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Abstract

Given a modular formf of even weight larger than two and an imaginary quadratic fiel
satisfying a relaxed Heegner hypothesis, we constructlaatimn of CM cycles on a Kuga—Sato
variety over a suitable Shimura curve which gives rise to fiesy of Galois cohomology classes
attached tof enjoying the compatibility properties of an Euler systenhei we use Kolyvagin’'s
method [[20], as adapted by Nekovar[[27] to higher weightlodar forms, to bound the size of the
relevant Selmer group associatedft@and K and prove the finiteness of the (primary part) of the
Shafarevich—Tate group, provided that a suitable cohogyattass does not vanish.
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1 Introduction

Given a modular formf of even weight, one strives to relate certain algebraic aradytic invariants
associated withf. The classical expected relations correspond to congstiarmulated by Beilinson,
Bloch and Kato, while theip-adic analogues were predicted by Perrin-Riou. Severaltseprovide
nowadays evidence towards these conjectures, and in mibstrofthe theory of complex multiplication,
giving rise to Heegner points or cycles, plays a prominel&t ro

The algebraic invariants alluded to above are usuallyedltd bounds for the Selmer group associ-
ated with (the Galois representation attachedftayhile the analytic ones are concerned with the order
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of vanishing of the (complex gr-adic) L-series associated with or with its special values or its deriva-
tives. Contributions to conjectures of this flavour fredtlense appropriate special cycles as a bridge
between the algebraic and analytic invariants.

In this note, we extend Kolyvagin’s method of Euler syste@® pdapted by Nekovar for modular
forms of higher even weight [27] to the setting where the hheediypothesis is relaxed. We exploit
Kuga—Sato varieties over Shimura curves in order to cocisériieegner system, that is, a collection of
algebraic cycles satisfying certain local and global noompatibility properties, from which one can
extract arithmetic information about the Selmer group.

In order to fit our contribution into the above framework, Ustfirst recall briefly some previous re-
sults that have a clear influence in the present work. Thelsghgcenario in which the above conjectures
have been explored is of course the most down-to-eartmgadfielliptic curves, or more generally of
modular forms of weight 2. In this case, Kolyvagin [20] 15psted how to bound the Selmer group by
exploiting the properties of a system of cohomology classesing from Heegner points on the relevant
modular curve (today commonly referred to as an Euler sysitieifolyvagin type). Combined with the
Gross—Zagier formula[16], relating the first derivativetof classical-function associated with to the
height of an appropriate Heegner point, and together wislyéin non-vanishing results of Murty—Murty
[26], the Birch and Swinnerton-Dyer conjecture o@efor elliptic curves of analytic rank at most 1 was
established. On thp-adic side, an analogue of the Gross—Zagier formula wablesiad by Perrin-Riou
[30].
For modular forms of higher (even) weight, Kolyvagin’s madtwas carefully extended by Nekovar
in [27], by replacing the usual Selmer group of an ellipticveuwith its cohomological higher weight
analogue and the use of Heegner points on modular curvesebgottalled Heegner cycles on suit-
able Kuga—Sato varieties, whose middle cohomology cotiteirGalois representations associated with
higher weight modular forms. A Gross—Zagier formula, du&iang [38], holds also in this setting,
and Nekovar([28] proved p-adic avatar of this result. Combined with results of Bumpedburg and
Hoffstein [8], this provides further grounds for the corjees for analytic rank less than or equal to
1. Still in the higher weight case, but in a different direati Shnidman[[35] has recently developed
classical angp-adic Gross—Zagier formulas for twists of modular forms Igearaic Hecke characters,
while the first author [14] has explored Kolyvagin's methodbund the size of the Selmer group also
in this twisted situation.

A key element in all the above works is the Heegner hypothtbsis allows for the existence of
Heegner points on the relevant modular curves (and hentteg Imigher weight setting, of Heegner cycles
on the relevant Kuga—Sato varieties). When this Heegneothggis fails, one can still use Shimura
curves to provide a larger supply of modular parametrinationder a more relaxed assumption. In the
case of elliptic curves, for instance, Heegner points rgisiom Shimura curve parametrizations give
rise to algebraic points which could not be obtained by usmgiular curve parametrizations (seel[10,
Chapter 4], e.g.).

In the Shimura curve setting, the above picture has beeressitdly adapted in the weight 2 case.
Namely, Kolyvagin's method has been generalized to Hilbestlular forms (of parallel weight 2) over
totally real fields by NekovaF [29], and X. Yuan, S.-W. Zigaand W. Zhand[37] have proved a complete
Gross—Zagier formula on quaternionic Shimura curves atefly real fields, building on previous work
of S.-W. Zhang([3B]. On th@-adic side, it is worth mentioning that Diseghi [13] has mbeproved a
p-adic Gross—Zagier formula in this setting relating theti@rderivative of thep-adic Rankin—Selberg
L-series associated with the modular fofirand the relevant CM extension to tipeadic height of a
Heegner point on the abelian variety associated wvith

Next we describe the main result of this note. To do so, censichewformfe, € S\, (I'o(N)) of
weight 2 +2 >4 and level o(N). Let pbe an odd prime not dividinly - (2r)!, and letJ be a prime ideal
dividing p in the number field= generated by the Fourier coefficientsfof The Galois representation
Vi (fe) attached tof. (a 2-dimensionalF;-vector space) might be realized as a factor in the middle
étale cohomology of a (suitably compactified) Kuga—Satdeta over the modular curviy(N) (see



[32]). Alternatively, we can also realizé; (f.) as a factor in the middle étale cohomology of Kuga—Sato
varieties over certain Shimura curves, following an apphoas in Besser [5] and lovita—Spiel3 [17].

More precisely, leN = NTN~ be any factorization oN as a product of relatively prime integers
N*, N~ such thalN~ is the square-free product of an even number of primes, ansid&r the Shimura
curve X attached to an Eichler order of levli* in an indefinite quaternion algebra of discriminant
N~. The Jacquet-Langlands correspondence associafgsatblecke eigenfornf on X, whose Galois
representatioN; (f), isomorphic tov; ( f. ), arises as a factor in the middle étale cohomology of ttie
Kuga—Sato variety7" over the Shimura curvi (see Sectioh 313 for details).

For a number fiel, let CH*1(.&7" /K) be the(r + 1)-th Chow group ofe’" overK. The Abel—
Jacobi map induces a Hecke- and Galois-equivariant map

®ix  CH (" /K)o @ Fg — HY(K Vo (f)),

where the subscript 0 indicates the subgroup of cycle dasbi&ch are homologically trivial, and on the
target we consider continuous Galois cohomology (cf. 8aBfi1). In this note, we focus our attention
on the above map whel is an imaginary quadratic field satisfying the relaxed Heediypothesis
(Heeg) spelled out in Sectidn 4.3. Namely, we require that@an choose the factorizatibh= N*N~

as above so that every prime dividihg (resp.N~) splits (resp. is inert) iiK.

In this situation, complex multiplication points on the Bitira curveX give rise to a system of
cycles in/" algebraic over ring class fields &f (cf. Sectio4.B), leading to a system of (Kolyvagin)
cohomology classes in¥K,V5(f)). The construction of such cycles resembles the construatio
[31]], the difference being that here we must construct thar®bl abelian surfaces. The bottom layer
of this system of algebraic cycles arises in the work of Ev&8pieR[[17], who obtain p-adic Gross—
Zagier formula wherp dividesN, and Bessel [5], who shows that th¢h Griffiths group of<" has
infinite rank. Besides, the image of the above max is contained in the Selmer group §éf,K) C
HL(K,Vo(f)) (cf. Sectior®), and the collection of algebraic cyclesdgii to before gives us a cycle
y € CH (/" /K)o whose imageyp = ¢k (y) € Seb(f,K) under®;k lies in the (-¢)-eigenspace
under the action of complex conjugation, wherstands for the sign in the functional equation for the
L-series associated with Further, it plays a central role in our main theorem:

Theorem 1.1. With the above notations, supposgig non-torsion. Thedm(®¢ k) has rankl and
M5 (f,K) is finite. More precisely, we have

(Im(®¢k))*=0 and (Im(Ptk)) *=F7-Yo.

In the statementllI;(f,K) denotes thé]-primary part of the Shafarevich—Tate group, defined as
the cokernel of the ma@ x : CH (7" /K)o ® Fy — Seb (f,K).

As we mentioned, our result fits in the framework of the comjexs by Beilinson, Bloch, Kato, and
Perrin-Riou. Combined with forthcoming work of Disegni ompaadic Gross—Zagier formula in this
setting, we expect to shed some light on these conjecturdsigber weight modular forms, when the
classical Heegner hypothesis does not hold.

Itis also worth mentioning that the work of Bertolini, Darmand Prasanal[4], relating special values
of p-adicL-series associated to twists of modular forms to the imagidép-adic Abel-Jacobi map of
certain algebraic cycles arising in underlying motivesswadapted by Masdeu and Brooks|[21L, 7] to
the setting where the Heegner hypothesis is removed. In diesavork, the primey divides the level
of the modular form and therefore one needs to deal with a éddction setting, whereas in Brooks’
work, pis a prime of good reduction and therefore the techniquesfaeather different nature. In this
framework, it would be interesting to relate special valoep-adicL-series to the images by thpeadic
Abel-Jacobi map of the cycles that we construct in this note.

Acknowledgements.We are very grateful to Henri Darmon and Victor Rotger for snaseful discus-
sions on the topic of this paper. We also thank Erick Knightiis helpful clarifications and suggestions
on the proof of LemmBa3]2.



2 Shimura curves and QM abelian surfaces

We describe in this section the Shimura curves that will glagntral role throughout this note, namely
Shimura curves associated with Eichler orders in indefi@tmnal quaternion algebras. We recall the
usual interpretation of such curves as moduli schemes felisabsurfaces with quaternionic multipli-
cation (also referred to dake elliptic curve}s and then focus on special points on such moduli spaces,
namely, abelian surfaces with quaternionic multiplicatesmd complex multiplication.

2.1 General definitions

Fix a pair of relatively prime integefd*, N—, such thalN ~ is the square-free product of an even number
of primes, and séfl = N"N~. LetB be a rational quaternion algebra of reduced discrimihainthence,
indefinite), and fix a maximal ordefg in B and an Eichler orde#” C 0y of levelN™.

For every rational place, we setB, := B®g Qy, and at each finite placéwe shall also write
Opy = Op®7Le, X '= X &7 L. We shall fix at the outset an isomorphishy : B., — M2(RR), which
exists becausB is indefinite, and also an isomorphidn — M2(Qy) for each prime/ { N~, identifying
%, with the standard Eichler order of leveP(N), Write 7 := [17Z, for the profinite completion 0%,
and for anyZ-algebraR put R := R®y, Z. Thus, for example@ stands for the ring of finit€)-adeles.
We also leB := Bog Q.

Let.2#+ = C — R be the (disjoint) union of the upper and lower complex hahgls, which might be
identified with the set oR-algebra homomorphisms Hdf@, M2 (R)), and consider the space of double
cosets

X = (@X\éx x %i) /B* = (@X\éx x Hom((C,MZ(R))> /B, 1)

Here, %> acts naturally on the left oB* by left multiplication, andB* acts on the right on botB*
(diagonally) and on”* by linear fractional transformations under our fixed isophism 9.. This
latter action corresponds to the action on H@lyM»(RR)) by conjugation (again undét.,).

It follows from the work of Deligne and Shimura thdj, admits a model ove®, which further is the
coarse moduli scheme classifying abelian surfaces witteguianic multiplication byZ. Let us recall
precisely these terms.

Definition 2.1. Let Sbe aQ-scheme. Amabelian surface with quaternionic multiplicatiof@M, for
short) byZ is a pair(A,1) consisting of an abelian schem¢S of relative dimension 2 endowed with
an optimal embedding: #Z — Ends(A), giving an action ofZ on A.

Remark 2.2. In the above definition, i6is a geometric point of, then the QM abelian surfao;
corresponding t® is endowed with a uniquprincipal polarizationwhich is compatible with the QM
structure (see [22]). Because of this reason, we will dregptblarization off in our discussion, although
the reader should keep in mind the existence of a uniqueipaliEn compatible with the QM.

Consider the moduli problem of classifying QM abelian scefg given by the moduli functor
Z :Schemeg) — Sets (2

sending a-schemeSto the set#(S) of isomorphism classes of abelian surfaces with QMZApver
S Here, an isomorphism between two abelian surfaces with(@M) and (A',1") is an isomorphism
Y : A— A of the underlying abelian surfaces preserving #i@ction on bothA andA', i.e. such that
Yoi(a)=1'(a)oyforall a e Z.

Theorem 2.3([33], [12]). X admits a model %= Xy+ n-/Q, which is the coarse moduli scheme asso-
ciated to the moduli problem corresponding to the func#or Furthermore, theShimura curveX/Q is
a smooth, projective and geometrically connected scheme®v



Remark 2.4. Alternatively, X is also the coarse moduli scheme classifying abelian ssfaith quater-
nionic multiplication by the maximal ordes together with a leveN"-structure.

For our purposes, it is useful to introduce an auxiliary Shircurve classifying QM abelian surfaces
with suitable extra structure in order to make the modulbfmfine

Definition 2.5. Let She aQ-scheme anél > 3 be an integer prime tN. An abelian surface with QM
by # andfull level M-structure oveSis a triple (A,1,V), where(A,1) is a pair as in Definitio 2]1 and
Vi (Z/MZ)s — AM]| is anZ-equivariant isomorphism from the constant group schégM.Z)s to
the group scheme dfl-division points ofA.

The corresponding moduli problem is now given by the modurictor
Fwm - Schemeg — Sets 3

sending aQ-schemeSto the set%y(S) of isomorphism classes of triples ov8ras in Definition 2.b.
In this case, this moduli functor is represented Hyna moduli scheme ove®, which we will denote
XM = XI{\,"+7N,/Q. It is also a smooth and projective curve ov@y although it is not geometrically
connected. One can give an adelic descriptioX'¥fin terms of double cosets as we did aboveXor
By forgetting the extra level structure l§lt, there is a natural Galois covering of Shimura curves

XM — X, (A1) — (A1),
whose Galois group is isomorphic &M) := GL(Z/MZ)/+1, using that
(ZIMZ)* ~ (Og/MOB)* ~GL2(Z/MZ).

Since this second moduli problem is fine, there exists a wsardamily of abelian surfaces with QM
by # and full level M-structure oveixM, corresponding to d € Hom(XM,XM) under the bijection
(XM < Hom(XM XM). We shall refer to this family as theniversal QM abelian surface over
and we will denote it by

m o — XM

Given a geometric point: Sped. — XM, the fibre.o := o7 x4 Sped. is an abelian surface with QM
by # and full levelM-structure defined ovdr, representing the isomorphism class corresponding to the
moduli of x.

Remark 2.6. Over the complex numberx2"(C) is identified with the compact Riemann surfdces”,
as complex algebraic curves, whére- 'y n- € SLo(R) is the image undef,, of the group of units
of reduced norm 1 in the Eichler ordef. Indeed, upon identifying7#” with SLy(R)/SO,(R) and
noticing that%A’X\BX/BX is trivial, one can easily define froml(1) an analytic isoniosm fromX2"(C)
to M\.2Z. Similarly, XM2"(C) can be identified with a finite union of compact Riemann sesaaf the
form I\ 7.

Remark 2.7. We have reviewed above the usual moduli interpretation oh8ta curves in terms of QM
abelian surfaces. However, the category of abelian swgfheang equivalent to the category sibble
curves of genus 2, one could also regard the Shimura cXiras the coarse moduli space ov@rfor
stable curves of genus 2 with QM BBy. Then one could consider the universal genus 2 curve with QM
overXM, say¢ — XM.

2.2 QM abelian surfaces with complex multiplication

Suppos€A, 1) is an abelian surface ové&rwith QM by Z, so that it defines a poift = [A, 1] € X(C).
Recall thatt : Z — End(A) is an optimal embedding of rings, giving an actionsfon A by endomor-
phisms. It is well-known that in this situation either
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() Aissimple, and EMiA) := EndA) ®7Q = B, or
(i) Ais not simple, and Er‘i’ch) ~ M,(K) for some imaginary quadratic fiekl which embeds irB.

In the second casd is said to have CM by the imaginary quadratic fi&ld It is well-known that
if Ahas CM byK, i.e. End(A) ~ M,(K), thenA is isogenous to the square of an elliptic curve with
CM by K (and conversely). However, we are interested in the cagegoQM abelian surfaces up to
isomorphism rather than up to isogeny, thus this charaetion is not sufficient for our goals.

In other terms, let Eng(A) = End/A,1) C End/A) denote the subring of endomorphisms which
commute with the QM action, i.e.

Endz(A) =EndA1) :={ycEndA):yoi(a)=1(a)oyforall a € Z}.

Then EndA, 1) is eitherZ or an order in an imaginary quadratic fisdd These two cases correspond,
respectively, to (i) and (ii) above. K is an imaginary quadratic field (splittig) and EndA, 1) ~ R,
whereR; C K denotes the order of conducop 1 inK, then(A, 1) is said to have complex multiplication
(CM) by R, andP = [A, 1] is said to be a CM (or Heegner) point By. We write CM X, R;) for the set
of all such points.

There is a one-to-one correspondence between the séK@W) and the set of £*-conjugacy
classes of) optimal embeddingskfinto %, given by associating t8 = [A,1] € CM(X,R;) the embed-
ding

¢p:Re~EndA,1) — End;(HY(A Z)) ~ %,
normalized as in[19, Definition 1.3.1].

Fix a CM pointP = [A 1] = [Ar, 1] € CM(X,R;), and assume thdt,N) = 1. ThenZ might be
regarded viapp as a locally free righR.-module of rank 2, henc& ~ R. & ea for somee € B and some
fractionalRs-ideal a. If A; = C2/A¢, with A = 1 (Z)v, v= (1,1)}, then we find that

A = 1(Z)V=1(¢p(Ro) )V el ($p(a))V. )

Further,1 (¢p(K)) C C embeds diagonally in MC), because End\, 1) = R andi (Z) @ R = M2(R),
hence
A= 1(@p(R)V® 1 (dp(a) eV

and it follows thatA is isomorphic to a produdE x E, of elliptic curves with CM byR;, whereE(C) =
C/R; andE4(C) = C/a. The action ofZ on E x E, induces the natural left action & on R; @ ex.

Remark 2.8. In line with Remark 2,17, iC is a stable genus 2 curve with QM (meaning that its Jacobian
variety Ja¢C) has an action oZ by endomorphisms), thed is said to have CM if the subring of endo-
morphisms of J&€) which commute with the QM action form an order in an imaginguadratic field.
Then it is not hard to see th@tis isomorphic to the union of two elliptic curves meetingiseersally at
their identities, and J&C) is identified with their product.

2.3 Isogenies of QM abelian surfaces

As we already pointed out above, an isomorphighu) — (A';1’) between two QM abelian surfaces
is an isomorphism of the underlying varieties which preserthe quaternionic action. More generally,
the same notion applies for isogenies:(A 1) and (A',1’) are abelian surfaces with QM by, then
an isogenyy : A— A’ is anisogeny of QM abelian surfacesr aQM-isogenyfor short, if o1 (a) =
I'(a)oy for all a € 2. We write Hom, (A, A) for the ring of homomorphisms frorA to A’ which
commute with theZ-action, so that non-zero elements in this ring correspor@M-isogenies fromA
toA'.



Lemma 2.9. Let (A1) and (A',1’) be two abelian surfaces with QM by, and suppose that they are
QM-isogenous. Then

Hom%’(A>A,) ®z @ = End(A> l ) 7z Q = End(A’, [ /) Xz Q

Proof. Pick any QM-isogenyp : A’ — A. Thanks to the existence of (unique) principal polarizaion
AandA’, compatible with the QM structure (cf. Rem&rk]2.2), one riggard the dual isogeny gf as
a QM-isogenyy¥ : A — A/, giving rise to an inverse isogeny 1 : A — A’ in Hom,(A,A') ®7 Q. Now
notice first that the rulg — 1o ¢ o | establishes an isomorphism

EndA, 1) ®zQ~EndA,1") 2z Q.

Secondly,¢ — o ¢ defines an injective morphism @-modules Hory(A,A’) — End(A,1). But
both of them are either of rank 1 (& does not have CM, neither dod¥) or of rank 2 (if A has CM
by some imaginary quadratic field, so d@&s Thus it follows that this injective morphism induces an
isomorphism between Hop{A,A') @7 Q and EndA, 1) @7 Q. O

Corollary 2.10. Suppos€A, 1) is a QM-abelian surface with CM by (some order in) K, and(&t 1)
be a second QM-abelian surface which is QM-isogenou#to). Then(A',1’) also has CM by (some
order in) K, and in particular

Homy, (A A) @7 Q ~K.

Proof. If (A,1) has CM byK, then EndA, 1) is an order irK, and therefore Er@\, 1) ®7 Q ~ K. Then
the statement follows directly from the previous lemma. O

2.4 The Neron—Severi group of a QM abelian surface with CM

LetP=[(A1)] € CM(X,R:) € X(K¢) be a CM point orX by R, represented by a QM abelian surface
(A 1) with End A, 1) = R;, whereR; denotes as before the order of conductiorthe imaginary quadratic
field K.

We write as abové ~ E x E, for some fractionaR.-ideala. The Néron—Severi group N8) of the
abelian surfacd is then identified with

NS(E x E,) ~ Z(E x 0) & Z(0 x Eq) & Hom(E, E,) ~ Z(E x 0) & Z(0 x Ey) & a,
where in the first isomorphism an elemgnt Hom(E, E,) corresponds to the class of the divisor
Z,:=T,—(Ex0)—degy)(0x E,) CExE,~A,

with I, standing for the graph of, and in the second isomorphism we use that kfor&,) ~ a.
Complex conjugation acts through the non-trivial elenertGal(K /Q) ona, and then defines a de-
compositionn =a, @a_, wherea, (resp.a_) is theZ-submodule ofi on whicho acts as multiplication
by +1 (resp. -1). Then
a,=Za, and a_ =Za_

for some elementa;, € QNa anda_ € a C K, which we might regard either as elementKiror as
isogenies fronE to E,. Notice thata_ is purely imaginary. Rescaling the elemerg B appearing in
the decomposition of{4) by a suitable non-zero scala if necessary, we assume that )?> = —Dg,

whereR; = Z[/—D¢|. Therefore, we might rewrite under this convention as

a=Za®d7Z/—D¢, forsomeaec Q*.

This normalization depends on the choice of a square-6eD. of —D¢, and therefore is uniquely
defined only up to sign. Observe also that sincis a fractionalR-ideal, we haveR.a C a, which
implies in particular that in fac € Z anda | D, hencea D, € Z.

The Néron—Severi group @is then the (free}.-module of rank 4 generated by (the classes of) the
cyclesk x 0, Ox Eg, Zy andzm. Furthermore, the cyclém is orthogonal to the rank 3 submodule
(E x0,0x Eq,Za).



3 Modular forms and p-adic Galois representations

The main goal of this section is to explain how th@dic Galois representatidn( f.) associated with a
newformf., € S((MFo(N)) can be realized in the middle étale cohomology of a suitsblga—Sato variety
over a Shimura curve, by following the approach of Bedseaff] lovita—Spiel¥ [17]. To do so, we first
need to recall the Jacquet—Langlands correspondence amtdouce the Kuga—Sato varieties that will
be involved.

3.1 Modular forms and Jacquet—Langlands correspondence

Fix an integeM > 1, and any factorizatioN = N*N~ of N such that gctN*,N~) =1 andN~ > 1 is
the square-free product of an even number of primes. Agealcta each of these factorizations, we can
consider the Shimura curvé: - /Q as above corresponding to an Eichler ordgy: n- of level N*
in the indefinite quaternion algebBaof discriminantN~. In this section we briefly recall the Jacquet—
Langlands correspondence between classical cuspidakfofrievell'o(N) and modular forms on the
Shimura curveXy+ N- -

Letk=2r +2 > 2 be an even integer. In order to define modular forms of wekghith respect to
Zn+ N-, identify the Lie algebra of left invariant differential emtors orBg := (B®g R)* ~ GL(R)
with M2 (C), and define the differential operators

wo=2 (0% = (4.

A (holomorphic) modular form of weighkt with respect toZ# is then a function
f: (B@QAQ)X = BX X GLz(R) — C
satisfying the following properties:

i) for everyb e (B@gAq)*, the function GL(R) — C defined by the rulec— f(xb) is of C*-class
and satisfie®V,, f = (k/2)f, X f =0;

ii) for everyy e B* and everyu € 2% x R>°, f(uby) = f(b).

The (C-)vector space of all modular forms of weidhtvith respect taZy+ - will be denotedS (Xn+ n-)-

Alternatively, by considering the congruence subgroyp n- € SL>(R) and the identification of
X3? \- (C) with the (compact) Riemann surfaEg+ n- \77 as in Remark 216, a modular form of weight
k with respect taZy+ n- is the same as a holomorphic functién 7 —; C such that

f(yr) = (ct+d)¥f(r) forally= (%) €lMnin-

Under our assumption thé&t~ > 1, observe that no growth condition needs to be imposed at the
cusps, since the Riemann surfdge. n-\ /7 is already compact.

The Shimura curve{y+ n- comes equipped with a ring of Hecke correspondences, whiohbe
easily introduced by using the adelic descriptionXgf. n- given above (cf. [[3, Section 1.5]). Such
correspondences give rise to Hecke operators on the sphoesdalar formsS (Xy+ n-). Indeed, the
discrete double coset spa@jﬂ\,,\éX /@X might be written as a product of local double coset spaces

(Zn+N- @ Ze) \(BR Q) /Q/, (5)

and this decomposition allows to define local correspongignat each rational prime, that extend to
global correspondences O®+ - -

For each primé N, the spacd(5) is identified with PG(Z,)\PGL(Qy), which in turn corresponds
to the Bruhat-Tits tree of PGLQy). Thus there is a natural degrée- 1 correspondence, sending each



vertexg € PGLy(Z¢)\PGL2(Q/) to the formal sum of it€ + 1 neighbours, denoted By. This extends
to a correspondence ofy+ - of degreef + 1, still denotedT,. At each primeg | N*, (@) is identified
instead with the set of chains of edges of lengtm the Bruhat-Tits tree of PGI(Qq), if ¢ || NT.
There is a natural involution on this set, correspondingetersing the orientation of the edges in the
Bruhat-Tits tree, and this extends again to an involutioXgny-, that will be denoted by\;;. One can
also define a correspondendg for such primes; ifg divides exactlyN*, for instance, thet is the
degreeqg correspondence defined by sending an exigehe Bruhat—Tits tree to the formal sum of the
edgese’ # e having the same source asFinally, at primesy | N, the local spacd [5) consists only of
two elements and the only involution defined on such set, ivxtends to an involution on the Shimura
curveXy+ n-, Will be denoted also by.

The Hecke operator$; for primes/ 1 N are referred to as thgood Hecke operators, whereas the
operatordJ, are commonly namebad Hecke operators. The involutioNsy are the so-called Atkin—
Lehner involutions, and form a group of automorphis#is~ (7/27)“N) of Xy+ n-, wherew(N) is
the number of prime factors &. Both the good and the bad operators, as well as the Atkimdreh
involutions, act also as endomorphisms on the sp&ge&: n- ) of weightk modular forms. We denote
by T+ n- the Z-algebra generated by the good Hecke operafprogether with the Atkin—Lehner
involutions\\.

The Jacquet-Langlands correspondence establishes a-klgaikvariant bijection between automor-
phic forms on Gk and its twisted forms. In our setting, this boils down to arespondence between
classical modular forms and quaternionic modular formgated below.

Proposition 3.1 (Jacquet-Langlands)or each factorization N= NN~ as above, there is @y« n--
equivariant isomorphism (uniquely determined up to scalin

IL:S(Mo(NTNF)NI=new = g (X - )-

In particular, to each eigenform & S(I'o(N-N*))(N")-"eWthere corresponds a unique quaternionic
form 8 =JL(f) ¢ S(Xn+ n-) having the same Hecke eigenvalues as f for the good Heckatopsef,
(¢1N) and the Atkin—Lehner involutionsyW

Let F be a subfield of®, and writeS((To(N"NT),F) C S(F'o(N~N™)) for the subspace of modular
forms whose Fourier coefficients generate a subfiel&.ofThe isomorphism JL above is compatible
with Galois action, and henc&(Xy+ n-, F) := JL(S(To(N~NF),F)(N)="e) muyst be regarded as the
subspace of weighkt modular forms orXy+ n- which are defined ovef, although such modular forms
have no Fourier expansion. The Jacquet—Langlands corrdspoe then restricts to an isomorphism

L S(To(NNH), F)YNI=mew =y g (X n-, F).

We can also reformulate the above Jacquet—Langlands porrésnce in the following way. Suppose
fo € S(Mo(N))"is a normalized newform, which is an eigenform for the HegberatorsT,, for £ { N,
and the Atkin—Lehner involution®y, for g | N (here, W stands for théV-operator corresponding to
the g-primary partQ = ¢? of N as in [1], which induces an involution d&(Io(N))). Then we have
Tife = ayfe, for every N andW fo = &4 1., f for everyq | N, wherea, = a,( fe) stands for the-th
Fourier coefficient off., andégg r, = 1 is the eigenvalue of the Atkin—Lehner involution acting fan
If valg(N) > 2, then we haveyy = 0, whereas if vg(N) = 1 (in particular, for primesy | N7), then
the eigenvalue 1, is related to theg-th Fourier coefficient by the identityy = —£q.1,0" (recall that
according to our notations= 2r + 2).

Let F be the number field generated by the Fourier coefficignts a,(f.) of f., which lie acually
in its ring of integers’k. Then the Jacquet—Langlands correspondence assertsrtbath factorization
N = NN~ as above there exists a (unique) algebra homomorphism

N+ N- :TNJ:N* — O



such thatpy+ - (Ty) = a if £4N and@y+ n- (Wg) = &g.1,, if g N.

In particular, at primesg | N~ (and also at primeg dividing exactlyN*) we recover thej-th Fourier
coefficient off., asaq = — @+ n- (Wg)d". Also, notice that the eigenvalwey 1 := ¢y 1(Wy) of theFricke
involution W, acting onf., coincides withwy+ - := @+ n- (W) (DY a slight abuse of notation we write
Wy for both the Fricke involution acting oft, and the one acting ofi, namely the product of all the
involutionsW, for primesq | N).

3.2 Kuga-Sato varieties

We fix from now on a factorizatiol = N*N~ as in the previous section, and denotey= %+ n-

an Eichler order of leveN™ in the indefinite rational quaternion algebra of discrinmnBl~ and by

X = Xy+n- the corresponding Shimura curve. Let .o/ — XM be the universal abelian surface over
the Shimura curv&XM as in Sectiof 2]1, whed > 3 is an auxiliary integer prime thl. Thus.ez /X

is a relative scheme of relative dimension 2 (and absoluteedsion 3), and for each geometric point
X : Sped. — XM the fibre.o := &/ x Sped. is an abelian surface with QM b and full level M-
structure defined ovdr, representing the isomorphism class corresponding todhm x

Letr > 1 be an integer, and/" = & xym --- xxm & be ther-th fibered product oks over XM,
We shall refer toe7" as ther-th Kuga—Sato varietpver XM. It has relative dimensionrver XM, and
absolute dimensionr2+ 1. A generic point ine7" might be represented as a tugiePy, ..., P ), wherex
is a point inX and theP, are points in the fibres.

Suppos¢ is a prime not dividingIN. Then we define the action of the Hecke operdioon the
Kuga—Sato variety7" as follows. LetXM: be the Shimura curve classifying triplé4, 1,C[¢]), where
(A1) is a QM abelian surface parametrizedX¥, further endowed with a subgro@j¢] of A[¢] which
is stable under the action of (via 1) and cyclic asZ-module A[¢] has/+ 1 suchZ-submodules, all
of them of order/?). Notice that there is a natural forgetful morphism of ShienaurvesxM-‘ — XM,
The fibre producte; := o7 xyu XM is then the universal abelian surface o¥ét‘, equipped with a
subgroup schem&[/] of order/?, which is also a module for the induced actiorzéf Let 2 denote the
quotient of.e;, by the subgroup schent€[¢], with level structure induced from7,. Write also.«7; and
2" for the respective-th fibered products ovexM‘. Then the first and third squares in the following
diagram are cartesian:

o’ @ dn[ @ or ® o’
XM XM,Z XM,Z XM

By using this diagram, the Hecke operaipacting one/" can be defined then as the correspondence
To = @ o @. o @.. Such a correspondence induces an endomorphism, whichlveesbteT,, on étale
cohomology groups H(«" x Q,—).

3.3 p-adic Galois representations attached to modular forms

Let fo, € S((Mo(N),Q) be a (normalized) newform of even weight= 2r +2 (r > 1) and levelN =
N*N~ as before. Let alsé = JL(f.) € S(X,Q) be the corresponding newform &hunder the Hecke-
equivariant isomorphism from Propositibn13.1. [Fet= Q({an}) be the number field generated by the
Fourier coefficientsy, = an( f») Of fw, Which actually lie in its ring of integerg.

Let p be a rational prime not dividing\. Associated withf., there is a free/r ®7z Z,-module
Vo = V(fs) of rank 2 equipped with a continuoug:-linear action ofGg = Gal(Q/Q). Indeed, the
Galois representatio¥,, arises as a factor of the middle étale cohomology of the K8gto variety
obtained as ther2fold fibre product of (a suitable smooth compactificatiof thie universal elliptic
curve& (with full level N-structure) over the modular curvgN) (cf. [32]). A similar construction is
available forf = JL(f.), by considering the universal abelian surfate.er — XM as a replacement
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for & — X(N). We sketch below this construction, which is based on previgork of Besser [5] and
follows the approach taken later in lovita—Spiel3 [17].

The action of% on </ induces an action d8* on RIr.Qp, for g > 1. Then one defines pradic
sheaf

Lo := () ker(b—n(b) : RR.Qp — RRL.Qp),

beB

which is a 3-dimensional local system ®M. Then the non-degenerate pairing

(,) La®Ly < RmQy®RLQp = RITLQp 5 Qp(—2)
induces a Laplacian operator
A : SymL, — (Symi —2Ly)(—2),

andLy C SynTL, is defined as the kernel &f. B
The p-adic Gg-representation attached to the sp§geX, Q) of weightk modular forms orX is then
by definition (cf. [17, Definition 5.6])

HI(XM x Q, Lo ) C™) = pG(M)Hét(XM x Q,Lay), (6)
where we tak&s(M)-invariants by applying the projector
1

pG(M) = |G(|\/|)| geGZ(M)g € @[G(M)],

regarded as a correspondence in go#r", o7") (notice that there is an action Gi{M) onLy,, compat-
ible with the action oiXM). This makes B(XM x Q, L )¢™) independent of the choice M, and one
further has

HE(XM x Q, Ly )M ~ Pa(m) 2 Ha (" x Q,Qp) = Po(m) E2r Hat(:e7" < Q,Qp),

wheregy, is a suitable projector in Cagii (7", /") encoding the construction @fy. Also, we may
remark that the Galois representation[ih (6) arises apihdic étale realization of a Chow motivé/s,
(seel[17, Appendix 10.1]).

The construction sketched above can be adapted to workZyitboefficients, and one can even
consider cohomology with finite coefficients, provided thet assume thap does not divideN - (2r)!
and we choose the auxiliary levél so thatp does not divideéG(M)| (hence the projectapg ) is well-
defined inZp[G(M)] andZ/p™Z[G(M)]). Write Zo, for the sheaf constructed &s, but with ring of
coefficientsZ /p™Z, and let%y, := Mfzr,m be the corresponding-adic sheaf.

Lemma 3.2. With the previous notationsi2,(X™ x Q, %) is torsion free and
He( X x @, Lom) = He(XM x Q, Z)/p™

Proof. First of all, the sheafZs, = (% m) of Zy-modules is flat, and hence for evary> 1 the exact

sequence 0— Z/p™1Z N Z]p™Z — 7/ pZ — 0 induces when tensoring wit#s, ,, a short exact
sequence
O — gzl"mfl — $2r7m — $2r71 — O

By passing to the induced long exact sequence in étale cologgand using that (XM x @, Lnrm) =
0 fori = 0,2 (cf. [17, Appendix 10]), one obtains a short exact sequence

Secondly, leXMP" /Q be the Shimura curve with full levél p™-structure abové, for each integer
n> 1. Then the natural forgetful morphism of Shimura cun¥&®" — XM is a Galois cover with Galois
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groupG(p") = GLy(Z/p"Z)/ + 1, and we writert, : <%, — XMP" for the corresponding universal abelian
surface. By a slight abuse of notation, we still writ, , for the p-adic sheaf oXMP" constructed
in the same way as foxM but starting witthm*_Z/ p™Z. Then for each pair of integers,n > 1,
HL(OXM x Q, Lo m) is identified with Hy(XMP" x Q, % m)®P"), where the superscrigh(p”) means
that we take invariants b§(p"). Indeed, the Hochschild—Serre spectral sequence for Sedwiers in
étale cohomology (seg [R3, 111.2.20]) gives an exact segee

Hl(G(pn)7 Hgt(XMpn X @7 Lorm)) — Hét(XM X @7 Lorm) — Hét(XMpn X @7 -iﬂan)G(pn) —

— H2(G(p"), HY(XMP" x Q, L)),

and using now that H(XMP" x Q, % m) = 0 we obtain an isomorphism @/ p™Z-modules H,(XM x
Q, Zorm) ~ Hét(XMpn X ngZr,m)E(pn)- _

Now the inclusion H(XM x Q, Zrm-1) — HL(XM x Q, Zrm) from (@) gives an isomorphism of
Z./p™ 1Z-modules B(XM x Q, Lorm-1) ~ HL(XM x Q, Zrm)[p™ 1]. To see this, first notice that for
any pair of integers ¥ i <n, the stalk of%%; at any geometric point of XMP" is isomorphic to the stalk
at the image ok’ on XM, However, the first one admits a trivialization induced frtime trivialization
of R’1,.Z/p'Z (using the levelp”-structure ongpy). In particular, forn > m one deduces that the
inclusion _ _

HLOMP' % Q, Zorm-1) = HL(XMP' x Q, Zorm)

in the exact sequence analogous[io (7))(_(%pn becomes the inclusion of th@"*-torsion submodule
HL(XMP" x Q, Zorm)[P™ Y] in HE(XMP" x Q, %% m). By takingG(p")-invariants, the claimed assertion
follows. B

Next we use this last observation to conclude that foma#l 1, H3 (XM x Q, %% m) is a freeZ/p™Z-
module of rank = dimg, (Hg(XM x Q, %%1)) (in particular, notice thatis independent om). Indeed,
the statement is true fon= 1, since I-it(X’V' x Q, %) is a finite dimensionaF ,-vector space. By
induction, if we assume the statement truerfor 1 and set H= HL,(XM x Q, %rm) then we look at the
short exact sequence

0— H[p™ —H—H/H[p™]—0

given by [7). By the inductive hypothesis, the first terfpFi?] ~ HL(XM x Q, Zorm-1) is a free
Z./p™ 1Z-module of rank, and the third term is identified with J{X™ x Q, % 1). Hence H(XM x
Q, % m) is necessarily a fre&/p™Z-module of rank.

Finally, the Lemma follows now directly by applying [23, Lema V.1.11]. O

Under the running assumptions thatloes not divideN - (2r)! andM is chosen such that does not
divide |G(M)| either, set

J:= poy (He(XM x @, Zar ) (r + 1)) = HE(XM x Q, 2 ) (r + 1)),

Let T = Tn+ n- denote the Hecke algebra generated by the good opefiat(isN) and the Atkin—
Lehner involutiondAg (g | N), which act on by endomorphisms. Writes C T for the kernel of the ring
homomorphismp : T — OF associated with, and letv =V (f) := {x € J: I;x= 0} be thef-isotypical
component of). Sincef is a newform, there is &[Gg|-equivariant projection) — V from J to the
f-isotypical component.

As in [17, Lemma 5.8]V = V(f) is isomorphic toV,, =V (f,), both as freefr @ Zy-modules of
rank 2 and a&q-representations. In particular, [27, Proposition 3.1jlegs verbatim fov =V (f). We
restate it here for convenience of the reader and for laterenece.

Proposition 3.3. i) V is a free Or ® Zp-module of rank2, equipped with a continuougr-linear
action ofGal(Q/Q).
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ii) There is aGal(Q/Q)-equivariant, skew-symmetric pairifig :V xV — Zp(1) such thafAx,y| =
[x,Ay] for all x,y € V andA € 0 ® Z,, which induces non-degenerate pairings

[Js:V/PV xV/pV — [, s>0.

i) For each prime/{ N p, the characteristic polynomial of the (arithmetic) Festius automorphism
Fr(¢) acting on V@ Q is
det1—xFr(¢) |[VeQ)=1— %X—i— 03,
iv) For each prime dN,
de(1—xFr(a) | (Ve Q)) =1~ %
with ag =0 or —&q tq', where |= Gal(@q/(@gr) is the inertia subgroup anéy t = @+ N (Wy) €
{£1} is the eigenvalue of the Atkin—Lehner involutiog &kting on f.

The above Proposition tells us thétis a higher weight analogue of the Tate module of an elliptic
curve, in which the Weil pairing is now replaced by the skgimmetric pairing], | from ii). On the other
hand, the isomorphism betwe¥randV., (both asfr @ Zp-modules and aSg-representations) implies
thatV ® Q is the p-adic realization of the motivés := M, over Q with coefficients inF associated
with fe, (cf. [27, p. 103] and[32]). Propositidn_3.3 then asserts$ g = M¢(—1) and

L(M{.9) = L(fw,5+1) = ¥ a0 *". (8)
n=1

According to the functional equation satisfied by theeriesl ( f.,s) (see[34, Theorem 3.66]), we see
that defining/\(s) := N¥2(2m) ST (s+r)L(MY,s), the following relation holds

A(s) =eN(2-5),

with £ = (—1)" twy 1 = (—1)" Wi+ n-, Wherewn 1 = @ 1(Wh) (resp. Wi+ n- = @+ n- (W) i the
eigenvalue of the Fricke involutiony acting onf, (resp. f = JL(f»)). In the remaining of this note,
we will also writeL( f,s) for the complex_-series in[(8).

Remark 3.4. Working with the alternative moduli interpretation for tB&imura curveX proposed in
Remar 2.V, we could have considered kuga—Sato varietpver XM obtained as ther2th fibered self-
product¢® of the universal genus 2 curi over XM. The cohomologies o2 and.«/" are closely
related, and one could reali¥e= V() as a factor in the middle étale cohomology#f" similarly as
we did by usingZ". When dealing with CM (or Heegner) cycles as defined in thé seotion, we found
no advantage in taking this alternative approach (cf. Ref2a&), although we believe it could be useful
when dealing with diagonal cycles in products of Kuga—Saigeties over Shimura curves along the

lines of [11].

4 Algebraic cycles andp-adic étale Abel-Jacobi map

In this section we will introduce and explore special algébicycles on the Kuga—Sato variety',
which will be referred to a€M (or Heegne) cyclesas they lie above CM (or Heegner) points on the
Shimura curveX. Their definition resembles the well-known constructiorCdfl cycles on Kuga—Sato
varieties above classical modular curves, since they aengally obtained from the CM cycles in the
QM-abelian surfaces parametrized by CM points on the SkinsurveX (cf. Sectior[2). The images
of these CM cycles under suitabfeadic étale Abel-Jacobi maps will give rise to a system adbiSa
cohomology classes that will be the input for Kolyvagin'sthal to bound the Selmer group, so let us
first recall how these Abel-Jacobi maps are defined.
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4.1 p-adic étale Abel-Jacobi map

LetW be a smooth proper irreducible variety of dimensibdefined over a field&k, and let CH(W /K)
be the Chow group of rational equivalence classes of codiioen (algebraic) cycles il defined over
K. If W denotes the base changeWfto a fixed algebraic closuré of K, the p-adic étale cycle class
map

CHU(W/K) — HZ(W,Zp(c))

described in[[18] gives rise to a map
cl: CHY(W/K) — HZ(W,Zp(c)).

Here, H;, stands for continuous étale cohomology, and we use thd asogention for Tate twists: if
M is aZp|Gg|-module andc is an integer, theM(c) = M ® x5, wherexp, : Ggp — Z is the p-adic
cyclotomic character.

A cycle whose class in CHW /K) is in the kernel of cl is calledull-homologous and we write
CH°(W/K)o := ker(cl) for the group of all such (classes of) cycles. The Hochseli&tre spectral
sequence (seg [118]) relating continuous étale cohomalstiycontinuous Galois cohomology Gik =
Gal(K/K), | -

HI (K, HL(W, Zp(c))) = Het (W, Z (),

gives rise to the so-called-th) p-adic étale Abel-Jacobi map o overK
AJp: CHY(W/K)g — HY(K,HZ (W, Zp)(c)).

For our purposes in this note we are interested in consigl®vin= 7", ther-th Kuga—Sato variety
overXM, wherek = 2r + 2 is the weight of our starting cuspidal newforfigof level N, and we still keep
our fixed factorizatioN = N*N~. Then the(r + 1)-th p-adic Abel-Jacobi map fo#7" over a fieldK of
characteristic zero takes the form

AJp: CH (/" /K)o — HYK,HZ (" xk K, Zp)(r 4 1)). (9)

Since the Abel-Jacobi map commutes with automorphismseofitiderlying varietyw", by applying
the projectorsezr and pg(vy We see that Adinduces a map

&x (CH ™" /K)o @2 Zp) — HY(K,J).

But now notice thaks HZ "2(.o7" x K, Zp)(r + 1)) = 0 (seel[17, Lemma 10.1]), or in other words, the
target of the cycle class map on CH(.«7" /K) vanishes after applyingy . Therefore,

& (CH (/" /K)o @7 Zp) = € (CH (" /K) ®7,Zp)

and composing the last map with the project@n J — V onto thef-isotypical component we finally
obtain a map

®r : CH Yo" /K) @7, Zp 25 €2 (CH (/" /K) @7, Zp) — HYK, V).

Since Aj commutes with correspondences and with the Galois actidoljows that the magbs
is bothT-equivariant and (iK /Q is Galois) GalK /Q)-equivariant.
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4.2 Conjectures by Beilinson, Bloch, Kato and Perrin-Riou.

The Beilinson conjectures predict a relation between thk odthe Chow group of homologically trivial
algebraic cycles on a smooth projective var¥tgf dimension 2+ 1 over a number fiel& and the order
of vanishing of the_-function attached to its étale cohomology, expecting tha

ords_i41 L(HE"(X), 8) £ dimg CH*(X),,

(seel[2, Conjecture 5.9]). This conjecture can be refinegplyang the projectoe corresponding to the
motive associated t& one is interested in to both sides of the equality to obtagmpitediction that

ords_i 1L (e HZT(X),s) = dimge CH"*(X)o.

Furthermore, lettindl denote Hi*1(X), and letting SéK,e M) be the submodule dfi’(K,e M) of
cohomology classes locally unramified everywhere outsiitdta setSof primes and satisfying suitable
conditions for primes irg, Bloch and Kato predict that the Abel-Jacobi map

e CH(X)o® Qp — SelK,e M)
is an isomorphisnm |6]. Hence, one expects that
ords—j1L(e M,s) 2 rank SelK,e M).

We outlined in the Introduction some of the contributionwdods these conjectures in the setting
where the motivéM is associated to an elliptic curve or a (twisted) higher eveight modular form and
a CM field satisfying the appropriate Heegner hypothesisulnsetting, one strives to prove that

ords_r1L(f ®K,s) = rank Sef” (f,K),
where Sqﬁf)(f, K) is defined in[(1l7). For = 0, X. Yuan, S.-W. Zhang and W. Zharig [37] showed that

L'(f @K, 1) = (yo.Yo)

up to an explicit non-zero constant, for an appropriate titgigiring ( , ), and Disegni[[18] obtained

a p-adic avatar of this result. However, even if one disposed fafrmula such as the one by X. Yuan,

S.-W. Zhang and W. Zhang in higher weight, one would not be &bteduce the equality predicted by

Beilinson, Bloch and Kato, because k is not known to be injective. On the other hand, one could
tackle conjectures in thp-adic realm due to Perrin-Rioll[9] of the form

Lo(f @K, fk, 1) = (1 k (Yo), Pk (Yo))

wherelk : Gal(K,/K) — Qp and(, ) is a suitablep-adic height pairing. Indeed,@adic Gross—Zagier
formula in higher even weight would combine with our resalvalidate an equality as above, along the
lines of Perrin-Riou’s conjecture for modular forms oveirBira curves, provided that the underlying
p-adic height pairing is non-degenerate. This is the sulggfdrthcoming work of Daniel Disegni.

4.3 CM cycles

Now we construct the CM (or Heegner) cycles on the Kuga—Saitiety " alluded to above, sitting
above CM points oiX = Xy+ y-. To do so, we shall first recall the notion of CM points on thén@ha
curveX, so we will fix from now on an imaginary quadratic fieddsatisfying the Heegner hypothesis

(Heeg) Every prime dividing N (resp. N") is inert (resp. split) in K.
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This assumption implies th#& embeds as a subfield By Consider then the natural map

B* x Hom(K,B) —» X(C) = (@X\BX x Hom((C,MZ(R))) /B,

given by extending homomorphisris— B to homomorphism§& — MzgR). A pointx € X(C) is called
a CM point (or aHeegnemoint) byK if x = [b,g] for some pair(b,g) € B* x Hom(K, B). We denote by

CM(X,K) := {[b,g] € X(C) : (b,g) € B* x Hom(K,B)}

the set of all CM points oX by K. Letc > 1 be an integer with gd¢iN,c) = 1. A CM pointx = [b,g] €
CM(X,K) is said to be of conductar > 1 if the embedding : K — B is optimal with respect t&; and
%, whereR. denotes the quadratic orderknof conductorc. This optimality condition means that

g9(K)Nb~1%b =g(Re),

so that no quadratic order strictly containiiy as suborder embeds intw1%b via g. Using that
Eichler orders in indefinite rational quaternion algebragehclass number one, it is easy to show that the
set CMX,K,c) € CM(X,K) of Heegner points of conductaris in bijection with the set EmIR., %Z)
of (%#*-conjugacy classes of) optimal embeddingRefnto %. In particular,|CM(X,K,c)| = 2'h(R),
wheret denotes the number of primes dividihgandh(R;) is the class number &.

Shimura’s reciprocity law (cfT12, 3.9], 124, 11.5.1],]2%.10]) asserts that C{X,K) € X(K#) and
that the Galois action of G&{2°/K) on Heegner points is described via the reciprocity map

re : K* — Gal(K3®/K)
from class field theory. More precisely, for everg K* and every CM poinib,g] € CM(X,K), one has

re (a)[b,g] = [§(a)b,g],

whereg: K* — B* denotes the embedding induced dpyIn particular, recall that for each> 1 the
reciprocity map induces an isomorphism

K* /RIK* ~ Pig(R;) — Gal(K¢/K),
whereK. denotes the ring class field Kf of conductorc, hence it follows that
CM(X,K,c) C X(Ke).

Moreover, one can check that G&}/K) acts freely on the set of Heegner points of conduct@o
that CM(X, K, c) has 2 distinct Ga(K./K)-orbits. Besides, the groug’ of Atkin—Lehner involutions
acts on CMX, K, c) as well, and for each primg| N, the corresponding involutiong acts on CM points
by switching their locabrientationat g. The Galois action, on the contrary, preserves the orientat
so that the 2distinct Ga[K./K )-orbits are in one-to-one correspondene with thed&sible orientations
(cf. [36, Chapter 7]).

From a moduli point of view, a CM point € CM(X,K,c) C X(Kc) of conductorc corresponds to
the isomorphism clasi\ 1] of an abelian surface with QM by? having CM by the ordeR; that is,
such that En@A, 1) ~ R.. We use this interpretation of CM points to construct certgdgebraic cycles on
Kuga—Sato varieties above the desired CM cycles. To do so, we use the isomorpliseE x E, from
Sectior 2.P in order to define a cydg C A, which will eventually give rise to a cycle in/". Recall
that in the previous isomorphisri, andE, are elliptic curves with CM byR;, such thate(C) = C/R;
andE,(C) = C/a. Herea is a fractionalR;-ideal.

We shall adopt the same conventions and normalizations &edation[2¥. Hence by choosing
a square root/—D; € R; we can decompose = Za® Z+/—D. as a direct sum of it$+1)— and
(—1)—eigencomponents for complex multiplication (or equivélierfor the Ga(K/Q)-action), where
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ac 7 dividesDc. As explained in Sectidn 2.4, the Néron—Severi group isf the freeZ-module of rank
4 generated by the classes of the cycles

Ex0, OxE, Zs and Z, .
We then define the CM cycle associated witto be the cycle

ZA:Z\/__DCQA

Notice that under our conventions, the cyZleis well-defined up to sign, since its sign changes when

v/ —Dc¢ is replaced by-+/—Dc.

Remark 4.1. If Ais a QM abelian surface, then 8o := NS(A) ®z Q has a natural righB*-action.
If further A has CM as above, then one has a decomposition (as e&ightodule) N$A)q ~ ad’(B) @
Nrd, where afl(B) denotes the representation ®f consisting of elements of trace zero on whigh
acts on the right by conjugation and Nrd denotes the one+tiioral representation &* given by the
reduced norm (cf.[[5]/[17, Lemma 8.1]). The one-dimensiandbspace of N&\)g corresponding to
Nrd is usually refered to as its “CM part”, and is generatedtbg class ofYa.

Next we study how the cycle&, are related wheA varies in a QM-isogeny class of abelian surfaces
with QM by % and CM byK. In other words, we want to relate the Heegner cycles cortstilas above
when we vary in CM(X,K).

First of all, we notice that the choice of the square rg6tD. does not only fix the cycl&a,
but also the CM cycle&, for every QM-abelian surfac&’ which is QM-isogenous té. Indeed, if
Y : A— A is a QM-isogeny, then we fix the sign @f by insisting thati,Z = tZ, for somet > 0.
This condition does not depend on the isoggnyto see this, by using that QM abelian surfaces admit
a unigue principal polarization compatible with the QM sture, one is reduced to show that for every
@ € End,(A) there exists a constaht> 0 such thatp.Zy =tZs. But the latter holds becausgg acts
on NSA) as multiplication by deg@p). In other words, one only requirgg—D /+/—D¢ to be positive
under the canonical identificatid®, @ Q ~ Ry ® Q.

Now fix a CM pointx' = [A',1'] € CM(X, K, c’) of conductorc’ > 1, represented by some QM abelian
surface(A';1") with EndA',1") ~ Ry. Similarly as forA, we now writeA’ ~ E’ x E,, whereE'(C) =
C/Ry andE,(C) = C/b for some fractionaRy-ideal b. We writeb = Zb Z/—D following the same
conventions as those far Then the CM cycle associated with or with A, is the cycleZy :=Z N

Dy
corresponding to the isogeny
\/—D¢ € b ~Hom(E,Ey).

Choosing the square rogt—D¢ € Ry so that,/—Dy/+/—D¢ is positive, the precise relation between
the cyclesZy andZ, under a given QM-isogernk — A’ is the content of the next proposition.

Proposition 4.2. Let (A1) and (A';1") be as above, and lgp : A— A’ be a QM-isogeny of abelian
surfaces with QM by? and CM by K. Then:

a) (,Za = (deg))¥?(bD./aDy)Y?Zy.
b) Zy = (deg ¢))Y?(aDy /bD¢)Y?2Za.

Proof. First notice that the degree of the isogepy-D. : E — E, equals the index of/—D.R. in a as
lattices. This index is precisely D.. Similarly, the degree of/—Dy : E/ — Ey is b™'Dy. We see
therefore that the constabD./aDy in the statement is precisely deg—D.)/deq v/—D¢). Similarly,
the ratioaDy /bD; in (b) coincides with deg,/—Dc )/ dedq +/—Dy).

Now consider the CM cycl&x =T —p. — (E x 0) —dedv/—D¢)(0 x E,). A straightforward compu-
tation shows that, Z, is orthogonal with respect to the intersection pairinggox 0,0 x Ey, Zy,), hence
it must lie in theZ-submodule of rank 1 in N@'') generated by the CM cycléy. As a consequence,
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Y. Zx = qZy for some constarg. Such a constant can be then obtained by computing theseiséction
numbersZy - Zy and ({4, Za) - (Y.Za) and using the identityy, Za) - (. Za) = °Za - Zn. We have

Iy Iy = —2deq\/ —DC/) and (ll,l*ZA) : (lll*ZA) = —Zdeq\/ —DC) deg(L,U),

1/2

hence we conclude thgt= 2949V De) ) _ (geq y))2/2(bD./aDe)Y2 and (a) follows. Part (b)
deg\/-Dy)

can be obtained now from (a) by the projection formula. O

Let nowx € X(K&) C CM(X,K) be a CM point byK, and choose & q~%(x) any preimage ok
under the forgetful morphismg : XM — X of Shimura curves. The fibre% is a QM abelian surface
with End(.2%, 1x) = R, for some positive integet. Hence we have a well defined (up to sign) cycle
Zz € CHY(2%).

The cyclesZz, for X € q~1(x), can be chosen in a compatible way with respect to the action o
G(M). Namely, everyg € G(M) extends to an automorphisgt <7 — </, and induces an isomorphism
g: @k — Ay for everyxe q~1(x). Then we may require that.(Zz) = Zyx) for everyx'e g~%(x) and
everyg € G(M).

On the other hand, i##” denotes the group of Atkin—Lehner involutions acting>Xoneachw € %
extends canonically to an involution o¢M, which we still denote by the same symlygl commuting
with the action ofG(M). Similarly, also the group Gék;/K) acts onXM /K, and in particular on
g }(CM(X,K,c)). The actions of botty and GalK./K) extend to the universal abelian surfaeg
and we may choose the cyclggso that

Wi (Zg) = Zyz)  O.(Zx) = Zs(x)

for everyw € # and everyd € Gal(K¢/K).

Continue to fix our CM poink € CM(X,K,c) and any liftX'c g~1(x). The inclusionig : (%) =
oz — o7 of the fibrerr1(X) into the universal abelian surfacé induces a map CH.c%) — CH?(.«7),
and hence we can consider the imagezgpin CH?(.7). More generally, the inclusioff : 7 1(X) =
oy — /" of the fibre ofrg : .o#" — XM abovexinto ther-th Kuga—Sato variety7" overXM, induces a
map

(). : CH () — CH*Y(a/"),

and we letZ; := (i%).(Z%) € CH' (7" /K,) be the image oZf = Zz x --- x Zz. HenceZ is a cycle of
codimension + 1 in .«/" defined oveKg, the ring class field of conductar= c(x). Notice that for every
w e # andd € Gal(K./K) the above compatibility conditions for the cycl&simply that

W.(2%) = Zww and O.(Z) = L.

5 The Euler system

We keep assuming the Heegner hypothesis (Heeg), so thateigriategem > 1 with gcdNDk,n) =1
the set CMX, K, n) of CM points of conducton is non-empty. Under the maggs k, induced by the
relevantp-adic étale Abel-Jacobi maps, the CM cycles constructetdrprevious section give rise to
a collection of cohomology classes enjoying the compdijbiiroperties that turn them into an Euler
system of Kolyvagin type.

We shall restrict ourselves to square-free integers 1 such that gcbNDk,n) = 1 and whose
prime factors are alhert in K. Such primes will be referred to &olyvagin primesalthough later we
will need to impose more precise restrictions. Fix an embepg: K — B, optimal with respect té&y
and #, whereR; = Rg stands for the ring of integers 8. Such an embedding defines a CM point
X(1) = [1,9] € CM(X,K,1) of conductor 1 inX. For each primé t pNDx inert inK, choose an element
b(¢) e B C B~ satisfying ord(n(b(¢))) = 1, and ifn = ¢1 - -- £ is a product of pairwise distinct primes
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(i1 pNDx inertinK, setb(n) :=b(¢1) - --b(¢) € B*. Thenx(n) := [b(n),g] € CM(X,K,n) is a CM point
of conductomn in X. This way, we have defined a collection of algebraic pokity € X(K,), indexed
by positive integers as above.

For eachx(n), we choose a preimagen] € g~1(x(n)) in XM, and forx(n) we have defined a CM cy-
cle Zn = Zn) € CH "1(&/" /Ky). We denote by, € HY(Kp,V) the image ofZ;, by theT[Gal(K,/K)]-
equivariant morphism

Py, : CH " /Kn) @ Zp — HY(Ky, V).

Because of the averaging projectms involved in the definition ofP¢ i, the cohomology clasg does
not depend on the choice RE"q1(x).

5.1 The Euler system relations

Letn=/¢1--- ¢ be the square-free product of pairwise distinct primes aseahall of them inert irk
and not dividingpN Dx. We may assume for simplicity th& = {£1}, which amounts to say th&t -
Q(v-1),Q(v/—3) (otherwise, all the discussion applies almost without arnge, withuk := |RY|/2
appearing in many of the computations). If we wi@g:= Gal(Kn/Kz1), thenGy =~ [, G¢, where each
Gy = Gal(K,;/K1) is cyclic of order/ + 1. We fix once and for all a generatoy € G, for each prime
¢inert inK. By class field theory, ih=m¢ andA = (¢) is the only prime irK above/, thenA splits
completely inKp/K, and each primap, in Ky, above is totally ramified inK,, /K, so thatAy, = (A,)+1.

Whenn varies over positive integers as above, the cohomologgesys arising from CM cycles in
/" enjoy the following norm compatibility relations.

Proposition 5.1(Global norm compatibilities) Let n=¢m be a product of Kolyvagin primes. Then

Te(Ym) = COlky, K (Yme) = ArYmy-

Proof. We know thafT, acts orlV as multiplication byay, thus it suffices to prove the first equality of the
statement. Suppose that € H1(Km,V) is the image unde®s x,, of a CM cycleZym = (i;(m))*(;;(m)),
for somextm) € XM(C) lying above a CM poink(m) € X(Kny) of conductorm. The divisorT,(X(m))
consists of + 1 points, lying above thé+ 1 points whose formal sum ©&(x(m)). By compatibility of
the Hecke correspondend@gacting onX, XM and.«v", we have

ToZ5(m) = > 2.
X € SuppTe(X(m)))

But using the norm relations for CM points ot (see [29, Proposition 4.8 (ii)]), the right hand side
equals
2oz = > 0(Zxm),
oeGal(Kny /Km) oeGal(Kyy /Km)
where the last equality follows from the compatibility oetlicM cycles under Galois action. Finally,
since®y k,, is Hecke- and Galois-equivariant, the above relation iegli (ym) = COIk, k,(Ym), @S Was
to be proved. O

Proposition 5.2(Local norm compatibilities) Let n= ¢m be a product of Kolyvagin primes. L&t be a
prime dividing? in K,. Then

Yn,/\n = FrOb(f)(reSKAm,KAn (yn,)\n)) € Hl(K/\nav)'

Proof. Let x(m) andx(n) be the CM points oiX corresponding to the classgs andy,, respectively,
and letA, be a QM-abelian surface with CM representixign). Thenx(n) can be represented by
An = An/C, whereC C A[/] is a subgroup of ordef, cyclic as%Z-submodule, ané, andA, are related
by the canonical isogen§, — An/C. Sincel is inert inK, the reductions oA, andA, moduloA,, and
An, respectively, are both products of two supersingulaptilicurves (recall thady, is totally ramified
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in Kn/Km, hence the residue fields of bdth, at A, andK,, at A, coincide, and are in fact isomorphic to
the finite field of¢? elements). Then the isogedy, — An/C reduces to Frobenius on each factor and
the claim follows by the relations between CM cycles undegésy in Proposition 412 (the constaats
andb are forced to be equal, amtl= c¥). O

The cohomology classeg also enjoy the following compatibility with respect to coleyconjuga-
tion, which stems directly from the action of complex corgtign on the CM cycles.

Proposition 5.3. If p denotes complex conjugation, then

P(Yn) = —€0(Yn)
for someo € Gal(K,/K), wheree denotes the sign in the functional equation ¢f ls).

Proof. Let Z, C <% be the cycle associated to (a ift"XM of) the CM pointx = x(n) of conductom.
Thenp(Zx) = —Zpx)-

Besides, it is well-known thap(x) = Wy (o (x)) for someo € Gal(Kn/K), whereWy stands for
the Atkin—Lehner involution associated with= N"N~ acting onX (see[[36, p. 135]). By using the
compatibility of the CM cycles with the actions of Galois a#d, and that these actions commute, it
follows that

P(Zn) = ()W (0.(Z0)) = (—1)" 0. (Why . (27)).

Finally, since®s k, is Hecke- and Galois-equivariant, we deduce that

P(Prk,(Zn)) = (1) Wns -0 (Pr ki, (20)),

which is equivalent to the relation we want, sirce: (—1)"  twy: - O

5.2 Kolyvagin cohomology classes

Recall thaV is a freedr ® Zp-module of rank 2, wher@r stands for the ring of integers in the number
field F generated by the Hecke eigenvalags= a,(f.). If &5 denotes the completion @fr at a prime

[J of F abovep, then there is a canonical decomposition® Zp = © 0, where the sum is over all such
primesl] | p. Fix once and for all a prim& | p of F. ThenV =V ®g.«7, O is a freed;-module of
rank 2, and there are natural localization morphisms

HY(Kn,V) — HY(Kn, Vi),  Yn— Yno-

From now on, we writ¢f :=Vy ® Qp/Zp andYs := Yps for everys > 1, henceYs =V /p°Vy for s> 1.
We remark that for the sake of simplicity, we did not consitlerse integral and mopf representations
in the Introduction, and rather stayed at the leveFgfvector spaces. Indeed, the representade(rf)
of the Introduction corresponds to the-vector spac¥y ® ¢, Fy = Vg ®z, Qp. For eacts> 1, we have
a natural reduction map
reds : HY(Kn, Vi) — HY(Kn, Ye)

(and all such maps are compatible in the natural way veharies), and we denote hy/K the Galois
extension oK cut out by the representatiof. B B

It follows directly from [27, Proposition 6.3] thétgGa'(Q/ Kn) :YSGa'(Q/ K1) for every square-free integer
nwhich is a product of primes as above, and further theresaisinteges; > 0, which doesotdepend
ons, such thatYsGa'(@/ K1) (hence aIsO(sGa'(Q/ K”), for all n) is killed by p. We state below a direct
consequence of this (cf._[27, Corollary 6.4]), for laterereice.

Corollary 5.4. There is an integer;s> 0, independent from s, such that both the kernel and cokeifnel o
the restriction map
reSKLKn : Hl(K]-?YS) — Hl(KanS)Gn

are killed by .
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Next we want to construgs,-invariant classes in HKp, Ys) starting from the localized classgs .
To do so, we first need to restrict a bit more the indieéisat will be admissible in our system of classes,
or rather on the primes that will be allowed as factors.of

Definition 5.5. For eachs > 1, we defineX;(s) to be the set of rational primesf 2pNDx such that
the conjugacy class FrotK:Ls/Q) of the arithmetic Frobenius automorphism Frab Gal(KcLs/Q)
coincides with the conjugacy class FigB:Ls/Q) of complex conjugation. We then put, for every
k>1,

2k(s) = {l1--- Uk : 4 € Z1(s) pairwise distinct.

Primes inZ1(s) will be referred to as-Kolyvagin primesor justKolyvagin primes

The condition on the conjugacy classes of Frobenius and leonepnjugation can be rephrased by
saying that Fropand the complex conjugation Frolhave the same characteristic polynomial modulo
p°, that is, a

X —1=0x%— sx+1 (mod p°),

This is equivalent to the assertion that

<—TE)K>:—1 and ay=/(+1=0 (mod p®).

In particular, notice that primese X4 (s) are inert inK.
Let ¢ € 21(s) be a Kolyvagin prime, and recall that we denoted dyya fixed generatoG, =
Gal(K,/K1). Recall alsKolyvagin’'s traceandderivativeoperators

IGe|-1 IG[-1

Trgz Z} O'l}, Dgz % IO'l! c Z[Gg],
i= i

related by the identities
(O'g — 1)Dg = ‘Gg‘ —Trp=0+1-Tr,.

If n=4¢1---4 € Zk(S), then one also defines

Proposition 5.6. The cohomology classedi(ynp) € HY(Kp,Ys) is Gp-invariant, i.e. it belongs to
H(Kn, Ys)Cn.

Proof. Let/ be a (Kolyvagin) prime dividingh and seh = m¢. Then we have
(0¢ —1)DnyYng = Dm(f +1—=Tro)¥ng = Dm(£+ 1)Yng — &Dmym,

where in the second equality we usexgs, o COlk, k., = Tt and Propositiof 5]1. Now sindec Z;(s)
we know that? + 1= a, = 0 (mod p®), hence the statement follows. O

By virtue of Corollary[5.4, this proposition implies thagpgsibly up to multiplying bypS (where re-
call thats; is independent o), the derived classd3nreds(yn ) € Hl(Kn,Ys) can be lifted to I-"|(K1,YS).
This lifting is often referred to as “Kolyvagin's corestiian”, and is reviewed in detail i [27, Section
7].

More precisely, continue to fig>> 0, puts = s+ s; and require Kolyvagin primes to lie iy () (so
thata, = /+1=0 (mod p*) for all primes/ dividing n). Multiplication by p* induces a homomorphism
j : Y9 — Ys. A system of cohomology classes

Ks(n) € HY(K, Ys)
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can be defined in the following way. For= 1, just setks(1) := cork, k (reds(y17)). If n=~7is a
Kolyvagin prime, therp®D redy (y, ;) = res, k, (z,) for some clasg, € H(Ky,Ys), and two choices of
z differ by an element in the image of'tK,Ys,) — HY(K,Yy), and hence in the kernel ¢f. In view of
this, the class

Ks(() := ootk (j(2:)) € HY(K, Ys),

is well-defined and does not depend on the choicg.dore generally, iin= /1 -- -k is a (square-free)
product of Kolyvagin primes, thep®Dpredy (yn) = res, k, (z,) for somez, € H(Ky,Ys). As before,
the class

Ks(n) := coric, k (j+(z)) € HY(K,Ys),

is well-defined.

5.3 Localization away from p

Having defined the cohomology classesn), we end this section by describing their local behaviour at
placesv of K not dividing p. Of special interest are the localizations at places ablogtime factors

of n. We may start by fixing some notation. Lét %;(s) be a Kolyvagin prime dividingn, write
n=m¢ and letA be the (unique) prime df abovel. We fix a primeA, of K, above/, which uniquely
determines primean, A, andA; of Ky, Ky andKj, respectively, all of them ovet. Recall thatA = (¢)
splits completely in the extensidfy,/K, whereas\, is totally ramified inK, /K, henceAy, = (An)+1.

At the level of completions, we hau§) = K, andK, = K,, = K,, and our choice of, determines
also an isomorphism

Gal(K,, /Ky ) = Gal(K, /K, ) ~ Gal(K/Ky) = (a).

In particular, the choice of, identifies the generatar; with an element of GgK;, /K, ). Such an
element can be lifted to a generatrof Gal(KY/Ki") ~ Z(9) (1), whereKY is the maximal tamely ram-
ified extension oK, andZ(") = [Nq.s Zq. This lift is well-defined modulg¢ + 1)Z“)(1), and under the
canonical projectiori(f)(l) — Uy itis sent to some primitivep® -th root of unity, say, s € Hye (Ky)-
Tame duality then yields (cfi_[27, Proposition 8.4j)-linear canonical isomorphisms

o s T HL (K Ye) — Ye (Ky ), (10)

Brs t HYKS" Ye) — Hom(ke (Ky), Yo (Ky)) = Yo (Ky), (11)

with B, ¢ being evaluation at the root of uniy ¢, and a perfect pairing

(:)as tHE(KyYo) x HUKY YE) — Z/P°Z, (12)
whereY/ = Hom(Ys, 4 ). Further, the isomorphism

Gy = BX@ oy ¢t HE(Ky, Ye) — HY(KS", Yy) (13)

interchanges cocycles with the same values on (jcdnd 1, (mod p®). After identifying Yy with its
dualY} via the pairing[,]s from Propositiod 3.3, the pairiny), ¢ satisfies the relation

@ ¢ ),
ZASH M =l ¢ (X), 00 ¢ (V)]s (14)
Finally, localizing the inflation-restriction sequence K3, /K yields a canonical splitting
H (K, Ye) ~ Hg(Ky, Ye) @ HY(KS", Ye).

Both factors in this splitting are isomorphic ¥Y9(K, ), via the canonicabl;-linear isomorphisms) ¢
andp, g, respectively.
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On the other hand, complex conjugatipne Gal(K/Q) = Gal(K, /Q,) acts naturally on several
groups involved in our discussion. We denote by a supetsgrifhe corresponding+)-eigenspaces
for this action. Notice thappg (Ky) = s (K))~ by the assumptions of) and each of the eigenspaces

Yy (K, )* is a freed; /p*-module of rank 1. Since the local pairidg), ¢ in (12) is p-equivariant, it
induces non-degenerate pairings

()3 ¢ T Ha(Ky Yo) £ x HY(KY Yo )= — Z/p°Z.
In contrast, the isomorphisi, ¢ is p-antiequivariant, and therefore it induces isomorphisms
Hﬁr(K/\ >YS')i = Hl(K)L\JraYS'):F-

The next proposition summarizes the relevant properti¢seofocalizations of the Kolyvagin coho-
mology classegs(n) at places oK outside ofp.

Proposition 5.7. Let v be a non-archimedean place of K and n be a product of l&giyvprimes.
) Kks(n) € HY(K,Ys)®, whereg, = (—1)"Le.
i) If v {Nnp, themks(n), € HL (Ky,Ye).

iii) There exists a constanpsuch that FH(K,,V /pV) for all places v| N of K and all s> 0. In
particular, if v| N then ®ks(n)y = 0.

iv) If n=m¢andA = (¢) is the only prime of K abové then

(e ) (e Denma

> PPy s(Ks(M)y),

where d= 1 if n is a product of two primes, and ¢ 0 otherwise. If both((¢+1)+a,)/p° are
units in &, then the above relation simplifies to

Ks(N)) = Ug.g, pdsl(p/\,s(KS(m))\)7 Ure € (ﬁﬂ/ps)x-

Proof. The first assertion is a direct consequence of the actigm @i CM cycles (and hence, on the
classeg,) and the relation with Kolyvagin’s derivative operatorymaly pD, = (—1)"Dpp. Statement
ii) is clear since botlK,,/K andy, are unramified at the placg and iii) follows from [27, Lemma 10.1].
Finally, iv) is obtained by applying Nekovar’s discussion localization of Kolyvagin’s corestriction in
[27), Section 9] (see alsb [27, Proposition 10.2 (4)]). O

Corollary 5.8. If both £+ 1+ a divide F*€in &y, then for all { € HL,(Kj, Ys)
ty,P°Ks s
g a, (1), U B0 o(ks(0/0))]s,

where() s = ZApz.

6 The Selmer group

So far, we have seen that, possibly up to multiplyingoBy the cohomology classesg(n) are unramified
at every place oK not dividingnp. Further, their localizations at the primeskoiividing n are subject
to the relations in Propositidn 5.7 iv).

Now if vis a place oK abovep, then theQ,-vector spacsV :=V @ Q is equipped with a continuous
Gal(K,/Ky)-action, and following Bloch and Kato it is customary to set

HE (Ky, W) := ker(HY(Ky,W) — HY(Ky,W @ Bgis))
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and
Hé(K\,,W) = ker(HY(Ky,W) — HY(K,,W @ Bgr)),

whereBgis and Bgr are Fontaine’s period rings. In order to deal with the regméstionsV andYs, if
?2¢ {f ,g} we denote by B(K,,V) C H}(K,,V) the preimage of &Ky, W) under the natural homomor-
phism H(K,,V) — HY(K,,W), and by H (K, Ys) € HY(K,, Ys) the image of B(K,V) under the natural
reduction homomorphism*K,,V) — H(Ky,Ys).

Asin [27, Lemma 11.1], the fact that® Q is crystalline implies that i’ is a prime ofK dividing p
andK'/Ky is any finite extension, thenffiK’,V) = Hg(K’,V) and the Abel-Jacobi map ovif factors
through H (K’,V). In particular, since H(K,Ys) depends only on the action of the inertia subgroup of
Gal(Ky/Ky), for every square-free product of Kolyvagin prinreand any primev of K abovep it follows
thatks(n)y € H} (K, Ys) (because, /K is unramified av). This leads naturally to the definition of the
(p®-th) Selmer group:

Definition 6.1. The (p-th) Selmer groupSeEs)(f,K) C HY(K,Y;) is defined as

Sel?(f,K) = {x e HY(K,Ys) : %, € HL.(Ky,Ys) for all v/ N pandx, € HE(K,,Ys) for v| p}.

If vis a place ofK not dividing N, then.es has good reduction at and therefore we infer from
[27, Lemma 4.1] that HK,,V) consists only of unramified classes. Hence from the very idefinof

Segs)(f,K) we see that the global Abel-Jacobi map frém (9) factors tjinou
CH (" /K)o® O/ p°0n — Sef?(f,K). (15)
On the other hand, given arbitrary clasgegc H(K,Ys) the reciprocity law asserts that

Z <XV7YV>V,S =0 in Z/ pszv

\
where the sum is over all the placesin This is actually a finite sum, sincey, yy)ys vanishes for every
placev for which bothx andy are unramified. Ihis a product of Kolyvagin primes, then the cohomology
classes(n) are unramified at all places not dividima, possibly after multiplying byp®, and we also
know thatks(n), € H} (Ky,Ys) for every placev of K abovep. But the finite part H (K, Ys) is isotropic
inside H (Ky,Ys) at all placess dividing p (see[[6, Prop. 3.8]), hence the above reciprocity law insplie
that

P= > (X1 Ks(Ma)rs=0 INZ/p°Z (16)
ln

for everyx € Seﬁ(f,K), where for each Kolyvagin primé| nin the sumA denotes the unique prime
of K abover.
Finally, we denote

Sef”(1,K) := lim Sef? (f,K). (17)

By considering the inductive limit of the Abel-Jacobi mdp§)(one obtains a map
®:CH (" /K)o® 07 — Sef) (f,K) CHYK V).
Its cokernel is by definiton th@-primary part of the Shafarevich—Tate group,

III- = cokel(®) = Sef” (f,K)/Im(®).
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7 Main result

Recall our initial setting, in whict., € S, (I'o(N)) is assumed to be a newform of weight-22 > 4
and levell'o(N), and letp be an odd prime not dividind\ - (2r)!. We write F for the number field
generated by the Fourier coefficientsfaf, r for its ring of integers, and fix a primé of F abovep.
LetN = NN~ be a factorization such that géd*,N~) = 1 andN~ > 1 is the square-free product of
an even number of primes, and ktbe an imaginary quadratic field satisfying the Heegner hygmis
spelled out in (Heeg).

The Galois representation associatedtaomight be realized as a factor in the middle étale coho-
mology of ther-th Kuga—Sato variety7" over the Shimura curv& = Xy+ n-, by using the Jacquet—
Langlands correspondence to liff to a modular formf on X and following previous work of Besser and
lovita—Spiess (cf. Sectidn3.3). We have previously dehtiés representation By =V (f) ~V(f.).
Itis a free 0k ® Zp-module of rank 2, and our choice Of singles out a localizatiow;.

We have seen that the Abel-Jacobi map induces a Hecke- ans®qlivariant map

®:CH ™ (/" /K)o® Oy — Sef™(f,K) C HY(K, V),
by localizing at’] and projecting on thé-isotypical component. Defining

Yo 1= €O /K (Y1),
the main result we prove in this note reads as follows:

Theorem 7.1. With the above notations, supposgiy non-torsion. Thernm(®) ® Q has rankl and
- is finite. More precisely, we have

(IM(®)®Q)¥=0 and (IM(P)®Q) *=Fy-Yo.

As already commented, the proof of this result follows Kalgin's method as generalized by Nekovar
in [27]. Indeed, once we have constructed the Euler syste@Mbfcycles on the Kuga—Sato variety
<" and have proved the compatibility properties that the aasmt system of Kolyvagin cohomology
classes satisfies, the proof is formally the same. In spithigf we summarize below the argument for
the convenience of the reader.

Before entering into the proof, we shall make some globaéntagions that complement our local
discussions in the previous section. Keep the same nosatierbefore, and write = K(Yy) for the
Galois extension oK trivializing Yy, S = s+ . Letalsoly € Mo (L) be a primitivep® -th root of unity.
For each Kolyvagin primé € Z;(s'), we might choose a pladg of L abovel such thaty maps taf) ¢
under the embedding — L, = K,. Then we put{s := (Zg)PSl. Under this choice oA, we identify
Ys(Kx) ~Ys(Ly, ) = Ys(L). Further, we consider the maps

a)\L,S: Hl]jr(L)\L7YS) i> YS(L)\L)7 (p/\L,S: Hﬁr(L/\UYS) i> Hl(LK[7YS)

analogous to the mags, s and ¢,  introduced in[(ID) and_(13), respectively, for . And by a slight
abuse of notation, we also writg, s for the composition

ALss

a
HY(L,Ys) — HY Ly, Ys) — HE(La,Ys) — Ys(Ly) = Ys(L), (18)

where the first arrow is localization af and the second one is projection on the unramified part. The
composition of these maps is the evaluation at FAph
Consider the restriction map

res=rescL : HY(K,Ys) — HY(L,Ye)®¥HK) = Homgay k) (GallQ/L), Ys(L)).

The formula [(14) relating the pairings), s and[,]s through the root of unitys admits the following
global version:
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Proposition 7.2. Given classeg, 6 € HY(K,Ys) such thatn,, 6, € H.(K,,Ys),

(N,® s(0))rs
(OO [, (resn)), a, s(res(6))]s
Now we are finally in position to prove Theorém]7.1.

Proof of Theoreri 711We keep the notations as above. In particwdas; 0 is a sufficiently large integer,
ands = s+s;. The Selmer group S%"I)(f,K) = ILmSeES)(f,K) is finitely generated as A,-module,
and our goal is to bound it. We continue to denbte K(Yy).

LetT = res(SeEs)(f,K)) C HY(L,Ys) be the image of thgS-th Selmer group under the restriction
map, and write alsais(n) := regks(n)) € H(L,Ys) for the image of ther-th Kolyvagin cohomology
class under restriction. The action@bn T defines two eigenspacéB;, and we will obtain our bound
for T (and hence eventually for Sé@(f, K)) by looking separately at® andT —¢.

Let Lt C L2 denote the subfield fixed by the annihilator Bfunder the evaluation pairing x
Gal(L?®/L) — Ys(L), and putGt := Gal(Lt/L). Then one has an induced @alQ)-equivariant pairing

T x GT — Ys(l—), (t7g) — t(g)7

with the action of GalL/Q) on T factoring through G&K/Q). In particular, this naturally induces a
Gal(L/Q)-equivariant magst — Hom(T,Ys(L)) and ap-equivariant maf’ — Homgg k) (G, Ys(L)),
both of them injective.

As in [27, Section 12] (specifically Proposition 12.2 thajethere exist integera b > 0 such that,
for all slarge enough, the following assertions hold:

() p*HY(K(Ys)/K,Ys) = 0;
(i) Ly NK(Yw) € K(Yeta);

(iii) foreachge G, there are infinitely many primeswhich are inert irk and such that Frgb  (A) =
0, p° | {+1+taandpsta i+ 1+ ay;

(iv) pPcoker(j: Gt — Hom(T,Ys)) = 0.

If xis an element in an abelian groéplet expx) be the smallesin > 0 such thap™x = 0. In the
same fashion, eX@) denotes the smallest > 0 with p"A = 0. For instance, eXgs(1)) = s— s and

exp(us(n)) > exp(ks(n)) — a.
Fix an elementy; € Hom(T#,Y¢) of maximal exponent, i.e. such that

exp(Ye) = exp(Hom(T*,Ys)),
and notice that this exponent also equals(&%p. Also chooseap_. € Hom(T ~#,Y;#) such that
exp(_c (Us(1))) = exp(s(1) (> s—%—a).

If £is a Kolyvagin prime and_ is a prime ofL above/, recall the mam, _s: H(L,Ys) — Ys(L) from
(@8). Its restriction to each of the eigenspaces for theaaif complex conjugation gives rise to maps
ais "H(L,Ys)™ — Ys(L)*, and by a slight abuse of notation we still denoteot;“‘ys the restrictions of

these maps td . The mapa, s corresponds to evaluation at F(ab), thus one can find a Kolyvagin
prime¢ such thatp® | £+ 1+ay, p* @11+ 14 a andaj, (= .
Now lett € T¢ be arbitrary. By virtue of the reciprocity law,

(tr, P?Ks({)r)rs=0 InZ/p°Z, (19)

and the choice of together with Corollarj 518 then imply that

[a)us(t)\ ), p52+a+1u1€78[ aj ,s(us(l)/\ )s=1.
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Now using that € T#, us(1) € T ¢, and the above relation betweeﬁbs andy, it follows that

(e (1), p52+a+2b+1uf7ef P_e(us(1))]s = 1.

Sincel,]s is non-degenerate, we infer tha++22+20+1T¢ — 0, and hence that
p50+52+3a+2b+1(SeES) ( f7 K))s —0.

Next we look at the eigenspade €. As before, one can choose elemeptse Hom(T+,YS") such
that

exp(¢: (Us(€))) = exp(us(£))
and
exp(@-¢ mod O ) = exp(Hom(T ~4,Y; %) /O y_.) = explker(Y_¢)).

Notice that the choice of the prirfamplies that

exp(us()) > exp(ks(f)) —a > exp(Ks(£))) —a> exp(ks(1),) —2a>

> exp(p°YP_e(us(1))) — 2a = exp(us(1)) —2a—b > s—s—3a—h.
As above, one can find a second Kolyvagin prithg ¢ such thap® | ¢/ +1+a,, p> 214/ + 14+ ay

andoris = pP.. Fort € ker(y_.) C T~¢, the reciprocity law reads

PZ(tr, Ks(£0)a)r s+ PZ(tar, Ks(Cl ) rr) ars = P2 (trr, Ks(Ll ) )y s =0 INZ/P°Z,

where the first term vanishes becausd of (19) and part iv)agdition 5.7. This gets translated, thanks
to Propositiol 7.2 into the identity

[@ (1), pretsetatly, . g (us(f)))s = 1.

As a consequence, the kernelyaf, : T—¢ — Y, ¢ is killed by potsitszt4a+3o+1,

Finally, the assumption tha is non-torsion in H(K, V) implies the existence of an integgy> 0
such that, modulo torsioryy is divisible by p%* in HY(K, V) but not byp®**. For the classis(1), this
means thatis(1) = p*x+t for somex, t in the image ofb with pt = 0, as the torsion part of HIK,Vj7)
is killed by p*. Thus for large enougg the following relation holds

exp(y_g (X)) =exp(x) > s—a.
Besides, the mag_, : T~¢ — Y, ¢ induces an exact sequence

ker(y_¢) L Yoe Ys ©
0— — = )
* Opt+ OpXx OpP-¢(t) + O P-e(x)

in which the first term is killed byp®*sit%+4a+30+1 (hecause so is ké_,)), and the last term is killed
by p?. From this one concludes that

(Sef¥(f,K))¢/(Ot + 011%)
is killed by potsits+6a+3b+1 Agstends towo, one deduces that
pSel” (f,K)/((F/61)yo) = 0

for somee. Using that In{®) is divisible in Se&“’)(f,K), this identity proves our claim on If®),

and shows that for a sufficiently large (IIg=-)¢ = (SeEs)(f,K))f and(Seﬁ(f,K))*f/(ﬁgt + OpX)
surjects ontqI1I;-) €. Hence the theorem is proved. O
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