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Abstract. We study mapping class group orbits of homotopy and isotopy classes of

curves with self-intersections. We exhibit the asymptotics of the number of such orbits

of curves with a bounded number of self-intersections, as the complexity of the surface

tends to infinity.

We also consider the minimal genus of a subsurface that contains the curve. We

determine the asymptotic number of orbits of curves with a fixed minimal genus and a

bounded self-intersection number, as the complexity of the surface tends to infinity.

As a corollary of our methods, we obtain that most curves that are homotopic are also

isotopic. Furthermore, using a theorem by Basmajian, we get a bound on the number

of mapping class group orbits on a given a hyperbolic surface that can contain short

curves. For a fixed length, this bound is polynomial in the signature of the surface.

The arguments we use are based on counting embeddings of ribbon graphs.

1. Introduction

Recently, there has been a lot of progress on counting curves on surfaces. There are

essentially two questions to answer, a geometric and a topological one. The topological

question asks how many curves there are with given topological properties. The geometric

question asks how many closed geodesics, possibly with certain topological properties,

there are up to a certain length. We start with a brief and incomplete overview of the

work that has been done on these questions. For simplicity, we will for now restrict to

closed surfaces.

The classical geometric result is by Huber [11] and Margulis [15] and states that given

a negatively curved, complete and finite volume metric on a closed surface Σg of genus

g ≥ 2, the number G(L) of closed geodesics up to length L > 0 satisfies

G(L) ∼ eδL

δL
as L→∞

where δ is the topological entropy of the geodesic flow and the symbol ‘∼’ means that

the ratio of the two quantities tends to 1 as L→∞. If the metric is hyperbolic (constant

curvature −1) then δ = 1, which is the case that Huber considered. Note that on a surface

with a negatively curved metric, closed geodesics naturally correspond to free homotopy

classes of non-contractible and non-peripheral (i.e. not homotopic to a single puncture)

curves (see for instance [7, Prop. 1.3] or [13, Theorem 3.8.14]), which means that counting

closed geodesics is the same as counting free homotopy classes.

In [17], Mirzakhani showed that the number S(L) of simple closed geodesics (closed

geodesics with no self-intersections) up to length L > 0 on a closed hyperbolic surface X
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of genus g satisfies

S(L) ∼ bXL6g−6 as L→∞

where bX is a continuous and proper function on the moduli space of hyperbolic structures

on Σg. Earlier results were obtained by Rees [20], McShane and Rivin [16] and Rivin [21].

Part of the proof of this result relies on dividing the geodesics in to mapping class group

(denoted MCG(Σg)) orbits and then counting the number of curves in a fixed orbit.

Even more recently the asymptotics of the number of closed geodesics with a bounded

number of self-intersections in a given MCG(Σg)-orbit up to a given length have been

shown to behave similarly by Rivin in [22] (for one self-intersection), Erlandsson and

Souto [6] and Mirzakhani [18].

The topological question asks how many MCG(Σg)-orbits, or topological types, there are

of (isotopy or homotopy) classes of curves (or sets of curves) with certain properties. Note

that in some cases this count is also necessary to complete the geometric picture.

It is not hard to see that there are infinitely many MCG(Σg)-orbits of curves on Σg. So we

need to consider smaller sets of curves. The classical topological result (see for instance

[7, Section 1.3.1]) is that the number Ng(0) of MCG(Σg)-orbits of homotopy classes of

simple curves is equal to

Ng(0) =
⌊g

2

⌋
+ 1

where bxc denotes the floor of a real number x .

One can similarly count Ng(≤ k): the number of MCG(Σg)-orbits of homotopy classes of

curves with at most k self-intersections. This question is considerably more difficult than

the simple case. For one thing, in this count it actually matters whether one considers

isotopy or homotopy classes. This is because, unlike the case of simple curves, these are

no longer the same for curves with self-intersections. In order to complete the count of the

number of geodesics on a hyperbolic surface with a bounded number of self-intersections

up to a bounded length, Sapir [23] considered the asymptotics of Ng(≤ k) for g fixed and

k →∞. She proved that

1

12
2

√
k
12 ≤ Ng(≤ k) ≤ edg

√
k log(dg

√
k)

where dg is a constant depending only on the genus. Sapir used these results to answer

questions on the number of MCG(Σg)-orbits that contain short curves. Concretely, let

L > 0, X be a hyperbolic surface and NX(k, L) denote the number of MCG(Σg)-orbits

of curves with k self-intersections the contain a curve of length at most L. She proves

1

12
min

{
2

1
8lX , 2

√
k
12

}
≤ NX(k, L) ≤ min

{
e
dg
√
k log(dX

L√
k

+dX)
, edg

√
k log(dg

√
k)
}

where lX and dX are constants depending only on X.

Another question of a similar flavor is about complete 1-systems, i.e. collections of isotopy

classes of simple curves that pairwise intersect exactly once. In [14], Malestein, Rivin and

Theran raised the question of how many MCG(Σg)-orbits there are of such systems and

showed that there is only one such orbit when g = 1, 2. Aougab [1] and subsequently

Aougab and Gaster [2] showed that this does not persist in the higher genus case by

constructing many such orbits.
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The question we ask is complementary to the one considered by Sapir. Instead of asking

how many curves there are with a large number of self-intersections on a fixed surface, we

ask how many curves there are with a fixed number of self-intersections on a surface of

large genus or with a large number of punctures. Besides the number of self-intersections,

we also order our orbits of curves by the minimal genus of a subsurface that contains

them.

We have already noted that it makes a difference whether one asks for homotopy classes

or isotopy classes of curves. Let us start with homotopy classes.

Concretely, let Ng,n(k, h) denote the number of MCG(Σg,n)-orbits of free homotopy classes

of curves on Σg,n, a surface of signature (g, n), that have k self-intersections and minimal

genus of a subsurface containing them equal to h . We prove:

Theorem 1. Let k, h ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞. Then

Ngi,ni(k, h) ∼ Ck,h
(
gi + k − 3h+ 1

k + 1− 2h

)(
ni + k + 1− 2h

k + 1− 2h

)
as i→∞. Here, Ck,h =

∑
Γ∈RCh(k)

1
|Aut(∂Γ)| is a constant depending only on k and h. The

sum in Ck,h is taken over certain ribbon graphs (see Section 4).

To our knowledge, there is no formula for Ck,h that eliminates the dependence on ribbon

graphs. On the other hand, similar quantities have been counted, often in terms of chord

diagrams (see for instance [25]). These counts do give upper bounds for Ck,h, but they

are not sharp. The problem here is the automorphism group that appears in the terms.

We also note that in her very recent work [23, Section 1.7], Sapir also suggested using

cut-and-paste techniques to count mapping class group orbits. She suggests applying

these techniques to small values of k but does not work out the asymptotics.

Theorem 1 can be used to determine the asymptotics of the number of all orbits of curves

with k self-intersections (so without restrictions on their minimal genus). Let us denote

this number by Ng,n(k).

Corollary 2. Let k ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞.

Ngi,ni(k) ∼ Ck
(
gi + k + 1

k + 1

)(
ni + k + 1

k + 1

)
as i→∞. Ck again is a sum over certain ribbon graphs (see Section 4).

If we specialize even further and consider closed surfaces only, we obtain that

Ng(k) ∼ Ck
gk+1

(k + 1)!

as g →∞.

On the other hand, letting go of the restrictions on the number of self-intersections does

not lead to interesting counts: the number of orbits of curves of a given minimal genus

(without restrictions on the self-intersection number) is easily seen to be infinite.
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It also follows from our arguments that, if N iso
g,n(k, h) denotes the number of free isotopy

classes of essential closed curves with k self-intersections and minimal genus h, we have:

N iso
g,n(k, h) ∼ Ng,n(k, h)

for k, h fixed and g + n → ∞. In other words, asymptotically it doesn’t matter whether

one counts orbits of istopy classes or homotopy classes. In particular, we have the follwing:

Corollary 3. Let k ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞. Then as i→∞

Pgi,ni

[
The homotopy class of a curve with k self

intersections contains exactly one isotopy class

]
→ 1

Pg,n here denotes the natural (uniform) probability measure on the finite set of MCG(Σg,n)-

orbits of curves with k self-intersections. Baer’s classical theorem [3] says that for simple

curves isotopy and homotopy are the same, so Corollary 3 can be seen as a probabilistic

version of this result.

Our arguments also imply that the asymptotics of Ng,n(≤ k) and the similarly defined

N iso
g,n(≤ k) are dominated by Ng,n(k) and N iso

g,n(k) respectively as g + n → ∞ and hence

that N iso
g,n(≤ k) ∼ Ng,n(≤ k) ∼ Ng,n(k) as g + n→∞.

Along the way we also prove the following:

Corollary 4. Let k ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞. Then as i→∞

Pgi,ni

[
A curve with k self-intersections has a disk

in the complement

]
→ 0

and

Pgi,ni

[
A curve with k self-intersections separates Σg into

k + 2 surfaces, all of different signatures

]
→ 1

Theorem 1 also has geometric consequences, for which we need a result by Basmajian

from [4]. He proves that a geodesic with k self-intersections has length bounded below by

a function of k and of the hyperbolic structure (see Theorem 15 in Section 5).

Given L > 0 and a hyperbolic surface X of signature (g(X), n(X)), we will write NX(L)

for the number of MCG(Σg(X), n(X))-orbits of closed geodesics on X that contain a curve

of length at most L. Note that

NX(L) =
∑
k≥0

NX(k, L),

where the NX(k, L) are the earlier mentioned counts considered by Sapir in [23]. From

Basmajian’s bounds we obtain:

Corollary 5. Let L > 0. There exist constants A = A(L) ∈ N and C = C(L) > 0 such

that for any hyperbolic surface X

NX(L) ≤ C · ((g(X) + 1) · (n(X) + 1))A

Furthermore, A(L) can be made explicit (see Section 5).

Because our results are based on counting embeddings of ribbon graphs, we believe that

our methods generalize to other sets of bounded numbers of disjoint curves with bounded

numbers of self-intersections. Also, by carefully going through the arguments below, the

case where k is a moderately growing function of g + n can also be handled.
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2. Classical results and set up

2.1. Curves on surfaces. In this section we recall some classical theorems about curves

on surfaces. First we review results about minimal representatives of curves in a given

free homotopy class.

Let Σg,n be a oriented surface of signature (g, n). That is, Σg,n is obtained from an oriented

closed surface Σg of genus g by removing n points. A smooth curve a : S1 → Σg,n is said

to be generic if its only singularities are transverse double points. Define the minimal

self-intersection number m(α)1 of a free homotopy class of curves α on Σg,n to be the

minimum number of double points of a generic representative a ∈ α. If m(α) = 0, α will

be called simple.

For curves that are not in minimal position, we have the following theorem by Hass and

Scott:

Theorem 6 ([8], Theorem 2). Let a be a generic curve on Σg,n which has excess self-

intersection. Then there is a singular 1-gon or 2-gon on Σg,n bounded by part of the image

of a.

By singular 1-gon we mean the image by a of an arc I of S1, such that a identifies the

endpoints of I and a|I is a null-homotopic loop on Σg,n. A singular 2-gon is the image by

a of two disjoint arcs I and J of S1 such that a identifies the endpoints of I and J and

a|I∪J is a null-homotopic loop on the surface. Note that these singular 1- or 2-gons do

not need to be embedded, but just immersed.

Note also that if a has excess self-intersection, then at least one of the surfaces in the

complement of the image of a is homeomorphic to a disk. The converse is not true.

A third Reidemeister move is a local move which corresponds to pushing a branch of a

curve across a double points, as depicted in Figure 1.

Figure 1. A third Reidemeister move

If we can perform a third Reidemeister move to a curve a, then one of the surfaces in the

complement of the image of a is homeomorphic to a disk. Furthermore, if a is in minimal

position and b is obtained by a via a third Reidemeister move, then b is in minimal position

too. Hass and Scott, and later De Graaf and Schrijver, proved the following:

1Some authors write m(α) = i(α, α), where i is the geometric intersection number.
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Theorem 7 ([9], Theorem 2.1, and [5], Theorem 1). If a and b are two minimal represen-

tatives of the same homotopy class, then there are a sequence of third Reidemeister moves

from a to a curve c and an ambient isotopy of Σg,n which induces an isotopy between a

regular neighborhood of c and a regular neighborhood of b.

2.2. Action of the mapping class group on non-simple classes. The mapping class

group of Σ is

MCG(Σ) = Homeo+(Σ)/≈

where ψ ≈ φ if they are homotopic. We note that mapping classes in this paper are

allowed to permute the punctures of Σ.

A well known result of Baer [3] tells us that simple closed curves are homotopic if and only

if they are isotopic (if and only if there is an ambient isotopy of Σg,n sending one to the

other). Moreover, we know that two simple closed curves are in the same mapping class

group orbit if and only if the surfaces obtained by cutting along them are homeomorphic

(see [7, Section 1.3.1]).

None of these facts hold for nonsimple curves. First, nonsimple curves can be homo-

topic but not isotopic. (On the other hand Hass and Scott proved in [10] that there are

only finitely many isotopy classes within a given homotopy class). Second, curves with

homeomorphic complements can be in different mapping class group orbits.

2.3. Ribbon graphs. The main tool we will use in our counting arguments later on

is ribbon graphs. Ribbon graphs are graphs together with a (vertex) orientation. An

orientation is a cyclic ordering of the half edges emanating from each vertex of a graph.

Here a graph is allowed to have multiple edges and loops2. We note that writing down

a careful definition of ribbon graphs is surprisingly subtle. We will however content

ourselves with the description given above and refer to [19] for a rigorous definition.

A ribbon graph can be thickened into a ribbon surface, that is, an oriented surface with

boundary in such a way that the orientation of the surface corresponds to the cyclic

orderings of the half edges. In general we will not distinguish between ribbon graphs and

ribbon surfaces. We will write g(Γ) and b(Γ) for the genus and the number of boundary

components of Γ respectively.

The automorphism group of a ribbon graph Γ, denoted Aut (Γ), is the group of bijective

self-maps of Γ that preserve the graph structure and the orientation of Γ. Here, an

automorphism is a pair of maps, one that sends vertices to vertices and another one that

sends edges to edges. So in particular, an automorphism is allowed to act as the identity

on the set of vertices.

Also note that ribbon graph automorphisms extend to orientation preserving homeomor-

phisms of the corresponding ribbon surface.

Given a ribbon graph Γ, we will denote the boundary of the corresponding surface by

∂Γ. The set of connected components of ∂Γ will be denoted B(Γ) = {β1, . . . , βb(Γ)}. Note

that the restriction of a ribbon graph automorphism to the boundary of the corresponding

ribbon surface gives us a map

Aut (Γ)→ SB(Γ)

2Some authors prefer the term multigraph for such a graph. We will however not make this distinction.
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where SB(Γ) denotes the group of permutations of the finite set B(Γ), which is isomorphic

to the symmetric group Sb(Γ) on b(Γ) letters. We will denote the image of this map by

Aut (∂Γ) = Im
(
Aut (Γ)→ SB(Γ)

)
.

2.4. Ribbon graphs coming from curves on surfaces. Our reason to define ribbon

graphs is that we can associate them to curves on surfaces.

Given a generic curve a with self-intersections on Σg,n, we can associate a 4-valent ribbon

graph Γ(a) to it as follows. The vertices of Γ(a) are the self-intersections of a and the edges

are the arcs between those self-intersections. The orientation at each vertex comes from

the orientation on Σg,n. The ribbon surface corresponding to Γ(a) is naturally embedded

in Σg,n as a regular neighborhood of a.

We note however that not all 4-valent ribbon graphs correspond to a single curve on a

surface. We write RC(k) for the set of isomorphism classes of those that do come from

curves with k self-intersections. This set naturally corresponds to the set of so-called

Gauss diagams of rank k; since we will not directly need to use those in this text we will

simply talk about ribbon graphs. For an exposition on Gauss diagrams, see [26]. For

enumerative results, see for example [25].

We have the following:

Lemma 8. If a and b are curves on Σg,n in minimal position that can be mapped to

each other by ambient isotopies of Σg,n and homeomorphisms of Σg,n then Γ(a) ' Γ(b)

as ribbon graphs.

Proof. Ambient isotopies and homeomorphisms send regular neighborhoods to regular

neighborhoods, so the ribbon surfaces associated to a and b are isotopic and thus Γ(a) '
Γ(b). �

Note that this lemma implies that the ribbon graph of an isotopy class of curves, defined

as the ribbon graph of a minimal representative of the class, is well defined and is an

invariant of the mapping class group orbit of such a class.

Because of the existence of third Reidemeister moves, one cannot uniquely associate a

ribbon graph to each homotopy class. We do however have the following weaker statement:

Lemma 9. If a and b are curves on Σg,n that can be mapped to each other by ambient

homotopies of Σg,n and homeomorphisms of Σg,n and furthermore these curves contain

no disks in their complement then Γ(a) ' Γ(b) as ribbon graphs.

Proof. Since there are no disks in the complement, we cannot perform third Reidemeister

moves. This means that by Theorem 7 the curves can be mapped to each other by ambient

isotopies and homeomorphisms of the surface and we can apply Lemma 8. �

In order to be able to count mapping class group orbits of homotopy classes of curves, we

need a converse to this lemma. We will state everything for isotopy classes first.

To an isotopy class of curves α on Σg,n we associate the triple

V (α) = (Γ(α), P (α), S(α))

where
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• Γ(α) is the ribbon graph associated to a minimal representative a,

• P (α) = {p1, . . . , pr} is a partition of the set of boundary components of Γ(α) such

that the boundary components of every pi form the entire boundary of exactly

one connected component of Σg,n \ Γ(α), and

• S(α) = ((g1, n1, b1), . . . , (gr, nr, br)) records the signatures of the surface attached

to the boundary components in pi for all i = 1, . . . , r.

We have already noted that Γ(α) is indeed an invariant of the isotopy class of α and the

same holds for the partition and the signatures of the surfaces, so the triple is well-defined.

We have the following:

Lemma 10. Let α and β be free isotopy classes of curves. Then α and β lie in the

same mapping class group orbit if and only if Γ(α) ' Γ(β) and the data (P (β), S(β)) can

be obtained from (P (α), S(α)) by applying the isomorphism between these graphs to this

data.

Proof. If α and β lie in the same mapping class group orbit, let a and b be minimal

representatives and φ an orientation preserving homeomorphism sending a to b. By

Lemma 8, Γ(a) ' Γ(b). Moreover, it is easy to check that (P (β), S(β)) can be obtained

from (P (α), S(α)) via φ.

Conversely, suppose a and b are minimal representatives of α and β respectively and let

g : Γ(α)→ Γ(β) be the isomorphism given by the hypothesis. This induces an orientation

preserving homeomorphism f between the ribbon surfaces of a and b, sending a to b. The

fact that the data (P (β), S(β)) can be obtained from (P (α), S(α)) by applying f means

that Γ(α) and Γ(β) have homeomorphic complementary components, say S1, . . . Sk and

S′1, . . . S
′
k, with orientation preserving homeomorphisms fi : Si → S′i. Moreover, the

fact that P (β) and P (α) correspond via g implies that we can glue f, f1 . . . fk to get

an orientation preserving homeomorphism of Σg,n sending a to b. Note that we need to

choose the homeomorphisms fi to be orientation preserving in order to be able to glue

them to f . �

For homotopy classes we have to add the ‘no-disk’ condition again:

Lemma 11. Let α and β be free homotopy classes of curves that have no disk in their

complement. Then α and β lie in the same mapping class group orbit if and only if

Γ(α) ' Γ(β) and the data (P (β), S(β)) can be obtained from (P (α), S(α)) by applying the

isomorphism between these graphs to this data.

Proof. Consider two minimal representatives a and b of α and β; by Theorem 7, they are

related by an isotopy and a sequence of Reidemeister moves. But since there is no disk

in the complement, there is no Reidemeister move that can be performed, so a and b are

actually isotopic and we can apply Lemma 10. �

3. Counting ribbon graph embeddings

3.1. Set up. Our ultimate goal is to understand the asymptotics of Ng,n(k, h), the num-

ber of MCG(Σg,n)-orbits of free homotopy classes of curves with k self-intersections and

minimal genus h on Σg,n. Note that the minimal genus of a curve is actually the genus of
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the ribbon surface associated to it. In this section we will give upper and lower estimates

on Ng,n(k, h).

Given a ribbon graph Γ ∈ RC(k), we define the following:

(1) The number N iso
g,n(Γ) of embeddings of Γ into Σg,n up to isotopy.

(2) The number N◦g,n(Γ) of embeddings of Γ into Σg,n with no disk in the complement

up to homotopy

Furthermore, we define the set of ribbon graphs of genus h (that correspond to single

curves) with k vertices as

RCh(k) = {Γ ∈ RC(k)| g(Γ) = h}.

For most h, the set above is empty. In fact, an Euler characteristic tells us that if Γ is

ribbon graph corresponding to a curve with k self-intersections, we have k+1−2g(Γ) ≥ 0.

With the notation above, we have∑
Γ∈RCh(k)

N◦g,n(Γ) ≤ Ng,n(k, h) ≤
∑

Γ∈RCh(k)

N iso
g,n(Γ).

Note that
∑

Γ∈RCh(k)

N iso
g,n(Γ) overcounts Ng,n(k, h) in two ways:

• we count isotopy classes instead of homotopy classes of curves, so, because of

third Reidemeister moves, multiple isotopy classes might correspond to the same

homotopy class;

• if we glue disks to some component of the ribbon surface associated to Γ to obtain

Σg,n, the curve corresponding to Γ may be not in minimal position on Σg,n.

On the other hand, there are minimal generic curves a such that one or more component

of Σg,n \ Γ(a) is a disk, so in general the first inequality is strict.

3.2. Estimating N iso
g,n(Γ) and N◦g,n(Γ). We will count the total number of distinct (up

to homeomorphism and isotopy) ways to embed the ribbon surface corresponding to Γ on

Σg,n. Recall that N iso
g,n(Γ) counts all such embeddings, including non-minimal ones.

To shorten notation, we will let (g0, b0) = (g(Γ), b(Γ)) denote the signature of the ribbon

surface corresponding to Γ. Furthermore, Σg,b,n will denote the toplogical surface of genus

g with b boundary components and n punctures.

Lemma 12. Suppose we have an embedding of the ribbon surface Γ in Σg,n, where

Σg,n \ Γ =
r⊔
i=1

Σgi,bi,ni
.

Then
r∑
i=1

ni = n,
r∑
i=1

bi = b0 and
r∑
i=1

gi = g + r − g0 − b0.

Proof. The first identity comes from the fact that Γ contains no punctures. The second

comes from the fact that the boundaries of the Σgi,bi,ni
are glued to Γ. For the third
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identity we have

χ(Σg,n) = χ(Γ) +
r∑
i=1

χ(Σgi,bi,ni
).

From this we obtain

2− 2g − n = 2− 2g0 − b0 +
r∑
i=1

(2− 2gi − bi − ni),

combining this with the first identity gives

g + r − g0 − b0 =
r∑
i=1

gi.

�

Next we turn to counting the number of ways to embed the ribbon surface Γ in Σg,n.

Proposition 13. Let {gi, ni}i∈N ⊂ N be a sequence such that gi + ni → ∞ as i → ∞.

Then

N iso
gi,ni

(Γ) =
1

|Aut (∂Γ)|

(
gi + b0 − g0 − 1

b0 − 1

)(
ni + b0 − 1

b0 − 1

)
+O

(
((gi + 1)(ni + 1))b0−2

)
as i→∞.

Proof. We first assume that the boundary components of Γ are distinguishable. By this

we mean that Aut (∂Γ) = {Id}.

Recall that B = B(Γ) = {β1, . . . , βb0} denotes the set of boundary components of Γ.

Because of our assumption on Aut (∂Γ), we can write

N iso
gi,ni

(Γ) =

b0∑
r=1

∑
P |=B
|P |=r

N iso
gi,ni

(Γ, P )

where the notation P |= B means that P = {p1, . . . , pr} is a set partition of B. The

number N iso
gi,ni

(Γ, P ) counts the embeddings of Γ into Σgi,ni such that the boundary com-

ponents of in pj form the entire boundary of a single connected component Sj in Σgi,ni \Γ

for all j = 1, . . . , n.

Lemma 10 tells us that two such embeddings corresponding to a set partition P are

homeomorphic if and only if the signatures of all the Si are the same (we again use our

assumption that Γ has no boundary permuting automorphisms here). This means that

N iso
gi,ni

(Γ, P ) is equal to the number of ways to distribute the total genus gi + r − g0 − b0
and number of punctures ni over the (distinguishable) r subsets in P . The number of

ways to distribute a number s over r boxes is also called the number of weak compositions

of s into r parts. As such, we obtain

N iso
gi,ni

(Γ, P ) =

(
gi + 2r − g0 − b0 − 1

r − 1

)(
ni + r − 1

r − 1

)
(see for instance [24, p.15]). Because N iso

gi,ni
(Γ, P ) only depends on the number of parts r

of the partition, we obtain

N iso
gi,ni

(Γ) =

b0∑
r=1

S(b0, r)

(
gi + 2r − g0 − b0 − 1

r − 1

)(
ni + r − 1

r − 1

)
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where S(b0, r) is a Stirling number of the second kind, which counts the number of set

partitions of B into r parts (see for instance [24, p.33]).

The sum above is a finite sum in our considerations: Γ is fixed, hence so is b0. This

means that the terms that contribute to the asymptotics are only those of highest order

in gi + ni.

For fixed r we have that (
s+ r − 1

r − 1

)
∼ sr−1

(r − 1)!

as s→∞. This means that

N iso
gi,ni

(Γ) = S(b0, b0)

(
gi + b0 − g0 − 1

b0 − 1

)(
ni + b0 − 1

b0 − 1

)
+O

(
((gi + 1)(ni + 1))b0−2

)
as i → ∞. Because S(b0, b0) = 1, this gives us the result in the case where Aut (∂Γ) =

{Id}.

In the case where Γ does have automorphisms that permute boundary components then

we over-count. For arbitrary P |= B, it is quite hard to work out the influence of the

automorphisms. However, we are lucky and the only embeddings that contribute to the

asymptotics are those for which the ribbon graph disconnects Σgi,ni into b0 surfaces.

In fact, we will prove that we can also ignore those embeddings in which some of these

surfaces have the same signature. Note that in this case this is equivalent to having

the same genus and number of punctures, since in these embeddings every connected

component of Σgi,ni \ Γ has exactly one boundary component. Once we have this the

proof is done, because every embedding in which the genera of all the complementary

surfaces are different is counted exactly |Aut (∂Γ)| times.

Let us denote by N iso
gi,ni

(Γ, rep) the number of gluings corresponding to the set partition

P with b0 elements in which at least two of the signatures are equal. We claim that

N iso
gi,ni

(Γ, rep) = O
(

((gi + 1)(ni + 1))b0−2
)

as i→∞. In fact, this follows from a simple union type bound. Indeed, every gluing that

contributes toN iso
gi,ni

(Γ, rep) can be obtained by choosing a pair of boundary components of

Γ, assigning a single genus and number of punctures to those two and then assigning genera

to all the other boundary components. This means that we can bound N iso
gi,ni

(Γ, rep) as

N iso
gi,ni

(Γ, rep) ≤
(
b0
2

)
(gi + 1) · (gi + 1)b0−3 · (ni + 1) · (ni + 1)b0−3

where the power b0−3 comes from the fact that once the genera (or numbers of punctures)

of the first b0 − 3 boundary components are chosen, the genus (or number of punctures)

of the last boundary component is fixed. This proves the claim. �

Towards our lower bound we obtain the following proposition:

Proposition 14. Let {gi, ni}i∈N ⊂ N be a sequence such that gi + ni → ∞ as i → ∞.

Then

N iso
gi,ni

(Γ)−N◦gi,ni
(Γ) = O(((gi + 1)(ni + 1))b0−2)

as i→∞.
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Proof. If we were to use the count in the proof of Proposition 13 for N◦gi,ni
(Γ), we would

overcount because we did not worry about attaching disks. Note that we use Theorem 7

here: if there are no (unpunctured) disks in the complement there is only one isotopy class

in each homotopy class. In order to obtain a lower bound N◦gi,ni
(Γ) we will simply subtract

the number of gluings which attach a disk. Let us call this number Ngi,ni(Γ,Disk). So

N iso
gi,ni

(Γ)−N◦gi,ni
(Γ) = Ngi,ni(Γ,Disk)

We have

Ngi,ni(Γ,Disk) ≤
b0∑
j=1

Ngi,ni(Γ,Disk, j)

where Ngi,ni(Γ,Disk, j) counts the number of gluings in which an unpunctured disk is

attached to the jth boundary component βj (and possibly also to some of the other

boundary components). Because we are only after a bound on Ngi,ni(Γ,Disk, j), we

will disregard the influence of automorphisms. Using the exact same arguments as in

Proposition 13, we obtain:

Ngi,ni(Γ,Disk, j) ≤
b0−1∑
r=1

S(b0 − 1, r)

(
gi + 2r − g0 − b0 − 1

r − 1

)(
ni + r − 1

r − 1

)
=

= O
(

((gi + 1)(ni + 1))b0−2
)

as i→∞. �

4. The main theorem

4.1. Counting orbits. We are now ready to determine the asymptotics of Ng,n(k, h).

Before we state our result, we define

Ck,h =
∑

Γ∈RCh(k)

1

|Aut (∂Γ)|

Note that this is a constant in all our considerations. We will write Ck = Ck,0 for the

constant corresponding to planar ribbon graphs.

We have the following result:

Theorem 1. Let k, h ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞. Then

Ngi,ni(k, h) ∼ Ck,h
(
gi + k − 3h+ 1

k + 1− 2h

)(
ni + k + 1− 2h

k + 1− 2h

)
as i→∞.

Proof. We will of course use the bounds from the previous section. Propositions 13 and

14 imply that N◦gi,ni
(Γ) ∼ N iso

gi,ni
(Γ) as i→∞. So we obtain that

Ngi,ni(k, h) ∼
∑

Γ∈RCh(k)

1

|Aut (∂Γ)|

(
gi + b(Γ)− h− 1

b(Γ)− 1

)(
ni + b(Γ)− 1

b(Γ)− 1

)
as i→∞. A simple Euler characteristic argument yields that for Γ ∈ RCh(k) we have

b(Γ) = k + 2− 2h.
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Hence we obtain

Ngi,ni(k, h) ∼ Ck,h
(
gi + k − 3h+ 1

k + 1− 2h

)(
ni + k + 1− 2h

k + 1− 2h

)
as i→∞. �

Note that simple curves technically do not fall within our scope, because to construct a

ribbon graph, we need self-intersections. However, using the annulus as the single ribbon

surface corresponding to a simple curve, all the arguments above work. As a ribbon

surface, the annulus has one automorphism, permuting the two boundary components.

As a consequence of our main theorem we also obtain the asymptotics of the number of

orbits of all curves with k self-intersections.

Corollary 2. Let k ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞.

Ngi,ni(k) ∼ Ck
(
gi + k + 1

k + 1

)(
ni + k + 1

k + 1

)
as i→∞.

Proof. We have

Ngi,ni(k) =

b k+1
2
c∑

h=0

Ngi,ni(k, h)

Theorem 1 tells us that asymptotically only the term corresponding to h = 0 contributes

to the sum above, which yields the corollary. �

4.2. Ribbon Graph Automorphisms and Ck. Now we briefly discuss the constant

Ck =
∑

Γ∈RC0(k)

1
|Aut(∂Γ)| . Cantarella, Chapman and Mastin [12] recently enumerated planar

ribbon curve graphs (knot diagram shadows on the sphere) with 10 or fewer crossings,

as well as the mean number of automorphisms of such a shadow. We are not interested

in the total number of automorphisms, but rather automorphisms inducing distinct per-

mutations on the set of boundary components of the ribbon graph. But of course, if

the ribbon graph has no automorphisms, there are no boundary automorphisms either.

Cantarella, Chapman and Mastin’s results show that the total number of planar ribbon

curve graph automorphisms decreases rapidly and is already 1.03 for k = 10, so we expect

that as k →∞, Ck ∼ |RC0(k)|.

For small k, one can work out the constant Ck explicitly. The following table lists the

first four values.

k 0 1 2 3

Ck
1
2

1
2

1
2 3

Table 1. The first four values of Ck.

Quantities similar to |RC(k)| and |RCh(k)| for fixed h have been studied by several au-

thors. One can show (see for example Turaev [26]) that elements of RC(k) are in bijection

with Gauss diagrams with one core circle and k arrows, or in Turaev’s language, virtual
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strings. Chord diagrams are Gauss diagrams with unoriented arrows. The asymptotics

of the number of chord diagrams with k arrows, with either oriented or unoriented core

circles, were studied by Stoimenow [25], giving a lower bound for |RC(k)|, though his

results are not filtered by genus.

4.3. Probabilistic Statements. Our reasoning also allows us to make certain proba-

bilistic statements. Because the set of MCG(Σg,n)-orbits of curves with k self-intersections

is finite, it carries a natural probability measure, coming from the counting measure. We

will denote this measure by Pg,n.

Along the way we have proved the following:

Corollary 4. Let k ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞. Then as i→∞

Pgi,ni

[
A curve with k self-intersections has a disk

in the complement

]
→ 0

and

Pgi,ni

[
A curve with k self-intersections separates Σgi,ni into

k + 2 surfaces, all of different signatures

]
→ 1

Furthermore, it also follows from our arguments that if we let N iso
g,k denote the number of

free isotopy classes of essential closed curves with k self-intersections, then:

N iso
g,k ∼ Ng,k

for k fixed and g + n→∞. This implies a probablistic version of Baer’s theorem:

Corollary 3. Let k ∈ N. Furthermore, let {gi, ni}i∈N ⊂ N be a sequence such that

gi + ni →∞ as i→∞. Then as i→∞

Pgi,ni

[
The homotopy class of a curve with k self

intersections contains exactly one isotopy class

]
→ 1

5. Geometric consequences

In this section we prove Corollary 5. This will be a direct consequence of Theorem 1 and

the following result by Basmajian:

Theorem 15 ([4], Theorems 1.1 and 1.2). Let X be a complete hyperbolic structure on

Σg,n and γ a geodesic on X with k ≥ 1 self-intersections. The length of γ on X satisfies

max{cX
√
k,

1

4
log(2k)} ≤ `X(γ)

where cX = 0 if X has cusps and cX is a continuous function on the moduli space of

hyperbolic structures on Σg, tending to 0 as X approaches the boundary of this moduli

space.

Given L > 0 and a hyperbolic surface X, define

aX(L) =

⌊
min

{(
L

cX

)2

,
1

2
e4L

}⌋
+ 1

Note that for fixed L, a·(L) is a uniformly bounded function on the set of hyperbolic

surfaces. Namely,

A(L) = sup
X
{aX(L)} =

⌊
1

2
e4L

⌋
+ 1 <∞
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where the supremum is to be taken over all hyperbolic surfaces X of all possible genera.

Recall that NX(L) denotes the number of MCG(Σg(X),n(X))-orbits of closed geodesics on

X that contain a curve of length at most L.

We are now ready to prove the following:

Corollary 5. Let L > 0. There exists a constant C = C(L) > 0 such that for any

hyperbolic surface X

NX(L) ≤ C · ((g(X) + 1)(n(X) + 1))aX(L)

Proof. Theorem 15 tells us that an MCG(Σg,n)-orbit can only contain a curve of length

≤ L on X if it’s an orbit of curves with at most aX(L)− 1 self-intersections. This means

that:

NX(L) ≤
aX(L)−1∑
k=0

Ng(X),n(X)(k)

Theorem 1 tells us that asymptotically this sum is dominated by its last term and that

furthermore there exists a constant C = C(L) such that

aX(L)−1∑
k=0

Ng(X),n(X)(k) ≤ C · (g(X) + 1)aX(L) · (n(X) + 1)aX(L)

where we have used the fact that aX(L) ≥ 1. �

Note that the fact that aX(L) is uniformly bounded for fixed L gives us a polynomial

upper bound. On the other hand, if something is known about the hyperbolic structure

and cX can be controlled, then this bound becomes sharper.
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