term,
parametrized by genus zero Gopakumar-Vafa invariants n,(c(i), corresponds to the contribu-
tion of worldsheet instantons wrapping effective curves k,C®.

The situation with gs-corrections is more complicated. At the perturbative level, the
corrections appear only at one-loop [38, 39] and the corresponding metric, which is already
not in the c-map class, is explicitly known [40]. At the non-perturbative level, there are two
sources of gg-corrections: D-branes wrapping non-trivial cycles on the CY and NS5-branes
wrapping the whole CY. How to include the contributions of the former, to all orders in
the instanton expansion, has been understood (in the type ITA formulation) in [21, 22], but
only partial results are accessible for the latter [18-20].

Given such incomplete understanding of the HM moduli space, it is natural to ask
whether it is possible to find the exact rigid limit of My or only its approximation? It
turns out that the lack of knowledge of the exact description of NS5-brane instantons
does not pose a problem for evaluating the rigid limit because these instantons necessarily
decouple. Indeed, they are known to have the following leading contribution [41]

w o= 2mIk|V/g2—imko (2.27)

At the same time, in a any local limit the (dimensionless) volume of the CY V diverges
and thus the NS5-instantons are exponentially suppressed and can be ignored.

Furthermore, some of D-instantons decouple too. Let us look as above at their leading
contribution, which in the type ITA variables has the following form [41]

N e—27r|Z'y‘/gs—Qﬂ'i(QACA_PAEA)’ (2.28)

where
Z,(2) = qn 2™ — pPFA(2) (2.29)

is the central charge function determined by the prepotential and the charge vector
v = (p™,qa). In the type ITA formulation, v picks out an element of H3(2),Z) wrapped
by a D2-brane, whereas in type IIB it decomposes as v = (p°,p%, qu,qo) and defines an
element® of Heyen(9),Z) corresponding to a D5-D3-D1-D(-1) bound state. Substituting the

°In fact, the prepotential also has a quadratic contribution %AAZXAXZ where Ay is real so that this
term does not affect the Kahler potential L and is often omitted. However, it becomes important when one
extends mirror symmetry to the non-perturbative level [18]. Nevertheless, it is still possible to remove this
term by a symplectic transformation. One should just take into account that this transformation affects
the integrality of D-brane charges which become rational. This is the symplectic frame that is accepted in
this work.

In fact, the charges are not integer due to two reasons. First, they have rational shifts because of
the symplectic rotation mentioned in footnote 5. And second, our charge lattice is already a result of
rotation (2.5) to the basis adapted for the rigid limit in which, in particular, the intersection numbers
satisfy the condition (2.8).
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prepotential (2.26) into the central charge, one finds that in the local limit the leading part
of the D-instanton action behaves as

e D5-instantons (p° # 0): ~ [p°| V;
e D3-instantons (p° = 0, p® # 0): ~ [P Rapct?tC| = | Myyp®t?);
e Dl-instantons (p” = p® =0, g, #0):  ~ |qat?].

Thus, D5-instantons are always exponentially suppressed, and the same is true for D3-
instantons with charges having at least one non-vanishing component pA and D1-instantons
with charges having at least one non-vanishing component g4. On the other hand, it is
easy to check that the D-instantons with charges v = (0, p/, qj,qo) have a finite instanton
action and do not decouple. We denote the lattice of the remaining charges by I'jz. Note
that these results are in perfect agreement with the discussion in section 2.1 because I'jg
precisely corresponds to the set of shrinking cycles, whereas for large Kéhler moduli the
instanton action coincides with the volume of the cycle wrapped by the brane.

Finally, it is clear that the worldsheet instantons wrapping curves C4 also decouple
since their instanton action is proportional to |k AtA|. As a result, to extract the rigid limit,
it is enough to consider the HM metric corrected by worldsheet instantons with charges k;
and D-instantons with charges v € I'yjg.

2.3.2 D-instanton corrected HM metric

As explained above, all of the instantons needed for the rigid limit are in principle known.
But do we know them in practice? In fact, in the case of D-instantons we do not. In [21, 22]
these instanton effects have been implemented at the level of the twistor space Zx, a canon-
ical CP! bundle over My, as deformations of its contact structure. More precisely, this
contact structure can be encoded in a set of holomorphic Darboux coordinates (£A, 5 A, Q)
on Z 4 expressed as functions of coordinates on My and a holomorphic coordinate on the
CP! fiber (see appendix B for details). The instantons modify these functions and, as a re-
sult, the Darboux coordinates become determined by a system of integral equations which
has the form of thermodynamic Bethe ansatz. Not only these equations cannot be solved
in full generality, but also the procedure to get the metric out of the Darboux coordinates
is quite complicated and involves several non-trivial steps.

Recently, the problem of deriving the explicit metric corrected by D-instantons has
been solved for a subset of them [25], which can be characterized as instantons with charges
all having vanishing symplectic products

(1,7") = aap™ = dhp® (2.30)

and called usually mutually local. A crucial simplification arising in this case is that the
above mentioned integral equations become solvable. However, this result is not sufficient
for our purposes because the effective charge lattice I';j; does contain mutually non-local
charges. These are, for instance, D3-instantons with charges p! and DIl-instantons with
charges ¢r. Thus, we need a generalization of the result presented in [25].
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In appendix B, we solve this problem and derive the HM metric including all D-
instanton corrections. The result is given by

2 2 8r A T3 oALs ¥ 2 -1 Y
dsiy, = 5 (1- 70 (dr)? = — (N2 — 220z yAygf;Z(vM Yt Yy Vs

el
2
1 —1 T2
T Z ((ZM )y Yy + o W’vdZ’y>
+.1 15 a5 _
Z ML [0 (02,0 = 07 2,007) Dy 4 Yyl P (a0 = U1 2,087
¥y
+ 1 U Hoe ™ |? — NasndzAdz” — L Z(W dZ,0e™* + 9e "W, dZ ) (2.31)
4r > 2rU 7T e '
i1 Z Ddz,az, -2 M 1), va dZVZv 2Dz
2
1 . . 1
+— do + ¢pd¢t — ¢Adls + G 32,0, (3,7 TVdTP + v
322 (1- ) =

We refer to the appendix for the explanation of all the notations appearing in (2.31). Here
we just note that this result is only semi-explicit because all the functions appearing in
the metric are defined by a solution of the integral equations which is supposed to be
found as a perturbative series in the number of instantons. Besides, the result involves two
other expansions. One is used to define the matrices (B.30) entering the definition of other

(+

quantities such as v,/ and vw,) . The other is due to the inverse of matrix M., which also
can be found only as a perturbative series. However, to every given order, both series can
be easily evaluated and the metric follows by a direct substitution. More importantly, this

does not represent any obstacle for finding the rigid limit.

2.3.3 The limit

The first step to be done for taking the rigid limit of the metric (2.31) is to pass to the
IIB fields. However, at the non-perturbative level this becomes problematic because the
mirror map itself gets quantum corrections. Fortunately, as we argue now, this step is not
really necessary and all calculations can be done in the type ITA variables.

Indeed, the limit is defined as t* — oo keeping all other type IIB fields finite. In
the classical mirror map (2.11) t4 appear only in the imaginary part of z4 (and the four-
dimensional dilaton r which we assume to be always expressed through 7 as in (2.11)

r (B.21)). Thus, in the classical approximation the limit can equally be defined as

Im z4

— o0 keeping all other type IIA fields finite. At quantum level, the mirror map
relations acquire additional terms which make all type IIA fields t*-dependent. Neverthe-
less, we can still define the limit in terms of these fields if all such t*-dependent terms are
exponentially suppressed as t* — co. In other words, it is possible if the t4-dependence of
the mirror map drops out when one restricts to worldsheet instantons with charges k; and
D-instantons with charges from I';js. In fact, the quantum corrected mirror map is known

only in the presence of worldsheet and DIl-instantons [42, 43] and D3-instantons in the
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large volume limit [44, 45] (i.e. when all Kéhler moduli are taken to be large). Although
these cases do not cover all what we need (because of the large volume approximation
used for D3-instantons), the inspection shows that all known corrections to the mirror map
respect the above property. We assume that it continues to hold beyond the large volume
approximation for D3-instantons as well, and thus the rigid limit can be evaluated using
the type IIA variables.

We do this evaluation in appendix C. It is very similar to the one presented in section 2.2
for the classical c-map because the leading behavior of the most important quantities, such
as the Kahler potential and the gauge coupling matrix, is correctly captured by the classical
contributions. As a result, we find that:

e The divergent part of the metric leads to the freezing of T, 2A and CA.

e The fields o, 50 and f‘ i appear only in the vanishing part of the metric and drop out
after taking the limit. This becomes possible because the dependence of quantum
corrections on o, C~ A and ¢ arises only through the axionic couplings in the instanton
contributions (2.27) and (2.28), but due to the decoupling of NS5-instantons and the
restriction to I'yig the dependence on o, (o and ¢ 4 disappears.

e The finite part of the metric describes a space M/, parametrized by 2 ¢! and 5 T
and depends on 7, 2% and ¢X as fixed parameters.

Explicitly, the limiting metric is given by

1 - _
ds?WH:r r3grydztdz’ +¢" YY) —4 Z (UM‘l)Wy;y;,
\/772 v,y €l vig
- +.1 S —1) 5
v Y M [z, D 2, (2.32)
VY'Y €l rig
3/2
T _ _ _
- DAz, 2, -7 N (M), Y WPz Y WDz
¥,y €l vig ¥,y €T ig A€l ig '€l sig

Here gr; = Im Fyjy, d’ denotes the differential on M, i.e. acting only on the dynamical
fields, and we refer to the appendix for all other notations.

2.4 Geometric interpretation

It is important to understand what kind of manifold is described by the metric (2.32). In
appendix C.3 we prove that M’; is an HK manifold. This is done by showing that the
metric (2.32) comes from a holomorphic symplectic structure on the trivial CP! bundle
over M’;, which thus gets interpretation of the associated twistor space. This symplectic
structure encodes the triplet of Kéhler structures on M/, and, similarly to the contact
structure on Z 4, can itself be encoded in a set of holomorphic Darboux coordinates (n’, 1)
satisfying certain integral equations. The equations which we find (see (C.27)) turn out
to be identical to the ones describing the non-perturbative moduli space of 4d N = 2
gauge theories compactified on a circle [46], for the specific choice of the charge lattice
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I'yig labeling 4d BPS states, with gp and gx playing the role of flavor charges, and the
holomorphic prepotential given by

1 e 1 o
fh = ~5 Kpjpz 272" — — > n,(:? Lis (62“"‘3le> : (2.33)

This already establishes a connection to gauge theories with eight supercharges. A more
precise relation will be discussed in the next section.

Note that the twistor formalism provides us with an extremely simple way of taking
the rigid limit. As explained above, the QK geometry of My is encoded in the Darboux
coordinates &, €y, . Due to the decoupling of some of the instantons, the non-trivial
integral equations determining these coordinates involve only ¢/ and §~ 1, whereas other
Darboux coordinates either have a simple classical form (as e.g. (C.26)) or can be obtained
from the solution for this pair. Then to obtain M/, it is enough

1. to declare that the Darboux coordinates on its twistor space, n! and puy, satisfy the
same equations as &/ and &;;

2. to replace the prepotential entering the classical parts of Darboux coordinates
by (2.33).

One can check that these two steps lead directly to the twistorial construction of an HK
space whose metric coincides with the rigid limit (2.32). Essentially, this is the way which
we use to prove that M’ carries the HK structure.

Given the twistorial description of M/, it is easy to see that, as it was in the case of
the classical c-map, it can be obtained by a series of hyperkéahler quotients from a larger HK
space M %" which is also of the type described by [46]. This larger space has quaternionic
dimension n and is defined by the original prepotential F'. Although the space is larger,
the BPS states are restricted to belong to the same charge lattice I';i; as before. As a
result, the metric on MS9* has the same form as in (2.32) (after the rescaling of 2’ by %2
to absorb this factor except the overall 7, 1 2) where indices I,.J,... taking n’ values are
replaced by A,3, ... running over n values, but the charges run over the same lattice I';jg.
Due to the restriction of charges to I'yig, the Darboux coordinates 7Y, 77‘2‘ and p4 do not
receive instanton corrections and are given by quadratic polynomials in the coordinate ¢
parametrizing the CP! fiber of the twistor space, e.g.

nd = w4 A = att (2.34)

Besides, it leads to the existence of n —n’ commuting isometries acting by shifts of fo and
5 4 for which the Darboux coordinates n" and n"i play the role of moment maps. Whereas
on the twistor space they are the usual moment maps with respect to the holomorphic
symplectic structure, on M%" they encode the whole triplet of moment maps: their 3
coefficients in the t-expansion (2.34) provide the moment maps with respect to the triplet
of Kéhler forms on M%". Performing the hyperkahler quotients along these isometries,
one freezes their moment maps and gets back M.
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On the other hand, M%" is the HK manifold related to the non-perturbative HM
moduli space My (where NS5-instantons have been dropped and the charges of worldsheet
and D-instantons are restricted as above) by the QK/HK correspondence [29]. The easiest
way to see this is to compare the two sets of Darboux coordinates, (€, &x) and (9™, 1a),
and to note that they are related as (cf. step 1 above or (C.24))

n(6) = EMte™),  ua(t) =éate™), (2.35)

0" A

provided u® = 3 el? 2 , i.e. @' is the phase” of the complex coordinate u®. The isometry
needed for the correspondence is ensured by the absence of NS5-instantons and is again
realized by shifts of the NS-axion o in (2.31). This proves the geometric scheme presented
on figure 1 and, in particular, allows to obtain the rigid limit of M g as n—n’+1 hyperkahler

quotients of its Swann bundle.

3 Physical interpretation: 5d gauge theory on a torus

3.1 String dualities and rigid limit

In the previous section, taking the rigid limit of the HM moduli space appearing in CY
compactifications of type IIB string theory, we arrived at an HK manifold M’;. The HK
structure is an indication that this manifold should play a role in a physical theory with
rigid supersymmetry. Indeed, quantum corrected HK manifolds typically arise as moduli
spaces, or more precisely target spaces of 3d N = 4 non-linear ¢ models. But what class of
o-models are we describing? We already saw that the twistorial description of M/, makes
it clear that it fits into the mathematical framework of [46] developed for describing the
class of o-models arising as circle compactifications of 4d N = 2 gauge theories. However,
we can still ask how to characterize the subclass corresponding to M.

In this section we propose an answer to this question. Our reasoning mainly follows the
reverse of the one presented in [31] and is based on a chain of string dualities, which allow
to establish a connection between M, and 5d N = 1 gauge theories compactified on a
torus. The appearance of the torus compactification should not come as a surprise because

'y 1s expected to carry an isometric action of the torus modular group SL(2,Z). We
saw this explicitly in the classical approximation in section 2.2, where the symmetry group
was enhanced to SL(2,R), but this should remain true even in the presence of quantum
corrections. The reason for this expectation is that, on one hand, the initial HM moduli
space M does carry such an isometry and, on the other hand, its action on the Kéhler
parameters used to define the limit is a simple rescaling (see (2.16)), which implies that
the rigid limit should commute with the SL(2,Z) action.

To begin with, let us note that under compactification on a circle the HM sector does
not change and the corresponding moduli space carries the same metric in both dimensions.
In contrast, each four-dimensional N = 2 vector multiplet gives rise to a hypermultiplet in

"It parametrizes the isometry direction mentioned in footnote 4. After the hyperkéhler quotient along
Co, it can be set to zero. This is why it does not appear in (0.24) and in the relation between u! and 2!

on MYy
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three dimensions. Indeed, each vector gives rise to two scalars: one is the vector component
along the circle and the second appears after dualization of the three-dimensional vector
field. Combining them with the complex scalar from the 4d multiplet, one finds four real
scalars representing the bosonic content of a hypermultiplet. As a result, if we consider
type IIB string theory compactified down to three dimensions on 2) x S!, its moduli space is
a direct product of two QK manifolds M% X ./\;l%: one is identical to the HM moduli space
in 4d and the second comes from the vector multiplet sector of the intermediate 4d theory.

Now let us perform T-duality along S'. Then type IIB string theory on ) x S}, is
mapped to type ITA string theory on ) x Sll R Hence the moduli spaces of the two theories
should also be identical. Since M% and ./\;l% involve Kéhler and complex structure moduli
of 9), respectively, whereas ./\/lé[ and ./\;l}“j} involve them in the opposite way, T-duality
exchanges the two factors and we have

ME =My, ME =M. (3.1)

Note that this fact is heavily used in the physical derivation of the c-map metric [32, 33]
and is responsible for the identification of the instanton degeneracies (2, with degeneracies
of BPS black holes [21].

Next, one realizes that since type ITA string theory can be viewed as compactification of
M-theory on a circle, the same moduli spaces arise by considering M-theory on ) x T?. But
let us stop in five dimensions after compactification on the CY. The corresponding 5d N = 1
supergravity contains the HM sector with the moduli space M% and the vector multiplet
sector. Taking the rigid limit of the latter, one arrives at a 5d N = 1 gauge theory. Finally,
assuming that the rigid limit commutes with compactification on a torus, one concludes
that the rigid limit of MB = /\;l% should be the same as the torus compactification of this
five-dimensional gauge theory. All these dualities and limits are shown in detail in figure 2
in the introduction.

Below we review some basic aspects of 5d N = 1 gauge theories, their torus compact-
ifications and discuss some implications of their relation with the non-perturbative HM
moduli space of string theory.

3.2 Low energy description of 5d gauge theories

A 5d supersymmetric gauge theory with the gauge group G is specified by a coupling of
the vector multiplet with a number of hypermultiplets representing the matter fields. The
on-shell vector multiplet includes a vector field Ay, a real scalar ¢ and a Dirac spinor 1),
all taking values in the Lie algebra of GG, where i = 0,...,4 will denote 5-dimensional
spacetime indices. On the Coulomb branch of the moduli space the real scalar field ¢ takes
non-vanishing vacuum expectation values in the Cartan subalgebra, and at a generic point
of this branch the gauge group G is broken to its maximal torus U(1)" where r = rank(G).
Thus, the fields from the Cartan subalgebra, ¢! and A’ with I = 1,...,7, remain massless,
whereas the fields associated with other generators of the Lie algebra form massive vector

multiplets with masses determined by the expectation values of ¢!.
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In the low energy limit the effective Lagrangian for the massless fields takes the fol-
lowing general form which includes, in particular, the Chern-Simons (CS) coupling

F 1 , F
£bos _ I;]ESD) (4 FJVFJMV + 5 8ﬂ§0laM§0J> 418(]: HVAPUA]FJ)\FIJIE (32)

and is completely determined by the prepotential F(p), a real function on the Coulomb
branch. The prepotential gets one-loop contributions from all dynamical fields, but is at
most cubic in ¢! [47, 48]

I
T cr
f(@)z?huw ® +§dIJKSOISDJSOK+ Z|7“ ol’— ZZ!wz"SOerJS +%,
0 i=1 w;
(3.3)

where gg is the bare gauge coupling, r are the roots of GG, w; are the weights of G in the
representation R,

h[] = tI‘F (T]TJ),
1 (3.4)
drjx = 5 trF T(TyTx +TxTy),

and trg denotes the trace in the fundamental representation.® Note that dj i are non-zero
only for SU(N) theories with N > 2. In such case, ¢q is the CS level in the ultraviolet
Lagrangian. We also allow for a non-vanishing linear term specified by coefficients c¢;. Such
term is not seen in the Lagrangian (3.2), but contributes to the tension of magnetic strings
discussed below. The important feature of the quantum corrected prepotential (3.3) is that
it is not smooth at loci where w; - ¢ +m; = 0, which physically correspond to some charged
matter fields becoming massless. As a result, the Coulomb branch is divided into several
chambers where the prepotential takes different forms.

For future reference, let us specialize (3.3) for the SU(2) gauge theory with N; hyper-
multiplets in the fundamental representation, in which case one has

N

472 1 <
21 Fsu(2) 2?902 *@ —*le— P- G letmil oo, (35)

0 =1

and for the pure SU(3) theory, which gives
472 Cal 1
2mF50) = 2 — (Pi—w10at03) + 3 (Ple2—0193) + ¢ (81 =391 102 =310 +8p)) +ergl.
0

(3.6)

Although five-dimensional gauge theories are non-renormalizable, they can have non-
trivial fixed points at strong coupling and thus be ultraviolet complete [47]. Conditions
on the matter content which ensure the existence of such a fixed point were studied in
detail in [48] where they have been derived by requiring that the second derivatives of

8Comparing to [48], we accept the same normalization for the generators trpT? = 2 and take
mo = 47r2ga 2. Besides, we divide the whole prepotential by 27 so that our normalizations are consistent
with the quantization of the Chern-Simons coupling in (3.2).
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the prepotential form a positive definite matrix in all chambers of the Coulomb branch.
Recently, it has been noticed that this excludes some of the gauge theories, including in
particular quiver gauge theories, which can be obtained from string or brane constructions
and therefore have to be ultraviolet complete [5, 49-51]. This led to a proposal to relax
the criterion of [48] and to require only that F7; is positive definite in the regions of the
Coulomb branch where all non-perturbative degrees of freedom remain massive [52].

These non-perturbative degrees of freedom are given by BPS states which, besides the
usual electrically charged particles with masses determined by the central charge

Zz=erol + e}mi (3.7)

where ey, elj} are gauge and flavor charges, respectively, include dyonic instantons [53]
(see also [54, 55]) and magnetic monopole strings [56]. The former are four-dimensional
instantons lifted to solitons in 4 + 1 dimensions. They are charged under both local gauge
symmetry and an additional global U(1); symmetry. This symmetry has the current

j=xtr(FAF) (3.8)

which is always conserved in five dimensions and the corresponding charge is equal to the
instanton winding number & [47]. The central charge of dyonic instantons is given by

82 I

Zye=k|—5 + 819" | +Zz, (3.9)

90
where the additional term ;¢! arises at quantum level due to a mixing between the gauge
symmetries and the global U(1); symmetry which can be traced back to the presence of
the CS coupling in the bosonic Lagrangian (3.2). The monopole strings are magnetic dual
to the electric particles and have tensions determined by derivatives of the prepotential

Zy = p' Fi(p). (3.10)

All these central charges are real functions which must be positive in the physical region
of the Coulomb branch.

3.3 Torus compactification

Let us now compactify the 5d gauge theory considered above on a torus. To this end, we
choose spacetime to have topology R? x T2 and to carry the metric

N 0 V [I|T?n
av — ; mn — s 3.11
i ( 0 an) ¢ T2 ( 71 1 ( )

where Greek indices u, v label coordinates on the flat three-dimensional Minkowski space-
time, Latin indices m,n correspond to directions along the torus, V is its volume and 7 is
its complex structure.

At classical level the compactified theory is given by the Kaluza-Klein reduction of the
Lagrangian (3.2). This reduction is straightforward and we perform it in appendix D gener-
alizing (and correcting a few sign errors) the procedure presented in [31]. The result (D.7)
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represents a 3d non-linear sigma model with the target space parametrized by the 5d real
scalars ¢!, the components of the 5d vector fields along the torus ¥ and 91 (D.1), which
can be combined in complex fields 91 (D.2), and scalars A\; dual to the 3d vector fields. The
metric on this target space obtained by the Kaluza-Klein reduction has the following form

ds2, = Fis <7T doLdo? +Zd¢f de’ > (3.12)
T 47

43 1 1
+% FIJ (d)\l+2]-"1KL (95 dop -9 dﬁg)) (dAJ+2fJMN (93" doy’ —97 dvy’ )) :
It is immediate to see that the metric is invariant under the action of SL(2,Z) group
which simultaneously transforms the torus modular parameter 7 by the usual fractional
transformation and the three-dimensional fields as

]9] ab 19[
I I 1 1
9 1 I (9%) <C Z) (95) (3 3)

Since any theory on a torus must possess such invariance, it can be seen as a consistency
check of the derived metric.

Furthermore, comparing this metric with the rigid c-map (2.23), which we obtained as
the rigid limit of the classical HM moduli space, one finds that the two metrics coincide

up to the multiplicative factor 27V ~/2 provided
T2
Frr = 3 91 (3.14)

and the two sets of coordinates are identified as follows

p
@I:2W\/§2(tl+ﬁ§tX), 19{:6[,

(3.15)

/\[ZE]—F%KJ[JX (bJCX —CJbX) , 195 Zbl,
where Bﬁ( are some constant coefficients. Note that these identifications are perfectly con-
sistent with the SL(2,Z) transformations (2.16) and (3.13). They imply Frjx = —5 K1jK
and that the gauge theory parameters 1/ gg and m; are given by linear combinations of the
frozen Kéhler parameters tX. The concrete form of these relations depends, on one hand,
on the intersection numbers of the CY and, on the other hand, on the gauge group and
matter content of 5d theory. Matching these data allows to determine which particular 5d
theory is captured by the rigid limit of a given Calabi-Yau manifold. We consider several
examples of this in section 4.

However, the metric (3.12) is only the classical approximation to an exact result which
includes contributions from instantons originating from BPS states wrapping the torus.
The simplest type of BPS states are electrically charged particles. In particular, in the case
of pure SU(2) theory, the contribution from the W-bosons to the quantum corrected metric
of the 3d o-model was computed in [31] by integrating out the tower of massive Kaluza-
Klein states in the one-loop approximation. But as we saw in the previous subsection,
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there are two other types of BPS states which can generate instantons: dyonic instantons
and magnetic strings. Their contributions are much more difficult to calculate, and only a
few partial results on stringy instantons are available at the moment [31, 57].

On the other hand, the argument presented in section 3.1 implies that the full non-
perturbative metric including contributions from all instantons should coincide with the
metric (2.32) describing the rigid limit of the non-perturbative HM moduli space. In
particular, the instantons on the string theory side should match those on the gauge theory
side. Let us now show that this is indeed the case.

First, we claim that the contributions from perturbative o/ and gs-corrections as well
as from D(-1)-instantons, which are known to correct the metric on My, do not appear on
M. The easiest way to see this is to look at the twistorial formulation of the rigid limit.
On My these corrections are encoded by the second term in the prepotential (2.26), the
logarithmic term parametrized by coefficient ¢ in the Darboux coordinate « (B.13), and
D-instantons with charges v = (qo, 0, 0,0), respectively. In particular, the latter affect only
the Darboux coordinates §~0 and «, as can be seen from the integral equations (B.10). But
going to M, these Darboux coordinates drop out from the twistorial formulation and the
prepotential (2.33) does not contain the perturbative correction term anymore. Thus, the
twistorial formulation of M’; does not contain all these contributions.”

Next, let us consider the contributions of worldsheet and D1-instantons. Combining
them together, one can perform a resummation which turns them into (p,q)-instantons
with the instanton action of the following form [35, 42]

Sgmm = 27|m7 + n| |q;t!| — 2mig; (me! + nbl), (3.16)

where we took into account that due to the restriction to I'yz the only non-vanishing com-
ponents, which D1-instanton charge can have, are ¢;. We would like to identify these (p, q)-
instantons with dyonic instantons wrapping one-dimensional cycles of the torus. Expressing
the real part of the instanton action in terms of the gauge theory variables, one finds

3
Re Sgmn = \/;!m7+n| Zdl,  Zi=ar (o' +0km®) +qx (0F " +b5mY),  (3.17)

where we denoted m*X = (87%gy 2 m;) and encoded the identification between the Kihler
moduli # and the gauge theory variables ¢! and m¥ in a matrix b§ with bl = 6}] . The
factor in front of Zz has a clear interpretation: this is the volume of the one-dimensional
closed cycle on the torus, labeled by two integers (m,n), which is wrapped by the instan-
ton. Then the second factor should be identical to the dyonic central charge (3.9). Setting
ep = ngj, one obtains that

2

T X 87'(' €0
Z(TZGIQD —l—eXm = 92
0

+ Ze. (3.18)

9Heuristically, this can be understood as follows. In the type IIB formulation, these quantum corrections
can be resumed into modular functions represented typically by T-dependent non-holomorphic Eisenstein
series [35]. Since in our case 7 is a fixed parameter, all such contributions are constant and can be absorbed
into a redefinition of variables. A similar phenomenon happens when one applies the QK/HK correspon-
dence to the one-loop corrected local c-map: the resulting HK space coincides with the standard rigid c-map
and is independent of the parameter controlling the one-loop correction [29].
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This coincides with (3.9) upon identifying ey with the instanton charge &, up to the shift of
the bare gauge coupling g, 2. Of course, for vanishing ey one reproduces the central charge
of the usual electrically charged BPS particles.

To reproduce the shift of the gauge coupling in (3.9), one should note two facts. First,
only the rational part of the coefficients 8; is unambiguously defined since their integer part
can be absorbed into a redefinition of the charge lattice which can be done, for instance,
by er — er — k[B1]. Second, the rotation of the charge lattice induced by b‘fi generically
does not preserve its integrality. Furthermore, the lattice of charges q; was already a result
of the rotation to the basis adapted for taking the rigid limit (see section 2.1), which also
can spoil the integrality. Taking this into account, the naive identification of e; with the
set of electric, flavor and instanton charges of gauge theory suggested by (3.18) may not
be correct, and a more careful analysis is required. We will see in section 4 on a concrete
example how such analysis allows to get a non-trivial shift of the gauge coupling in the
dyonic central charge.

It is worth also to note that the identification of (p,¢) and dyonic instantons implies
that the definition of a 5d gauge theory at the non-perturbative level involves new param-
eters in addition to masses and the gauge coupling. These are ¢X and bX appearing as
f-angle terms in (3.16). We obtained them as frozen periods of the RR 2-form and the
B-field along curves C¥X on the CY. What is their origin in gauge theory? To answer this
question, let us recall that the gauge theory parameters can be thought as background gauge
superfields related to gauging global symmetries associated with these parameters [58]. In
particular, the flavor masses can be identified with the scalar components of the vector
superfields gauging the flavor symmetry, whereas the gauge coupling appears as the scalar
component of the superfield for the U(1); symmetry discussed around (3.8). Once the
theory is put on a torus, each background vector field gives rise to two new parameters
given by holonomies around the basis of one-dimensional cycles on the torus, which are
precisely ¢ and bX .10

The last type of the instanton effects contributing to the metric on M’; comes from
D3-branes wrapping divisors Dj. Their instanton action is given by

1 ~
Sy = 2nme|p! f§| — 2mip! <El + 3 KIijJ(CK - leK)> . (3.19)

Let us set for simplicity b! = 0. Then if the relation (3.14) can be integrated to

1%

}:1|bf:0 — _27'('7'2 ]:I, (320)

which can always be achieved by tuning the coefficients ¢y of the linear term in (3.3), then
the instanton action takes the simple form

Sﬁ’bf:O =YV Zﬁ— 27Tip1)\[. (3.21)

107¢ is amusing to note that background fields can be thought of as dynamical fields whose kinetic terms
have infinite coefficients [58]. This remark closes the circle of ideas since it returns us back to the origin of
the additional parameters in the rigid limit.
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Its real part coincides with the instanton action of a stringy instanton given by the volume
of the torus wrapped by a magnetic string multiplied by its tension. The imaginary part
is also natural since A; are the scalars dual to the vector fields of the gauge theory and
therefore should be sourced by magnetic objects.

Thus, all non-perturbative effects surviving in the rigid limit find their interpretation
in the supersymmetric gauge theory compactified on a torus.

3.4 BPS spectrum and modular invariance

In the previous subsections we argued that the non-perturbative moduli space of a 5d gauge
theory compactified on a torus is captured by the metric on M/, the rigid limit of the
HM moduli space of type IIB string theory on the appropriate CY threefold. Expanding
this metric around the classical rigid c-map allows to read off various instanton corrections
which, as we saw, can all be identified either with instantons from electrically charged BPS
particles, or dyonic, or stringy instantons. Thus, string theory provides us with concrete
predictions for the instanton contributions in compactified 5d gauge theory.

In practice, all that we need in order to get these contributions is to know the BPS
spectrum and a relation between the frozen moduli and the gauge theory parameters. The
latter can be found by matching the classical prepotentials. The BPS spectrum, however,
represents a much more serious problem. On the gauge theory side, only some partial
results about the spectrum of dyonic instantons are available [59, 60], which have been
obtained using the technique of string web diagrams [61], and even less is known about the
spectrum of magnetic strings. On the string theory side, the former spectrum is captured
by Gopakumar-Vafa invariants of the CY, whereas the latter spectrum is encoded in more
complicated generalized DT invariants.

Here we would like to bring attention to unexpected constraints on the spectrum of
bound states of magnetic strings and dyonic instantons arising as a consequence of the
SL(2,Z) modular invariance. On the gauge theory side, this symmetry appears to be just
an artefact of compactification on a torus, and it is not clear how it can constrain the
spectrum in five-dimensions. But in string theory, it is a duality playing a fundamental
role. In particular, imposing it as an isometry of the HM moduli space, one arrives at the
condition that the D3-D1-D(-1) bound states form an SL(2,Z) invariant subsector. To put
this condition in a clear mathematical form, let us consider the four-dimensional dilaton
r = e® which is known to transform under SL(2,7Z) as

r

—_— 22
re leT + d| (3.22)

Classically, r has a simple expression thorough the volume of the CY given in (2.11), but
at quantum level it gets various corrections and can be expressed as in (B.21). Then
the consistency with (3.22) requires that the D3-instanton contribution to r transforms
as a non-holomorphic modular form of weight (—3,—2). This turns out be a non-trivial
requirement which leads to certain constraints on the spectrum of these instantons, i.e. DT
invariants €2, with charges v = (0,p%, ¢a,qo), some of which descend in the rigid limit to

the BPS degeneracies of bound states of magnetic strings and dyonic instantons.
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Such constraints are typically formulated in terms of modular properties of a gener-
ating function of these invariants. More precisely, let us introduce the so called MSW
invariants [62], QMSW = Q,(2% (7)), given by the rational DT invariants

_ 1
Oy =) = Dy (3.23)
dly

evaluated at the ‘large volume attractor point’, z% () = )\lim (—q® +i\p*). We recall
—+00

that the specification of the complex moduli z¢ is important because the DT invariants are
only piecewise constant on the moduli space due to the wall-crossing phenomenon [63]. An
important property of the MSW invariants is that they do not change under the spectral
flow symmetry acting on charges as [64, 65]

1
a = Ga — Kabcpbecy qo — qo — EGQa + 5 ’iabcpaebeca € e Z. (324)

As a result, they only depend on p®, the charge ¢o = qo — %/{“bqaqb invariant under the
spectral flow, and a residue class u, which takes into account that not all integer charges

da can be obtained by varying € in (3.24). This allows to write QMSW = Qm(q})). Fur-

= i(pS + CZ,apa)7

thermore, since the invariant charge o is bounded from above by ¢;'**

it is possible to define the generating function of the MSW invariants

hia(t) = > Qo) e M7 (3.25)

with fixed magnetic charge and residue class. It is this function that must have an appro-
priate modular behavior. In particular, in the one-instanton approximation, i.e. when a
D3-brane wraps an irreducible divisor of ), it must be a vector-valued holomorphic mod-
ular form of negative weight — (5 h"!(2) + 1) [66-68]. Even more interesting behavior
appears if one goes beyond the one-instanton approximation, i.e. considers branes on re-
ducible divisors, in which case hz; was shown to be a vector-valued holomorphic mock
modular form [69].

Very similar constraints should arise in the gauge theory setup. These constraints can
be derived either by taking the rigid limit of the above construction or by studying the
constraints of modular invariance directly for the metric (2.32). In either case, one expects
to find non-trivial restrictions on the modular behavior of a generating function of BPS
degeneracies of magnetic strings so that their spectrum will be severely constrained.

Note that the mock modularity of the generating function (3.25) evaluated for reducible
divisors takes its roots in the wall crossing of the DT invariants. This raises the question
about the wall crossing in 5d gauge theories. The reality of the moduli and the central
charges, (3.9) and (3.10), represents an essential difference from the more familiar four-
dimensional case. Nevertheless, the relation to string theory indicates that the central
charge of a bound state is complex and given by

Zgke = Zp+iZke (3.26)
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Thus, one might have a non-trivial wall crossing even if the moduli space is real. Here we
restrict ourselves just to these comments and postpone the study of five-dimensional wall
crossing and modularity constraints to future research.

4 Examples

In this section we present several examples illustrating our rigid limit for different types of
Calabi-Yau manifolds and its relation to five-dimensional N = 1 gauge theories.

4.1 Elliptic fibrations and SU(2) gauge theory

We start with the most studied example of a family of elliptically fibered CYs which are well
known to be related to SU(2) gauge theories with Ny < 8 flavors [70]. The elliptic fibrations
m Q) — B, where B is a complex two-dimensional base, can locally be described by a
Weierstrass form

y? =42 — go(uy, up)zw? — g3(ug, ug)w®, (4.1)

where u1,us are coordinates on the base. We assume that the fibration is smooth with
a single section o represented by the base 5. This implies that singularities on the fiber
can only be of Kodaira type I;, which means that the discriminant A = g3 — 27¢3 of (4.1)
has only simple zeros on 5. This restricts the possible choice of % to smooth almost
Fano twofolds which include the Hirzebruch surfaces F,,, m = 0, 1,2, del Pezzo surfaces
dP,, m = 0,...,8, and the toric surfaces described by the 16 reflexive two-dimensional
polytopes. Here we consider only the first two possibilities, F,;, and dP,,. Their geometric
description can be found, for instance, in [57, 71, 72].

For all smooth elliptic fibrations a basis of H!(2)) generating the Kihler cone is given
by {we, Twa}, @ =1,...,h"1(B), where

we = 0 + 1 (B) (4.2)

and w, are the generators of the Kahler cone on the base. We denote the corresponding
basis of dual divisors by {D., Dy}. The divisor D, is dual to the elliptic fiber curve £ in
the sense that it does not intersect any curve in 2% and obeys D, NE = 1.

Let us expand the first Chern class of the base in the basis of w,

c1(B) = ¢f wa, (4.3)

and denote by C,g the intersection matrix on B

/ Wo A wg = Caﬁ, (4.4)
B

which has signature (1, 2"!(8) — 1). Then, using the adjunction formula which leads to

2

the relation 0 = —cy0, the triple intersection numbers of ) can be shown to be

RaBy = 0, ReaB = Caﬁa Reea = Caﬁclfy Reee = Caﬁc?c?- (45)
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Thus, all intersection numbers are determined by the intersection numbers of the base and
its first Chern class.

A crucial property of the intersection numbers (4.5) is that the matrix My, = Keap
is degenerate, i.e. det M = 0. This suggests that the vector v{ = §¢, playing the role
of U4 of section 2.1, defines a non-trivial local limit. Indeed, it belongs to the Ké&hler
cone, the kernel of the matrix (2.3), coinciding with My, defined above, is non-empty,
and its self-intersection number Keee given in (4.5) is non-vanishing for all the bases under
consideration. The kernel of My, is one-dimensional and described by the vector!!

Up—1 = (_1’0(1)4), (46)

playing the role of ©7 of section 2.1. Remarkably, the corresponding shrinking divisor
Dy = U2 _1 D, can be expressed using (4.2) as

N

Dp 1 =-De+ %D, = —B (4.7)

and thus it coincides with the base of the elliptic fibration.

Finally, one can complete the two vectors ¥ and ¥,_; to a basis in Hy(2),R) by
choosing Ux with X = 2,...,n — 2. This structure indicates that in the local limit one
Kihler modulus grows, one remains dynamical and ng = n — 3 = hb(B) — 1 moduli
become frozen. This is consistent with the expectation that such limit produces an SU(2)
5d gauge theory with ng — 1 flavors since one of the frozen moduli should play the role
of the gauge coupling, whereas others can be associated with flavor masses. To verify this
claim and establish a precise relation between the moduli and the gauge theory variables,
we need to specify the choice of the base %6 and to analyze its homology lattice.

4.1.1 Hirzebruch surfaces

First, we choose B = F,,. The Hirzebruch surface F,, is a P! bundle over P! of the form
P(O & O(m)) for m > 0. The Mori cone, dual to the Kéhler cone, is generated by two
effective curves, the isolated section S of the bundle and the fiber F'. These curves have
the following intersections

SNS=-—m, SNF =1, FNF=0. (4.8)
The dual generators of the Kéhler cone, D, are given by
Dy =F, Dy =5+ mF (49)

and have the following intersection matrix

co-(11) (410

11n this section we accept the convention that the indices A corresponding to the large moduli run over

1,...,Meco, the indices I corresponding to the moduli remaining dynamical run over n —n/,...,n — 1, and
the indices X labeling the frozen moduli run in-between. We recall that n = h** () + 1.
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Finally, the first Chern class is known to be
c1(Fp) =25+ 2+ m)F = (2—m)D; + 2D, (4.11)

where we used Poincaré duality to write it in terms of divisors.
Computing the intersection numbers of a smooth elliptic fibration over F,,, using (4.5),
one obtains that the classical cubic prepotential (2.12) is given by

4
F=— 3 (29)% 4 (%)% + (1 + %) (29)%2% + %2127 + % 2¢(2%)?] . (4.12)
Next, we perform the rotation (2.5) to the basis adapted for taking the local limit. As
explained above, the rotation is generated by the vectors ¥4, Ux,v7 which in this case are

taken as
01 = (1,0,0),
vy = (0,1,0), (4.13)
U3 = (—1,2 —m,2).

It brings the prepotential to the form

4

Fol= =2 (317 = (81222 + 22(2°) + 5 (2°)°. (4.14)

Note that the prepotential in the new basis does not depend on m and that the moduli
21 and 2% are decoupled, which makes possible to define the local limit as ' — co. Then

from our general discussion it follows that the limit is described by the prepotential

4
fh=2) + 5 () (4.15)
where 23 is dynamical, whereas 2?2 is fixed to be constant.
Since we expect that the local limit of the elliptic fibration over I, corresponds to the
pure SU(2) gauge theory, the prepotential (4.15) is to be compared to (3.5) with Ny = 0, i.e.
2
Ny=0 _4m7 5 4 5
27r]:SU(2) = g—g Y+ 3 w4 cp. (4.16)
It is immediate to see that this implies ¢ = 0 and leads to the following identification of
the moduli and the gauge theory variables

472a ~

2 3

t° = —5—, t = ap, (4.17)
90

where a is a proportionality coefficient which, according to (3.15), is given by a = i 1/ T%

Furthermore, computing the central charge introduced in (3.17), which is supposed to
encode the mass of dyonic instantons, in terms of the charges defined with respect to the
original basis (4.9), one finds

2

A 4r
Zg=qe(a ' —p)+ @1 <92 +(2- m)90> + 2g20. (4.18)
0
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Here for completeness we included also the charge ¢. associated with the elliptic fiber,
which is set to zero in the rigid limit. Comparing with the dyonic central charge (3.9),
we see that the instanton winding number k can be identified with charge q1, whereas the
function multiplying it receives a ¢-dependent contribution, which can be traced back to
the rotation of the basis induced by (4.13). In particular, we deduce that 5 = 2(2 — m).
However, this coefficient is not uniquely defined as it can be changed by shifting the elec-
tric charge e by a multiple of k, which shows that the identification of e with ¢ suggested
by (4.18) is also ambiguous.

4.1.2 Del Pezzo surfaces

Our second choice of the base is B = dP,,. The del Pezzo surface dP,, is a blowup of P?
at m points. It can be viewed as a fibration over P! where the generic fiber is also P!, but
degenerates over m — 1 points into two P!’s intersecting at a point. The number of blow-up
points can vary from 0 to 9, but we restrict to 1 < m < 8 to present a uniform description.'?
A standard choice of basis for Ho(dP,,,Z) is given by the hyperplane class H of P? and by

the exceptional divisors E;, i = 1,...,m, of the blow-ups. Their intersections are
HNH=1, E;NE; = —6;, HNE;=0. (4.19)
However, this basis is not a basis of the Kéhler cone. The latter can be obtained by choosing
D;,=H - F;, D1 = H. (4.20)

In fact, for m > 2 this choice is not unique because the Kéahler cone is non-simplicial and
the number of its generators exceeds the dimension of Hy(dP,,,Z). All Kihler generators
can be found in [72] and different choices of the basis correspond to different sub-cones. In
the basis (4.20), the first Chern class is given by

m m
c1(dPp) =3H = E; =Y Di+ (3—m)Dpny1. (4.21)
i=1 i=1
Substituting these data into equations (4.5) for the intersection numbers of the CY
constructed over dP,,, one obtains the following prepotential

cl 9—m e\3 e?mi362m+1 em+1i‘ 1em+12
Flm— | == (42 )_2"+5 ()% 420 Y 240252 | (4.22)

i=1 ,j=1
i<j

The vectors performing the rotation (2.5) to the basis adapted to the local limit can be
chosen as

i~1 m—i (4.23)
77m+1 = (07 _17 Oa T 707 2)>

Ty = (=1,1,--+,1,3 — m).

2For instance, dPy is qualitatively different since it is a rational elliptic surface with infinite dimensional
Mori and Kéhler cones.
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After the rotation, the prepotential becomes

P = 2 (- ) + % (2 - (Zz +4Am+l>
. " (4.24)
- Am+2
sm~+2

Again the moduli 2! and 2 are decoupled and in the limit ¢' — oo the relevant part of

the prepotential is given by

9— 1 L
fcl _ 6m (2m+2)3 Am+2 (Z 54 4Am+1> o 5 Zm+2 2(21)2, (4'25)
=2

where 2712 is dynamical and all other moduli are frozen.

We compare the prepotential (4.25) with the one of the SU(2) gauge theory with
Ny = m—1flavors (3.5) where we consider the chamber of the moduli space with p4m; > 0.
In this chamber the gauge theory prepotential takes the form

1 m—1
c=3 (Z mf)] ©. (4.26)
i=1

Then again we should set ¢ = 0, whereas the other variables are identified as follows

2

N . 212 1% i
t'=am;_1, R 1 Z m; |, M2 — g, (4.27)

4.2 Two large moduli

In the elliptic fibrations considered so far, the local limit was obtained by sending only
one Kahler modulus to infinity. However, one may expect that this is a very restricted
set of examples because shrinking some of the divisors is a local procedure, which should
not affect the cycles which are “far away” from them. Thus, in general, in the local limit
several 2-cycles can stay finite and therefore several moduli are taken to infinity.

In our language, this will happen whenever there exist two or more linearly independent
vectors U4 such that the intersection of the respective kernels (2.4) is non-empty. To give a
concrete example of such situation, we consider one of the toric hypersurfaces constructed
from the Kreuzer-Skarke list of reflexive polytopes [73, 74]. A useful database containing
information about these CY varieties can be found in [75], and we will make extensive use
of the data analyzed by these authors. We provide some details about these data and toric
geometry in appendix E, whereas some relevant background can also be found in [75, 76].

Let us consider CY which corresponds to geometry 1 of polytope 337 in the
database [75]. It is defined by the data given in (E.1) and (E.2) and has ht'! = 4. We
choose the following four generators as a basis of Hy(2),Z)

= Ds, Dy = Dg, D3 = Dy, D, = Dg, (4.28)
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where we expressed them in terms of divisors D; of the ambient toric space. Extracting the
triple intersection numbers in the basis from the database, the classical cubic prepotential
can be written as

1
F = G [—(21)3 +3(21)222 + 3(21)22% — 321(2%)2 + 12212221 — 621 (23)?
+ 18212320 — 321 (21?2 — 5(22)% — 18(2%)223 +12(2%)%21 — 182%(2%)2  (4.29)
+ 36222320 — 622(21)? — 13(2%)3 4 27(2%)22% — 923 ()2 + (21)3].

The Kéhler moduli here are constrained by the requirement that the volumes of all Mori
generators O must be positive

/ J=t'D,NnC">0. (4.30)
Ci

The matrix of intersections of Mori generators with the basis divisors is as follows

0 —1-11
0 0 1 0
: 01 0 0
C'ND, = (4.31)
1 2 3 -1
1 0 0 0
-11 0 1
and leads to the following inequalities
2 +tt>0, £>0, 2>0, (432)
o433 —tt>0, ti>0, —tt+2+t*>0. ‘

The intersection numbers encoded by the prepotential (4.29) and the Ké&hler cone
conditions provide the starting point for defining the local limit. Let us choose the following
two vectors

’Ul = (170707 1)7 172 - (07 17072) (433)

It is easy to check that their components satisfy the inequalities (4.32), saturating some of
them, so that both vectors belong to the boundary of the Kéhler cone. They give rise to
the following intersection matrices (2.3)

0330 336 0
3360 336 0

My = My = , 4.34

1,ab 3670 2,ab 66120 (4.34)
0000 0000

whose kernels have dimensions 1 and 2, respectively. The two kernels overlap along the
real line generated by

% = (0,0,0,—1), (4.35)
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which is linearly independent from the vectors (4.33). We complete all three vectors to a
basis by taking
v3 = (0,0,1,2). (4.36)

Changing the basis as in (2.5), one arrives at the new form of Kéhler cone conditions

23 —it>0, £>0, 2 >0, (437)
Brit>0, >0, 32+208-'>0 ‘
and the classical prepotential
1
Fl= = |9(21)287 + 921 (2%) + 3(2%)° + 9(21)*4°
436212223 +18(52)%23 + 2121 (5%)% 4 362%(23)? (4.38)

+13(2%)% — 3(£%)%2* — 32%(2%)? — (2)).

As it should be, 2% is decoupled from 2' and 22. Thus, in the local limit ¢! and #* are
sent to infinity, > becomes frozen, and ¢* remains dynamical. As a result, the prepotential

reduces to 13 1 1 1
fcl _ _F (23)3 + 5 (23)224 + 5 23(24)2 + 6 (24)3‘ (439)

Note that the Kéhler cone conditions (4.37) ensure that the effective gauge coupling
82 fcl

Im iy = #+it>0 (4.40)

is positive definite. Comparing with the prepotential (4.16) of the pure SU(2) gauge theory,
one finds the following identifications
B 4t a?

3= , T 2a¢p, c=
9 9

(4.41)

Note that in this model we obtain a non-vanishing coefficient of the linear term which
contributes to the tension of magnetic strings. This contribution however still vanishes at
the SCFT point where the gauge coupling is sent to infinity.

4.3 SU(3) gauge theory

Another variation on the models considered in section 4.1 are geometries whose local limits
give rise to higher-rank gauge theories. To illustrate this possibility, in this subsection
we explore a Calabi-Yau admitting a local limit which leads to the pure 5d N =1 SU(3)
gauge theory.

Let us consider a toric hypersurface described by geometry 2 of polytope 1439 in [75].
Its defining data can be found in (E.3) and (E.4), and it has h'! = 4. In terms of toric
divisors D;, the basis of H4(),7Z) is chosen as

D = D4, Dy = D5, D3 = D67 Dy = D7. (4.42)
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In this basis, the classical prepotential encoding the triple intersection numbers is given by
the polynomial

1
Fel — = [3(z1)222 1 6(21)223 4 3(21)221 — 921(22)?2

+ 1821 (2%)2 — 921 (2M)2 + 8(2%)3 + 16(2%)3 + 9(21)3|. )
The intersections of Mori generators with the basis divisors are given by the matrix
10 0-3
C'ND, = 8 _11 (1) 8 : (4.44)
0001
so that the Kéhler moduli are subject to the following constraints
t' =3t >0, 2 <0, 2 4+43>0, t*>0. (4.45)
To take the local limit, we choose
01 = (3,0,0,1), (4.46)

which trivially satisfies the Kéhler cone conditions (4.45). Its intersection matrix (2.3)

13 60
My = 2 _09 108 8 (4.47)
00 00
has a two-dimensional kernel spanned by the following basis vectors
U3 = (—6,—2,2,-2), g = (3,1,-1,0). (4.48)
The three vectors are linearly independent and can be completed to a basis by'?
79 = (1,1,0,0). (4.49)
The rotation of the basis (2.5) modifies the Kéhler cone conditions to
243tt>0, 22 -12—-it>0, #2>0  '-282>0, (4.50)
and brings the prepotential to the following form
Fel — _g (51)3 — 6(31)252 4 51(32)?
_ % (52)3 — (32)253 4 (52)25% 4 222(53)2 — 2522354 4 252(5%)? (4.51)
+ % (53)3 — 2(53)25% + 230342 ¢ % (543,

131n fact, the vectors ¥, a = 2,3,4, may be chosen in a simpler form. Our choice instead allows to have
simpler relations to the gauge theory variables, which are found below in (4.55).
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As is expected, 2% and £* are decoupled from 2!. Thus, in the local limit where ¢! is large,
we find two dynamical moduli, 3 and #*, whereas 2 is frozen. The effective prepotential is
(82)% — (8%)%2° + (£7)%2% 4 22%(£%)? — 28%2°2% 4 227 (2%)?

fcl:_

4
+5 () -2t + 222N + 5

NNQEJCR

(4.52)

and gives rise to the following matrix of the effective gauge couplings

o <2<fz b o 1) {2 o3 +£4>

= Im-—2J et et 453
A I T 2o h o2 4§34 4 (4.53)

The trace and the determinant of this matrix are given by

Trg =2 (42 + 5% + 28*) = 5(28% — 12 — i*) + 3(£2 + 3¢*) + 1042,

oo o 4.54
det g = 12 (£* + 28% — 1) (£ + 3¢") . (5

It follows immediately from the K&ahler cone conditions (4.50) that both of them are pos-
itive, which ensures the positive definiteness of (4.53). Comparing (4.52) with the prepo-
tential (3.6) of the pure SU(3) gauge theory, one obtains the following dictionary

272a N .
tNZ:WT, t3:a<p1, t4:acp2,
90
4.55
47ta? 47ta? ( )
Cel = —3, L =——7g Co = —F—
90 90

4.4 No local limit

The previous examples could make an impression that most of Calabi-Yau manifolds allow
a non-trivial local limit in the sense of section 2.1. However, this is not so. It is easy to
find examples which do not allow any such limit. For instance, let us consider a complete
intersection Calabi-Yau (CICY) manifold defined by the following configuration matrix

2[2 10
2[1 02 . (4.56)

20021

It appears first in the list of CICYs studied in [77], which simultaneously has h''! = 3 and
the property of being Kdhler favourable (model 5299 in this database). The latter property
means that its Kéahler cone descends from the one of the ambient projective space. Thus,
choosing a basis of divisors given by a subset of the divisors of the ambient space, the Kéhler
cone admits a particularly simple description as the positive orthant t* > 0, a = 1,2, 3.
The intersection numbers can be computed from the configuration matrix (4.56) using the
standard technique (see e.g. [78]) and give rise to the following cubic prepotential

Fr=—|(21)22242(21) 2234221 (22)2 4921 2223 4 21 (z3)2+(22)2z3+2z2(23)2] . (4.57)
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To have a non-trivial local limit, we have to find at least one vector ¥, belonging to the
Kahler cone, such that the matrix My, = ket is degenerate. In particular, this implies
that it must have vanishing determinant. Calculating the determinant for a generic vector,
one finds

det M = 18[4 ((01) + (%)% + (1)°) +9 (1) 22 + 0! (%) + (v2)20) o
+18 (v (v*)? + (v1)*0? + v*(v*)?) + 69v10203}. ‘

Note that all coefficients are positive. Thus, the determinant can vanish only if some
components v® have opposite signs. An example of such vector is provided by

7= (1,-4,0). (4.59)

But any such vector does not belong to the Kéhler cone which requires the positivity of
all coefficients. Therefore, we conclude that this Calabi-Yau does not admit a non-trivial
local limit.

5 Conclusions

In this paper we analyzed the rigid limit of the HM moduli space M of type IIB string
theory compactified on a CY threefold ). Whereas for generic QK manifolds the rigid
limit is not well defined, for the HM moduli space we suggested to induce it by a local
limit of the CY. When such local limit exists, we showed that the original manifold reduces
to a manifold M’; of real dimension 4n’, where n/ is the number of shrinking divisors
on %), and computed the exact non-perturbative metric on it. To accomplish this, we
significantly improved the understanding of the D-instanton corrected metric on My by
computing explicitly its exact expression for all mutually non-local charges.

Furthermore, we proved that M, is an HK manifold and can be obtained by a series of
HK quotients of the Swann bundle over M y. An intermediate step of this quotient proce-
dure coincides with the HK manifold M§" related to My by the QK/HK correspondence.
All these relations become particularly simple in the twistor formalism where the metric
on a quaternionic manifold is encoded in a set of Darboux coordinates on its twistor space.
Then it turns out that the rigid limit simply reduces one system of Darboux coordinates
to another by restricting to the charge lattice of shrinking cycles, whereas the HK quotient
along an isometry just removes a symplectic pair of Darboux coordinates, one of which
plays the role of the moment map.

We would like to point out that our rigid limit is essentially different from the one
considered, for instance, in [13-15]. In these papers the limiting HK manifold has the same
dimension as the original QK manifold and the procedure heavily relies on the existence
of continuous isometries. In our case, the dimension is always reduced because of the
decoupling of the “universal hypermultiplet” containing the dilaton. Such decoupling is
very natural since this multiplet has a gravitational origin and should not contribute to
the gauge theory physics recovered in the limit. Besides, although some isometries do
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appear at intermediate steps of our procedure, the original manifold is taken to be fully
non-perturbative where all classical isometries are broken by instanton corrections.

Our limit is also different from the rigid limit suggested in [7] which relies on a sim-
ple rescaling. Although this allows to decouple some multiplets, including the universal
hypermultiplet, and thus to reduce the effective dimension, the decoupled fields do not
disappear, but just support the flat metric. In contrast, in our limit some fields do drop
out and others become frozen. Besides, the procedure of [7] was performed only for the
classical metric described by the c-map, and an inspection shows that its direct generaliza-
tion to the instanton corrected metric does not appear to produce sensible results. At the
same time, the instanton corrections to the metric on M/, all turn out to have a physical
interpretation.

This interpretation comes from a general relation of M/, to the physics of five-
dimensional N = 1 gauge theories. Following [31], we argued that this manifold coin-
cides with the non-perturbative target space of the g-model obtained by compactifying
a bd gauge theory on a torus. Which 5d gauge theory is recovered in the limit can be
established by matching the classical prepotentials. We demonstrated this matching pro-
cedure on several examples, including a family of elliptically fibered CYs and a few toric
hypersurfaces.

Note that in the usual notion of local limit, one zooms in around a point in the
moduli space where the CY develops a singularity. The study of the relation between
five-dimensional gauge theories and singularities in CY threefolds has a long history (see,
for instance, [48, 70, 79] and [80] for a recent work). We hope that this paper can make
at least two contributions to this subject. First, we suggest a very simple condition in
terms of intersection numbers of Q) for the existence of a local limit. It simply requires that
there exists a set of vectors belonging to the boundary of the Kéhler cone such that the
intersection of kernels of certain matrices constructed from them and the triple intersections
is non-empty. It would be interesting to understand the precise relation of this criterion to
the mathematical conditions for the existence of CY singularities [81].

Second, our work extends the discussion to the setting of torus compactifications where
BPS states of 5d gauge theory generate non-perturbative effects. Our results provide precise
predictions from string theory for their contributions to the metric on the moduli space.
In particular, some of (p, q)-instantons are identified with the dyonic instantons of gauge
theory and D3-instantons correspond to the instantons generated by magnetic strings.
None of them has been computed exactly, and this work fills in this essential gap.

The compactification on a torus gives rise to the modular invariance of the effective
three-dimensional theory, which can be identified with the SL(2,Z) symmetry of type IIB
string theory surviving compactification on CY and the rigid limit. This symmetry severely
restricts both the form of the metric and the BPS spectrum, which remains in our results
as a necessary input data. We suggested how such constraints on the spectrum can be
derived along the lines of [44, 69] which should result in specific modular properties of a
generating function of BPS degeneracies of magnetic strings bound to dyonic instantons.
This function is also expected to have a relation to the modular partition function studied
in [57] in the same context.
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Another interesting and related problem is to understand the wall crossing in 5d gauge
theories. Although there are some important differences with wall crossing in four dimen-
sions, it is natural to expect some relation between the two, as the theories can be related
by compactification on a circle. Moreover, while 5d N = 1 gauge theories on a torus
are richer than 4d N = 2 gauge theories on a circle considered in [46], their effective low
energy descriptions are captured by the same mathematical framework, so that both of
them appear to be just particular cases of a general structure which is built on the wall
crossing formula discovered by Kontsevich and Soibelman [82]. It would be interesting to
understand the role of this structure directly in five dimensions.
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A Special geometry in the classical approximation

The local special geometry is determined by a prepotential F'(X), a holomorphic function
homogeneous of degree 2 in coordinates X*. It defines the two main quantities of interest:
the Kéhler potential I (2.10) and the matrix of the gauge couplings
i (N z ) A(N z )2

(zNz)

where Npy = —2Im Fpy. The imaginary part of My plays a particularly important

Nas :FAgf (A.l)

role. It is a negative definite matrix and for its inverse one can establish the following

general result
Im NAY = oNAE _ 9K (zAEE + ZAZE) , (A.2)

where N2 is the inverse of Nyy..
In the particular case of the classical prepotential (2.12), it is possible to find more
concrete representations for the above objects. First, it is straightforward to compute

New — 2 Kabe (3b00LC — t7101€)  —2hpeqbt? (A3)
AX = —2Kgegb®td 2K abet© ' ’

This implies
8
(2N2) = (ENZ) = — = Rapet“t°t° = —16V,
3 (A.4)

4
e X = 3 Kapet ¢ = 8V.

The inverse matrix N** can be found in terms of k%, the inverse of kup = Kapet®. The
result reads

SRS v (A.5)
4V b 2V R ppapb | '
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Using these results and notation (vu), = KapeV?u®, one then finds the Kéhler metric and
its inverse

1 1
Kii =1 </{ab - (tt)a(tt)b) ; (A.6)

K = 4V K™ 4 2494,

and the real and imaginary parts of the gauge coupling matrix

1 1
ReNps = ( Ybb)e  —kapebe )

144K gbabb —41C (‘,bb
I =-V @ @ AT
m Nz < Akt 4Ky ) (A7)

ImNA® = —y ! 1 b =
he babb—i-ilcab :

B Derivation of the D-instanton corrected HM metric

B.1 Twistorial description of QK manifolds

QK manifolds represent a very complicated type of geometry. Although they carry a
quaternionic structure given by the triplet of almost complex structures f, all these almost
complex structures are non-integrable so that QK manifolds are not even complex [83].
A very efficient way to deal with such manifolds is to work with their twistor spaces 2
whose CP! fiber describes normalized linear combinations of J;, i = 1,2,3. In contrast to
the original manifold M, its twistor space is a Kahler manifold and, most importantly, it
carries a holomorphic contact structure [23] defined as the kernel of the canonical (1,0)-form
on Z M

Dt = dt + py — ipst + p_t, (B.1)

where t is the standard stereographic coordinate parametrizing CP!, p is the SU(2)
part of the Levi-Civita connection on M, and we used the chiral components defined

as p+ = —% (p1 F ip2). Rescaling Dt, one can make from it a holomorphic one-form'*

4
X= e? Dt (B.2)
1

such that X A (dX)" is the non-vanishing holomorphic top form. The rescaling function ¢
is called the contact potential. The properties of X imply that locally, by a proper choice
of coordinates, it can always be trivialized as

X = dol + g aéll, (B.3)

1411 general, the rescaling factor may depend holomorphically on the fiber coordinate ¢ and is different
in different patches of an open covering of the twistor space, which implies that the contact one-form is not
globally defined and has different local realizations X’ [, However, we will not need such generic construction
which becomes relevant only after inclusion of NS5-brane instantons.
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where the index [i] labels open patches of an atlas, Z = Ul;, and ({A 51[51, am) is the set

(2]’

of Darboux coordinates in U;. These coordinates is the central element of this construction

because knowing them as functions on the base M and of the fiber coordinate t is, in

principle, equivalent to knowing the metric on M. Let us spell out the steps necessary to

compute it [24]:

1.

First, one finds the Laurent expansion of the Darboux coordinates near ¢t = 0. Denot-
ing by [+] the patch surrounding the north pole of CP', we assume that the expansion
has the following general form

fh=E 0 G 00,
& =€l +ow), (B.4)

altl = diclogt + o} + O(#),

which is consistent with the form of Darboux coordinates in the case of the
D-instanton corrected HM moduli space (see the next subsection).

One specifies the almost complex structure Js by providing a basis of (1,0) forms
on M. Such a basis was found in [24] and, after some simplifications, it takes the
following form

" a—1 ;0,1 - A+ - L 0,—1
p :d(gm /€% ) 7a = dél), wa:idag]—i—%dlogﬁm . (B.5)

Substituting the expansions (B.4) into the contact one-form X (B.3) and comparing
it with the canonical form Dt (B.1) using (B.2), one finds the contact potential ¢
and the components of the SU(2) connection

1 4 oA—1,7
P =g G AN B
L H A0 A A1l '
py=—qe (aob + g aglt) + ¢y adl])

The SU(2) connection p can then be used to compute the triplet of quaternionic two-
forms & which are defined by the metric and the triplet of almost complex structures
as W(X,Y) = g(jX, Y’), but are known to be proportional to the curvature of the
SU(2) connection [83]. In particular, for wz the formula reads

ws = —2dps + 4ipy A p_. (B.7)

Finally, the metric is recovered as g(X,Y) = w3(X, J3Y). To do this in practice, one
should rewrite w3, computed by (B.7) in terms of differentials of (generically real)
coordinates on M, in the form which makes explicit that it is of (1,1) Dolbeault
type. Using for this purpose the basis 7% = (7%, 7, 7o) given in (B.5), the final
result should look like

wy = igyymX A7V, (B.8)
from which the metric readily follows as ds? = 2gypn~ ® 7Y . Technically, this is
the most non-trivial step, which we realize for the D-instanton corrected HM moduli
space in section B.4.
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B.2 D-instantons in twistor space

As we saw above, a QK manifold can be specified by a system of Darboux coordinates on
its twistor space. For the D-instanton corrected HM moduli space this was done in [21, 22]
where it was shown that Darboux coordinates ¢} and &, are determined by a system of
integral equations. To write it explicitly, it is convenient to introduce the exponentiated
version of the Darboux coordinates labeled by charge

X, =0, ¢ 2mi(aag"—p1En) (B.9)
where o, is a sign function, known as quadratic refinement, which satisfies
0,0 = (1), and can be chosen as o, = (—l)quA. Then the equations read

(4 ) at’ ¢+t ,
X, (1) = X5(t) exp ZQ (7,7 i log (1— &, ()], (B.10)
'Yl
where
s . T9 _ =
250 (t) = exp [2ri (0, + (4t -2, n)], (B.11)

0, = = gal™ — pA(¢y is a combination of RR-fields, Z, is the central charge (2.29), Q. is
the generalized DT invariant, (7,7’) is the skew-symmetric product (2.30), and ¢, is the
so-called BPS ray on CP! joining ¢t = 0 and ¢ = oo along the direction determined by the
phase of the central charge

0, ={t: Z,(2)/t iR} (B.12)

In the perturbative approximation where the D-instantons are ignored, the Darboux coor-
dinates are given by X;f, whereas the D-instantons are incorporated by the integral contri-
bution in (B.10) weighted by DT invariants. Given a solution of these integral equations,
the remaining Darboux coordinate o can be found by simple integration

Z | G5 (B3)

tot—t/
’7

T2 /1,1

X9
1927

where the parameter ¢ = encodes the one-loop gs-correction,

1
= log (05 X,) log (1 — X,) (B.14)

Ly (t) = Lig (&X;) + 5

is a variant of the Rogers dilogarithm and
W:FAgA—zAfAJr ZQ Z, / log (1 — &,). (B.15)

B.3 Computation of the metric

Now we will follow the procedure outlined in section B.1 towards evaluation of the metric
corresponding to the twistorial construction of the previous subsection. All equations given
below are a direct generalization of the ones which can be found in [25] where the additional
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restriction (,+’) = 0 has been imposed. Under this restriction the integral equations (B.10)
are trivially solved and the one-instanton approximation to the Darboux coordinates be-
comes exact, which simplifies the derivation of the metric. However, as we will show below,
this derivation can be done even avoiding the assumption of mutual locality.

Before we start, let us introduce a few useful notations: two measures

¥
(B.16)
D(Q) [ﬂ — de X’Y(t)
v t1—2X(t)
and integrals
1 1 2 2
T = | DY), jy:/g DA,
K K (B.17)

T = & /K tHpME], g =+ /é tFDA 1],
Y Y

which appear in the expansion around ¢ = 0 of the ¢-dependent integrals in (B.10) and
similar equations. Note that they satisfy the reality properties

e A AR (B.18)
Besides, by partial integration one can find the following identity

n ~ n,— 1 n ! e
2,30 — 2,700 4 WZQW,<%7/>/Z o | DY o =0 (B19)
! ¥ ~!

which takes a very simple form for n = 1 and after summing over charges

>, (290 - 2,587) =0 (B.20)
.

These notations become already useful when one writes the result for the contact
potential, the rescaling factor appearing in (B.2)

2 .
¢ _ Q -K — - i (17+) 7 (17_)
ef=Zek o 2 ;97 (2,90 + 2,50:7)). (B.21)

Comparing the first term with the first relation in (2.11), one observes that the contact
potential provides a generalization of the four-dimensional dilaton to quantum level [24].
This partially explains the important role played by this function both in physics and
mathematics [84]. As for the dilaton, we will also use for it the notation r = e?.

1. The first step is to find the expansion of the Darboux coordinates around ¢ = 0. How-
ever, the Darboux coordinates defined by (B.10) and (B.13) live in a patch of CP!
which does not include its north and south poles. This is seen from the presence of ad-
ditional poles compared to (B.4) in the perturbative part and an essential singularity
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in the instanton part at t = 0. The additional singularities can be removed by per-
forming a holomorphic contact transformation, i.e. a change of Darboux coordinates
preserving the contact one-form (B.3). Such contact transformation is given by

g[l}f‘} - gA + agAH[H’
=&y — g HY, (B.22)
ol = o — HH 4 5[/3r]agAH[+]7

where the holomorphic function H* was found in [22] to have the following form

HIY = F(&4) + G4, 6)- (B.23)

Here the second term is a complicated, but irrelevant function for us because, as was
shown in [22], it affects only O(#?) terms in the Laurent expansion of the Darboux
coordinates. Thus, we can safely ignore it for our purposes, and this allows to
replace §f}H on the r.h.s. of (B.22) by ¢*. Then one finds the following coefficients
of the Laurent expansion of the Darboux coordinates:

-1 __ T2 A

E[_H - 2 z 9
A0 oA 1L A (1
Sy = ¢ _@ZQW jv()
¥

1
SAO = CA - FAECE - W Z Q,YV,YAJ,Y(I),

~ iT 1
m = —72 Z°Nps — — FAE@C (O — P ZQ’Y WA
Y
1 5.0 (1) s 0 (1)
- Frasep™C Ty + 16 o FAZGP g ;Q v Ty (B.24)

abt! = —% (a + (M- FAzCACZ) +2i(r+c)

1 dt A (1 T2 1,
wz Lw/ 7 U2 (%) = VAT = 5 2, 7

1 1 1 t+t
+162 >y (pA NASA AN 7(,> A / D] Dg)[t,] - t/) 7
> I ™
where we introduced a useful shorthand notation
Von = qa — Fasp™. (B.25)

2. Using these coefficients, it is straightforward to compute the basis of (1,0) forms (B.5).
However, it can be further simplified since one can drop all terms proportional to
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7% = dz® in other basis elements. Furthermore, it turns out to be convenient to add
to 7o the term —% 5{};]07?/\. As a result, one arrives at the following basis

dz?,

Vi =dly — Fand¢™ — Z (ga — p"Fas) ATV (B.26)
Y

S = dr + 2cdlog % +3 (da 4 Cpdet — gAdéA)

1 1
32 29,2 Z TQZ ) - TQZ’Ydjw(LH"i_&TQ ZQW’ <'Y='Y/>..7'y(1)d\7,§/)
,Y/

3. Substituting the Laurent coefficients (B.24) into (B.6), one obtains the explicit
expression for the components of the SU(2) connection:

1T it ~ 1
py=—2 MYy =22 [ZA (dCA—FAEdCE> ) ZQVZWdJAfI)] ;
v

8r 8r
_ 1 A A K g T2 1,4) (1,-)
pa=g- |do+Cad gdgA+ Ax ZQ( 42, —J! dz)
1 / 1 (1)
+@ZQWQM(%7>@( a7’ |, (B.27)
VY

where we introduced the Kéhler connection on the complex structure moduli space
Ax = % (Kad2® — Kadz®) = %e’CNAZ (2Mdz¥ — 25de). (B.28)

4. The SU(2) connection allows to find the quaternionic 2-form (B.7):

_ b F N AF (1.4) (1,-)
wy= 5 drA [do+Grd¢h—¢hddy - ZQ ( )dZ,— 7! dZ)

1 NoWa ]| L T K r
—|—647T4§Q,YQV/<%7>\77 A7, | +5e dlog7_—22/\AK

(B.29)

1 Ay s 173 Aoz, 1T aLs s
+27 dC /\dCA—TNAEdZ AdZ +87Z z yA/\yE
T T

1 B i
t T ZQv (dj§1’+)Ad(TgZ7)—dj§1’ >Ad(7227))

2567r4rZQ 0y (7,7 dTD Ad T

The last step, which is supposed to bring ws into the form (B.8), is technically very com-
plicated. Therefore, we relegate it into the next separate subsection.
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B.4 The last step

The main complication arising due to mutual non-locality is that it is impossible to get &,
in a closed form. However, what is crucial for the derivation of the metric is not X, itself,
but its differential. From (B.10) one can derive an integral equation which it satisfies. This
equation is simpler than the original equation on &, because it is linear, and its solution can
be given in terms certain t-dependent matrices on the charge lattice, i.e. matrices acting on
the (infinite-dimensional) space of vectors whose components are enumerated by charges.
More precisely, we define them as the following infinite series of nested integrals

o0 1 n n t B +t ]
20 =0+3 (1) X T |@nberm [ PRmIETE] w0
n=1 L Tk

tk—1—tk_

%S . n ] +1
+ ! tp—1+tx | [ to
Iiv)(to)z%*z <47r> Z H nyk<%—1ﬁk>/€ D%)[tk]i (tn) )
n=1 L Tk

tp—1— 1k

They can be checked to satisfy the simple conjugation properties
(0 (+) _ 7(=)
I (1/t) = 70 7 oy (), Iw’ (1/t) = I_%_V,(t). (B.31)

Applying the differential operator to the integral equation (B.10) and performing iterations,

one finds that these matrices encode the differential of the Darboux coordinates:
1 (0) T2 (,—17(+) (=) (\q 7

— 5 dlog X, (1) = > [IW,(t)d@W/ +5 (t 0 ()dZy — 1T (t)dzvl)

’Y/

(B.32)

+ % (t’lI%“,) (62, —tz') (t)Zy) dm] .

Note that all the matrices (B.30) collapse to d.. under the condition of mutual locality.
This implies that most of our general results can be obtained from the equations in [25] by
insertion of these matrices in proper places. Due to this reason we will not repeat the cal-
culation which is similar to the one done in [25, appenidix B.3] and showing how to arrive
at the representation (B.8) for ws. Instead, we just give the final result which, upon substi-
tution of all definitions, can be checked to reproduce the initial expression (B.29). But first

we need to introduce several notations which allow to write the result in a readable form.

e First, we define a simple matrix constructed from the vector (B.25)

g
Qyy = VAN Vs + 2 (1,7)
! (B.33)
= N*ReVoaRe Vys + 7 Nasp'p'™

e Next, we introduce an integrated version of the matrices (B.30)

:I:n n
Uyy! = 477/ D(Q) w (t), UEW o / D et I )()
(+) () (£m) _ ) (B.34)
+)  Viy (2) + +n n Sy Fn
W—MA%M%M,W DMAQMt%m.
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Not all of them are actually independent since it is easy to check that they satisfy
the following properties:
(+,2)
7Y
— identities under transposition

(772)
and VUi

— the matrices v/, v are symmetric;

+ _ ) (+b _ @) (= _ (=1,
Vyy! = Uiy Vyy " = Uy Uy " = Uy (B.35)
— identity involving the central charge
(+1) (=1 7 O _ 7 (=1
Z (vw, Zy — Vs Zy) = Z <Z7/U’Y’7 — Z,vag,V ) = 0. (B.36)

v v
e Then we combine the matrices defined above into a new object

M’Y’}’/ = (S,y,yl — 2 Z Q,Y,y//U,Y//,Y/. (B37)
"

We are really interested in the inverse of this matrix which can always be found by
an expansion treating the second term as a perturbation. Note that although M.,/
is not symmetric, the matrix product (vM),, is symmetric. In fact, the product
(vM™1).,.s is also symmetric which can be shown by expanding M ™! so that

(VM) = 0y + 2(0Q0) 1y + 4(VQVQV) s + - - . (B.38)

Analogously, (M‘lQ)W/ is symmetric as well. Using this property, one can also find
the following useful identity

20M O =20M )T Q=2MT0Q=MT (6 -M")=MT -5 (B.39)

e [t is convenient also to introduce two vectors

2= (ZW’”% + Zv’vg'_vl)) ’

!

¥
(B.40)
= (+ - +,1
ny = 47T Z Zf}//'U,(y/,Y) — Z Z:}IM:Y:;/ Q:YI’Y/UE/'Y )
v 7Y
and a potential
K +) 5 _
U=e"™-2 Zvi,y/)ZWZ'y’ + Z 2y (M1 Q) 2y, (B.41)

v 7Y

which is a real function due to the property (B.35).

e Besides, we define several 1-forms. The first one is a certain linear combination of
the differentials of the RR-fields

- - 1
Cy= NAZ (qA — Re FAEp“) (dCE — Re Fz]@dC@> + 1 Nas pA dCz, (B.42)
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which is built in the way analogous to Q. (B.33). The second, which we call V,
appears explicitly in the HM metric (2.31) as the quantum part of the connection
on the circle bundle parametrized by the NS-axion o. In terms of C, and the other
quantities introduced above, it reads

U

2 U . U _
L2 KWW + 2= g0 )dZ7 - <W7 SREL ijyﬂ) dZy] .

2 .
TS _x 167 16r 1 1 Z 1
V - ?2 (& <1 - ) .AK Z’YIM'Y,'Y C’Y - 167-‘-2 Q'YH <")/7 Fyll>dg7,§//)
,7//

miU 167i 167ir
(B.43)
Finally, we introduce
yW:iNAZVAyz
. 1
:lc'y_g v 8 2 ZQ <Q'y’y/+ < 7’YI>> dj,é/ )7 (B44)
S 8r A (1) 4 7(1)
2_2<1 U)dr+4 do4Cadch—¢ dgA+64 429 Oy (7,7) TN AT, +V

Both these 1-forms are of (1,0) Dolbeault type. Whereas this is evident for ), for
3 this follows from the following representation

S =3+ fadz 4+ ¢ W (B.45)

with
A= <8_> Npgz™ + = Z( j(1++ W)V'yA,

A A —17;
g = 7'27UN ZZ’YM’Y'}/IV’Y/E'
¥y

(B.46)

In terms of all these notations, one can show that the quaternionic 2-form (B.29) can
be rewritten as

wg:i_l NAE_LQQZAZE yA/\j) _EZ(UMfl) R /\5)/
4r2(1— Sr) 2r 8r r 4= R
73U VY
i _ T _ _ To - _
(M), yv—l——QWWdZV)/\Z((zM Yy P12 Wy dZy )
o4

- 2ru
17’2
7

Z
ZM (el (A2, =0 20 ) ADy 4 Vo N0 (0240 =01 2,868 |
e

s 2
17

2
+—=

1 _ o
= |UT19e7 8 Nde ™  — Nypds" 2™ - — (W,YdZv/\ae*’C—k@e*’C/\WdeW)

27U

1T2

2 ZU(+)dZ /\dZ ——= 1Q vy Zv az; /\ZU’Y "y dZ " (B.47)

’Y’Y
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All terms appearing in this representation are explicitly of (1,1) Dolbeault type. Therefore,
one can apply the rule (B.8) which immediately produces the metric (2.31) given in the

main text.

C Metric on M,

In this appendix we derive the rigid limit of the D-instanton corrected HM metric (2.31)
and uncover its geometric structure. As discussed in section 2.3.1, in this limit some
of worldsheet and D-instantons actually decouple and therefore we should restrict our
attention only to the charges v belonging to the lattice I'iiz = {7y = (0, p! ,qj,qo0)}. This
means that in all sums over charges appearing in (2.31) the condition v € I'yj; should
be inserted.

C.1 Scaling behavior

Let us first find the scaling behavior of various quantities entering the metric. Noticing
that the quantum part of the prepotential (2.26) remains finite, for the real and imaginary
parts of its second derivative one obtains

A2 A% 1 AP A1
ReFys~ | A2 1 1|, Nas~| A A 1], (C.1)
1 11 1 11

where the rows and columns correspond to the splitting of the index A = (0, /1, I). To get
the scaling of the inverse matrix N, one can split Nay into its classical part N given
in (A.3) and the part N9 encoding the quantum corrections. After that the expansion

Nl — (Ncl)—l . (Ncl)—qu(Nd)—l N (C.2)

together with the explicit expression for the (N)~! (A.5) and the scaling (2.18), result in

A—3 A—3 A—S
NAR [ A3 AL AT (C.3)
AT AT 1
Similarly, for the gauge coupling matrix one obtains
A A1 A=3 A3 A3
ReNaz ~1, ImAMs~ | A A 1|, ImA™~ | A3 AL A (C.4)
1 11 A3 AT 1

In particular, the scaling of the inverse matrices implies that

1
N = —Sgt oY, T =g oA, (C5)
where ¢” is the inverse of g;; = —% Nij.
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Combining the condition v € I'yjz with these results, it is easy to see that the central
charge Z, remains finite and unaffected by the limit so as the vectors V,a, z, and the
%E,), vg,’n), M. The matrix Q.. also remains finite, but simplifies
because some components of the matrix N2> vanish.

matrices U/, v

1
Q=7 Npp'p”? + N (qr — Re Figp®) (¢ — Re Fyrp™) + O(A™Y). (C.6)

The four-dimensional dilaton (coinciding with the contact potential) r and the potential
U (B.41) have the leading contributions scaling as A3.

An important role is played by the one-form Y (B.26). However, its components have
too different scaling and, instead of working with them, it turns out to be more convenient
to introduce two real one-forms, ys and w”, defined by

Va = ya — Fasw®™. (C.7)

Their explicit expressions are

- i 1 '
ya=dis — ;5 >, <4 Nasp” — Re FapNY Re Vyg> 47,
'Yerrig
wh = dch+ 5 ST QNP ReV,nd 7Y,

a7
'YEFrig

(C.8)

and it is easy to check that in the limit they both remain finite except one contribution in
yo which scales as A. It turns out that the one-forms C, (B.42) and ), (B.44) also have a
divergent piece which is determined by the same quantity. Thus, the three one-forms can
be written as

i .
w=-73 >, HCAIW ¢ =Cd+cl, ¥, =iCu’+ Y, (C9)
’Yerrig

where A
C, = —ReF ;N** (qr — Re Faxp”) (C.10)

diverges,'® whereas y[()o), 50) and y§°) are all finite.

C.2 Evaluation of the limit

Before we apply the scaling results from the previous subsection to the metric (2.31), it is
convenient to rewrite the second term on the first line using (C.7). Then it becomes

1 2 . 1 / ,
- (NAE—;izAzz> Vs = 5 Im N2 (yA— Re Ny wh ) <yA— Re Ny wh )

1 A, TS Ay |2

!5Note that not all terms in C, scale as A. Some of them stay finite or even decay, but we find convenient
to combine all of them into one expression. What is important is the behavior of the leading contribution.
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Note that the coefficient of the last term is given by

167 o _¢* iy 04 4z 70
- g =5 5 Y 9 (2,00 + 2,90) (C.12)

Verrlg

and scales as A73.
The Lagrangian based on the metric (2.31) can be represented as in (2.20)'6

Lros = —%52\7{5 (Lo + Lo+ L), (C.13)

where the three terms in the brackets correspond to divergent, finite and vanishing contri-
butions, respectively. Taking the gravitation coupling x? to scale as A~3, one ensures that
the prefactor is constant. Then the contribution £_ drops out and we will not specify its
form since it is completely irrelevant. On the other hand, the divergent part £, imposes
strongly classical equations of motion which lead to the freezing of some fields. To compute
its effect, let us first denote

A=-Tp-4 Y (M 1),,C,Cy, (C.14)
vy GF“g
B=Twi+in Y ML [Nz o5z Cora S (M), C )
'y,’y "///El—\ng ’Y,’Y'EFrig

0

and redefine w" as

W’ =w’ — A7'B. (C.15)
One can show that in terms of these notations, £ can be represented as

8r A 1 A By Ta Ao E
VLl =2r (17'22U) (Ou 10g1“)2+§ (w2)2— 2IABwAwB 42 NABGNZA(‘)“ZB (C.16)

and leads to very simple equations of motion

Oy logr =29, log o + O(A™1) = O(A™?),

i, = 0,C" + O(A™%) = O(A™),
A A -1 -1 (C.17)
wi = 8,0 +O(A™) = oA™Y,
9,2t = 0(A™Y).

The non-vanishing r.h.s. of these equations correspond to the omitted contributions coming
from Lo + £_, and the power of A is determined by the growth rate of the coefficients
n (C.16), which follows from the results of the previous subsection and that A ~ A3
B ~ A. Thus, in the leading approximation the fields 7, ¢° = 74, CA and 22 become frozen
and have vanishing variations. Furthermore, substituting (C.17) back into £ (C.16), one
finds that it behaves as O(A~!) and thus does not contribute to L.

16 Again the factor /73 is included to preserve the modular symmetry.
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Finally, let us turn to the finite part of the Lagrangian. Imposing the equations (C.17)
and taking into account that ReN7; = Re Fy; + O(A™1), the metric corresponding to L
reduces to

72 1 1
\/?zdsimH = 32 grydz'dz’ + 5 grow w4+ - g" (y; — Re Frxw™) (v, — Re Fypw'™)

2
-1 (+11) (711) 7 —1 \)
tr s ML [P 2V eGP 2 | 2 S (oM
¥y Y € rig v,y €l vig
2
- B _ _
2 zazd Y e, ¥ s Y ez
¥,y €l vig ¥,y €T ig F€ET g '€l sig
(C.18)

Here the differential d’ acts only on the fields 27, ¢! and (7, and we defined

yr = d¢r + 81? Z Q, (grsp” — Re Fry g™ (q — Re Frp")) d'j§1)7

’YeFrig
i
w’=d¢" - ) Z Q9" (g7 — Re Fygp™) d,jy(l), (C.19)
’Yerrig
i
YV, =—=g" (a1 — Figp™) V7,

2

where, similarly to (C.7), we have

/ / 1J
Yr=yr— Fryjw

- 1 2
:dCI_FIJdCJ—W Z Q'y(qI—F[JpJ)d/j,\Sl). (C O)
’YEFrig
Then, using the identity
groww” + ¢" (y; — Re Frew™)(yy — Re Fypw'™) = g™V, (C.21)

which coincides with the finite part of (C.11), one can rewrite the metric (C.18) precisely
as in (2.32).

C.3 HK structure

Now we want to prove that the limiting space M/, is an HK manifold. For this purpose,
it is enough to show that it carries a holomorphic symplectic structure, which in turn can
be achieved by constructing a globally defined holomorphic symplectic form on the trivial
CP' bundle over M/, which gets interpretation of the twistor space. Such symplectic
form has a representation

Q =it +wh+itwl, (C.22)

where t is the stereographic coordinate on CP!. Then the metric (2.32) must be such that
wj is the Kéahler form in the complex structure in which w’_ is holomorphic.
To find such €2, note that locally it can always be trivialized by the choice of Darboux
coordinates
0= dn[[i] A d,u[;], (C.23)
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where, as usual, the index [i] labels open patches of an atlas on the twistor space. Thus,
what we need is to specify a consistent set of Darboux coordinates. We claim that one
recovers the metric (2.32) if one identifies these Darboux coordinates away form the poles
of CP! with the corresponding Darboux coordinates on the twistor space of the initial QK
manifold My, i.e. one takes

() =€), i) = &), (C.24)

whereas the Darboux coordinates around ¢ = 0 are obtained by applying a holomorphic
symplectic transformation (cf. (B.22)) with the generating function given by

HH_ 4t2 f < T+] ) + g(n[—i—]vlu)a (025)

where the prepotential f(z!) is defined in (2.33). This identification is possible because,
under the restriction v € I'yjg, the integral equations (B.10) fixing the Darboux coordinates
on Zp become a closed system for ¢/ and 5 7. They also involve &Y and &%, but these
Darboux coordinates are fixed in terms of the frozen fields and do not receive any quantum
corrections (this happens because the components p° and pX of the magnetic charge are
taken to vanish)
L=n+T -1, =R =), (C.26)
Besides, it is important to note that Fr(z) = f7(z) due to the condition on the inter-
section numbers (2.8) and the restriction on the charges of worldsheet instantons. This
makes it possible to replace (B.10) by

. T 1 5
X, (t) = exp | —27i (@’7 + 5 (Z,’Yt 1_ Z, t))
1 at’ t+ ' (C21)
o= Z Q. <’y,'y/>/ 7 los (1-&, (t’))]
"/lerrlg Z’Y/
where
X =0, o 2mi(90€%+ax X +arm’ —p' ur)
¥ )
0, = gom + qx ¢ + ar¢’ = p' ¢, (C.28)

ZL=qo+axzX +az' —p' f1(2).

The resulting system of integral equations coincides with the equations for Darboux coordi-
nates on the twistor space of the HK moduli space of a 4d N = 2 gauge theory compactified
on a circle [46], which has flavor charges qp and ¢x and is characterized by the holomorphic
prepotential f(z7).

Let us finally show that this twistorial construction indeed leads to the metric (2.32).
To this end, we first perform the symplectic transformation generated by (C.25). Although
it appears to be similar to the canonical transformation generated by (B.23) which we
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encountered in the computation of the D-instanton corrected HM metric, they are not
identical because the prepotential f is not homogeneous in contrast to F. Keeping this
[+]

difference in mind, computing the expansion coefficients of n[lﬂ and p; ' around ¢ = 0 and
substituting them into

| = —idn{ A dpyy, oo
I d 1,0 d [+] d I,—1 d [+] ( ’ )
wy = dny Adpg g +dny s Adpg g,

which follows from a combination of (C.22) and (C.23), one finds that the basis of (1,0)
forms encoding the complex structure J4 consists of dz! and )} (C.20), whereas the Kéhler
form wj is given by

2
_ 1 x 175, I _J 1 . 0
wé =d¢ Ad(r + 79[](12 ANdz? — 5 Z Qva’<%7,> d/jw( ) A d,jvl
77’7/€Frig (C 30)
1 N .
— 5 2 O |(@dd! = p'dl) A TN + 1 2, AT,

’Yeprig

Next we observe that the last term in (C.30) can be rewritten as

o Y O (AT Nz, - d T A Z,)

'Yerrlg

. (C.31)
_ 172 / (+1)/ ( )/ (+) 47 17
=2 Y (vo,n (WVaz, oV z,) + mld z, nd Z,).
7a7’€rrig
Besides, one has
~ 1
I s N 1 7(1) 7 (1)
d¢ Addy 19874 Z Q’yQ'y/<'7a'7>d~7 /\dj
77’7/€Frig
=59 VIAY =2 Yy (M) VY (C.32)
v,y €l rig
2 > MG Y e d ) (a3 (5 z 0 2, ),
vy EFrlg 'YEFrlg ’Y EFmg
where
~ 1
¢, = —2g" (qr — Re Fixp®) (dg, - ReFJLdCL> — 5o’ dc’. (C.33)
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Finally, we need also the following identity

: -1 [ (1) 3 Y (=1) 317 /
Y M (W ze a0 2, )

777/77,,€F1'ig

B 1 i i an gt (D) (+.1) 1 D) g 7.
= — Z M,y,yl C’y_@ Z Q'y<777>dj,§ /\(’Y/’ dZ _"'U,y dZ,yl)

Y'Y €l vig F€T yig
i (+,1) (=1 15
77’7,€Frig
—To Z (Mflg)vw,, Z (U’(yt}yl)dlz:y + U,(Y;}yl)d/Z:O ’
v €l vig F€T ig

which allows express terms with d'©., and C/, in terms of (1,0)-forms and their conjugate.
Collecting all these relations together and suing them in (C.30), one arrives at the following
expression for the Kahler form

-2
wh = 7291sz Adz +29Uy1/\yJ 2i Z (val)Wy;Ay;/

7,y €l rig
i Y ML (o0 2 AT Y AP 2, (C.35)
VY'Y €l vig
2
_17'22 Z (M_lQ)'w’ Z ”g—;,l)dlzﬁ/\ Z Ugl_:;«l)dlzy-i—% Z Uij;,)d/Zy/\d'Zw.
¥,y €Tl rig YET rig '€l vig ¥,y €l vig

It precisely corresponds to the metric (2.32).

D Torus reduction of 5d gauge theory

In this appendix we perform compactification of the five-dimensional action (3.2) on the
torus. The spacetime metric g;p, whose signature in our conventions is (—, +, +, +, +), is
taken to be as in (3.11) where coordinates z° and x* parametrize the torus directions. The
periodicity of holonomies under large gauge transformations is set to be 27, which makes
natural to define the variables

1 1
19{ = % %Sl Ag d.ng, 195 = % o AZII d$4 (Dl)
3 4

with period 1. Introducing
ol =9l — 9l (D.2)

and assuming the independence of all fields on the torus coordinates, one finds that the
kinetic term for vectors and the Chern-Simons term give, respectively,

. 872 _
/T e g Fy P = VFL ) ET 4 TZ Fr0,0L0m97 (D.3)
N

/T ) da®da’ Fp 0 ALFL FIS = 1652 Fpyce™ (FL, (930395 — 0 0305) — 2410,0] 9,05 ) .
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Note that the CS term does not produce the factor of volume because the integrand does
not contain the factor \/o. As a result, integrating by parts and using the Bianchi identity
et )‘OHFVIA = 0, the reduced action can be brought to the following form

14 v, T e
SECZ?’C’ = —/d31‘ [fu <87r Flfl,FJ“ + - 8,ﬂ9£8“19ﬁ + = ampl 8u¢J)
(D.4)
T
+ 5 -F[JKGMV)‘F/{V (192‘]8,\19{( — 19‘1]8/\19§):| X

The action (D.4) contains the vector fields AL and therefore describes a coupling
of three-dimensional tensor multiplets. It can be turned into a nonlinear o-model for
hypermultiplets by dualizing the vector fields into scalars. This is done by adding to the
action the term

AS=m / A3z Ap e, FLy (D.5)

such that the variation with respect to the Lagrange multipliers A\; induces equations of
motion which are simply the Bianchi identity. Integrating this term by parts and varying

the total action Sg;;?’d + AS with respect to F, lfy, one finds instead

4 1
Fl{'/ = _% FIJG#VA <a)\)\J + B FIKL (195(8)\19{’ — 195(%@95’)) , (D.6)

where F!7 is the inverse of Fr;. Substituting this field strength back into the action, one

17

obtains'” a o-model for complex fields ¥ and real fields ¢! and A;:

Spd=— / 4’z {fu (” 0, 010! +4:Z O’ awﬂ) (D.7)
T2 Iy

473 1 1
+ F <8H)\I+2 Fricn (9K 0,0F 0% 8“195)) <a“AJ+2 Frnan (03100 0Y — 9 oo ))} .

E Toric data

Let ) be a smooth compact threefold described by a homogeneous polynomial equation in
some coordinate patch of a desingularized ambient four-dimensional toric Fano variety A.
The relevant topological information about 2) can be encoded by two sets of data.

First, one should specify a reflexive polytope A with vertices belonging to a lattice
M ~ Z*. We will denote the dual polytope, defined within the dual lattice N ~ Hom(M, Z),
by A*. Both of them can be represented by matrices with 4 columns whose rows correspond
to points in M (resp. N) defining their vertices. A crucial property of A* is that it contains
a single interior point, which is the origin of N, while all other lattice points contained
in A* lie on its boundary (including the vertices). Moreover, the boundary lattice points
have an important geometric interpretation corresponding to the toric divisors D; of the
ambient space. Due to this, it will be convenient to introduce a matrix A* whose rows
describe all such boundary points.

"One should remember that due to our choice of signature the contraction of two Levi-Civita symbols
gives €77 €, p0 = —260.
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However, these polytopes define in general a singular variety. The desingularization
of the ambient space is encoded by the second data, a simplicial triangulation of A* by
unit-volume simplices with a vertex at the origin, or more precisely a fine, star, reqular
triangulation. It is specified by describing each four-simplex by a set of 4 toric divisors
corresponding to its edges. Thus, it can be encoded by a matrix also with 4 columns and
the number of rows equal to the number of simplices used in the triangulation. The entries
of the matrix specify rows of A*.

As a side remark, let us recall that different triangulations of A* may (or may not) cor-
respond to different Calabi-Yau geometries. When more than one triangulation describes
the same Calabi-Yau, these represent different chambers of the Kéhler cone of 2), also
known as phases of the geometry.

Below we specify the toric data for the two Calabi-Yau manifolds used in section 4.
We call them by their number in the database [75].

Polytope 337 (geometry 1). The polytopes corresponding to this example are

1 0 0 0
1 2 0 0 Lo 11
0 0 1 0
-1 0 -1 0
0 3 1 0
-1 0 0 -1
0 0 0 1 B L1 1
A=1]1o0 2 0o 1 |, AT=1 ", (E.1)
;1—12—22:; v -1
-2 -2 -2 3 ;j;;
-3-3-2 3
3 -3 -2 -3

They define a singular variety. We are interested in the Calabi-Yau manifold defined by the
desingularization corresponding to geometry 1 in the list of [75]. Such desingularization
admits three phases, described by the following three triangulations

0123

0123 gi;z 0126

0126 0135 0135

0134 0115 0145

0146 0146 0147

0234 0234 0167

0246 02456 0234

1236 0246
Ti=1|1345 |, Ty = 0345 , T3 =1 0345 (E.2)

1236

1356 L35 0467

1457 Lasn 1236

1467 a6 1356

1567 567 1457

2346 0346 1567

3456 5156 2346

4567 V5o 3456

4567

We recall that the i-th row of a triangulation 7" has components Tj; = (n;);j=1...4, encoding
the 4-simplex delimited by the four toric divisors {Dnj+1}j:1_,,4 where D,, is the divisor
specified by the n-th row of A*.

— 55 —



Polytope 1439 (geometry 2). In this example the two polytopes are encoded by the

matrices

-1-11 1
1 0 0 0 -1-11 2
01 0 0 -1-12 1
2 3 4 0 X * -1 -1 3 3

A= 2 3 0 4 ) AT = -1 3 —2 -2 (E3)

-6 —5 4 -8 1 -1 0 0
-6 —5 —8 4 -1-1 2 2

0 1 —1 -1

They again define a singular manifold. This time we take the desingularization corre-
sponding to geometry 2 in the classification of [75], which is described by the following

triangulation matrix

0146
0147
0156
0157
0246
0247
0256
0257
T = L3456 (E4)
1347
1356
1357
2346
2347
2356
2357
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