
ar
X

iv
:1

60
6.

02
34

1v
2 

 [
m

at
h.

N
T

] 
 3

1 
M

ar
 2

01
7 Counting Number Fields in Fibers

Yuri Bilu∗

(with an appendix by Jean Gillibert§)

April 3, 2017

Abstract

Let X be a projective curve over Q and t ∈ Q(X) a non-constant ra-
tional function of degree n ≥ 2. For every τ ∈ Z pick Pτ ∈ X(Q̄) such
that t(Pτ ) = τ . Dvornicich and Zannier proved that, for large N , the field
Q(P1, . . . , PN) is of degree at least ecN/ logN over Q, where c > 0 depends
only on X and t. In this paper we extend this result, replacing Q by an
arbitrary number field.
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1 Introduction

Everywhere in this paper “curve” means “smooth geometrically irreducible pro-

jective algebraic curve”.

Let X be a curve over Q and t ∈ Q(X) a non-constant rational function of
degree n ≥ 2. According to the Hilbert Irreducibility Theorem, for infinitely
many (in fact, “overwhelmingly many”) τ ∈ Z the fiber t−1(τ) ⊂ X(Q̄) is Q-
irreducible; that is, the Galois group GQ = GQ̄/Q acts on t−1(τ) transitively.

This can also be re-phrased as follows: for every τ ∈ Z pick Pτ ∈ t−1(τ); then

∗Institut de Mathématiques de Bordeaux; yuri@math.u-bordeaux.fr
§Institut de Mathématiques de Toulouse
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for infinitely many τ ∈ Z we have [Q(Pτ ) : Q] = n. See Subsection 4 for a precise
statement.

Hilbert’s Irreducibility Theorem, however, does not answer the following
natural question: among the field Q(Pτ ), are there “many” distinct? This
question is addressed in the article of Dvornicich and Zannier [7], where the
following theorem is proved (see [7, Theorem 2(a)]).

Theorem 1.1 In the above set-up, there exist real numbers c > 0, depending
on n and on the genus g = g(X) and N0 > 1, depending on X and t, such that,
for every integer N ≥ N0 the number field Q(P1, . . . , PN ) is of degree at least
ecN/ logN over Q.

One may note that the statement holds true independently of the choice of
the points Pτ .

An immediate consequence is the following result.

Corollary 1.2 In the above set-up, there exist real numbers c = c(g, n) > 0
and N0 = N0(X, t) > 1 such that, for every integer N ≥ N0, among the number
fields Q(P1), . . . ,Q(PN ) there are at least cN/ logN distinct.

Theorem 1.1 is best possible, as obvious examples show. Say, if X is (the
projectivization of) the plane curve t = u2 and t is the coordinate function, then
the field

Q(P1, . . . , PN ) = Q(
√
1,
√
2, . . . ,

√
N) = Q(

√
p : p ≤ N)

is of degree 2π(N) ≤ ecN/ logN . On the contrary, Corollary 1.2 is not best possible
and was recently refined in [4]. See the introduction of [4] for a brief discussion.

The purpose of the present article is extending Theorem 1.1 from the base
field Q to an arbitrary number field. Such an extension is required for certain
applications; see, for instance, [2]. Our principal result is the following theorem.

Theorem 1.3 Let K be a number field of degree d over Q. Further, let X be a
curve overK of genus g and t ∈ K(X) a non-constant rational function of degree
n ≥ 2. There exist real numbers c = c(K,g, n) > 0 and B0 = B0(K,X, t) > 1
such that the following holds. Pick Pτ ∈ t−1(τ) for every τ ∈ OK . Then for
every B ≥ B0 the number field

K(Pτ : τ ∈ OK , H(τ) ≤ B)

is of degree at least ecB
d/ logB over K.

Here H(·) is the standard absolute height function, see Section 2.

Again, we have the following immediate consequence.
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Corollary 1.4 In the set-up of Theorem 1.3 there exist c = c(K,g, n) > 0 and
B0 = B0(K,X, t) > 1 such that the following holds. Pick Pτ ∈ t−1(τ) for every
τ ∈ OK . Then for every B ≥ B0, among the number fields

K(Pτ ) (τ ∈ OK , H(τ) ≤ B)

there are at least cBd/ logB distinct fields.

In Sections 2–7 we obtain various auxiliary results. Theorem 1.3 is proved in
Section 8. In the Appendix, Jean Gillibert suggests a more canonical approach
to the results of Section 7.

Acknowledgments A substantial part of this article was written during my
stay the Max-Planck-Institut für Mathematik in Bonn. I thank this institute
for the financial support and stimulating working conditions.

This article belongs to a joint project with Jean Gillibert. I thank him for
allowing me to publish this part of this project as a separate article, for adding
a beautiful appendix, and for many stimulating discussions.

2 Preliminaries

2.1 Number Fields, Heights and Sizes

Given a number field K, we denote by MK , M∞
K and M0

K the sets of all, infinite
and finite places of K, respectively. To every place v ∈ MK we associate the
absolute value | · |v normalized to extend a standard absolute value on Q: if
v | ∞ then |2017|v = 2017, and if v | p < ∞ then |p|v = p−1. We denote by Kv

the v-adic completion of the field K.
We also associate, to every finite place v ∈ M0

K , the additive valuation v(·)
normalized so that v(K×) = Z; equivalently, v(Nv) = [Kv : Qv], where Nv de-
notes the absolute norm of the prime ideal of v. By convention, we set Nv = 1
for v ∈ M∞

K .
We denote by H(α) the multiplicative absolute height of an algebraic num-

ber α: if K is a number field containing α then

H(α) =
∏

v∈MK

max{1, |α|v}[Kv:Qv ]/[K:Q].

We will also widely use the “old-fashioned” notion of the size |α| of an algebraic
number α. If α belongs to a number field K then we set

|α| = max{|α|v : v ∈ M∞
K }.

Together with this “upper size” one can also define the “lower size”

|α| = min{|α|v : v ∈ M∞
K }.

3



We have clearly

|α| = |α−1|−1 (α ∈ K r {0}),
|α| ≤ H(α) ≤ |α| (α ∈ OK r {0}), (1)

|α+ β| ≤ |α|+ |β|, |αβ| ≤ |α| · |β| (α, β ∈ K).

2.2 Algebraic Curves

Recall that, unless the contrary is stated explicitly, everywhere in this note
“curve” means “smooth geometrically irreducible projective algebraic curve”.

Let X be a curve over a field K of characteristic 0. We fix an algebraic
closure K̄ of K and we denote by GK the absolute Galois group of K, that is,
the Galois group of K̄/K.

We call aK-place of the field K(X) a class of non-trivial valuations onK(X)
whose restriction to K is trivial. We have a bijective correspondence given by

P ↔ the class of vP (·)
between the set X(K̄) of K̄-points of X , and the set of K̄-places of K̄(X). (Here
vP (·) is, of course, the order of vanishing at P .) In the sequel we tacitly identify
the two sets and may speak on a K̄-point P on X as a K̄-place P of K̄(X), and
vice versa.

More generally, there is a bijection between the sets of places of K(X) and
the set X(K̄)/GK of GK-orbits of K̄-points, and we again identify the two sets.
If P ∈ X(K̄) then the residue field of the place PGK is isomorphic to K(P ).

Let t ∈ K(X) be a K-rational function. For any point P of X there is a well-
defined “value” t(P ) ∈ K(P ) ∪ {∞}. It may be defined as the only element τ
of K(P ) ∪ {∞} such that vP (t− τ) > 0.

Here and everywhere else throughout the article we use the standard con-
vention t−∞ = t−1.

Now let t, u ∈ K(X) be non-constant K-rational functions. We say that a
point P ∈ X(K̄) is (t, u)-regular if the following two conditions are satisfied.

R1. For any point P ′ 6= P we have (t(P ′), u(P ′)) 6= (t(P ), u(P )).

R2. We have
min{vP (t− t(P )), vP (u− u(P ))} = 1.

If one of these conditions is not satisfied then we call P a (t, u)-singular point.
For instance, let z be the rational function on P1 such that z(P ) = x/y for

P = (x : y) with y 6= 0, and z(1 : 0) = ∞. Then for t = z2 and u = z3 the points
P0 = (0 : 1) and P∞ = (1 : 0) are (t, u) singular, because

min{vP0
(t), vP0

(u)} = min{vP∞
(t−1), vP∞

(u−1)} = 2,

and all the other points on P1 are (t, u)-regular. And for t = z(z − 1) and
u = z2(z − 1) the points P0, P1 = (1 : 1) and P∞ are (t, u)-singular, because

t(P0) = t(P1), u(P0) = u(P1), min{vP∞
(t−1), vP∞

(u−1)} = 2,

4



and all the other points are (t, u)-regular.
The following properties will be used in the article without special reference.

Proposition 2.1 Let X be a curve over a field K of characteristic 0 and
t, u ∈ K(X) non-constant rational function on X .

1. If there is at least one (t, u)-regular K̄-point then K(X) = K(t, u).

From now on assume that K(X) = K(t, u).

2. If P ∈ X(K̄) is (t, u)-regular then K(P ) = K(t(P ), u(P ))

3. Assume thatK(X) = K(t, u) and let F (T, U) ∈ K̄[T, U ] be a K̄-irreducible
polynomial satisfying F (t, u) = 0. Then for a point P ∈ X(K̄) with

t(P ) = τ 6= ∞, u(P ) = ω 6= ∞

the following properties are equivalent.

• The point P is (t, u)-singular.

• We have F ′
T (τ, ω) = F ′

U (τ, ω) = 0.

4. There exist at most finitely many (t, u)-singular points P ∈ X(K̄).

All this is well-known, but we include the proof for completeness.

Proof of Proposition 2.1 Since X is geometrically irreducible, the constant
subfield of K(X) is K. Hence in item 1 it suffices to show that K̄(X) = K̄(t, u)
if there is at least one (u, t)-non-singular point P ∈ X(K̄).

Thus, assume that K̄(t, u) is a proper subfield of K̄(X), of degree m > 1.
Then there are two possibilities for our point P :

• the place P of K̄(X) is totally ramified over K̄(t, u), in which case both
vP (t− t(P )) and vP (u− u(P )) are divisible by m, contradicting condi-
tion R2;

• the restriction of P to the field K̄(t, u) coincides with the restriction of a
different place P ′, in which case t(P ) = t(P ′) and u(P ) = u(P ′), contra-
dicting condition R1.

This proves item 1.
Now assume that K(t(P ), u(P )) is a proper subfield of K(P ). Pick

σ ∈ GK(t(P ),u(P )) rGK(P ). Then we have P 6= P σ, but t(P ) = t(P σ) and
u(P ) = u(P σ), contradicting condition R1. This proves item 2.

Item 3 can be found in any “old-fashioned” course of the theory of plane
algebraic curves; for instance, see Theorem 5.8 in [11, Chapter IV]. Finally,
item 4 follows from item 3. �
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3 Lemmas on Ideals

In this section K is a number field of degree d = [K : Q] and N = NK/Q is the
K/Q-norm. The index K/Q will be omitted when this does not cause confusion.

Lemma 3.1 (a “reduced” generator of a principal ideal) There exists a
positive number κ (depending only on K) such that the following holds. Let a
be a principal fractional ideal of K. Then a has a generator α satisfying

κ−1(Na)1/d ≤ |α| ≤ |α| ≤ κ(Na)1/d. (2)

Proof This property is well-known and widely used in the Diophantine Anal-
ysis, but we include a quick proof for the reader’s convenience. To simplify the
notation, we denote by S the set of infinite places M∞

K . Let Log : K× → RS

be the “logarithmic map” α 7→ (log |α|v)v∈S and let ς : RS → R be the linear
functional x = (xv)v∈S 7→ ∑

v∈S(dv/d)xv, where dv = [Kv : Qv] is the local de-
gree of v (equal to 1 or 2 depending on whether v is real or complex). Then for
α ∈ K× we have ς(Logα) = d−1 log |Nα|. In addition to this, we denote by 1
the vector (1)v∈S ∈ RS (every component is 1); note that ς(1) = 1.

According to the Dirichlet Unit Theorem, the image LogO×
K of the unit

group forms a lattice in ker ς . Hence there exists λ > 0 such that for any
x ∈ ker ς there exits x′ ∈ ker ς satisfying x ≡ x′ mod LogO×

K and ‖x′‖∞ ≤ λ,
where ‖ · ‖∞ stands for the sup-norm. More generally, for an arbitrary x ∈ RS ,
we find, by applying the previous sentence to the vector x− ν(x)1 ∈ ker ς , a
vector x′ ∈ RS satisfying x ≡ x′ mod LogO×

K and ‖x′ − ν(x)1‖∞ ≤ λ. In par-
ticular, for β ∈ K× we can find α ∈ K× such that β/α ∈ O×

K and

e−λ|Nβ|1/d ≤ |α|v ≤ eλ|Nβ|1/d

for all v ∈ S. Taking β as a generator of the principal ideal a, we find thereby
another generator α satisfying (2) with κ = eλ. �

Lemma 3.2 (a “reduced” Z-basis of an ideal) There exists a positive num-
ber κ (depending only on K) such that the following holds. Let a be a fractional
ideal of K. Then a has a Z-basis α1, . . . , αd satisfying

κ−1(Na)1/d ≤ |αi| ≤ |αi| ≤ κ(Na)1/d. (i = 1, . . . , d). (3)

Proof There exists a real number λ, depending only on K, such that the
following holds: every ideal class of K has an ideal b satisfying λ−d ≤ Nb ≤ λd

and having a Z-basis β1, . . . , βd such that

λ−1 ≤ |βi| ≤ |βi| ≤ λ. (i = 1, . . . , d).

In particular, such b can be found in the class of our ideal a. Lemma 3.1 implies
that the principal ideal ab−1 has a generator γ satisfying

(κ′)−1(N (ab−1))1/d ≤ |γ| ≤ |γ| ≤ κ′(N (ab−1))1/d,
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where κ′ depends only on K. Setting αi = βiγ, we obtain a Z-basis α1, . . . , αd

of a satisfying (3) with κ = κ′λ2. �

Given a K-prime p, an element π ∈ K is called p-primitive if vp(π) = 1,
where vp is the place associated to p. Since a Z-basis of p has at least one
primitive element, Lemma 3.2 has the following consequence.

Corollary 3.3 (a “reduced” primitive element) There exists a positive
number κ (depending only on K) such that the following holds. For every
K-prime p there exists a p-primitive π ∈ OK satisfying

κ−1(Np)1/d ≤ |π| ≤ |π| ≤ κ(Np)1/d.

Another application of Lemma 3.2 is locating “reduced” elements in residue
classes.

Corollary 3.4 (a “reduced” element in a residue class) There exists a
real κ ≥ 1 (depending only on K) such that the following holds. Let a be a
non-zero ideal of OK . Then for every α ∈ OK there exists β ∈ OK such that
α ≡ β mod a and |β| ≤ κ(Na)1/d.

Proof It is a standard lattice argument. We identify K with its image (under
the diagonal embedding) in V = Rs1 × Cs2 , where s1 and 2s2 are the numbers
of real and complex embeddings of K. Then a becomes a lattice in V , and
every element of V is congruent modulo a to an element of its fundamental
domain. According to Lemma 3.2, the lattice a has a basis α1, . . . , αd satisfying
|αi| ≤ κ′(Na)1/d, where κ′ depends only on K. Every element of the fundamen-
tal domain spanned by this basis is of size at most dκ′(Na)1/d. This proves the
corollary with κ = dκ′. �

Remark 3.5 Lower estimates for the “lower size” obtained in (2), (3) etc. will
not be used elsewhere in this article; we include them only for completeness.
Moreover, the proof of Corollary 3.4 can be easily modified to obtain a lower
estimate as well. We do not do it because we will not need this lower estimate.

4 Thin Subsets and Hilbert’s Irreducibility The-
orem

In this section we recall basic definitions and facts about thin sets, and state
Hilbert’s Irreducibility Theorem.

Let K be a field of characteristic 0. We call ℧ ⊂ K a basic thin subset
of K if there exists a (smooth geometrically irreducible) curve Y defined over K
and a non-constant rational function u ∈ K(X) of degree at least 2 such that
℧ ⊂ u(Y (K)). A thin subset of K is a union of finitely many basic thin sub-
sets. Thin subsets form an ideal in the algebra of subsets of K. Serre in [12,
Section 9.1] gives a differently looking, but equivalent definition of thin sets.

7



Any finite set is thin, and if K is algebraically closed then any subset of K
is thin.

Remark 4.1 If L is an extension of K then any thin subset of K is also thin
as a subset of L. The converse is true when L is finitely generated over K [3,
Proposition 2.1] but not in general; for instance, any number field K is a thin
subset of its algebraic closure K̄ but is not a thin subset of itself by the Hilbert
Irreducibility Theorem quoted below.

Using elementary Galois theory one easily proves the following (see [12, Sec-
tion 9.2])

Proposition 4.2 Let X be a curve over K and t ∈ K(X) a non-constant ra-
tional function. Then the set of τ ∈ K such that the fiber t−1(τ) is reducible
over K is thin.

Hilbert’s Irreducibility Theorem asserts that when K is a number field then
its ring of integers OK is not a thin subset of K. In fact, one has the following
counting result (see [12], Theorem on page 134).

Theorem 4.3 Let K be a number field of degree d over Q and ℧ ⊂ OK a thin
subset of K. Then for B ≥ 1 the set ℧ has O(Bd/2) elements α with |α| ≤ B,
the implicit constant depending on K and on ℧.

Combining this with Proposition 4.2, we obtain the following “quantitative”
version of Hilbert’s Irreducibility Theorem.

Corollary 4.4 Let K be a number field of degree d over the rationals, X a
curve over K and t ∈ K(X) a non-constant rational function. Then for B ≥ 1
there exist at most O(Bd/2) elements τ ∈ OK with |α| ≤ B such that the fiber
t−1(τ) is reducible over K. Here the implicit constant depends only on K, X
and t.

5 Local Behavior of Functions on a Curve

In this section we compare the behavior of two distinct functions in a neigh-
borhood of a point on an algebraic curve. Our main tool will be the Puiseux
expansion.

Unless the contrary is stated explicitly, in this section X is a (smooth pro-
jective) curve over a number field K and t, u ∈ K(X) non-constant K-rational
functions. Further, let A ∈ X(K) be a K-rational point. For v ∈ MK we want
to compare t and u in a v-adic neighborhood of A.

Theorem 5.1 Assume that A is a (t, u)-regular point of X (as defined in Sub-
section 2.2). There exists a finite subset S ⊂ MK (depending on X , t, u and A)
such that for v ∈ MK r S the following holds. Assume that P ∈ X(Kv) satisfies

|t(P )− t(A)|v < 1, |u(P )− u(A)|v < 1.

8



Then
|t(P )− t(A)|1/vA(t)

v = |u(P )− u(A)|1/vA(u)
v

Remark 5.2 The (t, u)-regularity hypothesis can be relaxed: in fact, it suffices
to assume that our point A satisfies only condition R1 in the definition of (t, u)-
regularity in Subsection 2.2, while condition R2 may be be suppressed. But
the present form of the theorem is sufficient for us, and assuming R2 slightly
simplifies the proof.

5.1 Puiseux Expansion

Let us briefly recall the notion of the Puiseux expansion. Let K be a field, X
a smooth projective curve over K and A ∈ X(K) a K-rational point. Further,
let t ∈ K(X) be a non-constant K-rational function with vA(t) = 1. Then one
can realize the completion of K(X) with respect to the valuation vA(·) as the
field of formal power series K((t)). In particular, we view K(X) as a subfield
of K((t)), the function t ∈ K(X) being identified with t ∈ K((t)).

If u ∈ K(X) is another K-rational function on X , then its image in K((t))
is a certain power series

∑∞
k=ν akt

k with ν = vA(u) and aν 6= 0. We call this
series the Puiseux expansion of u at A in t.

Now assume thatK is a number field. Then the coefficients ak of the Puiseux
expansion satisfy the classical Eisenstein Theorem, which says, informally, that
for all v ∈ MK the v-adic norm of the coefficients grows at most exponentially
in k, and for all but finitely many v they are bounded by 1. In symbols: for
every v ∈ MK there exists Cv ≥ 1, such that Cv = 1 for almost all v, and

|ak|v ≤ Ck−ν+1
v (k ≥ ν, v ∈ MK).

We will only need the following weaker result.

Proposition 5.3 (Eisenstein) There exists a finite set S ⊂ MK (containing
all the infinite places) such that for every v ∈ MK r S the coefficients ak are
v-adic integers.

We want to show now that for all but finitely many v the Puiseux expansion
indeed expresses u in terms of t in a suitable v-adic “neighborhood” of the
point A.

Proposition 5.4 In the set-up of this subsection, assume that A is a (t, u)-
regular point ofX . Then there exists a finite set S ⊂ MK (which contains all the
infinite places and might be different from the set S of Proposition 5.3) such that
for every v ∈ MK r S the coefficients ak are v-adic integers and the following
holds. Assume that P ∈ X(Kv) satisfies |t(P )|v < 1 and |u(P )− u(A)|v < 1.
Then the series

∑∞
k=ν akt(P )k converges v-adically to u(P ).

9



Proof We may assume without loss of generality that1 u(A) = 0. Then

ν = vA(u) ≥ 1.

Let F (T, U) ∈ K[T, U ] be a K-irreducible polynomial such that F (t, u) = 0; in
particular,

F (0, 0) = F (t(A), u(A)) = 0. (4)

Further, let A1 = A,A2, . . . , As ∈ X(K̄) be all points which are zeros of t and
which are not poles of u. Then u(A1), . . . , u(As) are the roots of the polynomial
F (0, U), of multiplicities vA1

(t), . . . , vAs
(t), and it has no other roots. Since

A = A1 is a (t, u)-regular point, we have u(A) 6= u(Ai) for i = 2, . . . , s. In par-
ticular, 0 = u(A) is a root of P (0, U) of multiplicity vA(t) = 1. In other words,
F ′
U (0, 0) 6= 0, and we normalize the polynomial F to have

F ′
U (0, 0) = 1. (5)

Now let S be a a finite subset of MK like in Proposition 5.3. Enlarging it,
we may assume that for v ∈ MK r S all the coefficients of the polynomial F are
v-adic integers.

Now fix v ∈ MK r S and let P ∈ X(Kv) be such that

|t(P )|v < 1, |u(P )|v < 1.

Set τ = t(P ). Since |τ |v < 1 and the coefficients of the polynomial F are v-adic
integers, (4) and (5) imply that

|F (τ, 0)|v < 1, |F ′
U (τ, 0)|v = 1. (6)

Furthermore, since |τ |v < 1 and the coefficients ak are v-adic integers, the series∑∞
k=ν akτ

k converges in Kv to a sum that we denote by ω. Since ν ≥ 1, we
have |ω|v < 1, and since F (t,

∑∞
k=ν akt

k) = 0, we have F (τ, ω) = 0. On the
other hand, F (τ, u(P )) = F (t(P ), u(P )) = 0 as well.

Thus, both ω and u(P ) are roots of the polynomial F (τ, U). However,
Hensel’s lemma implies that, in view of (6), this polynomial may have only
one root of v-adic norm strictly smaller than 1. Hence u(P ) = ω, proving the
proposition. �

5.2 Proof of Theorem 5.1

It is an easy consequence of Proposition 5.4. We may assume that

t(A) = u(A) = 0

1This is obvious if u(A) 6= ∞ (just replace u by u− u(A) ), but requires some explanation
in the case when A is a pole of u. In this latter case the set S should be extended to make the
leading coefficient of the Puiseux expansion for u an S-unit. Then for v /∈ S the coefficients of
the series for u are v-adic integers if and only if the same holds for 1/u. And if, in addition to
this, |t(P )|v < 1 and the series for 1/u converges v-adically at t(P ) to 1/u(P ), then the series
for u converges at t(P ) to u(P ).
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and vA(t) = 1. Then vA(u) = ν ≥ 1. Let
∑∞

k=ν akt
k be the Puiseux expansion

of u at A, and let S be as in Proposition 5.4. Enlarging S, we may assume that
|aν |v = 1 for v ∈ MK r S.

Now fix v ∈ MK r S. Then for any P ∈ X(Kv) satisfying |t(P )|v < 1
and |u(P )|v < 1 we have u(P ) =

∑∞
k=ν akt(P )k. Since |aν |v = 1, we obtain

|u(P )|v = |t(P )|νv , whence the result. �

6 Polynomials over Complete Fields

In this section we collect results, mainly well-known, on polynomials over com-
plete field.

6.1 Roots of Polynomials and Power Series

Let K be a field of characteristic 0, complete with respect to a non-archimedean
absolute value | · |. Let f(T ) ∈ K[T ] be a polynomials having a root α ∈ K of
multiplicity e. It is well-known that if g(T ) ∈ K[T ] is another polynomial of the
same degree, “sufficiently close” to f , then g(T ) has e roots in K̄ “close” to α;
see Proposition 7.1 in [8, Chapter XII] as an example of such a statement.

We need a precise form of this statement. For a polynomial

f(T ) = anT
n + · · ·+ a0 ∈ K[T ]

we use notation
|f | = max{|a0|, . . . , |an|}.

We extend the absolute value from K to its algebraic closure K̄.

Theorem 6.1 Let f(T ) = anT
n + · · ·+ a0 ∈ K[T ] be a polynomial of degree n

having pairwise distinct roots α1, . . . , αs ∈ K of multiplicities e1, . . . , es, respec-
tively, and no other roots in K̄ (so that e1 + · · ·+ es = n). Assume that

|f | = |an| = 1; (7)

|αi − αj | = 1 (1 ≤ i < j ≤ s); (8)
∣∣∣∣
f (ei)(αi)

ei!

∣∣∣∣ = 1 (1 ≤ i ≤ s). (9)

Let g(T ) ∈ K[T ] be another polynomial of degree n satisfying |f − g| < 1. Then
the set of roots of g in K̄ splits into disjoint sets B1, . . . , Bs, such that every Bi

has exactly ei roots counted with multiplicities, and every β ∈ Bi satisfies

|β − αi| < 1, |β − αj | = 1 (i 6= j).

The proof relies on the famous theorem of Strassmann on zeros of power
series in complete fields. We will use this theorem only for polynomials, but we
state it for power series, in its full strength.

11



Thus, let f(T ) =
∑∞

k=0 akT
k ∈ K[[T ]] be a formal power series over a non-

archimedean complete field K, whose coefficients satisfy |ak| → 0 as k → ∞.
Then f defines an analytic function on the closed disc O = {α ∈ K : |α| ≤ 1}.

Theorem 6.2 (Strassmann) Set

A = max{|ak| : k = 0, 1, 2, . . .}, κmax = max{k : |ak| = A}.

Then f(T ) has at most κmax zeros α ∈ K with |α| ≤ 1.

The proof is well-known, by induction in κmax. If κmax = 0 then f(T ) clearly
does not vanish on O. Now assume that α ∈ O is a zero of f . It is easy to see
that replacing f(T ) by f(α+ T ) does not alter the value of κmax; hence we may
assume α = 0. It follows that a0 = 0, and we reduce the statement for f(T ) to
that for T−1f(T ) = a1 + a2T + . . ., reducing κmax by 1.

Here is a useful complement to Strassmann’s theorem.

Corollary 6.3 Set κmin = min{k : |ak| = A}. Then f(T ) has at most κmin ze-
ros α ∈ K with |α| < 1.

Proof We may assume that the set of zeros α ∈ K with |α| < 1 is non-empty:
otherwise there is nothing to prove. Since this set is finite by Theorem 6.2, it
has an element θ of maximal absolute value:

|θ| = max{|α| : f(α) = 0, |α| < 1}.

Then we have to count zeros in O of the function f(θT ). Since |θ| < 1, the value
of κmax for the series f(θT ) does not exceed the value of κmin for the series f(T ).
Hence the result follows by Theorem 6.2. �

Proof of Theorem 6.1 We write g(T ) = bnT
n + · · ·+ b0. Extending the

field K, we may assume that all the roots of g belong to K as well. Condition (7)
implies that all roots of f are of absolute value at most 1. Since |f − g| < 1, we
have |g| = |bn| = 1, and the roots of g are of absolute value at most 1 as well.

Let us show first of all that for every root β of g there exists a unique root αi

of f such that |β − αi| < 1. Indeed, uniqueness follows from (8), and existence
from

s∏

i=1

|β − αi|ei = |f(β)| = |f(β)− g(β)| ≤ |f − g| < 1.

This already defines the partition B1 ∪ . . . ∪Bs on the set of roots of g, and
we only need to show that each Bi contains exactly ei roots (counted with
multiplicities). Moreover, since n = e1 + · · ·+ es is the total number of roots
of g, it is sufficient to show that Bi contains at most ei roots.

Thus, fix αi and omit index i in the sequel. We want to show that g has
at most e roots β satisfying |β − α| < 1. Replacing f(T ) and g(T ) by f(α+ T )
and g(α+ T ), we may assume that α = 0. Thus, f(T ) = aeT

e + · · ·+ anT
n

12



with |ae| = 1 by (9). Then for the coefficients of g(T ) we have |bk| < 1 for k < e
and |be| = 1. By Corollary 6.3, the polynomial g has at most e roots β satisfying
|β| < 1. This completes the proof. �

Here is a consequence for number fields.

Corollary 6.4 Let K be a number field and f(T ) ∈ K[T ] a polynomial of de-
gree n having a root α ∈ K of order e. Then there exists a finite set S ⊂ MK

(containing all the infinite places), such that for every v ∈ MK r S the follow-
ing holds. Let g(T ) ∈ Kv[T ] be a polynomial of degree n satisfying |f − g|v < 1.
Then g has exactly e roots β ∈ Kv satisfying |β − α|v < 1.

Proof If the statement holds true with K replaced by some finite extension,
then it is true for K as well. Thus, extending K, we may assume that all roots
of f belong to K. And in this case the statement is an immediate consequence
of Theorem 6.1. �

6.2 Ramification

Now assume that K is a non-archimedean local field of characteristic 0; we
denote by | · | its absolute value and by O = {α ∈ K : |α| ≤ 1} its local ring.

The following property is well-known (at least when the polynomial f(T ) is
irreducible), but we include the proof for the reader’s convenience.

Proposition 6.5 Let f(T ) ∈ O[T ] be a monic polynomial and α ∈ K̄ a root
of f such the field K(α) is ramified over K. Then |f ′(α)| < 1.

Proof Note first of all that, since f is monic and has coefficients inO, its root α
satisfies |α| ≤ 1. It follows that |f ′(α)| ≤ 1. We will assume that |f ′(α)| = 1 and
obtain a contradiction.

Let L be the maximal unramified extension of K contained in K(α). Then
there exists θ ∈ L with |θ − α| < 1. Since f(α) = 0 and |f ′(α)| = 1, we have
|f(θ)| < 1 and |f ′(θ)| = 1.

The existence part of Hensel’s Lemma implies that f(T ) has a root α′ ∈ L
satisfying |α′ − θ| < 1. The uniqueness part of Hensel’s lemma implies that
f(T ) can have at most one root in K(α) with this property. Hence α = α′ ∈ L,
a contradiction. �

We again have an immediate consequence for the number fields.

Corollary 6.6 Let K be a number field and f(T ) ∈ K[T ]. Let v ∈ M0
K be such

that all the coefficients of f are v-adic integers, and the leading coefficient of f
is a v-adic unit. Viewing f as a polynomial over Kv, let α ∈ Kv be its root such
that the field Kv(α) is ramified over Kv. Then |f ′(α)|v < 1.

13



7 Arithmetical vs Geometric Ramification

Let K be a field of characteristic 0 and X a (smooth projective) algebraic
curve over K. Further, let t ∈ K(X) be a non-constant function. For a point
A ∈ X(K̄) we define the ramification index of t at A by

eA = eA(t) = vA(t− t(A));

We say that t is ramified at A (and call A a ramification point of t) if eA(t) > 1.
The value t(A) ∈ K̄ ∪ {∞} of t at a ramification point will be called a critical
value of t. (It is also often called a branch point of t.) It is well-known that

• a non-constant rational function has at most finitely many ramification
points (and critical values);

• if K̄(t) 6= K̄(X) then t has at least 2 distinct critical values (a consequence
of the Riemann-Hurwitz formula).

In this section we prove three theorems linking geometric and arithmetical
ramification. None of them is really new, but we did not find in the literature
what we exactly need.

Theorem 7.1 Let K be a number field, X a smooth projective algebraic
curve over K and t ∈ K(X) a non-constant K-rational function. Further, let
α ∈ K ∪ {∞} be a critical value of t. Then there exists a finite set S of places
of MK such that for every v ∈ MK r S the following holds. Let τ ∈ Kv be such
that v(τ − α) = 1. Then there exists P ∈ X(Kv) with t(P ) = τ such that the
field Kv(P ) is ramified over Kv.

(Recall that we normalize the discrete valuation v(·) so that v(K×) = Z.)

Informally, the theorem says that “geometric ramification enforces arith-
metical ramification”.

On the contrary, if t(P ) is v-adically close to a non-critical value, then Kv(P )
does not ramify over Kv.

Theorem 7.2 Let K be a number field, X a smooth projective algebraic
curve over K and t ∈ K(X) a non-constant K-rational function. Further, let
α ∈ K ∪ {∞} be a not a critical value of t. Then there exists a finite set S
of places of MK such that for every v ∈ MK r S the following holds: for any
P ∈ X(Kv) with |t(P )− α|v < 1 the field Kv(P ) is unramified over Kv.

This theorem is easy (it is, basically, an application of Hensel’s lemma), but
quite useful. In fact, a similar statement is absolutely crucial in [2].

Theorem 7.1 has a partial converse: for almost all v, if Kv(P ) ramifies
over Kv then t(P ) must be v-adically close to a critical value.
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Theorem 7.3 Let K be a number field, X a smooth projective algebraic curve
over K and t ∈ K(X) a non-constant K-rational function. Assume that all the
critical values belong to K ∪ {∞}. Then there exist a finite set S ⊂ MK such
that for every v ∈ MK r S the following holds. Let P ∈ X(Kv) be such that
t(P ) ∈ Kv and the field Kv(P ) ramifies over Kv. Then there exists a unique
critical value α such that |t(P )− α|v < 1.

Remark 7.4 An alternative treatment of the principal results of this section,
using the scheme-theoretic language, can be found in the Appendix due to Jean
Gillibert.

7.1 Proof of Theorem 7.1

Remark first of all that we may replace K by a finite extension. Indeed, assume
that the statement holds true with K replaced by a finite extension K ′, and
let S′ be the corresponding finite subset of MK′ . Then the statement holds
over K as well, if we define S as the set of places v ∈ MK which extend to some
v′ ∈ S′ or ramify in K ′.

We may assume that α = 0. Let A ∈ X(K̄) be a ramification point of t such
that t(A) = 0. Extending the base field K, we may assume that A ∈ X(K).
Pick a function u ∈ K(X) with the following properties:

1. vA(u) = 1;

2. for any point A′ ∈ X(K̄), distinct from A, we have

(t(A′), u(A′)) 6= (t(A), u(A));

3. u has no poles among the zeros of t.

Observe that properties 1 and 2 above imply that A is a (t, u)-regular point
of X , as defined in Subsection 2.2. In particular, we have K(X) = K(t, u).

Let
F (T, U) = an(T )U

n + · · ·+ a0(T ) ∈ K[T, U ] (10)

be such a polynomial that F (t, U) is the minimal polynomial of u over K[t]. If τ
belongs to some extension of K, we set fτ (U) = F (τ, U). Since u has no poles
among the zeros of t, the polynomial f0(U) ∈ K[U ] is of degree n = degU F ,
and u(A) = 0 is its root of order e = eA(t). We normalize F to make f0 a monic
polynomial (having leading coefficient 1).

Now let S ⊇ M∞
K be a finite subset of MK such that for any v ∈ MK r S

the conclusion of Corollary 6.4 holds for the polynomial f0 and its root 0, and
the conclusion of Theorem 5.1 holds for the functions t, u and the point A.
Expanding the set S, we may assume that for v ∈ MK r S the coefficients of
F (T, U) are v-adic integers.

Now fix v ∈ MK r S. Since the coefficients of F (T, U) are v-adic integers,
for any τ ∈ Kv with |τ |v < 1 we have |fτ − f0|v < 1. Clearly, deg fτ ≤ n; but,
since f0 is monic and |fτ − f0|v < 1, we have deg fτ = n.
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Corollary 6.4 implies that fτ has a root ω ∈ Kv with the property |ω|v < 1.
Since F (τ, ω) = 0, there exists a point P ∈ X(Kv) such that

t(P ) = τ, u(P ) = ω.

For this point we have

|t(P )− t(A)|v = |τ |v < 1, |u(P )− u(A)|v = |ω|v < 1

(recall that t(A) = u(A) = 0). Applying Theorem 5.1, we find that |ω|v = |τ |1/ev .
Now if v(τ) = 1 then the field Kv(ω) must have ramification index at least e

over Kv. In particular, Kv(P ) is ramified over Kv. �

7.2 Proof of Theorem 7.2

As in the proof of Theorem 7.1 we may assume α = 0 and we may replace our
field K by a suitable finite extension. Thus, we extend K to have all points in
the fiber t−1(0) defined over K. Since 0 is not a critical value, t−1(0) consists
of n distinct points (where n is the degree of t).

Now let u ∈ K[X ] be such that u takes pairwise distinct finite values at the
points from t−1(0). This implies, in particular, that K(X) = K(t, u). We define
F (T, U) as in the previous proof. Then the polynomial f0(U) = F (0, U) ∈ K[U ]
is of degree n and has n distinct simple roots in K. In particular, f ′

0(α) 6= 0 for
any root α of f0.

Further extending the field K, we may assume that all (t, u)-singular points
of X are K-rational.

Now let S ⊇ M∞
K be a finite subset of MK such that for v ∈ MK r S the

coefficients of F (T, U) are v-adic integers, the leading coefficient of f0 is a v-adic
unit, and |f ′

0(α)|v = 1 for any root α of f0.
Fix v ∈ MK r S and let P ∈ X(Kv) be such that t(P ) = τ ∈ K and |τ |v < 1.

We may assume P to be (t, u)-regular; otherwise Kv(P ) = Kv and there is
nothing to prove.

As in the previous proof, the polynomial fτ (U) = F (τ, U) satisfies

|f0 − fτ |v < 1,

and its leading coefficient is a v-adic unit. Since P is (t, u)-regular, we have
Kv(P ) = Kv(ω), where ω = u(P ). This ω is a root of fτ , which implies that

|f0(ω)|v = |f0(ω)− fτ (ω)|v < 1.

Since the leading coefficient of f0 is a v-adic unit, this means that |ω − α|v < 1
for some root α of f0. It follows that |f ′

0(ω)|v = 1, which implies that |f ′
τ (ω)|v = 1.

Corollary 6.6 now implies thatKv(ω) = Kv(P ) is unramified overKv, as wanted.
�

16



7.3 Proof of Theorem 7.3

Like in the proof of Theorem 7.1, one may replace K by a suitable finite exten-
sion. We will profit from it several times in this proof.

Let u ∈ K(X) be such thatK(t, u) = K(X). As in the proof of Theorem 7.1,
let F (T, U) ∈ K[T, U ] be such that F (t, U) is the minimal polynomial of u over
K[t]. We denote by R(T ) the U -resultant of the polynomials F and F ′

U . We
claim the following.

Proposition 7.5 There exists a finite set S ⊂ MK such that for every place
v ∈ MK r S the following holds. Let P ∈ X(Kv) be such that t(P ) = τ ∈ Kv

and the field Kv(P ) ramifies over Kv. Then either |τ |v > 1 or |R(τ)|v < 1.

Proof Write F (T, U) as in (10). Then an(T ) | R[T ] in the ring K[T ]. Fur-
thermore, there exist polynomials G(T, U), H(T, U) ∈ K[T, U ] such that

G(T, U)F (T, U) +H(T, U)F ′
U (T, U) = R(T ). (11)

Now let S ⊇ M∞
K be a finite set of places ofK such that for every v ∈ MK r S

the coefficients of the polynomials F , G and H are v-adic integers, and the lead-
ing coefficient of an(T ) is a v-adic unit.

This implies, in particular, that the coefficients of R(T ) are v-adic integers
as well, and that

an(T ) | R(T ) in Ov[T ], (12)

where Ov is local ring of Kv.
Extending the base field K, we may assume that all the (t, u)-singular points

of X are K-rational.
Fix v ∈ MK r S and let P and τ be as in the statement of the proposition.

Assume that |τ |v ≤ 1 (otherwise there is nothing to prove). Since Kv(P ) 6= Kv,
the point P cannot be (t, u)-singular, and we obtain Kv(P ) = Kv(ω), where
ω = u(P ).

Now we have two cases. If |an(τ)|v < 1 then |R(τ)|v < 1 by (12).
And if |an(τ)|v = 1 then Corollary 6.6 applies to the root ω of the polynomial

fτ (U) = F (τ, U). We obtain |F ′
U (τ, ω)|v < 1. Substituting T = τ and U = ω

in (11), we obtain |R(τ)|v < 1. Proposition 7.5 is proved. �

Extending the base field K, we may assume that all roots of R(T ) belong
to K. Extending it further, we may assume that all the points from the finite
set

A = {P ∈ X(K̄) : t(P ) is a root of R(T ) or ∞},
are K-rational.

Now let ũ ∈ K(X) be such that K(t, ũ) = K(X) and ũ has pairwise distinct
finite values at the points from A. (Existence of such ũ easily follows from the

weak approximation theorem.) We define for ũ polynomials F̃ (T, U) and R̃(T )
in the same way as we defined F and R for u.
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Proposition 7.6 The only common roots of R(T ) and R̃(T ) are the finite
critical values of t.

Proof Let α be a root of R(T ) but not a critical value of t. Then the fiber
t−1(α) consists of n distinct points. By our choice of ũ, it takes at them n

distinct finite values. It follows that the polynomial F̃ (α,U) is of degree n and

has n distinct roots. It particular, F̃ ′
U (α,U) does not vanish at any of these

roots. Hence R̃(α) 6= 0, as wanted. �

Let C ⊂ K ∪ {∞} be the set of critical values of t.

Proposition 7.7 There exists a finite set S ⊂ MK such that for every place
v ∈ MK r S the following holds. Let P ∈ X(Kv) be such that t(P ) = τ ∈ Kv

and the field Kv(P ) ramifies over Kv. Then there exists a unique α ∈ C ∪ {∞}
such that |τ − α|v < 1.

Proof Applying Proposition 7.5 to both u and ũ, we find S such that for
every v ∈ MK r S the following holds. Let P and τ be as in the statement of
Proposition 7.7. Then either |τ |v > 1 or

|R(τ)|v < 1, |R̃(τ)|v < 1. (13)

Expanding S, we my assume that that all the finite critical values of t are
v-adic integers and |α− α′|v = 1 for any two distinct finite critical values α
and α′.

If |τ |v > 1 then α = ∞ is as wanted. From now on assume that |τ |v ≤ 1.

Define D(T ) = gcd
(
R(T ), R̃(T )

)
in the ring K[T ]. We normalize D(T ) to

make it monic. Proposition 7.6 implies that that all roots of D(T ) are finite
critical values of t. Write

D(T ) = E(T )R(T ) + Ẽ(T )R̃(T ) (14)

with some E(T ), Ẽ(T ) ∈ K[T ]. Further expanding S, we may assume that for

v ∈ MK r S the coefficients of E, Ẽ, R, R̃ are v-adic integers.
Substituting T = τ in (14) and using (13), we obtain |D(τ)|v < 1. Since D

is monic, this implies that |τ − α|v < 1 for some root α of D, which is a critical
value of t. And this α is unique because |α− α′|v = 1 for distinct critical values
α and α′. �

Now we are ready to complete the proof of Theorem 7.3. If ∞ is a critical
value then Proposition 7.7 does the job. Now assume that ∞ is not critical. Ap-
plying Theorem 7.2 with α = ∞, a suitably expanded S has the following prop-
erty: if v ∈ MK r S and P ∈ X(Kv) are such that t(P ) = τ ∈ Kv and Kv(P )
ramifies over Kv, then |τ |v ≤ 1. Hence in this case Proposition 7.7 can produce
only a finite α, which is a critical value of t. �
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7.4 The Critical Polynomial

It would be convenient to have versions of Theorems 7.1 and 7.3 not assuming
that the finite critical values belong to K. Let ∆(T ) be the monic separable
polynomial whose roots are exactly the finite critical values of t. Then, clearly,
∆(T ) ∈ K[T ].

Theorem 7.8 There exists a finite set S ⊂ MK such that for any v ∈ MK r S
and τ ∈ Kv the following holds.

1. Assume that

• either v
(
∆(τ)

)
= 1,

• or ∞ is a critical value and v(τ) = −1.

Then v ramifies in Kv(P ) for some P ∈ X(Kv) with t(P ) = τ .

2. Assume that v ramifies in Kv(P ) for some P ∈ X(Kv) with t(P ) = τ .
Then

• either |∆(τ)|v < 1,

• or ∞ is a critical value and |τ |v > 1.

Proof If the statement holds true with K replaced by a finite extension K ′,
then it holds over K as well: one only needs to exclude from consideration those
finitely many places of K which ramify in K ′. This reduces the theorem to the
case when all finite critical values belong to K, when it becomes an immediate
consequence of Theorems 7.1 and 7.3. �

8 The Argument of Dvornicich and Zannier

In this section we prove the following theorem, which is slightly stronger than
Theorem 1.3.

Theorem 8.1 Let K be a number field of degree d over Q. Further, let X be a
curve overK of genus g and t ∈ K(X) a non-constant rational function of degree
n ≥ 2. There exist real numbers c = c(K,g, n) > 0 and B0 = B0(K,X, t) > 1
such that the following holds. Pick Pτ ∈ t−1(τ) for every τ ∈ OK . Then for
every B ≥ B0 the number field

K(Pτ : τ ∈ OK , |τ | ≤ B) (15)

is of degree at least ecB
d/ logB over K.

Theorem 1.3 is an immediate consequence because of (1). Another conse-
quence is the following more precise version of Corollary 1.4.
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Corollary 8.2 Let K, X and t be as in Theorem 8.1. Then there exist real
numbers c = c(K,g, n) > 0 and B0 = B0(K,X, t) > 1 such that the following
holds. Pick Pτ ∈ t−1(τ) for every τ ∈ OK . Then for every B ≥ B0, among the
number fields

K(Pτ ) (τ ∈ OK , |τ | ≤ B)

there are at least cBd/ logB distinct fields.

In the sequel K, X and t as in the statement of Theorem 8.1. Everywhere
in this section we adopt the following conventions.

• “Sufficiently large” means “exceeding a certain quantity depending onK,X
and t”;

• “Almost every” means “outside a finite set depending on K, X and t”.

We will adapt the beautiful ramification argument of Dvornicich and Zan-
nier [7], which, as they remark, traces back to the work of Davenport, Lewis
and Schinzel [6]. We refer to Section 3 of [4] for a concise exposition of the
Dvornicich-Zannier argument over Q.

Let “≺” be a strict order relation on a countable set M . We call it N-
ordering if (M,≺) and (N, <) are isomorphic as ordered sets. We fix an N-
ordering “≺” on the set OK which makes the size function (non-strictly) in-
creasing: for β, β′ ∈ OK with β ≺ β′ we have |β| ≤ |β′|.

We say that a place v ∈ MK is primitive for τ ∈ OK if v ramifies in the field
extension K

(
t−1(τ)

)
/K, but does not ramify in K

(
t−1(τ ′)

)
/K for any τ ′ ≺ τ .

Theorem 8.1 is a consequence of the following two statements.

Proposition 8.3 Let α be a finite critical value of t. Then almost every
v ∈ MK having an extension w ∈ MK(α) of degree [w : v] = 1 serves as primitive

for some τ ∈ OK satisfying |τ | ≤ λ(Nv)1/d. Here λ ≥ 1 depends only on K.

Recall that Nv denotes the K/Q-norm of the prime ideal of v, with the
convention Nv = 1 for an infinite place v.

Proposition 8.4 Let m be the total number of finite critical values of t. Let ε
be a real number satisfying 0 < ε ≤ 1. For every τ ∈ OK with |τ | ≥ κε−m−1

(where κ ≥ 1 depends only on X and t) there is at most m finite places v of K

satisfying Nv ≥
(
ε|τ |

)d
and ramified in K(t−1(τ)).

8.1 Proof of Theorem 8.1

In this subsection we prove Theorem 8.1 assuming validity of Propositions 8.3
and 8.4.

Let α be a finite critical value of t (which exists because n ≥ 2). Denote
by M the set of v ∈ MK satisfying the hypothesis of Proposition 8.3. The
Tchebotarev Density Theorem implies that that there exists δ > 0 such that

∣∣{v ∈ M : Nv ≤ B}
∣∣∼ δ

B

logB
(16)
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as B → ∞. This δ can be estimated from below only in terms of µ = [K(α) : K];
in fact, it is easy to see that

δ ≥ 1

µ
≥ 1

m
, (17)

where m is the total number of finite critical values.
Now, for a given B ≥ 1 we define the following three sets:

M (B) =

{
v ∈ M :

(
B

2λ

)d

≤ Nv ≤
(
B

λ

)d
}
,

Ω(B) = {τ ∈ OK : τ has a primitive v ∈ M(B)},
Ω′(B) = {τ ∈ Ω(B) : the fiber t−1(τ) is K-irreducible}.

Proposition 8.3 implies that

|τ | ≤ B for every τ ∈ Ω(B). (18)

If τ admits a primitive v then the field K
(
t−1(τ)

)
is not contained in the

compositum of all the “preceding” fields K
(
t−1(τ ′)

)
where τ ′ ≺ τ . If, in addi-

tion to this, the fiber t−1(τ) is K-irreducible, then the field K
(
t−1(τ)

)
is the

Galois closure (over K) of K(Pτ ), which implies that K(Pτ ) is not contained
in the compositum of the “preceding” fields K(Pτ ′) with τ ′ ≺ τ . Combining
this with (18), we conclude that the degree of the field (15) over K is at least
2|Ω

′(B)|. We are left with proving that

|Ω′(B)| ≥ c
Bd

logB
, (19)

where c > 0 depends on K, g and n.
Using (16) and (17), we estimate

|M(B)| ≥ δ

2dλd

Bd

logB
≥ 1

2mdλd

Bd

logB

for sufficiently large B. Now Proposition 8.4 applied with ε = (2λ)−1 implies
that, for sufficiently large B

|Ω(B)| ≥ 1

m
|M(B)| ≥ 1

2m2dλd

Bd

logB
.

Further, Corollary 4.4 implies that

|Ω′(B)| ≥ |Ω(B)| −O(Bd/2) ≥ 1

4m2dλd

Bd

logB
.

for sufficiently large B.
Finally, the Riemann-Hurwitz formula implies that m ≤ 2g+ 2n− 2. This

proves (19) with

c =
1

16(g+ n)2dλd
,

as wanted. �
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8.2 Proof of Proposition 8.3

In this subsection we prove Proposition 8.3. Let α, v and w be as in the
statement of the proposition. Throwing away finitely many v we may assume
that w(α) ≥ 0. Since [w : v] = 1, there exists α′ ∈ OK such that w(α − α′) > 0.
Corollaries 3.4 and 3.3 imply that there exist γ′, π ∈ OK such that

v(γ′ − α′) > 0, v(π) = 1, |γ′|, |π| ≪ (Nv)1/d,

where in this proof the constants implied by the O(·)-notation and by the Vino-
gradov ≪-notation depend only on K.

Now set

γ =

{
γ′, w(γ′ − α) = 1,

γ′ + π, w(γ′ − α) > 1.

Then w(γ − α) = 1 and |γ| ≪ (Nv)1/d.
Theorem 7.1 (applied to the field K(α) instead of K) implies that, unless

our w belongs to a finite exceptional set, it ramifies in the field K
(
α, t−1(γ)

)
.

It follows that v ramifies in the latter field as well. This means that v ramifies
either in K(α) (which is the case for only finitely many v) or in K

(
t−1(γ)

)
.

We have proved the following: for almost every v ∈ MK satisfying the hy-
pothesis of the proposition, the set

{γ ∈ OK : v ramifies in K(t−1(γ)}

is non-empty and contains an element of size O
(
(Nv)1/d

)
. Taking as τ the

smallest element of this set with respect to the “≺” ordering, we complete the
proof. �

8.3 Proof of Proposition 8.4

If Nv ≥
(
ε|τ |

)d
and |τ | ≥ κε−m−1 then

Nv ≥ κdε−md ≥ κ.

Selecting κ sufficiently large, we may assume that the finitely many exceptional
places from Theorem 7.8:2 are all of norm smaller than κ. Hence we only have
to count v ∈ MK satisfying

|∆(τ)|v < 1, Nv ≥
(
ε|τ |

)d
, (20)

where ∆(T ) is the “critical polynomial” from Subsection 7.4. Assuming that
there is m+ 1 such places, we will show that |τ | ≪ ε−m−1, where in this proof
the constants implied by the O(·)-notation and by the Vinogradov ≪-notation
depend only on X and t.

Thus, let v1, . . . , vm+1 be distinct places of K such that every v = vi sat-
isfies (20). We denote by N the K/Q-norm. Then Nv1 · · · Nvm+1 divides
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the numerator of the rational number N∆(τ). Since deg∆ = m, we have

|N∆(τ)| ≪ |τ |md
, and the denominator of this number is O(1). Hence

Nv1 · · ·Nvm+1 ≪ |τ |md
.

On the other hand, the left-hand side is bounded from below by
(
ε|τ |

)d(m+1)
.

Comparing the lower and the upper bound, we obtain |τ | ≪ ε−m−1, as wanted.
�

A Appendix (by Jean Gillibert)

The aim of this appendix is to give a scheme-theoretic explanation of the relation
between geometric and arithmetic ramification of covers of P1. More precisely,
we shall give alternative statements and proofs for Theorems 7.1, 7.2 and 7.3 of
Section 7. We also give both a conceptual and explicit description of the set of
“bad” places involved in these statements.

The results that we prove here are essentially due to Beckmann [1]. They
have been subsequently generalized by Conrad [5]. However, it may be useful
for the reader to have a short proof of the statements we are interested in. As
we shall see, the main technical tool is Abhyankar’s Lemma.

Let us recall the notation: K is a number field, X is a smooth projective
curve over K, and t : X → P1 is a non-constant K-morphism. Then t is a finite
map, and is étale outside a divisor D ⊂ P1, that one calls the branch locus of t.

Let X → P1
OK

be the normalization of P1
OK

in the function field of X (via the
map t). The canonical map X → P1

OK
is a finite flat map with generic fiber t,

that we also denote by t by abuse of notation. Let D ⊂ P1 be the branch locus
of t : X → P1

OK
. Then, the scheme P1

OK
being regular and the scheme X being

normal, the subscheme D is of pure codimension one, according to the Zariski-
Nagata purity Theorem for the branch locus (See [9, exposé X, Theorem. 3.1]).
In other terms, D is a divisor on P1

OK
.

Let D be the scheme-theoretic closure of D in P1
OK

. This is a horizontal
divisor on P1

OK
, with generic fiber D. Therefore, one can write

D = D + V

where V is a vertical divisor (hence supported by a finite number of fibers). Let
S be the union of the following two finite sets of finite places of K:2

(i) the set of places supporting V ,

(ii) the set of places above which two branch points of t meet, or above which
the field of definition of a branch point is ramified.

2This set S is similar to that introduced by Beckmann. We note that Conrad considers a
smaller set S by allowing two horizontal components of D to intersect with multiplicity one,
but for simplicity we stick to this definition.
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By (i), the equality D = D holds true in P1
OK,S

. By (ii), D is a geometrically

unibranch3 divisor over P1
OK,S

. In particular, it has strict normal crossings, and
disjoint irreducible components.

Remark A.1 If the curveX and the map t are explicitely given (by equations),
then it is possible to compute the set S, without computing the integral model
X . Indeed, the set of places supporting V is just the set of v for which the field
extension K(X)/K(P1) corresponding to t is ramified at v, where v is viewed
as a valuation on K(P1). The other piece of the set S depends only on the
knowledge of the set of branch points, and is defined in quite explicit terms.

The reason for which we introduce the set S lies in the following Lemma:

Lemma A.2 The map t : X → P1
OK,S

is a tame cover with respect to the

normal crossing divisor D, in the sense of Grothendieck and Murre [10, Defini-
tion 2.2.2]. More precisely:

1) t is finite,

2) t is étale outside D,

3) every irreducible component of X dominates an irreducible component of
P1
OK,S

,

4) X is normal,

5) X is tamely ramified above each x ∈ D of codimension 1 in P1
OK,S

.

Proof As we have seen above, 1) is true by construction of t, and 2) by
definition of D. The map t is surjective, hence 3) holds. The scheme X is
normal by construction, so 4) is OK. It just remains to check 5). The local
fields of codimension 1 points of D have characteristic zero, because D = D,
therefore the tameness assumption is automatically satisfied.

We now recover the nice framework of the theory of tame covers by Grothen-
dieck and Murre. It is certainly possible to transpose these results in the lan-
guage of log schemes, but we do not need such techniques for our purpose.

We are now ready to state the main result of this appendix.

Theorem A.3 Let v /∈ S, and let P ∈ X(K̄v) which is not a ramification point
of t. Then the following holds:

1) If the extension Kv(P )/Kv(t(P )) is ramified, then there exists a branch
point α ∈ P1(K̄v) such that v(t(P ) − α) ≥ 1.

3Let us recall that a divisor is geometrically unibranch if its irreducible components are
disjoint, and if this remains true after any étale base change. For example, the nodal cubic
y2 = x2(x + 1) is an irreducible normal crossing divisor in P2, but is not geometrically
unibranch.
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2) If there exists a branch point α ∈ P1(K̄v) such that v(t(P )−α) = 1, then
the extension Kv(P )/Kv(t(P )) is ramified.

3) More generally, if there exists a branch point α ∈ P1(K̄v) such that
v(t(P )−α) is strictly positive and not divisible by any of the (geometric)
ramification indices of points in t−1(α), then the extensionKv(P )/Kv(t(P ))
is ramified.

In the statement above, we use the standard convention t(P )−∞ = t(P )−1,
as in the main text of the article. We note that v(t(P )− α) ≥ 1 means that t(P )
and α reduce to the same point in P1(k̄v), where kv denotes the residue field
of Kv. In geometric language, v(t(P )− α) is the intersection number between
t(P ) and α.

Roughly speaking, Theorem A.3 states that, outside the finite set S, the
arithmetic ramification is controlled by the reduction of the geometric ramifica-
tion. The statement 1) above implies Theorems 7.2 and 7.3, while statement 2)
implies (via Hensel’s lemma) Theorem 7.1. Our hypotheses are slightly weaker
than in Section 7, in particular branch points of t are not assumed to be rational
over the base field.

First, we state a version of Abhyankar’s Lemma, suitable for our purpose:

Lemma A.4 (Abhyankar’s Lemma) Let Y be a noetherian normal scheme,
and let g : X → Y be a tame cover with respect to a normal crossing divisor
D ⊂ Y . Assume furthermore that D is geometrically unibranch. Then for
each y ∈ Supp(D) there exists an étale neighbourhood U → Y of y such that
X ×Y U → U is a finite disjoint union of coverings of the form

Spec (OU [T ]/(T
e − f)) −→ U

where f = 0 is a local equation of D in U , and e is relatively prime to the
characteristic of the residue field of y.

Proof This follows from [10, Corollary 2.3.4, ii)]. More precisely, D being
geometrically unibranch, the irreducible components of D remain disjoint over
any étale neighbourhood of y in Y . Hence the last sentence in the statement of
[10, Corollary 2.3.4, ii)] implies that there exists an étale neighbourhood U → Y
of y such that X ×Y U → U is a finite disjoint union of Kummer coverings4 with
respect to the divisor D ×Y U . �

Remark A.5 Under the hypoteses of Lemma A.4, X is regular above the points
of Supp(D), according to [10, Proposition 1.8.5, ii)]. In particular, if Y is regular,
then X is regular. We note that this is no longer true if D is an arbitrary normal
crossing divisor: in this case, one can describe X étale locally as a generalized

Kummer covering5 of Y . According to [10, Proposition 1.8.5 iii)], such a covering
may be singular above the intersection of two irreducible components of D. See
also [5, Lemma 1.4] and the erratum.

4See [10, Definition 1.2.2] for a definition.
5That is, a quotient of a Kummer covering, see [10, Definition 1.3.8].
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Proof of Theorem A.3 1) Let Ov be the ring of integers of Kv. By pro-
jectivity of X the point P extends into a section P : Spec (Ov(P )) → X where
Ov(P ) is the ring of integers of Kv(P ). By definition of the branch locus, if
t(P ) does not meets D (above v), then Ov(P ) is an étale Ov(t(P ))-algebra, that
is, Kv(P )/Kv(t(P )) is unramified. By construction of S, the divisor D is the
scheme-theoretic closure of D in P1

OK,S
, hence for v 6∈ S the subschemes t(P )

and D have non-empty intersection above v if and only if there exists a branch
point α ∈ P1(K̄v) such that t(P ) and α reduce to the same point in P1(k̄v).

2) This is a special case of 3).
3) In order to prove the statement, we may assume that t(P ) belongs to Kv.

Let Osh
v be the strict henselization of the ring of integers of Kv with respect to

the valuation v. Then the fraction field of Osh
v is Knr

v , the maximal unramified
extension of Kv.

Let πv be a uniformizing parameter of Ov, and let kv be the residue field of
Ov. Then πv is again a uniformizing parameter of Osh

v , and the residue field of
Osh

v is k̄v.
Let α ∈ P1(K̄v) be a branch point of t such that v(t(P ) − α) > 0. Then,

by construction of the set S, α belongs to P1(Knr
v ). Up to composing t by

an automorphism of P1 defined over Knr
v , it is possible to assume that α = 0.

Let z be the standard coordinate function on P1
Osh

v
which vanishes at 0. Let

0̄ be the closed point of P1
Osh

v
defined by z = 0 on the special fiber. Then

z = 0 is a local equation of D at the point 0̄ (this follows from the fact that D
is horizontal with disjoint components). Moreover, the ring Osh

v [[z]] of formal
power series is strictly henselian, because it is complete with respect to the
(z, πv)-adic topology and its residue field is k̄v which is algebraically closed. We
have a natural “localization” map Spec (Osh

v [[z]]) → P1
Osh

v
which sends the closed

point to 0̄.
According to Lemma A.2, the map t : X → P1

OK,S
is a tame cover with

respect to the normal crossing divisor D. Hence, it follows from [10, Cor. 2.3.6]
that the pull-back

X ×P1 Spec (Osh
v [[z]]) −→ Spec (Osh

v [[z]])

is a tame cover with respect to the divisor {z = 0}.
Hence, according to Lemma A.4 (Abhyankar’s Lemma), this scheme is a

disjoint union of connected Kummer coverings of the form

Spec (Osh
v [[z]][T ]/(T e − z)) → Spec (Osh

v [[z]])

where e ≥ 2 is the ramification index of some point β ∈ X lying above α. Let
us consider the connected cover containing the point P . We may specialize it
at the integral section t(P ), which gives us the finite cover

Spec (Osh
v [T ]/(T e − t(P ))) −→ Spec (Osh

v ).

It follows that the field Knr
v (P ) contains at least one root of the polynomial

T e − t(P ). Such a field is a ramified extension of Knr
v if and only if e does not

divides v(t(P )). Hence the result. �
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Remark A.6 According to the last part of the proof above, if there exists a
branch point α such that v(t(P )−α) ≥ 1, then there exists a unique ramification
point β lying above α which meets P above v. Moreover, if v(t(P ) − α) is
divisible by the ramification index of β, then the extension Kv(P )/Kv(t(P )) is
unramified, according to the last sentence of the proof.

Example A.7 Let λ ∈ Q, distinct from 0 and 1, and let E be the elliptic curve
defined over Q by the equation (in Legendre form)

y2 = x(x − 1)(x− λ).

We consider the x-coordinate map x : E → P1, which is a degree 2 cover,
and whose branch points are 0, 1, λ and ∞. At the function field level, the
corresponding extension is

Q

(√
x(x − 1)(x− λ)

)
/Q(x).

We note that the only prime number which ramifies in this extension is 2. This
means that the vertical ramification is supported by 2.

We are now looking for the set of primes above which two branch points
meet. We note that the sections 0, 1 and ∞ never meet each other in P1(Z).
Let λ = a

b where a and b are coprime integers. Then λ meets 0 (resp. ∞) above
primes dividing a (resp. b). Similarly, λ meets 1 above primes dividing a − b.
Therefore, the set S is:

S = {2} ∪ {primes dividing ab(a− b)}.

In the light of Remark A.6, our Theorem A.3 reads as follows: let p 6∈ S be a
prime number, and let P ∈ E(Q̄p) which is not a ramification point of x. Then
the extension

Qp(P ) = Qp

(√
x(P )(x(P ) − 1)(x(P )− λ)

)
/Qp(x(P ))

is ramified if and only if there exists a branch point α ∈ {0, 1, λ,∞} such that
vp(x(P ) − α) is strictly positive and odd.
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