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Abstract

Given a modular formf of even weight larger than two and an imaginary quadratic field K
satisfying a relaxed Heegner hypothesis, we construct a collection of CM cycles on a Kuga–Sato
variety over a suitable Shimura curve which gives rise to a system of Galois cohomology classes
attached tof enjoying the compatibility properties of an Euler system. Then we use Kolyvagin’s
method [20], as adapted by Nekovář [27] to higher weight modular forms, to bound the size of the
relevant Selmer group associated tof andK and prove the finiteness of the (primary part) of the
Shafarevich–Tate group, provided that a suitable cohomology class does not vanish.
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1 Introduction

Given a modular formf of even weight, one strives to relate certain algebraic and analytic invariants
associated withf . The classical expected relations correspond to conjectures formulated by Beilinson,
Bloch and Kato, while theirp-adic analogues were predicted by Perrin-Riou. Several results provide
nowadays evidence towards these conjectures, and in most ofthem the theory of complex multiplication,
giving rise to Heegner points or cycles, plays a prominent role.

The algebraic invariants alluded to above are usually related to bounds for the Selmer group associ-
ated with (the Galois representation attached to)f , while the analytic ones are concerned with the order
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of vanishing of the (complex orp-adic)L-series associated withf , or with its special values or its deriva-
tives. Contributions to conjectures of this flavour frequently use appropriate special cycles as a bridge
between the algebraic and analytic invariants.

In this note, we extend Kolyvagin’s method of Euler systems [20] adapted by Nekovář for modular
forms of higher even weight [27] to the setting where the Heegner hypothesis is relaxed. We exploit
Kuga–Sato varieties over Shimura curves in order to construct a Heegner system, that is, a collection of
algebraic cycles satisfying certain local and global norm compatibility properties, from which one can
extract arithmetic information about the Selmer group.

In order to fit our contribution into the above framework, letus first recall briefly some previous re-
sults that have a clear influence in the present work. The simplest scenario in which the above conjectures
have been explored is of course the most down-to-earth setting of elliptic curves, or more generally of
modular forms of weight 2. In this case, Kolyvagin [20, 15] showed how to bound the Selmer group by
exploiting the properties of a system of cohomology classesarising from Heegner points on the relevant
modular curve (today commonly referred to as an Euler systemof Kolyvagin type). Combined with the
Gross–Zagier formula [16], relating the first derivative ofthe classicalL-function associated withf to the
height of an appropriate Heegner point, and together with analytic non-vanishing results of Murty–Murty
[26], the Birch and Swinnerton-Dyer conjecture overQ for elliptic curves of analytic rank at most 1 was
established. On thep-adic side, an analogue of the Gross–Zagier formula was established by Perrin-Riou
[30].

For modular forms of higher (even) weight, Kolyvagin’s method was carefully extended by Nekovář
in [27], by replacing the usual Selmer group of an elliptic curve with its cohomological higher weight
analogue and the use of Heegner points on modular curves by the so-called Heegner cycles on suit-
able Kuga–Sato varieties, whose middle cohomology containthe Galois representations associated with
higher weight modular forms. A Gross–Zagier formula, due toZhang [38], holds also in this setting,
and Nekovář [28] proved ap-adic avatar of this result. Combined with results of Bump, Friedburg and
Hoffstein [8], this provides further grounds for the conjectures for analytic rank less than or equal to
1. Still in the higher weight case, but in a different direction, Shnidman [35] has recently developed
classical andp-adic Gross–Zagier formulas for twists of modular forms by algebraic Hecke characters,
while the first author [14] has explored Kolyvagin’s method to bound the size of the Selmer group also
in this twisted situation.

A key element in all the above works is the Heegner hypothesisthat allows for the existence of
Heegner points on the relevant modular curves (and hence, inthe higher weight setting, of Heegner cycles
on the relevant Kuga–Sato varieties). When this Heegner hypothesis fails, one can still use Shimura
curves to provide a larger supply of modular parametrizations under a more relaxed assumption. In the
case of elliptic curves, for instance, Heegner points arising from Shimura curve parametrizations give
rise to algebraic points which could not be obtained by usingmodular curve parametrizations (see [10,
Chapter 4], e.g.).

In the Shimura curve setting, the above picture has been successfully adapted in the weight 2 case.
Namely, Kolyvagin’s method has been generalized to Hilbertmodular forms (of parallel weight 2) over
totally real fields by Nekovář [29], and X. Yuan, S.-W. Zhang and W. Zhang [37] have proved a complete
Gross–Zagier formula on quaternionic Shimura curves over totally real fields, building on previous work
of S.-W. Zhang [39]. On thep-adic side, it is worth mentioning that Disegni [13] has recently proved a
p-adic Gross–Zagier formula in this setting relating the central derivative of thep-adic Rankin–Selberg
L-series associated with the modular formf and the relevant CM extension to thep-adic height of a
Heegner point on the abelian variety associated withf .

Next we describe the main result of this note. To do so, consider a newformf∞ ∈ Snew
2r+2(Γ0(N)) of

weight 2r+2≥ 4 and levelΓ0(N). Let pbe an odd prime not dividingN ·(2r)!, and let℘be a prime ideal
dividing p in the number fieldF generated by the Fourier coefficients off∞. The Galois representation
V℘( f∞) attached tof∞ (a 2-dimensionalF℘-vector space) might be realized as a factor in the middle
étale cohomology of a (suitably compactified) Kuga–Sato variety over the modular curveX0(N) (see
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[32]). Alternatively, we can also realizeV℘( f∞) as a factor in the middle étale cohomology of Kuga–Sato
varieties over certain Shimura curves, following an approach as in Besser [5] and Iovita–Spieß [17].

More precisely, letN = N+N− be any factorization ofN as a product of relatively prime integers
N+, N− such thatN− is the square-free product of an even number of primes, and consider the Shimura
curve X attached to an Eichler order of levelN+ in an indefinite quaternion algebra of discriminant
N−. The Jacquet–Langlands correspondence associates tof∞ a Hecke eigenformf on X, whose Galois
representationV℘( f ), isomorphic toV℘( f∞), arises as a factor in the middle étale cohomology of ther-th
Kuga–Sato varietyA r over the Shimura curveX (see Section 3.3 for details).

For a number fieldK, let CHr+1(A r/K) be the(r + 1)-th Chow group ofA r over K. The Abel–
Jacobi map induces a Hecke- and Galois-equivariant map

Φ f ,K : CHr+1(A r/K)0⊗F℘ −→ H1(K,V℘( f )),

where the subscript 0 indicates the subgroup of cycle classes which are homologically trivial, and on the
target we consider continuous Galois cohomology (cf. Section 4.1). In this note, we focus our attention
on the above map whenK is an imaginary quadratic field satisfying the relaxed Heegner hypothesis
(Heeg) spelled out in Section 4.3. Namely, we require that one can choose the factorizationN = N+N−

as above so that every prime dividingN+ (resp.N−) splits (resp. is inert) inK.
In this situation, complex multiplication points on the Shimura curveX give rise to a system of

cycles inA r algebraic over ring class fields ofK (cf. Section 4.3), leading to a system of (Kolyvagin)
cohomology classes in H1(K,V℘( f )). The construction of such cycles resembles the construction in
[31], the difference being that here we must construct them on QM abelian surfaces. The bottom layer
of this system of algebraic cycles arises in the work of Iovita–Spieß [17], who obtain ap-adic Gross–
Zagier formula whenp dividesN, and Besser [5], who shows that ther-th Griffiths group ofA r has
infinite rank. Besides, the image of the above mapΦ f ,K is contained in the Selmer group Sel℘( f ,K) ⊆
H1(K,V℘( f )) (cf. Section 6), and the collection of algebraic cycles alluded to before gives us a cycle
y ∈ CHr+1(A r/K)0 whose imagey0 = Φ f ,K(y) ∈ Sel℘( f ,K) underΦ f ,K lies in the (−ε)-eigenspace
under the action of complex conjugation, whereε stands for the sign in the functional equation for the
L-series associated withf . Further, it plays a central role in our main theorem:

Theorem 1.1. With the above notations, suppose y0 is non-torsion. ThenIm(Φ f ,K) has rank1 and
X℘( f ,K) is finite. More precisely, we have

(Im(Φ f ,K))
ε = 0 and (Im(Φ f ,K))

−ε = F℘ ·y0.

In the statement,X℘( f ,K) denotes the℘-primary part of the Shafarevich–Tate group, defined as
the cokernel of the mapΦ f ,K : CHr+1(A r/K)0⊗F℘→ Sel℘( f ,K).

As we mentioned, our result fits in the framework of the conjectures by Beilinson, Bloch, Kato, and
Perrin-Riou. Combined with forthcoming work of Disegni on ap-adic Gross–Zagier formula in this
setting, we expect to shed some light on these conjectures for higher weight modular forms, when the
classical Heegner hypothesis does not hold.

It is also worth mentioning that the work of Bertolini, Darmon and Prasana [4], relating special values
of p-adicL-series associated to twists of modular forms to the image bythe p-adic Abel–Jacobi map of
certain algebraic cycles arising in underlying motives, was adapted by Masdeu and Brooks [21, 7] to
the setting where the Heegner hypothesis is removed. In Masdeu’s work, the primep divides the level
of the modular form and therefore one needs to deal with a bad reduction setting, whereas in Brooks’
work, p is a prime of good reduction and therefore the techniques areof a rather different nature. In this
framework, it would be interesting to relate special valuesof p-adicL-series to the images by thep-adic
Abel–Jacobi map of the cycles that we construct in this note.

Acknowledgements.We are very grateful to Henri Darmon and Victor Rotger for many useful discus-
sions on the topic of this paper. We also thank Erick Knight for his helpful clarifications and suggestions
on the proof of Lemma 3.2.

3



2 Shimura curves and QM abelian surfaces

We describe in this section the Shimura curves that will playa central role throughout this note, namely
Shimura curves associated with Eichler orders in indefiniterational quaternion algebras. We recall the
usual interpretation of such curves as moduli schemes for abelian surfaces with quaternionic multipli-
cation (also referred to asfake elliptic curves), and then focus on special points on such moduli spaces,
namely, abelian surfaces with quaternionic multiplication and complex multiplication.

2.1 General definitions

Fix a pair of relatively prime integersN+, N−, such thatN− is the square-free product of an even number
of primes, and setN=N+N−. LetB be a rational quaternion algebra of reduced discriminantN− (hence,
indefinite), and fix a maximal orderOB in B and an Eichler orderR ⊆OB of level N+.

For every rational placev, we setBv := B⊗Q Qv, and at each finite placeℓ we shall also write
OB,ℓ := OB⊗ZZℓ, Rℓ := R⊗ZZℓ. We shall fix at the outset an isomorphismϑ∞ : B∞→M2(R), which
exists becauseB is indefinite, and also an isomorphismBℓ→M2(Qℓ) for each primeℓ ∤ N−, identifying
Rℓ with the standard Eichler order of levelℓvalℓ(N). Write Ẑ := ∏Zℓ for the profinite completion ofZ,
and for anyZ-algebraR put R̂ := R⊗Z Ẑ. Thus, for example,̂Q stands for the ring of finiteQ-adeles.
We also letB̂ := B⊗Q Q̂.

Let H ± =C−R be the (disjoint) union of the upper and lower complex half planes, which might be
identified with the set ofR-algebra homomorphisms Hom(C,M2(R)), and consider the space of double
cosets

XR =
(

R̂
×\B̂××H

±
)

/B× =
(

R̂
×\B̂××Hom(C,M2(R))

)

/B×. (1)

Here,R̂× acts naturally on the left on̂B× by left multiplication, andB× acts on the right on botĥB×

(diagonally) and onH ± by linear fractional transformations under our fixed isomorphism ϑ∞. This
latter action corresponds to the action on Hom(C,M2(R)) by conjugation (again underϑ∞).

It follows from the work of Deligne and Shimura thatXR admits a model overQ, which further is the
coarse moduli scheme classifying abelian surfaces with quaternionic multiplication byR. Let us recall
precisely these terms.

Definition 2.1. Let S be aQ-scheme. Anabelian surface with quaternionic multiplication(QM, for
short) byR is a pair(A, ι) consisting of an abelian schemeA/Sof relative dimension 2 endowed with
an optimal embeddingι : R→ EndS(A), giving an action ofR on A.

Remark 2.2. In the above definition, ifs is a geometric point ofS, then the QM abelian surfaceAs

corresponding tos is endowed with a uniqueprincipal polarizationwhich is compatible with the QM
structure (see [22]). Because of this reason, we will drop the polarization off in our discussion, although
the reader should keep in mind the existence of a unique polarization compatible with the QM.

Consider the moduli problem of classifying QM abelian surfaces, given by the moduli functor

F : Schemes/Q −→ Sets (2)

sending aQ-schemeS to the setF (S) of isomorphism classes of abelian surfaces with QM byR over
S. Here, an isomorphism between two abelian surfaces with QM(A, ι) and(A′, ι ′) is an isomorphism
ψ : A→ A′ of the underlying abelian surfaces preserving theR-action on bothA andA′, i.e. such that
ψ ◦ ι(α) = ι ′(α)◦ψ for all α ∈R.

Theorem 2.3([33], [12]). XR admits a model X= XN+,N−/Q, which is the coarse moduli scheme asso-
ciated to the moduli problem corresponding to the functorF . Furthermore, theShimura curveX/Q is
a smooth, projective and geometrically connected scheme over Q.

4



Remark 2.4. Alternatively,XR is also the coarse moduli scheme classifying abelian surfaces with quater-
nionic multiplication by the maximal orderOB together with a levelN+-structure.

For our purposes, it is useful to introduce an auxiliary Shimura curve classifying QM abelian surfaces
with suitable extra structure in order to make the moduli problemfine.

Definition 2.5. Let Sbe aQ-scheme andM ≥ 3 be an integer prime toN. An abelian surface with QM
by R andfull level M-structure overS is a triple(A, ι , ν̄), where(A, ι) is a pair as in Definition 2.1 and
ν̄ : (R/MR)S→ A[M] is anR-equivariant isomorphism from the constant group scheme(R/MR)S to
the group scheme ofM-division points ofA.

The corresponding moduli problem is now given by the moduli functor

FM : Schemes/Q −→ Sets (3)

sending aQ-schemeS to the setFM(S) of isomorphism classes of triples overS as in Definition 2.5.
In this case, this moduli functor is represented by afine moduli scheme overQ, which we will denote
XM = XM

N+,N−/Q. It is also a smooth and projective curve overQ, although it is not geometrically

connected. One can give an adelic description ofXM in terms of double cosets as we did above forX.
By forgetting the extra level structure atM, there is a natural Galois covering of Shimura curves

XM −→ X, (A, ι , ν̄) 7−→ (A, ι),

whose Galois group is isomorphic toG(M) := GL2(Z/MZ)/±1, using that

(R/MR)× ≃ (OB/MOB)
× ≃GL2(Z/MZ).

Since this second moduli problem is fine, there exists a universal family of abelian surfaces with QM
by R and full levelM-structure overXM, corresponding to 1XM ∈ Hom(XM,XM) under the bijection
FM(XM)↔ Hom(XM,XM). We shall refer to this family as theuniversal QM abelian surface over XM,
and we will denote it by

π : A −→ XM.

Given a geometric pointx : SpecL→ XM, the fibreAx := A ×x SpecL is an abelian surface with QM
by R and full levelM-structure defined overL, representing the isomorphism class corresponding to the
moduli ofx.

Remark 2.6. Over the complex numbers,Xan(C) is identified with the compact Riemann surfaceΓ\H ,
as complex algebraic curves, whereΓ = ΓN+,N− ⊆ SL2(R) is the image underϑ∞ of the group of units
of reduced norm 1 in the Eichler orderR. Indeed, upon identifyingH with SL2(R)/SO2(R) and
noticing thatR̂×\B̂×/B× is trivial, one can easily define from (1) an analytic isomorphism fromXan(C)
to Γ\H . Similarly, XM,an(C) can be identified with a finite union of compact Riemann surfaces of the
form ΓM\H .

Remark 2.7. We have reviewed above the usual moduli interpretation of Shimura curves in terms of QM
abelian surfaces. However, the category of abelian surfaces being equivalent to the category ofstable
curves of genus 2, one could also regard the Shimura curveX as the coarse moduli space overQ for
stable curves of genus 2 with QM byR. Then one could consider the universal genus 2 curve with QM
overXM, sayC → XM.

2.2 QM abelian surfaces with complex multiplication

Suppose(A, ι) is an abelian surface overC with QM by R, so that it defines a pointP= [A, ι ] ∈ X(C).
Recall thatι : R →֒ End(A) is an optimal embedding of rings, giving an action ofR on A by endomor-
phisms. It is well-known that in this situation either
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(i) A is simple, and End0(A) := End(A)⊗ZQ= B, or

(ii) A is not simple, and End0(A)≃M2(K) for some imaginary quadratic fieldK which embeds inB.

In the second case,A is said to have CM by the imaginary quadratic fieldK. It is well-known that
if A has CM byK, i.e. End0(A) ≃ M2(K), thenA is isogenous to the square of an elliptic curve with
CM by K (and conversely). However, we are interested in the category of QM abelian surfaces up to
isomorphism rather than up to isogeny, thus this characterization is not sufficient for our goals.

In other terms, let EndR(A) = End(A, ι) ⊂ End(A) denote the subring of endomorphisms which
commute with the QM action, i.e.

EndR(A) = End(A, ι) := {γ ∈ End(A) : γ ◦ ι(α) = ι(α)◦ γ for all α ∈R}.

Then End(A, ι) is eitherZ or an order in an imaginary quadratic fieldK. These two cases correspond,
respectively, to (i) and (ii) above. IfK is an imaginary quadratic field (splittingB) and End(A, ι) ≃ Rc,
whereRc⊆K denotes the order of conductorc≥ 1 in K, then(A, ι) is said to have complex multiplication
(CM) by Rc, andP= [A, ι ] is said to be a CM (or Heegner) point byRc. We write CM(X,Rc) for the set
of all such points.

There is a one-to-one correspondence between the set CM(X,Rc) and the set of (R×-conjugacy
classes of) optimal embeddings ofRc into R, given by associating toP= [A, ι ] ∈CM(X,Rc) the embed-
ding

ϕP : Rc≃ End(A, ι) →֒ EndR(H1(A,Z))≃R,

normalized as in [19, Definition 1.3.1].
Fix a CM pointP = [A, ι ] = [Aτ , ιτ ] ∈ CM(X,Rc), and assume that(c,N) = 1. ThenR might be

regarded viaϕP as a locally free rightRc-module of rank 2, henceR ≃Rc⊕ea for somee∈ B and some
fractionalRc-ideala. If Aτ = C2/Λτ , with Λτ = ι(R)v, v= (τ ,1)t , then we find that

Λτ = ι(R)v= ι(ϕP(Rc))v⊕eι(ϕP(a))v. (4)

Further,ι(ϕP(K)) ⊂ C embeds diagonally in M2(C), because End(A, ι) = Rc andι(R)⊗R = M2(R),
hence

Λτ = ι(ϕP(Rc))v⊕ ι(ϕP(a))ev

and it follows thatA is isomorphic to a productE×Ea of elliptic curves with CM byRc, whereE(C) =
C/Rc andEa(C) = C/a. The action ofR on E×Ea induces the natural left action ofR on Rc⊕ea.

Remark 2.8. In line with Remark 2.7, ifC is a stable genus 2 curve with QM (meaning that its Jacobian
variety Jac(C) has an action ofR by endomorphisms), thenC is said to have CM if the subring of endo-
morphisms of Jac(C) which commute with the QM action form an order in an imaginaryquadratic field.
Then it is not hard to see thatC is isomorphic to the union of two elliptic curves meeting transversally at
their identities, and Jac(C) is identified with their product.

2.3 Isogenies of QM abelian surfaces

As we already pointed out above, an isomorphism(A, ι)→ (A′, ι ′) between two QM abelian surfaces
is an isomorphism of the underlying varieties which preserves the quaternionic action. More generally,
the same notion applies for isogenies: if(A, ι) and (A′, ι ′) are abelian surfaces with QM byR, then
an isogenyψ : A→ A′ is an isogeny of QM abelian surfaces, or aQM-isogenyfor short, if ψ ◦ ι(α) =
ι ′(α) ◦ψ for all α ∈ R. We write HomR(A,A′) for the ring of homomorphisms fromA to A′ which
commute with theR-action, so that non-zero elements in this ring correspond to QM-isogenies fromA
to A′.
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Lemma 2.9. Let (A, ι) and (A′, ι ′) be two abelian surfaces with QM byR, and suppose that they are
QM-isogenous. Then

HomR(A,A′)⊗ZQ≃ End(A, ι)⊗ZQ≃ End(A′, ι ′)⊗ZQ.

Proof. Pick any QM-isogenyψ : A′→ A. Thanks to the existence of (unique) principal polarizations on
A andA′, compatible with the QM structure (cf. Remark 2.2), one might regard the dual isogeny ofψ as
a QM-isogenyψ∨ : A→ A′, giving rise to an inverse isogenyψ−1 : A→ A′ in HomR(A,A′)⊗ZQ. Now
notice first that the ruleϕ 7→ ψ−1◦ϕ ◦ψ establishes an isomorphism

End(A, ι)⊗ZQ≃ End(A′, ι ′)⊗ZQ.

Secondly,ϕ 7→ ψ ◦ϕ defines an injective morphism ofZ-modules HomR(A,A′) →֒ End(A, ι). But
both of them are either of rank 1 (ifA does not have CM, neither doesA′) or of rank 2 (if A has CM
by some imaginary quadratic field, so doesA′). Thus it follows that this injective morphism induces an
isomorphism between HomR(A,A′)⊗ZQ and End(A, ι)⊗ZQ.

Corollary 2.10. Suppose(A, ι) is a QM-abelian surface with CM by (some order in) K, and let(A′, ι ′)
be a second QM-abelian surface which is QM-isogenous to(A, ι). Then(A′, ι ′) also has CM by (some
order in) K, and in particular

HomR(A,A′)⊗ZQ≃ K.

Proof. If (A, ι) has CM byK, then End(A, ι) is an order inK, and therefore End(A, ι)⊗ZQ ≃ K. Then
the statement follows directly from the previous lemma.

2.4 The Ńeron–Severi group of a QM abelian surface with CM

Let P= [(A, ι)] ∈ CM(X,Rc)⊆ X(Kc) be a CM point onX by Rc, represented by a QM abelian surface
(A, ι) with End(A, ι)=Rc, whereRc denotes as before the order of conductorc in the imaginary quadratic
field K.

We write as aboveA≃ E×Ea for some fractionalRc-ideala. The Néron–Severi group NS(A) of the
abelian surfaceA is then identified with

NS(E×Ea)≃ Z(E×0)⊕Z(0×Ea)⊕Hom(E,Ea)≃ Z(E×0)⊕Z(0×Ea)⊕a,

where in the first isomorphism an elementγ ∈Hom(E,Ea) corresponds to the class of the divisor

Zγ := Γγ − (E×0)−deg(γ)(0×Ea)⊆ E×Ea ≃ A,

with Γγ standing for the graph ofγ , and in the second isomorphism we use that Hom(E,Ea)≃ a.
Complex conjugation acts through the non-trivial elementσ ∈Gal(K/Q) ona, and then defines a de-

compositiona= a+⊕a−, wherea+ (resp.a−) is theZ-submodule ofa on whichσ acts as multiplication
by+1 (resp. -1). Then

a+ = Za+ and a− = Za−

for some elementsa+ ∈ Q∩ a anda− ∈ a ⊆ K, which we might regard either as elements inK or as
isogenies fromE to Ea. Notice thata− is purely imaginary. Rescaling the elemente∈ B appearing in
the decomposition of (4) by a suitable non-zero scalar inQ if necessary, we assume that(a−)2 = −Dc,
whereRc = Z[

√−Dc]. Therefore, we might rewritea under this convention as

a= Za⊕Z
√
−Dc, for somea∈Q×.

This normalization depends on the choice of a square-root
√−Dc of −Dc, and therefore is uniquely

defined only up to sign. Observe also that sincea is a fractionalRc-ideal, we haveRca ⊆ a, which
implies in particular that in facta∈ Z anda | Dc, hencea−1Dc ∈ Z.

The Néron–Severi group ofA is then the (free)Z-module of rank 4 generated by (the classes of) the
cyclesE×0, 0×Ea, Za andZ√−Dc

. Furthermore, the cycleZ√−Dc
is orthogonal to the rank 3 submodule

〈E×0,0×Ea,Za〉.
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3 Modular forms and p-adic Galois representations

The main goal of this section is to explain how thep-adic Galois representationV( f∞) associated with a
newform f∞ ∈Sk(Γ0(N)) can be realized in the middle étale cohomology of a suitableKuga–Sato variety
over a Shimura curve, by following the approach of Besser [5]and Iovita–Spieß [17]. To do so, we first
need to recall the Jacquet–Langlands correspondence and tointroduce the Kuga–Sato varieties that will
be involved.

3.1 Modular forms and Jacquet–Langlands correspondence

Fix an integerN ≥ 1, and any factorizationN = N+N− of N such that gcd(N+,N−) = 1 andN− > 1 is
the square-free product of an even number of primes. Associated to each of these factorizations, we can
consider the Shimura curveXN+,N−/Q as above corresponding to an Eichler orderRN+,N− of level N+

in the indefinite quaternion algebraB of discriminantN−. In this section we briefly recall the Jacquet–
Langlands correspondence between classical cuspidal forms of levelΓ0(N) and modular forms on the
Shimura curveXN+,N− .

Let k= 2r +2≥ 2 be an even integer. In order to define modular forms of weightk with respect to
RN+,N− , identify the Lie algebra of left invariant differential operators onB×∞ := (B⊗QR)× ≃ GL2(R)
with M2(C), and define the differential operators

W∞ =
1
2

(

0 −
√
−1√

−1 0

)

, X∞ =
(

1
√
−1√

−1 −1

)

.

A (holomorphic) modular form of weightk with respect toR is then a function

f : (B⊗QAQ)
× = B̂××GL2(R) −→ C

satisfying the following properties:

i) for everyb∈ (B⊗QAQ)
×, the function GL2(R)→C defined by the rulex 7→ f (xb) is ofC∞-class

and satisfiesW∞ f = (k/2) f , X̄∞ f = 0;

ii) for every γ ∈ B× and everyu∈ R̂××R>0, f (ubγ) = f (b).

The (C-)vector space of all modular forms of weightk with respect toRN+,N− will be denotedSk(XN+,N−).
Alternatively, by considering the congruence subgroupΓN+,N− ⊆ SL2(R) and the identification of

Xan
N+.N−(C) with the (compact) Riemann surfaceΓN+,N−\H as in Remark 2.6, a modular form of weight

k with respect toRN+,N− is the same as a holomorphic functionf : H −→ C such that

f (γτ) = (cτ +d)k f (τ) for all γ = (∗ ∗c d) ∈ ΓN+,N− .

Under our assumption thatN− > 1, observe that no growth condition needs to be imposed at the
cusps, since the Riemann surfaceΓN+,N−\H is already compact.

The Shimura curveXN+,N− comes equipped with a ring of Hecke correspondences, which can be
easily introduced by using the adelic description ofXN+,N− given above (cf. [3, Section 1.5]). Such
correspondences give rise to Hecke operators on the spaces of modular formsSk(XN+,N−). Indeed, the
discrete double coset spacêR

×
N+,N−\B̂×/Q̂× might be written as a product of local double coset spaces

(RN+,N− ⊗Zℓ)
×\(B⊗Qℓ)

×/Q×ℓ , (5)

and this decomposition allows to define local correspondences, at each rational prime, that extend to
global correspondences onXN+,N− .

For each primeℓ ∤N, the space (5) is identified with PGL2(Zℓ)\PGL2(Qℓ), which in turn corresponds
to the Bruhat–Tits tree of PGL2(Qℓ). Thus there is a natural degreeℓ+1 correspondence, sending each
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vertexg∈ PGL2(Zℓ)\PGL2(Qℓ) to the formal sum of itsℓ+1 neighbours, denoted byTℓ. This extends
to a correspondence onXN+,N− of degreeℓ+1, still denotedTℓ. At each primeq | N+, (5) is identified
instead with the set of chains of edges of lengtha in the Bruhat–Tits tree of PGL2(Qq), if qa || N+.
There is a natural involution on this set, corresponding to reversing the orientation of the edges in the
Bruhat–Tits tree, and this extends again to an involution onXN+,N− , that will be denoted byWq. One can
also define a correspondenceUq for such primes; ifq divides exactlyN+, for instance, thenUq is the
degreeq correspondence defined by sending an edgee in the Bruhat–Tits tree to the formal sum of theq
edgese′ 6= e having the same source ase. Finally, at primesq | N−, the local space (5) consists only of
two elements and the only involution defined on such set, which extends to an involution on the Shimura
curveXN+,N− , will be denoted also byWq.

The Hecke operatorsTℓ for primesℓ ∤ N are referred to as thegoodHecke operators, whereas the
operatorsUq are commonly namedbad Hecke operators. The involutionsWq are the so-called Atkin–
Lehner involutions, and form a group of automorphismsW ≃ (Z/2Z)ω(N) of XN+,N− , whereω(N) is
the number of prime factors ofN. Both the good and the bad operators, as well as the Atkin–Lehner
involutions, act also as endomorphisms on the spacesSk(XN+,N−) of weightk modular forms. We denote
by TN+,N− the Z-algebra generated by the good Hecke operatorsTℓ together with the Atkin–Lehner
involutionsWq.

The Jacquet–Langlands correspondence establishes a Hecke-equivariant bijection between automor-
phic forms on GL2 and its twisted forms. In our setting, this boils down to a correspondence between
classical modular forms and quaternionic modular forms as stated below.

Proposition 3.1 (Jacquet–Langlands). For each factorization N= N+N− as above, there is aTN+,N− -
equivariant isomorphism (uniquely determined up to scaling)

JL : Sk(Γ0(N
−N+))(N

−)−new ≃−→ Sk(XN+,N−).

In particular, to each eigenform f∈ Sk(Γ0(N−N+))(N
−)−new there corresponds a unique quaternionic

form fB = JL( f ) ∈ Sk(XN+,N−) having the same Hecke eigenvalues as f for the good Hecke operators Tℓ
(ℓ ∤ N) and the Atkin–Lehner involutions Wq.

Let F be a subfield ofC, and writeSk(Γ0(N−N+),F)⊆ Sk(Γ0(N−N+)) for the subspace of modular
forms whose Fourier coefficients generate a subfield ofF. The isomorphism JL above is compatible
with Galois action, and henceSk(XN+,N− ,F) := JL(Sk(Γ0(N−N+),F)(N

−)−new) must be regarded as the
subspace of weightk modular forms onXN+,N− which are defined overF, although such modular forms
have no Fourier expansion. The Jacquet–Langlands correspondence then restricts to an isomorphism

JL : Sk(Γ0(N
−N+),F)(N

−)−new ≃−→ Sk(XN+,N− ,F).

We can also reformulate the above Jacquet–Langlands correspondence in the following way. Suppose
f∞ ∈ Sk(Γ0(N))new is a normalized newform, which is an eigenform for the Hecke operatorsTℓ, for ℓ ∤ N,
and the Atkin–Lehner involutionsWq, for q | N (here,Wq stands for theW-operator corresponding to
the q-primary partQ = qa of N as in [1], which induces an involution onSk(Γ0(N))). Then we have
Tℓ f∞ = aℓ f∞ for everyℓ ∤ N andWq f∞ = εq, f∞ f∞ for everyq | N, whereaℓ = aℓ( f∞) stands for theℓ-th
Fourier coefficient off∞ andεq, f∞ = ±1 is the eigenvalue of the Atkin–Lehner involution acting onf∞.
If valq(N) ≥ 2, then we haveaq = 0, whereas if valq(N) = 1 (in particular, for primesq | N−), then
the eigenvalueεq, f∞ is related to theq-th Fourier coefficient by the identityaq = −εq, f∞qr (recall that
according to our notationsk= 2r +2).

Let F be the number field generated by the Fourier coefficientsan = an( f∞) of f∞, which lie acually
in its ring of integersOF . Then the Jacquet–Langlands correspondence asserts that for each factorization
N = N+N− as above there exists a (unique) algebra homomorphism

φN+,N− : TN+,N− →OF
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such thatφN+,N−(Tℓ) = aℓ if ℓ ∤ N andφN+,N−(Wq) = εq, f∞ if q | N.
In particular, at primesq | N− (and also at primesq dividing exactlyN+) we recover theq-th Fourier

coefficient of f∞ asaq =−φN+,N−(Wq)qr . Also, notice that the eigenvaluewN,1 := φN,1(WN) of theFricke
involution WN acting onf∞ coincides withwN+,N− := φN+,N−(WN) (by a slight abuse of notation we write
WN for both the Fricke involution acting onf∞ and the one acting onf , namely the product of all the
involutionsWq for primesq | N).

3.2 Kuga–Sato varieties

We fix from now on a factorizationN = N+N− as in the previous section, and denote byR = RN+,N−

an Eichler order of levelN+ in the indefinite rational quaternion algebra of discriminant N− and by
X = XN+,N− the corresponding Shimura curve. Letπ : A → XM be the universal abelian surface over
the Shimura curveXM as in Section 2.1, whereM ≥ 3 is an auxiliary integer prime toN. ThusA /XM

is a relative scheme of relative dimension 2 (and absolute dimension 3), and for each geometric point
x : SpecL→ XM the fibreAx := A ×x SpecL is an abelian surface with QM byR and full levelM-
structure defined overL, representing the isomorphism class corresponding to the point x.

Let r ≥ 1 be an integer, andA r = A ×XM · · · ×XM A be ther-th fibered product ofA over XM.
We shall refer toA r as ther-th Kuga–Sato varietyoverXM. It has relative dimension 2r overXM, and
absolute dimension 2r +1. A generic point inA r might be represented as a tuple(x;P1, . . . ,Pr), wherex
is a point inX and thePi are points in the fibreAx.

Supposeℓ is a prime not dividingMN. Then we define the action of the Hecke operatorTℓ on the
Kuga–Sato varietyA r as follows. LetXM,ℓ be the Shimura curve classifying triples(A, ι ,C[ℓ]), where
(A, ι) is a QM abelian surface parametrized byXM, further endowed with a subgroupC[ℓ] of A[ℓ] which
is stable under the action ofR (via ι) and cyclic asR-module (A[ℓ] hasℓ+1 suchR-submodules, all
of them of orderℓ2). Notice that there is a natural forgetful morphism of Shimura curvesXM,ℓ → XM.
The fibre productAℓ := A ×XM XM,ℓ is then the universal abelian surface overXM,ℓ, equipped with a
subgroup schemeC [ℓ] of orderℓ2, which is also a module for the induced action ofR. LetQ denote the
quotient ofAℓ by the subgroup schemeC [ℓ], with level structure induced fromAℓ. Write alsoA r

ℓ and
Qr for the respectiver-th fibered products overXM,ℓ. Then the first and third squares in the following
diagram are cartesian:

A r

��

A r,ℓφ1
oo

φ2
//

��

Qr

��

φ3
// A r

��

XM XM,ℓoo XM,ℓ // XM

By using this diagram, the Hecke operatorTℓ acting onA r can be defined then as the correspondence
Tℓ = φ∗1 ◦φ2∗ ◦φ3∗. Such a correspondence induces an endomorphism, which we still denoteTℓ, on étale
cohomology groups H∗et(A

r × Q̄,−).

3.3 p-adic Galois representations attached to modular forms

Let f∞ ∈ Sk(Γ0(N),Q̄) be a (normalized) newform of even weightk = 2r + 2 (r ≥ 1) and levelN =
N+N− as before. Let alsof = JL( f∞) ∈ Sk(X,Q̄) be the corresponding newform onX under the Hecke-
equivariant isomorphism from Proposition 3.1. LetF = Q({an}) be the number field generated by the
Fourier coefficientsan = an( f∞) of f∞, which actually lie in its ring of integersOF .

Let p be a rational prime not dividingN. Associated withf∞, there is a freeOF ⊗Z Zp-module
V∞ = V( f∞) of rank 2 equipped with a continuousOF -linear action ofGQ = Gal(Q̄/Q). Indeed, the
Galois representationV∞ arises as a factor of the middle étale cohomology of the Kuga–Sato variety
obtained as the 2r-fold fibre product of (a suitable smooth compactification of) the universal elliptic
curveE (with full level N-structure) over the modular curveX(N) (cf. [32]). A similar construction is
available for f = JL( f∞), by considering the universal abelian surfaceπ : A → XM as a replacement
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for E → X(N). We sketch below this construction, which is based on previous work of Besser [5] and
follows the approach taken later in Iovita–Spieß [17].

The action ofR on A induces an action ofB× on Rqπ∗Qp, for q≥ 1. Then one defines ap-adic
sheaf

L2 :=
⋂

b∈B

ker(b−n(b) : R2π∗Qp→ R2π∗Qp),

which is a 3-dimensional local system onXM. Then the non-degenerate pairing

( , ) : L2⊗L2 →֒ R2π∗Qp⊗R2π∗Qp
∪→ R4π∗Qp

tr→Qp(−2)

induces a Laplacian operator
∆r : SymrL2 −→ (Symr−2L2)(−2),

andL2r ⊆ SymrL2 is defined as the kernel of∆r .
Thep-adicGQ-representation attached to the spaceSk(X,Q̄) of weightk modular forms onX is then

by definition (cf. [17, Definition 5.6])

H1
et(X

M× Q̄,L2r)
G(M) = pG(M)H

1
et(X

M× Q̄,L2r), (6)

where we takeG(M)-invariants by applying the projector

pG(M) :=
1

|G(M)| ∑
g∈G(M)

g∈Q[G(M)],

regarded as a correspondence in CorrX(A
r ,A r) (notice that there is an action ofG(M) onL2r , compat-

ible with the action onXM). This makes H1et(X
M× Q̄,L2r)

G(M) independent of the choice ofM, and one
further has

H1
et(X

M× Q̄,L2r)
G(M) ≃ pG(M)ε2rH

2r+1
et (A r × Q̄,Qp) = pG(M)ε2rH

∗
et(A

r × Q̄,Qp),

whereε2r is a suitable projector in CorrXM(A r ,A r) encoding the construction ofL2r . Also, we may
remark that the Galois representation in (6) arises as thep-adic étale realization of a Chow motiveM2r

(see [17, Appendix 10.1]).
The construction sketched above can be adapted to work withZp-coefficients, and one can even

consider cohomology with finite coefficients, provided thatwe assume thatp does not divideN · (2r)!
and we choose the auxiliary levelM so thatp does not divide|G(M)| (hence the projectorpG(M) is well-
defined inZp[G(M)] andZ/pmZ[G(M)]). Write L2r,m for the sheaf constructed asL2r but with ring of
coefficientsZ/pmZ, and letL2r := lim←−L2r,m be the correspondingp-adic sheaf.

Lemma 3.2. With the previous notations,H1
et(X

M× Q̄,L2r ) is torsion free and

H1
et(X

M× Q̄,L2r,m) = H1
et(X

M× Q̄,L2r)/pm.

Proof. First of all, the sheafL2r = (L2r,m) of Zp-modules is flat, and hence for everym> 1 the exact

sequence 0−→Z/pm−1Z
p−→Z/pmZ−→Z/pZ−→ 0 induces when tensoring withL2r,m a short exact

sequence
0−→L2r,m−1−→L2r,m−→L2r,1−→ 0.

By passing to the induced long exact sequence in étale cohomology and using that Hiet(X
M×Q̄,L2r,m) =

0 for i = 0,2 (cf. [17, Appendix 10]), one obtains a short exact sequence

0−→ H1
et(X

M× Q̄,L2r,m−1)−→ H1
et(X

M× Q̄,L2r,m)−→ H1
et(X

M× Q̄,L2r,1)−→ 0. (7)

Secondly, letXMpn
/Q be the Shimura curve with full levelMpn-structure aboveX, for each integer

n≥ 1. Then the natural forgetful morphism of Shimura curvesXMpn→XM is a Galois cover with Galois
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groupG(pn) = GL2(Z/pnZ)/±1, and we writeπn : An→XMpn
for the corresponding universal abelian

surface. By a slight abuse of notation, we still writeL2r,m for the p-adic sheaf onXMpn
constructed

in the same way as forXM but starting withR2πn,∗Z/pmZ. Then for each pair of integersm,n≥ 1,
H1

et(X
M × Q̄,L2r,m) is identified with H1

et(X
Mpn × Q̄,L2r,m)

G(pn), where the superscriptG(pn) means
that we take invariants byG(pn). Indeed, the Hochschild–Serre spectral sequence for Galois covers in
étale cohomology (see [23, III.2.20]) gives an exact sequence

H1(G(pn),H0
et(X

Mpn× Q̄,L2r,m))−→ H1
et(X

M× Q̄,L2r,m)−→ H1
et(X

Mpn× Q̄,L2r,m)
G(pn) −→

−→ H2(G(pn),H0
et(X

Mpn× Q̄,L2r,m)),

and using now that H0et(X
Mpn× Q̄,L2r,m) = 0 we obtain an isomorphism ofZ/pmZ-modules H1

et(X
M×

Q̄,L2r,m)≃ H1
et(X

Mpn× Q̄,L2r,m)
G(pn).

Now the inclusion H1et(X
M× Q̄,L2r,m−1) →֒ H1

et(X
M× Q̄,L2r,m) from (7) gives an isomorphism of

Z/pm−1Z-modules H1
et(X

M× Q̄,L2r,m−1) ≃ H1
et(X

M× Q̄,L2r,m)[pm−1]. To see this, first notice that for
any pair of integers 1≤ i≤ n, the stalk ofL2r,i at any geometric pointx′ of XMpn

is isomorphic to the stalk
at the image ofx′ on XM. However, the first one admits a trivialization induced fromthe trivialization
of R2πn,∗Z/piZ (using the levelpn-structure onAn,x′ ). In particular, forn≥ m one deduces that the
inclusion

H1
et(X

Mpn× Q̄,L2r,m−1) →֒ H1
et(X

Mpn× Q̄,L2r,m)

in the exact sequence analogous to (7) forXMpn
becomes the inclusion of thepm−1-torsion submodule

H1
et(X

Mpn× Q̄,L2r,m)[pm−1] in H1
et(X

Mpn× Q̄,L2r,m). By takingG(pn)-invariants, the claimed assertion
follows.

Next we use this last observation to conclude that for allm≥ 1, H1
et(X

M×Q̄,L2r,m) is a freeZ/pmZ-
module of rankt = dimFp(H

1
et(X

M× Q̄,L2r,1)) (in particular, notice thatt is independent onm). Indeed,
the statement is true form= 1, since H1

et(X
M × Q̄,L2r,1) is a finite dimensionalFp-vector space. By

induction, if we assume the statement true form−1 and set H= H1
et(X

M× Q̄,L2r,m) then we look at the
short exact sequence

0−→ H[pm−1]−→ H−→ H/H[pm−1]−→ 0

given by (7). By the inductive hypothesis, the first term H[pm−1] ≃ H1
et(X

M × Q̄,L2r,m−1) is a free
Z/pm−1Z-module of rankt, and the third term is identified with H1et(X

M× Q̄,L2r,1). Hence H1
et(X

M×
Q̄,L2r,m) is necessarily a freeZ/pmZ-module of rankt.

Finally, the Lemma follows now directly by applying [23, Lemma V.1.11].

Under the running assumptions thatp does not divideN · (2r)! andM is chosen such thatp does not
divide |G(M)| either, set

J := pG(M)

(

H1
et(X

M× Q̄,L2r)(r +1)
)

= H1
et(X

M× Q̄,L2r )(r +1)G(M).

LetT= TN+,N− denote the Hecke algebra generated by the good operatorsTℓ (ℓ ∤ N) and the Atkin–
Lehner involutionsWq (q |N), which act onJ by endomorphisms. WriteI f ⊆ T for the kernel of the ring
homomorphismφ : T→OF associated withf , and letV =V( f ) := {x∈ J : I f x= 0} be thef -isotypical
component ofJ. Since f is a newform, there is aT[GQ]-equivariant projectionJ→ V from J to the
f -isotypical component.

As in [17, Lemma 5.8],V = V( f ) is isomorphic toV∞ = V( f∞), both as freeOF ⊗Zp-modules of
rank 2 and asGQ-representations. In particular, [27, Proposition 3.1] applies verbatim forV =V( f ). We
restate it here for convenience of the reader and for later reference.

Proposition 3.3. i) V is a freeOF ⊗Zp-module of rank2, equipped with a continuousOF -linear
action ofGal(Q̄/Q).
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ii) There is aGal(Q̄/Q)-equivariant, skew-symmetric pairing[, ] :V×V −→ Zp(1) such that[λx,y] =
[x,λy] for all x,y∈V andλ ∈OF ⊗Zp, which induces non-degenerate pairings

[, ]s : V/psV×V/psV −→ µps, s≥ 0.

iii) For each primeℓ ∤ N p, the characteristic polynomial of the (arithmetic) Frobenius automorphism
Fr(ℓ) acting on V⊗Q is

det(1−xFr(ℓ) |V⊗Q) = 1− aℓ
ℓr x+ ℓx2.

iv) For each prime q| N,

det(1−xFr(q) | (V⊗Q)I) = 1− aq

qr x,

with aq = 0 or −εq, f qr , where I= Gal(Q̄q/Q
ur
q ) is the inertia subgroup andεq, f = φN+,N−(Wq) ∈

{±1} is the eigenvalue of the Atkin–Lehner involution Wq acting on f .

The above Proposition tells us thatV is a higher weight analogue of the Tate module of an elliptic
curve, in which the Weil pairing is now replaced by the skew-symmetric pairing[, ] from ii). On the other
hand, the isomorphism betweenV andV∞ (both asOF⊗Zp-modules and asGQ-representations) implies
thatV ⊗Q is the p-adic realization of the motiveM f := M f∞ overQ with coefficients inF associated
with f∞ (cf. [27, p. 103] and [32]). Proposition 3.3 then asserts that M∨f = M f (−1) and

L(M∨f ,s) = L( f∞,s+ r) =
∞

∑
n=1

ann−s−r . (8)

According to the functional equation satisfied by theL-seriesL( f∞,s) (see [34, Theorem 3.66]), we see
that definingΛ(s) := Ns/2(2π)−s−rΓ(s+ r)L(M∨f ,s), the following relation holds

Λ(s) = εΛ(2−s),

with ε = (−1)r+1wN,1 = (−1)r+1wN+,N− , wherewN,1 = φN,1(WN) (resp. wN+,N− = φN+,N−(WN)) is the
eigenvalue of the Fricke involutionWN acting on f∞ (resp. f = JL( f∞)). In the remaining of this note,
we will also writeL( f ,s) for the complexL-series in (8).

Remark 3.4. Working with the alternative moduli interpretation for theShimura curveX proposed in
Remark 2.7, we could have considered theKuga–Sato varietyoverXM obtained as the 2r-th fibered self-
productC 2r of the universal genus 2 curveC overXM. The cohomologies ofC 2r andA r are closely
related, and one could realizeV =V( f ) as a factor in the middle étale cohomology ofC 2r similarly as
we did by usingA r . When dealing with CM (or Heegner) cycles as defined in the next section, we found
no advantage in taking this alternative approach (cf. Remark 2.8), although we believe it could be useful
when dealing with diagonal cycles in products of Kuga–Sato varieties over Shimura curves along the
lines of [11].

4 Algebraic cycles andp-adic étale Abel–Jacobi map

In this section we will introduce and explore special algebraic cycles on the Kuga–Sato varietyA r ,
which will be referred to asCM (or Heegner) cyclesas they lie above CM (or Heegner) points on the
Shimura curveX. Their definition resembles the well-known construction ofCM cycles on Kuga–Sato
varieties above classical modular curves, since they are essentially obtained from the CM cycles in the
QM-abelian surfaces parametrized by CM points on the Shimura curveX (cf. Section 2). The images
of these CM cycles under suitablep-adic étale Abel–Jacobi maps will give rise to a system of Galois
cohomology classes that will be the input for Kolyvagin’s method to bound the Selmer group, so let us
first recall how these Abel–Jacobi maps are defined.
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4.1 p-adic étale Abel–Jacobi map

Let W be a smooth proper irreducible variety of dimensiond defined over a fieldK, and let CHc(W/K)
be the Chow group of rational equivalence classes of codimensionc (algebraic) cycles inW defined over
K. If W denotes the base change ofW to a fixed algebraic closurēK of K, the p-adic étale cycle class
map

CHc(W/K) −→ H2c
et (W,Zp(c))

described in [18] gives rise to a map

cl : CHc(W/K) −→ H2c
et (W,Zp(c)).

Here, H∗et stands for continuous étale cohomology, and we use the usual convention for Tate twists: if
M is aZp[GQ]-module andc is an integer, thenM(c) = M⊗ χc

p, whereχp : GQ → Z×p is the p-adic
cyclotomic character.

A cycle whose class in CHc(W/K) is in the kernel of cl is callednull-homologous, and we write
CHc(W/K)0 := ker(cl) for the group of all such (classes of) cycles. The Hochschild–Serre spectral
sequence (see [18]) relating continuous étale cohomologywith continuous Galois cohomology ofGK =
Gal(K̄/K),

Hi(K,H j
et(W,Zp(c)))⇒ Hi+ j

et (W,Zp(c)),

gives rise to the so-called (c-th) p-adic étale Abel–Jacobi map onW overK

AJp : CHc(W/K)0 −→ H1(K,H2c−1
et (W,Zp)(c)).

For our purposes in this note we are interested in considering W = A r , ther-th Kuga–Sato variety
overXM, wherek= 2r +2 is the weight of our starting cuspidal newformf∞ of levelN, and we still keep
our fixed factorizationN = N+N−. Then the(r +1)-th p-adic Abel-Jacobi map forA r over a fieldK of
characteristic zero takes the form

AJp : CHr+1(A r/K)0 −→ H1(K,H2r+1
et (A r ×K K̄,Zp)(r +1)). (9)

Since the Abel–Jacobi map commutes with automorphisms of the underlying varietyA r , by applying
the projectorsε2r andpG(M) we see that AJp induces a map

ε2r(CHr+1(A r/K)0⊗ZZp) −→ H1(K,J).

But now notice thatε2rH
2r+2
et (A r ×K K̄,Zp)(r +1)) = 0 (see [17, Lemma 10.1]), or in other words, the

target of the cycle class map on CHr+1(A r/K) vanishes after applyingε2r . Therefore,

ε2r(CHr+1(A r/K)0⊗ZZp) = ε2r(CHr+1(A r/K)⊗ZZp)

and composing the last map with the projectionef : J→V onto the f -isotypical component we finally
obtain a map

Φ f ,K : CHr+1(A r/K)⊗ZZp
ε2r−→ ε2r(CHr+1(A r/K)⊗ZZp) −→ H1(K,V).

Since AJp commutes with correspondences and with the Galois action, it follows that the mapΦ f ,K

is bothT-equivariant and (ifK/Q is Galois) Gal(K/Q)-equivariant.
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4.2 Conjectures by Beilinson, Bloch, Kato and Perrin-Riou.

The Beilinson conjectures predict a relation between the rank of the Chow group of homologically trivial
algebraic cycles on a smooth projective varietyX of dimension 2i+1 over a number fieldK and the order
of vanishing of theL-function attached to its étale cohomology, expecting that

ords=i+1 L(H2i+1
et (X), s)

?
= dimQ CHi+1(X)0,

(see [2, Conjecture 5.9]). This conjecture can be refined by applying the projectorecorresponding to the
motive associated toX one is interested in to both sides of the equality to obtain the prediction that

ords=i+1L(eH2i+1
et (X),s)

?
= dimQeCHi+1(X)0.

Furthermore, lettingM denote H2i+1
et (X), and letting Sel(K,e M) be the submodule ofH1(K,e M) of

cohomology classes locally unramified everywhere outside afinite setSof primes and satisfying suitable
conditions for primes inS, Bloch and Kato predict that the Abel-Jacobi map

eCHi+1(X)0⊗Qp−→ Sel(K,e M)

is an isomorphism [6]. Hence, one expects that

ords=i+1L(e M,s)
?
= rank Sel(K,e M).

We outlined in the Introduction some of the contributions towards these conjectures in the setting
where the motiveM is associated to an elliptic curve or a (twisted) higher evenweight modular form and
a CM field satisfying the appropriate Heegner hypothesis. Inour setting, one strives to prove that

ords=r+1L( f ⊗K,s)
?
= rank Sel(∞)

℘ ( f ,K),

where Sel(∞)
℘ ( f ,K) is defined in (17). Forr = 0, X. Yuan, S.-W. Zhang and W. Zhang [37] showed that

L′( f ⊗K,1) = 〈y0,y0〉

up to an explicit non-zero constant, for an appropriate height pairing 〈 , 〉, and Disegni [13] obtained
a p-adic avatar of this result. However, even if one disposed ofa formula such as the one by X. Yuan,
S.-W. Zhang and W. Zhang in higher weight, one would not be able to deduce the equality predicted by
Beilinson, Bloch and Kato, becauseΦ f ,K is not known to be injective. On the other hand, one could
tackle conjectures in thep-adic realm due to Perrin-Riou [9] of the form

L′p( f ⊗K, ℓK,1)
?
= 〈Φ f ,K(y0),Φ f ,K(y0)〉

whereℓK : Gal(K∞/K)−→Qp and〈 , 〉 is a suitablep-adic height pairing. Indeed, ap-adic Gross–Zagier
formula in higher even weight would combine with our result to validate an equality as above, along the
lines of Perrin-Riou’s conjecture for modular forms over Shimura curves, provided that the underlying
p-adic height pairing is non-degenerate. This is the subjectof forthcoming work of Daniel Disegni.

4.3 CM cycles

Now we construct the CM (or Heegner) cycles on the Kuga–Sato variety A r alluded to above, sitting
above CM points onX = XN+,N− . To do so, we shall first recall the notion of CM points on the Shimura
curveX, so we will fix from now on an imaginary quadratic fieldK satisfying the Heegner hypothesis

(Heeg) Every prime dividing N− (resp. N+) is inert (resp. split) in K.
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This assumption implies thatK embeds as a subfield inB. Consider then the natural map

B̂××Hom(K,B) −→ X(C) =
(

R̂
×\B̂××Hom(C,M2(R))

)

/B×,

given by extending homomorphismsK→B to homomorphismsC→M2(R). A point x∈ X(C) is called
a CM point (or aHeegnerpoint) byK if x= [b,g] for some pair(b,g) ∈ B̂××Hom(K,B). We denote by

CM(X,K) := {[b,g] ∈ X(C) : (b,g) ∈ B̂××Hom(K,B)}

the set of all CM points onX by K. Let c≥ 1 be an integer with gcd(N,c) = 1. A CM pointx= [b,g] ∈
CM(X,K) is said to be of conductorc≥ 1 if the embeddingg : K→ B is optimal with respect toRc and
R, whereRc denotes the quadratic order inK of conductorc. This optimality condition means that

g(K)∩b−1
R̂b= g(Rc),

so that no quadratic order strictly containingRc as suborder embeds intob−1R̂b via g. Using that
Eichler orders in indefinite rational quaternion algebras have class number one, it is easy to show that the
set CM(X,K,c) ⊆ CM(X,K) of Heegner points of conductorc is in bijection with the set Emb(Rc,R)
of (R×-conjugacy classes of) optimal embeddings ofRc into R. In particular,|CM(X,K,c)|= 2th(Rc),
wheret denotes the number of primes dividingN andh(Rc) is the class number ofRc.

Shimura’s reciprocity law (cf. [12, 3.9], [24, II.5.1], [25, 1.10]) asserts that CM(X,K)⊆ X(Kab) and
that the Galois action of Gal(Kab/K) on Heegner points is described via the reciprocity map

recK : K̂× −→Gal(Kab/K)

from class field theory. More precisely, for everya∈ K̂× and every CM point[b,g] ∈CM(X,K), one has

recK(a)[b,g] = [ĝ(a)b,g],

whereĝ : K̂× → B̂× denotes the embedding induced byg. In particular, recall that for eachc≥ 1 the
reciprocity map induces an isomorphism

K̂×/R̂×c K× ≃ Pic(Rc)
≃−→Gal(Kc/K),

whereKc denotes the ring class field ofK of conductorc, hence it follows that

CM(X,K,c)⊆ X(Kc).

Moreover, one can check that Gal(Kc/K) acts freely on the set of Heegner points of conductorc, so
that CM(X,K,c) has 2t distinct Gal(Kc/K)-orbits. Besides, the groupW of Atkin–Lehner involutions
acts on CM(X,K,c) as well, and for each primeq |N, the corresponding involutionWq acts on CM points
by switching their localorientationat q. The Galois action, on the contrary, preserves the orientations,
so that the 2t distinct Gal(Kc/K)-orbits are in one-to-one correspondene with the 2t possible orientations
(cf. [36, Chapter 7]).

From a moduli point of view, a CM pointx ∈ CM(X,K,c) ⊆ X(Kc) of conductorc corresponds to
the isomorphism class[A, ι ] of an abelian surface with QM byR having CM by the orderRc; that is,
such that End(A, ι)≃Rc. We use this interpretation of CM points to construct certain algebraic cycles on
Kuga–Sato varieties aboveX, the desired CM cycles. To do so, we use the isomorphismA≃E×Ea from
Section 2.2 in order to define a cycleZA ⊆ A, which will eventually give rise to a cycle inA r . Recall
that in the previous isomorphism,E andEa are elliptic curves with CM byRc, such thatE(C) = C/Rc

andEa(C) = C/a. Herea is a fractionalRc-ideal.
We shall adopt the same conventions and normalizations as inSection 2.4. Hence by choosing

a square root
√−Dc ∈ Rc we can decomposea = Za⊕ Z

√−Dc as a direct sum of its(+1)− and
(−1)−eigencomponents for complex multiplication (or equivalently, for the Gal(K/Q)-action), where
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a∈ Z dividesDc. As explained in Section 2.4, the Néron–Severi group ofA is the freeZ-module of rank
4 generated by the classes of the cycles

E×0, 0×Ea, Za and Z√−Dc
.

We then define the CM cycle associated withA to be the cycle

ZA := Z√−Dc
⊆ A.

Notice that under our conventions, the cycleZA is well-defined up to sign, since its sign changes when√−Dc is replaced by−√−Dc.

Remark 4.1. If A is a QM abelian surface, then NS(A)Q := NS(A)⊗ZQ has a natural rightB×-action.
If further A has CM as above, then one has a decomposition (as a rightB×-module) NS(A)Q ≃ ad0(B)⊕
Nrd, where ad0(B) denotes the representation ofB× consisting of elements of trace zero on whichB×

acts on the right by conjugation and Nrd denotes the one-dimensional representation ofB× given by the
reduced norm (cf. [5], [17, Lemma 8.1]). The one-dimensional subspace of NS(A)Q corresponding to
Nrd is usually refered to as its “CM part”, and is generated by(the class of)ZA.

Next we study how the cyclesZA are related whenA varies in a QM-isogeny class of abelian surfaces
with QM by R and CM byK. In other words, we want to relate the Heegner cycles constructed as above
when we varyx in CM(X,K).

First of all, we notice that the choice of the square root
√−Dc does not only fix the cycleZA,

but also the CM cyclesZA′ for every QM-abelian surfaceA′ which is QM-isogenous toA. Indeed, if
ψ : A→ A′ is a QM-isogeny, then we fix the sign ofZA′ by insisting thatψ∗ZA = tZA′ for somet > 0.
This condition does not depend on the isogenyψ ; to see this, by using that QM abelian surfaces admit
a unique principal polarization compatible with the QM structure, one is reduced to show that for every
φ ∈ EndR(A) there exists a constantt > 0 such thatφ∗ZA = tZA. But the latter holds becauseφ∗ acts
on NS(A) as multiplication by deg(φ). In other words, one only requires

√−Dc′/
√−Dc to be positive

under the canonical identificationRc⊗Q≃ Rc′⊗Q.
Now fix a CM pointx′ = [A′, ι ′]∈CM(X,K,c′) of conductorc′ ≥ 1, represented by some QM abelian

surface(A′, ι ′) with End(A′, ι ′) ≃ Rc′ . Similarly as forA, we now writeA′ ≃ E′×Eb, whereE′(C) =
C/Rc′ andEb(C) =C/b for some fractionalRc′-idealb. We writeb= Zb⊕Z

√−Dc′ following the same
conventions as those fora. Then the CM cycle associated withx′, or with A′, is the cycleZA′ := Z√−Dc′

corresponding to the isogeny
√

−Dc′ ∈ b≃Hom(E′,Eb).

Choosing the square root
√−Dc′ ∈ Rc′ so that

√−Dc′/
√
−Dc is positive, the precise relation between

the cyclesZA andZA′ under a given QM-isogenyA→ A′ is the content of the next proposition.

Proposition 4.2. Let (A, ι) and (A′, ι ′) be as above, and letψ : A→ A′ be a QM-isogeny of abelian
surfaces with QM byR and CM by K. Then:

a) ψ∗ZA = (deg(ψ))1/2(bDc/aDc′)
1/2ZA′.

b) ψ∗ZA′ = (deg(ψ))1/2(aDc′/bDc)
1/2ZA.

Proof. First notice that the degree of the isogeny
√−Dc : E→ Ea equals the index of

√−DcRc in a as
lattices. This index is preciselya−1Dc. Similarly, the degree of

√−Dc′ : E′ → Eb is b−1Dc′ . We see
therefore that the constantbDc/aDc′ in the statement is precisely deg(

√−Dc)/deg(
√−Dc′). Similarly,

the ratioaDc′/bDc in (b) coincides with deg(
√−Dc′)/deg(

√
−Dc).

Now consider the CM cycleZA =Γ√−Dc
−(E×0)−deg(

√
−Dc)(0×Ea). A straightforward compu-

tation shows thatψ∗ZA is orthogonal with respect to the intersection pairing to〈E′×0,0×Eb,Zb〉, hence
it must lie in theZ-submodule of rank 1 in NS(A′) generated by the CM cycleZA′ . As a consequence,
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ψ∗ZA= qZA′ for some constantq. Such a constant can be then obtained by computing the self-intersection
numbersZA′ ·ZA′ and(ψ∗ZA) · (ψ∗ZA) and using the identity(ψ∗ZA) · (ψ∗ZA) = q2ZA′ ·ZA′. We have

ZA′ ·ZA′ =−2deg(
√

−Dc′) and (ψ∗ZA) · (ψ∗ZA) =−2deg(
√
−Dc)deg(ψ),

hence we conclude thatq=

(

deg(ψ)deg(
√
−Dc)

deg(
√
−Dc′ )

)1/2

= (deg(ψ))1/2(bDc/aDc′)
1/2 and (a) follows. Part (b)

can be obtained now from (a) by the projection formula.

Let now x ∈ X(Kab) ⊆ CM(X,K) be a CM point byK, and choose ˜x ∈ q−1(x) any preimage ofx
under the forgetful morphismq : XM → X of Shimura curves. The fibreAx̃ is a QM abelian surface
with End(Ax̃, ιx̃) = Rc, for some positive integerc. Hence we have a well defined (up to sign) cycle
Zx̃ ∈ CH1(Ax̃).

The cyclesZx̃, for x̃ ∈ q−1(x), can be chosen in a compatible way with respect to the action of
G(M). Namely, everyg∈G(M) extends to an automorphismg : A →A , and induces an isomorphism
g : Ax̃→Ag(x̃) for everyx̃∈ q−1(x). Then we may require thatg∗(Zx̃) = Zg(x̃) for everyx̃∈ q−1(x) and
everyg∈G(M).

On the other hand, ifW denotes the group of Atkin–Lehner involutions acting onX, eachw ∈ W

extends canonically to an involution onXM, which we still denote by the same symbolw, commuting
with the action ofG(M). Similarly, also the group Gal(Kc/K) acts onXM/Kc, and in particular on
q−1(CM(X,K,c)). The actions of bothW and Gal(Kc/K) extend to the universal abelian surfaceA ,
and we may choose the cyclesZx̃ so that

w∗(Zx̃) = Zw(x̃) δ∗(Zx̃) = Zδ (x̃)

for everyw∈W and everyδ ∈Gal(Kc/K).
Continue to fix our CM pointx∈ CM(X,K,c) and any liftx̃∈ q−1(x). The inclusionix̃ : π−1(x̃) =

Ax̃ →֒A of the fibreπ−1(x̃) into the universal abelian surfaceA induces a map CH1(Ax̃)→ CH2(A ),
and hence we can consider the image ofZx̃ in CH2(A ). More generally, the inclusionirx̃ : π−1

r (x̃) =
A r

x̃ →֒A r of the fibre ofπr : A r → XM above ˜x into ther-th Kuga–Sato varietyA r overXM, induces a
map

(irx̃)∗ : CHr(A r
x̃ ) −→ CHr+1(A r),

and we letZx̃ := (irx̃)∗(Z
r
x̃) ∈CHr+1(A r/Kc) be the image ofZr

x̃ = Zx̃×·· ·×Zx̃. HenceZx̃ is a cycle of
codimensionr +1 in A r defined overKc, the ring class field of conductorc= c(x). Notice that for every
w∈W andδ ∈Gal(Kc/K) the above compatibility conditions for the cyclesZx̃ imply that

w∗(Zx̃) = Zw(x̃) and δ∗(Zx̃) = Zδ (x̃).

5 The Euler system

We keep assuming the Heegner hypothesis (Heeg), so that for every integern≥ 1 with gcd(NDK,n) = 1
the set CM(X,K,n) of CM points of conductorn is non-empty. Under the mapsΦ f ,Kn induced by the
relevantp-adic étale Abel–Jacobi maps, the CM cycles constructed inthe previous section give rise to
a collection of cohomology classes enjoying the compatibility properties that turn them into an Euler
system of Kolyvagin type.

We shall restrict ourselves to square-free integersn ≥ 1 such that gcd(pNDK,n) = 1 and whose
prime factors are allinert in K. Such primes will be referred to asKolyvagin primes, although later we
will need to impose more precise restrictions. Fix an embedding g : K→ B, optimal with respect toR1

andR, whereR1 = RK stands for the ring of integers inK. Such an embedding defines a CM point
x(1) = [1,g] ∈CM(X,K,1) of conductor 1 inX. For each primeℓ ∤ pNDK inert inK, choose an element
b(ℓ) ∈ B×ℓ ⊂ B̂× satisfying ordℓ(n(b(ℓ))) = 1, and ifn= ℓ1 · · ·ℓk is a product of pairwise distinct primes
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ℓi ∤ pNDK inert inK, setb(n) := b(ℓ1) · · ·b(ℓk)∈ B̂×. Thenx(n) := [b(n),g] ∈CM(X,K,n) is a CM point
of conductorn in X. This way, we have defined a collection of algebraic pointsx(n) ∈ X(Kn), indexed
by positive integersn as above.

For eachx(n), we choose a preimage ˜x(n) ∈ q−1(x(n)) in XM, and forx̃(n) we have defined a CM cy-
cleZn := Zx̃(n) ∈CHr+1(A r/Kn). We denote byyn ∈H1(Kn,V) the image ofZn by theT[Gal(Kn/K)]-
equivariant morphism

Φ f ,Kn : CHr+1(A r/Kn)⊗Zp −→ H1(Kn,V).

Because of the averaging projectorpG involved in the definition ofΦ f ,Kn, the cohomology classyn does
not depend on the choice of ˜x∈ q−1(x).

5.1 The Euler system relations

Let n = ℓ1 · · ·ℓk be the square-free product of pairwise distinct primes as above, all of them inert inK
and not dividingpNDK. We may assume for simplicity thatR×K = {±1}, which amounts to say thatK 6=
Q(
√
−1),Q(

√
−3) (otherwise, all the discussion applies almost without any change, withuK := |R×K |/2

appearing in many of the computations). If we writeGn := Gal(Kn/K1), thenGn≃∏ℓ|n Gℓ, where each
Gℓ = Gal(Kℓ/K1) is cyclic of orderℓ+ 1. We fix once and for all a generatorσℓ ∈ Gℓ for each prime
ℓ inert in K. By class field theory, ifn= mℓ andλ = (ℓ) is the only prime inK aboveℓ, thenλ splits
completely inKm/K, and each primeλm in Km aboveλ is totally ramified inKn/Km, so thatλm= (λn)

ℓ+1.
Whenn varies over positive integers as above, the cohomology classesyn arising from CM cycles in

A r enjoy the following norm compatibility relations.

Proposition 5.1(Global norm compatibilities). Let n= ℓm be a product of Kolyvagin primes. Then

Tℓ(ym) = corKmℓ, Km(ymℓ) = aℓymℓ.

Proof. We know thatTℓ acts onV as multiplication byaℓ, thus it suffices to prove the first equality of the
statement. Suppose thatym∈H1(Km,V) is the image underΦ f ,Km of a CM cycleZx̃(m) = (irx̃(m))∗(Z

r
x̃(m)),

for some ˜x(m) ∈ XM(C) lying above a CM pointx(m) ∈ X(Km) of conductorm. The divisorTℓ(x̃(m))
consists ofℓ+1 points, lying above theℓ+1 points whose formal sum isTℓ(x(m)). By compatibility of
the Hecke correspondenceTℓ acting onX, XM andA r , we have

TℓZx̃(m) = ∑
x̃ ∈ Supp(Tℓ(x̃(m)))

Zx̃.

But using the norm relations for CM points onX (see [29, Proposition 4.8 (ii)]), the right hand side
equals

∑
σ∈Gal(Kmℓ/Km)

Zσ(x̃(mℓ)) = ∑
σ∈Gal(Kmℓ/Km)

σ∗(Zx̃(mℓ)),

where the last equality follows from the compatibility of the CM cycles under Galois action. Finally,
sinceΦ f ,Km is Hecke- and Galois-equivariant, the above relation impliesTℓ(ym) = corKn,Km(ymℓ), as was
to be proved.

Proposition 5.2(Local norm compatibilities). Let n= ℓm be a product of Kolyvagin primes. Letλn be a
prime dividingℓ in Kn. Then

yn,λn
= Frob(ℓ)(resKλm,Kλn

(yn,λn
)) ∈ H1(Kλn

,V).

Proof. Let x(m) andx(n) be the CM points onX corresponding to the classesym andyn, respectively,
and letAm be a QM-abelian surface with CM representingx(m). Then x(n) can be represented by
An = Am/C, whereC⊆ A[ℓ] is a subgroup of orderℓ2, cyclic asR-submodule, andAm andAn are related
by the canonical isogenyAm→ Am/C. Sinceℓ is inert inK, the reductions ofAm andAn moduloλm and
λn, respectively, are both products of two supersingular elliptic curves (recall thatλm is totally ramified
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in Kn/Km, hence the residue fields of bothKm at λm andKn at λn coincide, and are in fact isomorphic to
the finite field ofℓ2 elements). Then the isogenyAm→ Am/C reduces to Frobenius on each factor and
the claim follows by the relations between CM cycles under isogeny in Proposition 4.2 (the constantsa
andb are forced to be equal, andc′ = cℓ).

The cohomology classesyn also enjoy the following compatibility with respect to complex conjuga-
tion, which stems directly from the action of complex conjugation on the CM cycles.

Proposition 5.3. If ρ denotes complex conjugation, then

ρ(yn) =−εσ(yn)

for someσ ∈Gal(Kn/K), whereε denotes the sign in the functional equation of L( f ,s).

Proof. Let Zx ⊆Ax̃ be the cycle associated to (a lift ˜x∈ XM of) the CM pointx= x(n) of conductorn.
Thenρ(Zx) =−Zρ(x).

Besides, it is well-known thatρ(x) = WN(σ(x)) for someσ ∈ Gal(Kn/K), whereWN stands for
the Atkin–Lehner involution associated withN = N+N− acting onX (see [36, p. 135]). By using the
compatibility of the CM cycles with the actions of Galois andW , and that these actions commute, it
follows that

ρ(Zn) = (−1)rWN,∗(σ∗(Zn)) = (−1)rσ∗(WN,∗(Zn)).

Finally, sinceΦ f ,Kn is Hecke- and Galois-equivariant, we deduce that

ρ(Φ f ,Kn(Zn)) = (−1)rwN+,N−σ(Φ f ,Kn(Zn)),

which is equivalent to the relation we want, sinceε = (−1)r+1wN+,N− .

5.2 Kolyvagin cohomology classes

Recall thatV is a freeOF ⊗Zp-module of rank 2, whereOF stands for the ring of integers in the number
field F generated by the Hecke eigenvaluesan = an( f∞). If O℘ denotes the completion ofOF at a prime
℘of F abovep, then there is a canonical decompositionOF⊗Zp =⊕O℘, where the sum is over all such
primes℘ | p. Fix once and for all a prime℘ | p of F. ThenV℘ :=V⊗OF⊗Zp O℘ is a freeO℘-module of
rank 2, and there are natural localization morphisms

H1(Kn,V)−→ H1(Kn,V℘), yn 7−→ yn,℘.

From now on, we writeY :=V℘⊗Qp/Zp andYs :=Yps for everys≥ 1, henceYs =V℘/psV℘ for s≥ 1.
We remark that for the sake of simplicity, we did not considerthese integral and modps representations
in the Introduction, and rather stayed at the level ofF℘-vector spaces. Indeed, the representationV℘( f )
of the Introduction corresponds to theF℘-vector spaceV℘⊗O℘ F℘=V℘⊗Zp Qp. For eachs≥ 1, we have
a natural reduction map

reds : H1(Kn,V℘)−→ H1(Kn,Ys)

(and all such maps are compatible in the natural way whens varies), and we denote byLs/K the Galois
extension ofK cut out by the representationYs.

It follows directly from [27, Proposition 6.3] thatYGal(Q̄/Kn)
s =YGal(Q̄/K1)

s for every square-free integer
n which is a product of primes as above, and further there exists an integers1≥ 0, which doesnotdepend

on s, such thatYGal(Q̄/K1)
s (hence alsoYGal(Q̄/Kn)

s , for all n) is killed by ps1. We state below a direct
consequence of this (cf. [27, Corollary 6.4]), for later reference.

Corollary 5.4. There is an integer s1≥ 0, independent from s, such that both the kernel and cokernel of
the restriction map

resK1,Kn : H1(K1,Ys) −→ H1(Kn,Ys)
Gn

are killed by ps1.
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Next we want to constructGn-invariant classes in H1(Kn,Ys) starting from the localized classesyn,℘.
To do so, we first need to restrict a bit more the indicesn that will be admissible in our system of classes,
or rather on the primes that will be allowed as factors ofn.

Definition 5.5. For eachs≥ 1, we defineΣ1(s) to be the set of rational primesℓ ∤ 2pNDK such that
the conjugacy class Frobℓ(KcLs/Q) of the arithmetic Frobenius automorphism Frobℓ in Gal(KcLs/Q)
coincides with the conjugacy class Frob∞(KcLs/Q) of complex conjugation. We then put, for every
k≥ 1,

Σk(s) = {ℓ1 · · ·ℓk : ℓi ∈ Σ1(s) pairwise distinct}.
Primes inΣ1(s) will be referred to ass-Kolyvagin primes, or justKolyvagin primes.

The condition on the conjugacy classes of Frobenius and complex conjugation can be rephrased by
saying that Frobℓ and the complex conjugation Frob∞ have the same characteristic polynomial modulo
ps, that is,

x2−1≡ ℓx2− aℓ
ℓr

x+1 (mod ps),

This is equivalent to the assertion that
(−DK

ℓ

)

=−1 and aℓ ≡ ℓ+1≡ 0 (mod ps).

In particular, notice that primesℓ ∈ Σ1(s) are inert inK.
Let ℓ ∈ Σ1(s) be a Kolyvagin prime, and recall that we denoted byσℓ a fixed generatorGℓ =

Gal(Kℓ/K1). Recall alsoKolyvagin’s traceandderivativeoperators

Trℓ =
|Gℓ|−1

∑
i=0

σ i
ℓ, Dℓ =

|Gℓ|−1

∑
i=0

iσ i
ℓ ∈ Z[Gℓ],

related by the identities
(σℓ−1)Dℓ = |Gℓ|−Trℓ = ℓ+1−Trℓ.

If n= ℓ1 · · ·ℓk ∈ Σk(s), then one also defines

Dn := Dℓ1 · · ·Dℓk ∈ Z[Gn].

Proposition 5.6. The cohomology class Dnreds(yn,℘) ∈ H1(Kn,Ys) is Gn-invariant, i.e. it belongs to
H1(Kn,Ys)

Gn.

Proof. Let ℓ be a (Kolyvagin) prime dividingn and setn= mℓ. Then we have

(σℓ−1)Dnyn,℘ = Dm(ℓ+1−Trℓ)yn,℘ = Dm(ℓ+1)yn,℘−aℓDmym,℘,

where in the second equality we use resKm,Kn ◦corKn,Km = Trℓ and Proposition 5.1. Now sinceℓ ∈ Σ1(s)
we know thatℓ+1≡ aℓ ≡ 0 (mod ps), hence the statement follows.

By virtue of Corollary 5.4, this proposition implies that, possibly up to multiplying byps1 (where re-
call thats1 is independent ofs), the derived classesDnreds(yn,℘) ∈H1(Kn,Ys) can be lifted to H1(K1,Ys).
This lifting is often referred to as “Kolyvagin’s corestriction”, and is reviewed in detail in [27, Section
7].

More precisely, continue to fixs≫ 0, puts′ = s+s1 and require Kolyvagin primes to lie inΣ1(s′) (so
thataℓ≡ ℓ+1≡ 0 (mod ps′) for all primesℓ dividing n). Multiplication by ps1 induces a homomorphism
j : Ys′ →Ys. A system of cohomology classes

κs(n) ∈ H1(K,Ys)
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can be defined in the following way. Forn = 1, just setκs(1) := corK1,K(reds(y1,℘)). If n = ℓ is a
Kolyvagin prime, thenps1Dℓreds′(yℓ,℘) = resK1,Kℓ

(zℓ) for some classzℓ ∈H1(K1,Ys′), and two choices of
zℓ differ by an element in the image of H1(K,Ys1)→H1(K,Ys′), and hence in the kernel ofj∗. In view of
this, the class

κs(ℓ) := corK1,K( j∗(zℓ)) ∈ H1(K,Ys),

is well-defined and does not depend on the choice ofzℓ. More generally, ifn= ℓ1 · · ·ℓk is a (square-free)
product of Kolyvagin primes, thenps1Dnreds′(yn,℘) = resK1,Kℓ

(zn) for somezn ∈ H1(K1,Ys′). As before,
the class

κs(n) := corK1,K( j∗(zn)) ∈ H1(K,Ys),

is well-defined.

5.3 Localization away from p

Having defined the cohomology classesκs(n), we end this section by describing their local behaviour at
placesv of K not dividing p. Of special interest are the localizations at places above the prime factors
of n. We may start by fixing some notation. Letℓ ∈ Σ1(s) be a Kolyvagin prime dividingn, write
n= mℓ and letλ be the (unique) prime ofK aboveℓ. We fix a primeλn of Kn aboveℓ, which uniquely
determines primesλm, λℓ andλ1 of Km, Kℓ andK1, respectively, all of them overℓ. Recall thatλ = (ℓ)
splits completely in the extensionKm/K, whereasλm is totally ramified inKn/Km, henceλm = (λn)

ℓ+1.
At the level of completions, we haveKλn

= Kλℓ
andKλm

= Kλ1
= Kλ , and our choice ofλn determines

also an isomorphism

Gal(Kλℓ
/Kλ ) = Gal(Kλn

/Kλm
)≃Gal(Kℓ/K1) = 〈σℓ〉.

In particular, the choice ofλn identifies the generatorσℓ with an element of Gal(Kλℓ
/Kλ ). Such an

element can be lifted to a generatorτℓ of Gal(Ktr
λ /Kur

λ )≃ Ẑ(ℓ)(1), whereKtr
λ is the maximal tamely ram-

ified extension ofKλ andẐ(ℓ) = ∏q6=ℓZq. This lift is well-defined modulo(ℓ+1)Ẑ(ℓ)(1), and under the
canonical projection̂Z(ℓ)(1)→ µps′ it is sent to some primitiveps′-th root of unity, sayζλ ,s′ ∈ µps′ (Kλ ).
Tame duality then yields (cf. [27, Proposition 8.1])O℘-linear canonical isomorphisms

αλ ,s′ : H1
ur(Kλ ,Ys′)

≃−→Ys′(Kλ ), (10)

βλ ,s′ : H1(Kur
λ ,Ys′)

≃−→ Hom(µps′ (Kλ ),Ys′(Kλ ))≃Ys′(Kλ ), (11)

with βλ ,s′ being evaluation at the root of unityζλ ,s′ , and a perfect pairing

〈,〉λ ,s′ : H1
ur(Kλ ,Ys′)×H1(Kur

λ ,Y′s′) −→ Z/ps′Z, (12)

whereY′s′ = Hom(Ys′ ,µps′ ). Further, the isomorphism

φλ ,s′ = β−1
λ ,s′ ◦αλ ,s′ : H1

ur(Kλ ,Ys′)
≃−→ H1(Kur

λ ,Ys′) (13)

interchanges cocycles with the same values on Frob(ℓ) andτℓ (mod ps′). After identifyingYs′ with its
dualY′s′ via the pairing[, ]s′ from Proposition 3.3, the pairing〈,〉λ ,s′ satisfies the relation

ζ 〈x,φλ ,s′ (y)〉λ ,s′
λ ,s′ = [αλ ,s′(x),αλ ,s′ (y)]s′ . (14)

Finally, localizing the inflation-restriction sequence for Kn/K1 yields a canonical splitting

H1(Kλ ,Ys′)≃ H1
ur(Kλ ,Ys′)⊕H1(Kur

λ ,Ys′).

Both factors in this splitting are isomorphic toYs′(Kλ ), via the canonicalO℘-linear isomorphismsαλ ,s′

andβλ ,s′ , respectively.
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On the other hand, complex conjugationρ ∈ Gal(K/Q) = Gal(Kλ/Qℓ) acts naturally on several
groups involved in our discussion. We denote by a superscript ± the corresponding(±)-eigenspaces
for this action. Notice thatµps′ (Kλ ) = µps′ (Kλ )

− by the assumptions onℓ, and each of the eigenspaces

Ys′(Kλ )
± is a freeO℘/ps′ -module of rank 1. Since the local pairing〈,〉λ ,s′ in (12) is ρ-equivariant, it

induces non-degenerate pairings

〈,〉±λ ,s′ : H1
ur(Kλ ,Ys′)

±×H1(Kur
λ ,Ys′)

± −→ Z/ps′Z.

In contrast, the isomorphismφλ ,s′ is ρ-antiequivariant, and therefore it induces isomorphisms

H1
ur(Kλ ,Ys′)

± ≃ H1(Kur
λ ,Ys′)

∓.

The next proposition summarizes the relevant properties ofthe localizations of the Kolyvagin coho-
mology classesκs(n) at places ofK outside ofp.

Proposition 5.7. Let v be a non-archimedean place of K and n be a product of Kolyvagin primes.

i) κs(n) ∈ H1(K,Ys)
εn, whereεn = (−1)n−1ε .

ii) If v ∤ Nnp, thenκs(n)v ∈ H1
ur(Kv,Ys).

iii) There exists a constant s2 such that ps2H1(Kv,V/psV) for all places v| N of K and all s≥ 0. In
particular, if v | N then ps2κs(n)v = 0.

iv) If n = mℓ andλ = (ℓ) is the only prime of K aboveℓ, then
(

(−1)rεnaℓ− (ℓ+1)
ps′

)

κs(n)ℓ =

(

(ℓ+1)εn−aℓ
ps′

)

pds1φλ ,s(κs(m)λ ),

where d= 1 if n is a product of two primes, and d= 0 otherwise. If both((ℓ+ 1)± aℓ)/ps′ are
units inO℘, then the above relation simplifies to

κs(n)λ = uℓ,εℓ p
ds1φλ ,s(κs(m)λ ), uℓ,εℓ ∈ (O℘/ps)×.

Proof. The first assertion is a direct consequence of the action ofρ on CM cycles (and hence, on the
classesyn) and the relation with Kolyvagin’s derivative operator, namely ρDn = (−1)nDnρ . Statement
ii) is clear since bothKn/K andyn are unramified at the placev, and iii) follows from [27, Lemma 10.1].
Finally, iv) is obtained by applying Nekovář’s discussion on localization of Kolyvagin’s corestriction in
[27, Section 9] (see also [27, Proposition 10.2 (4)]).

Corollary 5.8. If both ℓ+1±aℓ divide ps′+e in O℘, then for all tλ ∈H1
ur(Kλ ,Ys)

ζ 〈tλ ,p
eκs(n)λ 〉λ ,s

λ ,s = [αλ ,s(tλ ),uℓ,εn pds1+eαλ ,s(κs(n/ℓ))]s,

whereζλ ,s = ζ ps1

λ ,s′ .

6 The Selmer group

So far, we have seen that, possibly up to multiplying byps2, the cohomology classesκs(n) are unramified
at every place ofK not dividingnp. Further, their localizations at the primes ofK dividing n are subject
to the relations in Proposition 5.7 iv).

Now if v is a place ofK abovep, then theQp-vector spaceW :=V⊗Q is equipped with a continuous
Gal(K̄v/Kv)-action, and following Bloch and Kato it is customary to set

H1
f(Kv,W) := ker(H1(Kv,W)→ H1(Kv,W⊗Bcris))

23



and
H1
g(Kv,W) := ker(H1(Kv,W)→ H1(Kv,W⊗BdR)),

whereBcris andBdR are Fontaine’s period rings. In order to deal with the representationsV andYs, if
?∈ {f,g} we denote by H1?(Kv,V)⊆H1(Kv,V) the preimage of H1?(Kv,W) under the natural homomor-
phism H1(Kv,V)→H1(Kv,W), and by H1

?(Kv,Ys)⊆H1(Kv,Ys) the image of H1?(Kv,V) under the natural
reduction homomorphism H1(Kv,V)→ H1(Kv,Ys).

As in [27, Lemma 11.1], the fact thatV⊗Q is crystalline implies that ifv is a prime ofK dividing p
andK′/Kv is any finite extension, then H1f(K

′,V) = H1
g(K

′,V) and the Abel–Jacobi map overK′ factors
through H1

f(K
′,V). In particular, since H1f(Kv,Ys) depends only on the action of the inertia subgroup of

Gal(K̄v/Kv), for every square-free product of Kolyvagin primesn and any primev of K abovep it follows
thatκs(n)v ∈ H1

f(Kv,Ys) (becauseKn/K is unramified atv). This leads naturally to the definition of the
(ps-th) Selmer group:

Definition 6.1. The (ps-th) Selmer groupSel(s)℘ ( f ,K)⊆ H1(K,Ys) is defined as

Sel(s)℘ ( f ,K) := {x∈ H1(K,Ys) : xv ∈ H1
ur(Kv,Ys) for all v ∤ N pandxv ∈ H1

f(Kv,Ys) for v | p}.

If v is a place ofK not dividing N, thenA has good reduction atv, and therefore we infer from
[27, Lemma 4.1] that H1(Kv,V) consists only of unramified classes. Hence from the very definition of

Sel(s)℘ ( f ,K) we see that the global Abel–Jacobi map from (9) factors through

CHr+1(A r/K)0⊗O℘/ps
O℘ −→ Sel(s)℘ ( f ,K). (15)

On the other hand, given arbitrary classesx,y∈H1(K,Ys) the reciprocity law asserts that

∑
v
〈xv,yv〉v,s = 0 inZ/psZ,

where the sum is over all the places inK. This is actually a finite sum, since〈xv,yv〉v,s vanishes for every
placev for which bothx andy are unramified. Ifn is a product of Kolyvagin primes, then the cohomology
classesκs(n) are unramified at all places not dividingpn, possibly after multiplying byps2, and we also
know thatκs(n)v ∈ H1

f(Kv,Ys) for every placev of K abovep. But the finite part H1f(Kv,Ys) is isotropic
inside H1(Kv,Ys) at all placesv dividing p (see [6, Prop. 3.8]), hence the above reciprocity law implies
that

ps2 ∑
ℓ|n
〈xλ ,κs(n)λ 〉λ ,s = 0 inZ/psZ (16)

for everyx∈ Sel(s)℘ ( f ,K), where for each Kolyvagin primeℓ | n in the sumλ denotes the unique prime
of K aboveℓ.

Finally, we denote
Sel(∞)

℘ ( f ,K) := lim←−Sel(s)℘ ( f ,K). (17)

By considering the inductive limit of the Abel–Jacobi maps (15) one obtains a map

Φ : CHr+1(A r/K)0⊗O℘ −→ Sel(∞)
℘ ( f ,K)⊆ H1(K,V℘).

Its cokernel is by definiton the℘-primary part of the Shafarevich–Tate group,

X℘∞ := coker(Φ) = Sel(∞)
℘ ( f ,K)/Im(Φ).
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7 Main result

Recall our initial setting, in whichf∞ ∈ Snew
2r+2(Γ0(N)) is assumed to be a newform of weight 2r +2≥ 4

and levelΓ0(N), and let p be an odd prime not dividingN · (2r)!. We write F for the number field
generated by the Fourier coefficients off∞, OF for its ring of integers, and fix a prime℘ of F abovep.
Let N = N+N− be a factorization such that gcd(N+,N−) = 1 andN− > 1 is the square-free product of
an even number of primes, and letK be an imaginary quadratic field satisfying the Heegner hypothesis
spelled out in (Heeg).

The Galois representation associated tof∞ might be realized as a factor in the middle étale coho-
mology of ther-th Kuga–Sato varietyA r over the Shimura curveX = XN+,N− , by using the Jacquet–
Langlands correspondence to liftf∞ to a modular formf onX and following previous work of Besser and
Iovita–Spiess (cf. Section 3.3). We have previously denoted this representation byV =V( f ) ≃V( f∞).
It is a freeOF ⊗Zp-module of rank 2, and our choice of℘ singles out a localizationV℘.

We have seen that the Abel–Jacobi map induces a Hecke- and Galois-equivariant map

Φ : CHr+1(A r/K)0⊗O℘ −→ Sel(∞)
℘ ( f ,K)⊆ H1(K,V℘),

by localizing at℘ and projecting on thef -isotypical component. Defining

y0 := corK1/K(y1,℘),

the main result we prove in this note reads as follows:

Theorem 7.1. With the above notations, suppose y0 is non-torsion. ThenIm(Φ)⊗Q has rank1 and
X℘∞ is finite. More precisely, we have

(Im(Φ)⊗Q)ε = 0 and (Im(Φ)⊗Q)−ε = F℘ ·y0.

As already commented, the proof of this result follows Kolyvagin’s method as generalized by Nekovář
in [27]. Indeed, once we have constructed the Euler system ofCM cycles on the Kuga–Sato variety
A r and have proved the compatibility properties that the associated system of Kolyvagin cohomology
classes satisfies, the proof is formally the same. In spite ofthis, we summarize below the argument for
the convenience of the reader.

Before entering into the proof, we shall make some global observations that complement our local
discussions in the previous section. Keep the same notations as before, and writeL = K(Ys′) for the
Galois extension ofK trivializing Ys′ , s′ = s+s1. Let alsoζs′ ∈ µps′ (L) be a primitiveps′-th root of unity.
For each Kolyvagin primeℓ ∈ Σ1(s′), we might choose a placeλL of L aboveℓ such thatζs′ maps toζλ ,s′

under the embeddingL →֒ LλL
= Kλ . Then we putζs := (ζs′)

ps1 . Under this choice ofλL, we identify
Ys(Kλ )≃Ys(LλL

) =Ys(L). Further, we consider the maps

αλL,s : H1
ur(LλL

,Ys)
≃−→Ys(LλL

), φλL,s : H1
ur(LλL

,Ys)
≃−→ H1(Lur

λL
,Ys)

analogous to the mapsαλ ,s andφλ ,s introduced in (10) and (13), respectively, forLλL
. And by a slight

abuse of notation, we also writeαλL,s for the composition

H1(L,Ys) −→ H1(LλL
,Ys) −→ H1

ur(LλL
,Ys)

αλL ,s−→Ys(Lλ ) =Ys(L), (18)

where the first arrow is localization atλL and the second one is projection on the unramified part. The
composition of these maps is the evaluation at Frob(λL).

Consider the restriction map

res= resK,L : H1(K,Ys) −→ H1(L,Ys)
Gal(L/K) = HomGal(L/K)(Gal(Q̄/L),Ys(L)).

The formula (14) relating the pairings〈,〉λ ,s and [, ]s through the root of unityζs admits the following
global version:
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Proposition 7.2. Given classesη ,θ ∈ H1(K,Ys) such thatηλ ,θλ ∈ H1
ur(Kλ ,Ys),

ζ 〈η ,φλL ,s
(θ )〉λ ,s

s = [αλL,s(res(η)),αλL,s(res(θ))]s.

Now we are finally in position to prove Theorem 7.1.

Proof of Theorem 7.1.We keep the notations as above. In particular,s≫ 0 is a sufficiently large integer,
ands′ = s+ s1. The Selmer group Sel(∞)

℘ ( f ,K) = lim←−Sel(s)℘ ( f ,K) is finitely generated as aZp-module,
and our goal is to bound it. We continue to denoteL = K(Ys′).

Let T = res(Sel(s)℘ ( f ,K)) ⊆ H1(L,Ys) be the image of theps-th Selmer group under the restriction
map, and write alsous(n) := res(κs(n)) ∈ H1(L,Ys) for the image of then-th Kolyvagin cohomology
class under restriction. The action ofρ onT defines two eigenspaces,T±, and we will obtain our bound

for T (and hence eventually for Sel(∞)
℘ ( f ,K)) by looking separately atTε andT−ε .

Let LT ⊆ Lab denote the subfield fixed by the annihilator ofT under the evaluation pairingT ×
Gal(Lab/L)→Ys(L), and putGT := Gal(LT/L). Then one has an induced Gal(L/Q)-equivariant pairing

T×GT −→ Ys(L), (t,g) 7−→ t(g),

with the action of Gal(L/Q) on T factoring through Gal(K/Q). In particular, this naturally induces a
Gal(L/Q)-equivariant mapGT →֒ Hom(T,Ys(L)) and aρ-equivariant mapT →֒HomGal(L/K)(GT ,Ys(L)),
both of them injective.

As in [27, Section 12] (specifically Proposition 12.2 therein), there exist integersa,b≥ 0 such that,
for all s large enough, the following assertions hold:

(i) paH1(K(Ys′)/K,Ys) = 0;

(ii) LT ∩K(Y∞)⊆ K(Ys′+a);

(iii) for eachg∈G+
T , there are infinitely many primesℓwhich are inert inK and such that FrobLT/K(λ )=

g, ps′ | ℓ+1±aℓ andps′+a+1 ∤ ℓ+1±aℓ;

(iv) pbcoker( j : GT →֒ Hom(T,Ys)) = 0.

If x is an element in an abelian groupA, let exp(x) be the smallestm≥ 0 such thatpmx= 0. In the
same fashion, exp(A) denotes the smallestm≥ 0 with pmA= 0. For instance, exp(κs(1)) = s− s0 and
exp(us(n)) ≥ exp(κs(n))−a.

Fix an elementψε ∈ Hom(Tε ,Yε
s ) of maximal exponent, i.e. such that

exp(ψε) = exp(Hom(Tε ,Yε
s )),

and notice that this exponent also equals exp(Tε). Also chooseψ−ε ∈ Hom(T−ε ,Y−ε
s ) such that

exp(ψ−ε(us(1))) = exp(us(1)) (≥ s−s0−a).

If ℓ is a Kolyvagin prime andλL is a prime ofL aboveℓ, recall the mapαλL,s : H1(L,Ys)→Ys(L) from
(18). Its restriction to each of the eigenspaces for the action of complex conjugation gives rise to maps
α±λL,s

: H1(L,Ys)
±→Ys(L)±, and by a slight abuse of notation we still denote byα±λL,s

the restrictions of
these maps toT±. The mapαλL,s corresponds to evaluation at Frob(λL), thus one can find a Kolyvagin
primeℓ such thatps′ | ℓ+1±aℓ, ps′+a+1 ∤ ℓ+1±aℓ andα±λL,s

= pbψ±.
Now let t ∈ Tε be arbitrary. By virtue of the reciprocity law,

〈tλ , ps2κs(ℓ)λ 〉λ ,s = 0 inZ/psZ, (19)

and the choice ofℓ together with Corollary 5.8 then imply that

[αλ ,s(tλ ), p
s2+a+1uℓ,εℓαλ ,s(us(1)λ )]s = 1.
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Now using thatt ∈ Tε , us(1) ∈ T−ε , and the above relation betweenα±λL,s
andψ±, it follows that

[ψε(t), p
s2+a+2b+1uℓ,εℓψ−ε(us(1))]s = 1.

Since[, ]s is non-degenerate, we infer thatps0+s2+2a+2b+1Tε = 0, and hence that

ps0+s2+3a+2b+1(Sel(s)℘ ( f ,K))ε = 0.

Next we look at the eigenspaceT−ε . As before, one can choose elementsφ± ∈ Hom(T±,Y±s ) such
that

exp(φε (us(ℓ))) = exp(us(ℓ))

and
exp(φ−ε modO℘ψ−ε) = exp(Hom(T−ε ,Y−ε

s )/O℘ψ−ε) = exp(ker(ψ−ε)).

Notice that the choice of the primeℓ implies that

exp(us(ℓ))≥ exp(κs(ℓ))−a≥ exp(κs(ℓ)λ )−a≥ exp(κs(1)λ )−2a≥
≥ exp(pbψ−ε(us(1)))−2a= exp(us(1))−2a−b≥ s−s0−3a−b.

As above, one can find a second Kolyvagin primeℓ′ 6= ℓ such thatps′ | ℓ′+1±aℓ′ , ps′+a+1 ∤ ℓ′+1±aℓ′
andα±λ ′L,s = pbφ±. For t ∈ ker(ψ−ε)⊆ T−ε , the reciprocity law reads

ps2〈tλ ,κs(ℓℓ
′)λ 〉λ ,s+ ps2〈tλ ′ ,κs(ℓℓ

′)λ ′〉λ ′,s = ps2〈tλ ′ ,κs(ℓℓ
′)λ ′〉λ ′,s = 0 in Z/psZ,

where the first term vanishes because of (19) and part iv) of Proposition 5.7. This gets translated, thanks
to Proposition 7.2 into the identity

[φ−ε(t), p
2b+s1+s2+a+1uℓ′,εℓℓ′φε (us(ℓ))]s = 1.

As a consequence, the kernel ofψ−ε : T−ε →Y−ε
s is killed by ps0+s1+s2+4a+3b+1.

Finally, the assumption thaty0 is non-torsion in H1(K,V℘) implies the existence of an integers0≥ 0
such that, modulo torsion,y0 is divisible by ps0 in H1(K,V℘) but not byps0+1. For the classus(1), this
means thatus(1) = ps0x+ t for somex, t in the image ofΦ with ps1t = 0, as the torsion part of H1(K,V℘)
is killed by ps1. Thus for large enoughs, the following relation holds

exp(ψ−ε (x)) = exp(x)≥ s−a.

Besides, the mapψ−ε : T−ε →Y−ε
s induces an exact sequence

0 → ker(ψ−ε)

∗ → T−ε

O℘t +O℘x
ψ−ε→ Y−ε

s

O℘ψ−ε(t)+O℘ψ−ε(x)
,

in which the first term is killed byps0+s1+s2+4a+3b+1 (because so is ker(ψ−ε)), and the last term is killed
by pa. From this one concludes that

(Sel(s)℘ ( f ,K))−ε/(O℘t +O℘x)

is killed by ps0+s1+s2+6a+3b+1. As s tends to∞, one deduces that

peSel(∞)
℘ ( f ,K)/((F℘/O℘)y0) = 0

for somee. Using that Im(Φ) is divisible in Sel(∞)
℘ ( f ,K), this identity proves our claim on Im(Φ),

and shows that for a sufficiently larges, (X℘∞)ε = (Sel(s)℘ ( f ,K))ε and(Sel(s)℘ ( f ,K))−ε/(O℘t +O℘x)
surjects onto(X℘∞)−ε . Hence the theorem is proved.
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89(3):455–510, 1987.

[31] Chad Schoen. Complex multiplication cycles and a conjecture of Beilinson and Bloch.Trans.
Amer. Math. Soc., 339(1):87–115, 1993.

[32] Anthony J. Scholl. Motives for modular forms.Invent. Math., 100(1):419–430, 1990.

[33] Goro Shimura. Construction of class fields and zeta functions of algebraic curves.Ann. of Math.
(2), 85:58–159, 1967.

[34] Goro Shimura.Introduction to the Arithmetic Theory of Automorphic Functions. Kanô memorial
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