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Abstract. The Hurwitz space is the moduli space of pairs (X, f) where X is a
compact Riemann surface and f is a meromorphic function on it. We study the Laplace
operator ∆|df |2 of the flat singular Riemannian manifold (X, |df |2). We define a regular-
ized determinant for ∆|df |2 and study it as a functional on Hurwitz space. We prove that
this functional is related to a system of PDE which admits explicit integration. This
leads to an explicit expression for the determinant of the Laplace operator in terms of the
basic objects on the underlying Riemann surface (the prime form, theta-functions, the
canonical meromorphic bidifferential) and the divisor of the meromorphic differential
df. The proof has several parts that can be of independent interest. As an impor-
tant intermediate result we prove a decomposition formula of the type of Burghelea-
Friedlander-Kappeler for the determinant of the Laplace operator on flat surfaces with
conical singularities and Euclidean or conical ends. We introduce and study the so-called
S-matrix, S(λ), of a surface with conical singularities and relate its behaviour at λ = 0
with the so-called Schiffer projective connection on the Riemann surface X. We also
prove variational formulas for eigenvalues of the Laplace operator of a compact surface
with conical singularities when the latter move.

∗E-mail: luc.hillairet@univ-orleans.fr
†E-mail: vkalvin@gmail.com
‡E-mail: alexey.kokotov@concordia.ca

1



1 Introduction

1.1 General part

Study of the determinants of Laplacians on Riemann surfaces is motivated by the needs
of quantum field theory (in connection with various partition functions) and geometric
analysis (in particular, in connection with Sarnak program, [33]). The explicit expres-
sions for the determinant of the Laplacian in the metric of constant negative curvature
([7]) and in the Arakelov metric (obtained in [2] in relation to so-called bosonization for-
mulas from the string theory) for compact Riemann surfaces of genus g > 1 are among
the most beautiful and deep results of the subject. According to Sarnak program, these
determinants (which are functions on the moduli space of Riemann surfaces) can be
used to study the geometry of the moduli space via the methods of Morse theory. In
particular, their behavior at the boundary of the moduli space is of great importance
and was intensively studied (see, e. g., [39], [38]).

It seems very interesting to consider the case which is in a certain sense oppo-
site to the case of the metric of constant curvature: instead of distributing the cur-
vature uniformly along the Riemann surface X one can concentrate it at a finite set
{P1, . . . , PM} ⊂ X. This leads to a flat metric m on X with conical singularities at Pk.
Determinant of Laplacians for various classes of flat metrics of this type were introduced
and studied on the formal level (via path integrals) by physicists ([35],[40], [18], [3]) and
certain explicit expressions for them were produced (see, e. g., [35], [40]).

One of the main goals is to study such determinants from the point of view of the
spectral theory of self-adjoint operators and perturbation theory (as it was done in
the mathematical literature for the determinants of the Laplacians in smooth metrics
(in particular, those two mentioned above), see, e. g., Fay’s book [9] for complete
compendium and consistent exposition) using the standard definition of the determinant
via the ζ-function of the corresponding Laplace operator

ln det∆m = −ζ ′∆m(0) , (1.1)

ζ∆m(s) =
∑
j

1

λsj
, (1.2)

where, in the latter expression the sum is extended over all non-zero eigenvalues of ∆m.
Let us say from the very beginning that the Laplace operator ∆m (with natural

domain consisting of smooth functions on X supported outside the conical points Pk)
is not essentially self-adjoint. This fact is never mentioned by the physicists who have
been working with these determinants and it is not clear whether this issue is addressed
or not. Comparing the determinants of the different self-adjoint extensions of ∆m leads
to a nice application of Birman-Krein theory and is done in [15] (see also the references
therein). In what follows we chose once and forever the Friedrichs extension of ∆m, all
our results refer only to the case of this particular self-adjoint extension.

In [23] it was found an explicit expression for the determinant of (the Friedrichs
extension of) the Laplace operator corresponding to flat conical metric m with trivial
holonomy. Any metric of this type can be represented in the form |ω|2, where ω is
a holomorphic one-form on X, zeros of ω of multiplicity ℓ are the conical points of
the metric |ω|2 with conical angle 2π(ℓ + 1). The moduli space of pairs (X,ω), where
X is a compact Riemann surface and ω is a holomorphic one-form on X is stratified
according to multiplicities of ω (see [27]). In [23] it was proved that on each stratum of
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the moduli space of holomorphic differentials the ratio det∆|ω|2

detℑB , where B is the matrix of
b-periods of the Riemann surface X, coincides with the modulus square of a holomorphic
function τ on the stratum. This holomorphic function τ (the so-called Bergman tau-
function on the space of holomorphic differentials) admits explicit expression through
theta-functions, prime-forms and the divisor of the holomorphic one-form ω. In the
case g = 1 the holomorphic one-forms have no zeroes, the metric |ω|2 is smooth and the
corresponding result coincides with the classical Ray-Singer formula for the determinant
of the Laplacian on an elliptic curve with flat conformal metric.

In [21] it was found a comparison formula (an analog of classical Polyakov formula)
relating determinants of the Laplacians in two conformally equivalent flat conical met-
rics, this lead to the generalization of the results of [23] to the case of arbitrary flat
conformal metrics with conical singularities.

Together with determinant of the Laplacians in flat conical metrics given by the
modulus square of the holomorphic one form (these metric have finite volume and the
spectra of the corresponding self-adjoint Laplacians are discrete) in physical literature
appear determinants of the Laplacians corresponding to flat metrics |ω|2, where ω is
now a meromorphic one form on X. Depending on the order of the poles of ω, the
corresponding non compact Riemannian manifold (X, |ω|2) of the infinite volume has
cylindrical, Euclidean, or conical ends. The spectrum of the corresponding Laplace oper-
ator is continuous (with possible embedded eigenvalues, say, in case of cylindrical ends)
and the Ray-Singer regularization of the determinant (1.1, 1.2) is no longer applicable.
The way to regularize such determinants is, in principle, also well-known (see, e. g.,
[30]): considering the Laplacian ∆ as a perturbation of some properly chosen ”free”
operator ∆̊, one introduces the relative determinant det(∆, ∆̊) in terms of the so-called
relative ζ-function

ζ(s;∆, ∆̊) =
1

Γ(s)

∫ ∞

0
Tr(e−∆t − e−∆̊t)ts−1 dt, (1.3)

where a suitable regularization of the integral is used (being understood in the conven-
tional sense the integral is usually divergent for any value of s).

Following this approach, in [16] we studied the regularized determinants

det(∆, ∆̊) = e−ζ′(0;∆,∆̊)

of the Laplacians on the so-called Mandelstam diagrams - the flat surfaces with cylin-
drical ends (more precisely, Riemann surfaces X with the metric |ω|2, where ω is a
meromorphic one-form on X with simple poles such that all the periods of ω are pure
imaginary and all the residues of ω at the poles are real).

In the present paper we consider determinants of the Laplacian corresponding to
flat metrics with even wilder singularities: the corresponding Riemannian manifold has
Euclidean (i. e. isometric to a vicinity of the point at infinity of the Euclidean plane)
or even conical ends (i. e. isometric to a vicinity of the point at infinity of a straight
cone). These metrics are given as the modulus square of the differential of an arbitrary
meromorphic function f on a compact Riemann surface X. The moduli space of pairs
(X, f) is called the Hurwitz space H. We define and study the regularized determinant
of the Laplace operator corresponding to the metric |df |2 as a functional on H. The
main result of the work is an explicit formula for this determinant.

It should be noted that such determinants for the first time appeared in [40], [3] (see
also [18]), although no attempt was made to define them rigorously.
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1.2 Results and organization of the paper

Let X be a Riemann surface and f be a meromorphic function f : X → P1. We
start by recalling that the metric |df |2 gives to X the structure of a (non-compact)
flat Riemannian manifold with conical singularities and conical (or Euclidean) ends.
The conical singularities are located at the critical points (Pm)1≤m≤M of f. The moduli
space of (equivalence classes) of such pairs (X, f) is known as Hurwitz space H and the
the critical values (zm := f(Pk))1≤m≤M where Pk locally parametrizes H. Given such

a Riemannian manifold (X, |df |2), we introduce the reference manifold (X̊, m̊). This
reference manifold can be seen as the disjoint union of the complete cones corresponding
to the ends of (X, |df |2) and we will denote the Laplace operator ∆m̊ := ∆̊.

The first part of the paper aims at defining the relative zeta-regularized determinant
det∗ζ(∆

|df |2 , ∆̊) and proving a version of the Burghelea-Friedlander-Kappeler (BFK in
what follows) gluing formula (see [4]). This new BFK type formula is a generalization of
the Hassell-Zelditch formula for the determinant of the Laplacian in exterior domains [14]
and we rely heavily on ideas from [6, 5, 14].

In order to obtain the gluing formula, we have to cut X along some hypersurface Σ.
This decomposes X into a compact part X− and the conical/Euclidean ends X+. The
latter is isometric to the reference surface X̊ with a compact part X̊−. removed. There
is some latitude in choosing the initial Σ.We choose our Σ by first specifying some large
R and then choosing one circle in each conical end whose radius depend on R and on
the cone angle of the conical end - see definition 3. As expected the gluing formula then
involves the Neumann jump operator N on Σ and reads as follows.

Theorem 1. Fix R large enough, we have

det∗ζ(∆
|df |2 , ∆̊) = C det∗ζ N · detζ ∆D

−

where N, ∆D
− depend on R. The constant C depends on R but not on the moduli

parameters z1, . . . zM as long as the corresponding critical points Pm do not approach Σ.

We should note that the proof of the gluing formula actually holds for a more general
class of metric (see Remark 1).

Let us now sketch the different steps leading to this Theorem. First we start form
the BFK gluing formula for detζ(∆ − λ, ∆̊ − λ) obtained in [6] for negative (regular)

values of the spectral parameter λ. In order to obtain a gluing formula for det∗ζ(∆, ∆̊)

(i.e. at the bottom of the continuous spectrum of ∆ and ∆̊), we study the behaviour of
all ingredients in the gluing formula for detζ(∆− λ, ∆̊− λ) as λ→ 0− and then pass to
the limit. As usual, this essentially reduces to derivation of asymptotics as λ → 0− for
the zeta regularized determinant of the Neumann jump operator and for the spectral
shift function of the pair (∆, ∆̊). In principle both asymptotics were obtained in [5]
for Schroedinger type operators on manifolds with conical ends. Unfortunately those
asymptotics cannot be used for our purposes because the asymptotic for the Neumann
jump operator contains an unspecified constant and the asymptotic for the spectral
shift function is not sufficiently sharp. We demonstrate that at least in our setting (no
potential) the methods of [5] can be improved to specify the constant and to obtain a
sufficiently sharp asymptotic of the spectral shift function as needed for the proof of
our BFK formula. Once these asymptotics are obtained, we follow the lines of [14] in
our study of the behaviour of detζ(∆ − λ, ∆̊ − λ) as λ → 0− and also in definition of

det∗ζ(∆, ∆̊).
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Using this BFK formula, we prove (as it was done in similar situations in [21],
[16]) that the variations of the determinant of the Laplacian with respect to the moduli
parameters zk remain the same if we replace the metric m = |df |2 of infinite volume by a
metric m̃ of finite volume, where m̃ coincides with m outside vicinities of the poles of f
and with some standard nonsingular metric of finite volume inside these vicinities. The
aim of the second part of the paper is thus to study the zeta-regularized determinant of
this new metric m̃ and its variation with respect to moduli parameters.

It turns out that these variations are conveniently expressed using the so-called S-
matrix so we start the second part of the paper by introducing this object and deriving
several of its properties. We think that the S-matrix is an important characteristic
of a compact Riemann surface X equipped with a conformal metric m̃ with conical
singularity. It is defined in analogy both with scattering situations and the general
theory of boundary triples (see [13]). Of particular interest here will be the fact that the
value at λ = 0 can be expressed using the Schiffer projective connection of the Riemann
surface X.

We will continue by studying the moduli variations of the zeta-regularized deter-
minant of ∆m̃. We will here use the Kato-Rellich perturbation theory to compute the
variation of individual eigenvalue branches and then a contour argument similar to the
one used [15] to get the variational formula for the determinant. This formula will
be naturally expressed using S(0) and hence using the Schiffer projective connection.
Writing it into an invariant form, we will obtain the following theorem.

Theorem 2. Let Pm be a zero of the meromorphic differential df of multiplicity lm and

let zm = f(Pm) be the corresponding critical value of f . Let also xm = (z − zm)
1

lm+1 be
the distinguished local parameter in a vicinity of Pm. Let m̃ be the metric |df |2 in which
the conical ends have been smoothed. Then

∂zm ln
det∗ζ(∆

m̃)

detℑB
= − 1

12πi

∮
Pm

SB − Sf
df

(1.4)

where SB is the Bergman projective connection, Sf =
f ′′′f ′− 3

2
(f ′′)2

(f ′)2 is the Schwarzian

derivative, and B is the matrix of b-periods.

In this theorem we can replace det∗ζ(∆
m̃) by det∗(∆|df |2 , ∆̊) since we have proved

before that the moduli variations of both function coincide.
The system of PDE for det∆m̃ that appears Theorem 2 is the governing system for

the Bergman tau-function on the Hurwitz space (introduced and studied in [20], [23],
[25], [24]). The latter system was explicitly integrated in [22] and in §5 we remind this
result (unfortunately, technically involved). This leads to the following explicit formula
for det∗ζ(∆, ∆̊).

Theorem 3. Let (X, f) be an element of the Hurwitz space H(M,N) and let τ(X, f)
be given by expressions (6.10,6.9, 6.8). There is the following explicit expression for the
regularized relative determinant of the Laplacian ∆|df |2 on the Riemann surface X:

detζ(∆
|df |2 , ∆̊) = C detℑB |τ |2 , (1.5)

where C is a constant that depends only on the connected component of the space
H(M,N) containing the element (X, f).
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We finish the paper with two illustrating examples in genus 0, deriving the formulas
for the determinant of the Laplacian on the space of polynomials of degree N and on
the space of rational functions with three simple poles.

Acknowledgements. This work was finished during the stay of the third author
(A. K.) at the Max Planck Institute of Mathematics (Bonn). A. K. thanks the Institute
for hospitality and excellent working conditions. The work of L.H is partly supported
by the ANR program Gerasic-ANR-13-BS01-0007-0. The work of A. K. is supported by
NSERC and ANR program Gerasic-ANR-13-BS01-0007-0.

2 The regularized determinant as a functional on Hurwitz
space and a BFK gluing formula

The Hurwitz space is the space of equivalence classes of pairs (X, f) where X is a
compact Riemann surface and f is a meromorphic function defined on X. We start by
recalling how a flat singular metric m on X may be associated to such a (X, f). Our
aim is to define a regularized determinant and to prove a BFK-type gluing formula.
However, since the metric m has conical singularities and non compact conical ends this
will require several steps. First, we will work at non-positive energies (i.e. values of
the spectral parameter λ such that λ2 ∈ C \ [0,∞)). In that case, defining the relative
determinant and the BFK-gluing formula follow from [6]. We will then derive estimates
for the determinant of the Dirichlet-to-Neumann operator when λ approaches 0. The
methods are very close to those of [5] and following [14] these estimates will allow us to
define a zeta-regularized determinant at the energy 0. It will remain to study various
limits to prove the gluing formula. We will end this section by using the gluing formula
to prove that we can compactify X in such a way, that locally, the moduli variations
remain the same.

2.1 The flat Laplacian of an element in Hurwitz space

We will be dealing with conical singularities and conical ends. These are defined in the
following way.

Definition 1.

• For any ℓ ∈ N the Euclidean cone of total angle 2ℓπ is the Riemannian manifold
(C, |ℓyℓ−1dy|2).

• A point P in a Riemannian manifold will be a conical singularity of angle 2ℓπ if
there is a neighbourhood of P that is isometric to the set

(
{|y| < ε}, |ℓyℓ−1dy|2

)
for some positive ε.

• A open set Ω ⊂ X of a Riemannian manifold (X,m) such that (Ω,m) is isometric
to
(
{|y| > R}, |ℓyℓ−1dy|2

)
for some positive R will be called a conical end of angle

2ℓπ (Euclidean end if ℓ = 1).

Let (X,m) be a Riemannian manifold such that the metric is flat with a finite
number of conical singularities and conical ends. We will denote by ∆m the self-adjoint
operator which is obtained by the Friedrichs procedure starting from the (non-negative)
Laplace operator on smooth functions that vanish near the conical singularities.
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Let f be a meromorphic function on a compact Riemann surface X of genus g ≥ 0
or, what is the same, a ramified covering of the Riemann sphere

f : X → P1 (2.1)

Two coverings f1 : X1 → P 1 and f2 : X2 → P 1 are called equivalent if there exists
a biholomorhic map g : X1 → X2 such that f1 = f2 ◦ g.

The following construction is standard, we recall it for the convenience of the reader.
The critical points, Pm, m = 1, . . . ,M, of the function f (i. e. those points for

which df(Pm) = 0) are the ramification points of the covering, the points zm = f(Pm)
are called the critical values. The ramification index of the covering at the point Pm

equals to ℓm +1, where ℓm is the order of the zero of the one-form df at Pm. Denote by
∞1, . . . ,∞K the poles of f , and let k1, . . . , kK be their multiplicities.

Then the covering (2.1) has degree N = k1 + . . . kK and the following Riemann-
Hurwitz formula holds:

M∑
m=1

ℓm −
K∑
j=1

(kj + 1) = 2g − 2 ,

where g is the genus of X.
Pick some regular value z0 ∈ P1 and draw on P1 the segments I0 := [z0,∞], Im =

[z0, zm], m = 1, . . . ,M . It may happen that some segment is repeated several times if
different critical points take the same critical value. We may also choose z0 such that
all these segments have pairwise disjoint interiors. Denote by L :=

∪M
m=0 Im the union

of these segments and observe that P1 \ L contains only regular values of f . It follows
that X \ f−1(L), the complement of the preimage of L by f in X has N connected
components. By construction f is a biholomorphic map from each of these connected
components onto P1 \L.We denote these connected components by Cn, n = 1 . . . N and
call them the sheets of the covering. Each Cn can be seen as a copy of the complex
plane equipped with the cuts provided by L.

On each sheet, the metric |dz|2 lifted from the base P1 to the covering space coincides
with the metric |df |2 and the Riemannian manifold (X, |df |2) is thus obtained by gluing
N copies of a Euclidean plane (C, |dz|2) with a system of non-intersecting cuts, one of
which extends to infinity.

For each critical point Pm of ramification index ℓm + 1, we obtain a ℓm + 1-cycle γj
obtained by looking in which order the sheets are following one another when making a
small loop around Pm. It follows that each Pm, is a conical singularity of angle 2π(ℓm+1).

For each zm, m ̸= 0 we obtain a permutation in SN by composing the cycles for each
critical point in f−1(zm). We thus obtain M ′ permutations σm′ , m′ = 1 . . .M ′ where
M ′ is the number of different critical values. Each zm is thus associated with one cycle
in one of the permutations σm′ , m′ = 1 . . .M ′.

In the same manner we obtain a permutation σ0 by looking at the preimage of a large
loop that surrounds z0 (or equivalently, a small loop around ∞ in the base P1). This
permutation describes the structure at infinity of the Riemannian manifold (X, |df |2) :
each fixed point of σ0 corresponds to a flat Euclidean end and a cycle of length k to a
conical end of angle 2kπ. A pole in f of order k corresponds to a conical end of angle
2kπ (and therefore a Euclidean end for a simple pole).

The flat structure on (X, |df |2) is completely characterized by the positions of the
critical values zm, m = 1 . . .M and by the permutations σm′ , m′ = 0 . . .M ′. Conversely,
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starting from M ′ + 1 permutations of SN , and M
′ distinct points w1, . . . wm′ in C, we

construct the sequence z0, . . . zM by choosing a distinct point z0 and, for m > 0, by
repeating wm′ as many times as there are disjoint cycles in σm′ . We then glue the
N sheets according to the scheme prescribed by the permutations. We obtain a (not
necessarily connected) flat surface (X,m) with conical singularities and conical ends.

It turns out that it is always possible to find a meromorphic function f from X to
P1 such that (X,m) is isometric to (X, |df |2).

Introduce the Hurwitz space H(N,M) of equivalence classes of coverings f : X → P 1

of degree N with M ramification points of (fixed) indices ℓ1 + 1, . . . , ℓM + 1 and l
poles of (fixed) multiplicities k1, . . . , kℓ; k1 + . . . , kK = N . The space H(N,M) is a
complex manifold of dimension M (see [11], we notice here that it may have more than
one connected components) and the critical values z1, . . . , zM can be taken as local
coordinates on H(N,M).

If all the critical points of the maps f are simple, then the corresponding Hurwitz
space is usually denoted by Hg,N (k1, . . . , kK) and is known to be connected (see [31]).

Definition 2. We will refer to the coordinates z1, . . . , zM as moduli.

From the flat metric point of view, moving zm can be easily easily realized by excising
a small ball around Pm, then move Pm inside this ball. Since the boundary of the ball
does not change we can then glue back the new ball in the surface.

For such a Riemannian manifold (X, |df |2) we define a reference manifold (X̊, m̊)
which is obtained in the following way. Take the N sheets with cuts that correspond to
X, and in the gluing scheme of X, keep σ0 and replace all the permutations σm′ ,m′ > 0
by the identity. It can be easily seen that (X̊, m̊) actually consists in the disjoint union
of the cones that correspond to the conical ends of X and the tip of each cone is now
located above z0.

The Laplacian ∆ := ∆|df |2 can be considered as a perturbation of the free Laplacian
∆̊ := ∆m̊ acting in the space L2((C \ L)N ) or equivalently L2(X̊). The perturbation
is basically reduced to the change of the domain of the unbounded operator: when
we make slits on X̊ and glue them according to a certain gluing scheme, it induces
boundary conditions on the sides of the cuts. The regularized determinant of ∆ will
then be defined in terms of the relative zeta function (1.3) as a regularized relative
determinant det∗ζ(∆, ∆̊).

The main goal of this work is to study the relative determinant det∗ζ(∆
|df |2 , ∆̊) as a

functional on the space H(N,M).

2.2 Relative Determinant and BFK gluing formula for negative ener-
gies

Let X be a compact Riemann surface and let f be a nonconstant meromorphic function
on X. Introduce the flat singular metric m = |df |2 on X. As it is explained in the
previous section, the flat singular Riemannian manifold (X,m) has conical points (at
the zeros, P1, . . . , PM , of the differential df) and conical ends of angle 2πkj at the
poles, ∞1, . . . ,∞K , of f where kj is the order of the corresponding pole. Let ∆ be the
(Friedrichs) Laplace operator of (X,m).

We also let (X̊, m̊) be the reference unperturbed setting ∆̊ the associated Laplace

operator. We recall that (X̊, m̊) =
∪K

j=1(C, |kjy
kj−1
j dyj |2).
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Since (X,m) and (X̊, m̊) are isometric outside a compact region the methods and
results of [5] apply.

For R > 0 large enough, there is a subset X+(R) ⊂ X that is isometric to

∪K
j=1{yj ∈ Cj : |yj | ≥ R1/kj} ⊂ X̊. (2.2)

Definition 3. We denote by ΣR the boundary of the region X+(R). It is the union of
K circles {y ∈ C : |y| = R1/kj} on X.

Observe that R will be chosen at the very beginning of the construction and will
then be fixed. In order to make the notations lighter, we will drop the reference to R
and simply write Σ, X+.

We represent X in the form

X = X− ∪Σ X+,

where X− = X \ (X+ ∪ Σ).
Following [6] we first define the external Dirichlet-to-Neumann operator. We work

in each conical end {yj ∈ Cj : |yj | ≥ R1/kj} of X+ separately and drop the index j for
readibility. We introduce coordinates (r, φ) where r = |y|k ∈ [R,∞) and φ = arg y ∈
(−π, π]. We have

g = dr2 + k2r2 dφ2, ∆ = r−2
(
(r∂r)

2 + k−2∂2φ
)
.

Separation of variables shows that for λ ∈ C \ {0} with ℑλ ≥ 0 the exterior Dirichlet
problem

(∆− λ2)u(λ) = 0 on X+, u(λ) = f on Σ, (2.3)

has a unique solution of the form

u(r, φ;λ) =

∞∑
n=−∞

Cn
H

(1)
νn (λr)

H
(1)
νn (λR)

einφ, νn =
|n|
kR

,

where f ∈ C∞(Σ), Cn = (2π)−1
∫ π
−π f(φ)e

−inφ dφ, and H
(1)
n is the Hankel function.

This solution is in L2(X+) if ℑλ > 0. If ℑλ = 0, it is the unique outgoing solution that
satisfies the Sommerfeld radiation condition

√
r
(
∂ru(λ)− iλru(λ)

)
→ 0 as r → ∞.

The external Dirichlet-to-Neumann operator on Σ acts by the formula

N+(λ)f = −∂ru(λ) �r=R . (2.4)

Thus ψn(φ) = (VolΣ)−1/2einφ are eigenfunctions of N+(λ) with ∥ψn∥L2(Σ) = 1, and

µn(λ) = µ−n(λ) = −∂rH
(1)
νn (λr) �r=R

H
(1)
νn (λR)

(2.5)

are the corresponding eigenvalues (if ℑλ ≥ 0, λ ̸= 0).
We can also identify Σ and X+ as subsets of X̊ and, in the same manner we have

X̊ = X̊− ∪Σ X̊+.
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Let ∆D
± be the Friedrichs extensions of the Dirichlet Laplace operator in L2(X±).

We denote by ∆D := ∆D
− ⊕∆D

+ the Friedrichs Laplace operator on L2(X) with Dirichlet

boundary condition on Σ. Similarly, we define ∆̊D
± and ∆̊D.

The spectrum spec(∆D
−) of the positive self-adjoint operator ∆

D
− is discrete. For any

λ2 ∈ C \ σ(∆D
−) and f ∈ H1(Σ) there exists a unique solution u(λ) ∈ H3/2(X−) to the

Dirichlet problem

(∆− λ2)u(λ) = 0 on X− \ Σ, u(λ) = f on Σ, (2.6)

such that
u(λ) = f̃ − (∆D

− − λ2)−1(∆− λ2)f̃ , (2.7)

where f̃ ∈ H3/2(X−) is a continuation of f and

(∆D
− − λ2)−1 : H−1/2(X−) → H3/2(X−)

is a holomorphic function of λ2 ∈ C \ σ(∆D
−); here ∥u;Hs(X−)∥ = ∥(∆D

−)
s/2u;L2(X−)∥.

The Dirichlet-to-Neumann operator N−(λ) on Σ acts by the formula

N−(λ)f = ∂ru(λ) �r=R,

where f is the right hand side in (2.6) and u(λ) is defined by (2.7). The function
λ2 7→ N−(λ) ∈ B(H1(Σ), L2(Σ)) is holomorphic in C \ σ(∆D

−); here and elsewhere
B(X,Y) stands for the space of bounded operators from X to Y.

Finally, we introduce the Neumann jump operator

N(λ) = N+(λ) +N−(λ),

which is a first order elliptic classical pseudodifferential operator on Σ with the principal
symbol 2|ξ|.

For λ2 ≤ 0 the operator N(λ) is formally self-adjoint and nonnegative, it is positive
if λ2 < 0, and kerN(0) = {c ∈ C} (see e.g. [5, Sec. 3.3] for details). (Note that in
Theorem 4 the operator N(0) is denoted by N.) Let λ2 < 0. The function ζ(s) =
TrN(λ)−s is holomorphic in {s ∈ C : ℜs > 1} and admits a meromorphic continuation
to C with no pole at zero; we set detζ N(λ) = e−ζ′(0).

It is known (see [6, Theorem 2.2]) that the difference

(∆ + 1)−1 − (∆D + 1)−1

is in the trace class. By the Krein theorem, see e.g. [37, Chapter 8.9] or [6, Theorem
3.3], there exists a spectral shift function ξ(· ; ∆, ∆D) ∈ L1(R+, (1 + λ2)−2λ dλ) such
that

Tr
(
(∆ + 1)−1 − (∆D + 1)−1

)
= −

∫ ∞

0
ξ(λ ; ∆, ∆D)(1 + λ2)−22λ dλ. (2.8)

Moreover, the following representation is valid

Tr
(
e−t∆ − e−t∆D)

= −t
∫ ∞

0
e−tλ2

ξ(λ ; ∆, ∆D)2λ dλ, (2.9)

which implies that the left hand side in (2.9) is absolutely bounded uniformly in t > ϵ >
0. The heat trace asymptotic

Tr
(
e−t∆ − e−t∆D) ∼ ∑

j≥−2

ajt
j/2, t→ 0+, (2.10)
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can be obtained in a usual way, see e.g. [16, Lemma 4]. Thus for λ2 < 0 the relative
zeta function given by

ζ(s; ∆− λ2,∆D − λ2) =
1

Γ(s)

∫ ∞

0
ts−1eλ

2tTr(e−t∆ − e−t∆D
) dt

is defined for ℜs > 1 and continues meromorphically to the complex plane with no pole
at s = 0 by the usual argument. The relative determinant is defined to be

detζ(∆− λ2,∆D − λ2) = e−ζ′(0;∆−λ2,∆D−λ2).

By [6, Theorem 4.2] we have the gluing formula

detζ(∆− λ2,∆D − λ2) = detζ N(λ), λ2 < 0. (2.11)

(Although only smooth manifolds are considered in [6], it is fairly straightforward to see
that the argument in [6] remains valid for (2.11) as far as we consider only Friederichs
extensions and there are no conical points on Σ.)

All the constructions above can also be done for (X̊, m̊). Thus similarly to (2.11)
we have

detζ(∆̊− λ2, ∆̊D − λ2) = det N̊ζ(λ), λ2 < 0. (2.12)

Observe that since all operators can be seen as acting on L2(X̊) we have

e−t∆ − e−t∆̊ =
(
e−t∆ − e−t∆D

)
−
(
e−t∆̊ − e−t∆̊D

)
+
(
e−t∆D − e−t∆̊D

)
=
(
e−t∆ − e−t∆D

)
−
(
e−t∆̊ − e−t∆̊D

)
+
(
e−t∆D

− − e−t∆̊D
−
)
,

where for the last line we have used that ∆D = ∆D
− ⊕∆D

+ , ∆̊D = ∆̊D
− ⊕∆D

+ since X+

and X̊+ are isometric.
It follows that we can take the trace of both sides and thus define the following

relative zeta function for ℜs > 1

ζ(s;∆− λ2, ∆̊− λ2) =
1

Γ(s)

∫ ∞

0
ts−1eλ

2tTr(e−t∆ − e−t∆̊) dt, λ2 < 0.

Moreover, we obtain the relation

ζ(s;∆− λ2, ∆̊− λ2) = ζ(s; ∆− λ2, ∆̊D − λ2) − ζ(s; ∆̊− λ2, ∆̊D − λ2)

+ ζ(s,∆D
− − λ2) − ζ(s, ∆̊D

− − λ2).

All the functions continue meromorphically to the complex plane with no pole at 0.
Passing to the determinant, we obtain

detζ(∆− λ2,∆D − λ2)

detζ(∆̊− λ2, ∆̊D − λ2)
=

detζ(∆− λ2, ∆̊− λ2) detζ(∆̊
D
− − λ2)

detζ(∆
D
− − λ2)

.

Thus dividing (2.11) by (2.12) we obtain

detζ(∆− λ2, ∆̊− λ2) detζ(∆̊
D
− − λ2)

detζ(∆
D
− − λ2)

=
detζ N(λ)

detζ N̊(λ)
, λ2 < 0, (2.13)

where N̊(λ) and ∆̊D
− are moduli independent.

In order to take the limit λ2 → 0− in (2.13), we will need the asymptotic behavior
of all the ingredients in the latter equation. We start with detζ N(λ).
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2.3 Asymptotic of detζ N(λ) as |λ| → 0+, ℑλ ≥ 0

In this section we follow closely [5] in which a similar problem is studied.
First we need to understand the behavior of the internal and external Dirichlet-to-

Neumann operators. Since the internal Dirichlet Laplace operator ∆D
− is positive, there

is no problem in letting λ go to 0 in the definition of N−(λ).
Concerning the external Dirichlet-to-Neumann operator, using again separation of

variables in each conical end, we see that the problem

(∆− λ2)u(λ) = 0 on X+, u(λ) = f on Σ, (2.14)

in the case λ = 0, has a unique solution that satisfies the Sommerfeld radiation condition.
This solution is given by

u(r, φ; 0) =
∞∑

n=−∞
Cn

(R
r

)νn
einφ (2.15)

where f =
∑
Cne

inφ and we recall that νn = |n|
kR and that we have set ψn(ϕ) =

(2π)−
1
2 einϕ. The external Dirichlet to Neumann N+(0) is obtained by applying −∂r

to this solution and clearly, {|n|/(kR2), ψn}∞n=−∞ is a complete set of the eigenvalues
and orthonormal eigenfunctions of the operator N+(0).

Remark 1. Note that thanks to the special choice of the lower bound on y in (2.2)
the eigenvalue µ0(λ) of N+(λ) corresponding to the constant eigenfunction ψ0 does not
depend on k. This will be important in our proof of the BFK gluing formula in the case
K ≥ 1 if kj ̸= ki for some i, j = 1, . . . ,K.

It is convenient to present the argument in the case where K = 1 so that X has only
one conical end. We will explain afterwards how the proof is modified for K > 1.

2.3.1 The case K = 1

In the series (2.15) only the terms with νn > 1 are in L2(X+). As a result, in a neighbor-
hood of zero, properties of λ 7→ N+(λ) on the eigenspaces of N+(0) corresponding to the
eigenvalues |n|/(kR2) > 1/R and |n|/(kR2) ≤ 1/R are essentially different. Consider
the spectral projector P =

∑
0≤n≤kR Pn of N+(0) on the interval [0, 1/R]; here

P0 = (·, ψ0)L2(Σ); Pn = (·, ψn)L2(Σ)ψn + (·, ψ−n)L2(Σ)ψ−n.

Lemma 1 (see [5, Prop 4.5]). We have

N+(λ)
(
Id−P

)
= Ψ(λ2) + L(λ2),

where Ψ(z) is an elliptic pseudo-differential operator of order 1 which is a holomorphic
function of z in a neighbourhood of zero and L(z) is an operator with smooth integral
kernel which is a C1 function of z in a neighbourhood of zero with ℑz ≥ 0.

Recall that the eigenfunctions ψn of N+(λ) do not depend on λ and we have

N+(λ)Pf =
∑

0≤n≤kR

µn(λ)Pn

12



where the µn have been defined in (2.5).
The eigenvalues of N+(0) on [0, 1/R] are the limits of µn(λ). As |λ| → 0+, ℑλ ≥ 0,

the formula (2.5) and properties of the Hankel functions (see [1]) imply that

µ0(λ) = − 1

R lnλ

(
1−

(
ln
R

2
+
πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
, (2.16)

where γ is the Euler’s constant, and

µn(λ) = |n|/(kR2) +O(λϵ), 0 < |n| < kR, (2.17)

with some ϵ > 0.
We show the following proposition.

Proposition 1. Assume (X, |df |2) has only one conical end then, for any R large enough
we have, as |λ| → 0+, ℑλ ≥ 0,

detζ N(λ) = − 1

R lnλ
det∗ζ N(0)

(
1−

(
ln
R

2
+
πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
,

where detζ N(λ) is the zeta regularized determinant of N(λ), and det∗ζ N(0) is the zeta
regularized determinant of N(0) with zero eigenvalue excluded.

Proof. Due to the representation L2(Σ) = kerP0 ⊕ ker(P− P0)⊕ ker(Id−P) we have

N(λ) =

 N0,0(λ) N0,1(λ) N0,2(λ)
N1,0(λ) N1,1(λ) N1,2(λ)
N2,0(λ) N2,1(λ) N2,2(λ)

 , (2.18)

where Ni,j(λ) = PiN(λ)Pj with P0 = P0, P1 = P− P0, and P2 = Id−P.
The operatorN2,2(0) is invertible and therefore detζ N2,2(0) ̸= 0. Note thatN2,2(λ) =

P2N−(λ)P2 + P2N+(λ)P2, where N+(λ)P2 = N+(λ)(Id−P) is the same as in Lemma 1
and N−(λ) is a holomorphic function of λ2 in a small neighbourhood of zero. This
implies that

detζ N2,2(λ)− detζ N2,2(0) = o(1), |λ| → 0+,ℑλ ≥ 0. (2.19)

Thanks to Lemma 1 we also have

∥N2,2(λ)−N2,2(0);B(H1(Σ), L2(Σ))∥ = O(λ2),

∥∂λN2,2(λ)− ∂λN2,2(0);B(H1(Σ), L2(Σ))∥ = O(λ).
(2.20)

In order to refine (2.19), we estimate the absolute value of ∂λ ln detζ N2,2(λ). Since
∂λN2,2(λ) and N−1

2,2(λ) are pseudodifferential operators of order −1, the operator

N−1
2,2(λ)∂λN2,2(λ)

is in the trace class, and hence

∂λ ln detζ N2,2(λ) = Tr
{
N−1

2,2(λ)∂λN2,2(λ)
}
, (2.21)

see [4, 10]. The first estimate in (2.20) and the Neumann series for N−1
2,2(λ) give

N−1
2,2(λ) =

(
Id+L(λ)

)
N−1

2,2(0), ∥L(λ);B(H1(Σ))∥ = O(λ2);

N−1
2,2(λ) = N−1

2,2(0)
(
Id+R(λ)

)
, ∥R(λ);B(L2(Σ))∥ = O(λ2).

(2.22)
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As a consequence of (2.21), (2.22), and (2.20) we get

|∂λ ln detζ N2,2(λ)| = |Tr
{
N−1

2,2(λ)∂λN2,2(λ)
}
|

≤ ∥N2,2(λ)(Id+L(λ))N
−2
2,2(0)(Id+R(λ))∂λN2,2(λ)∥1

≤ ∥N2,2(λ);B(H1(Σ), L2(Σ))∥∥ Id+L(λ);B(H1(Σ))∥∥N−2
2,2(0)∥1

× ∥ Id−R(λ);B(L2(Σ))∥∥∂λN2,2(λ);B(H1(Σ), L2(Σ))∥ = O(1),

where ∥·∥1 is the trace norm. This together with (2.19) implies |∂λ detζ N2,2(λ)| = O(1).
Now, as a refinement of (2.19), we obtain

detζ N2,2(λ)− detζ N2,2(0) = O(λ).

This together with (2.18) implies

detζN(λ) = detFr

 N0,0(λ) N0,1(λ) N0,2(λ)N2,2(λ)
−1

N1,0(λ) N1,1(λ) N1,2(λ)N2,2(λ)
−1

N2,0(λ) N2,1(λ) Id

 detζ

 Id 0 0
0 Id 0
0 0 N2,2(λ)


= detFr

 N0,0(λ) N0,1(λ) N0,2(λ)N2,2(λ)
−1

N1,0(λ) N1,1(λ) N1,2(λ)N2,2(λ)
−1

N2,0(λ) N2,1(λ) Id

(detζ N2,2(0)
)(
1 +O(λ)

)
;

(2.23)
see [26] for the first equality. On the next step we rely on the estimate

| detFr(Id+A)− detFr(Id+B)| ≤ ∥A−B∥1e∥A∥1+∥B∥1+1, (2.24)

see [34, f-la (3.7), and references therein], for

Id+A =

 N0,0(λ) 0 0

0 N1,1(0) N1,2(0)N
−1
2,2(0)

0 N2,1(0) Id

 ,

Id+B =

 N0,0(λ) N0,1(λ) N0,2(λ)N2,2(λ)
−1

N1,0(λ) N1,1(λ) N1,2(λ)N2,2(λ)
−1

N2,0(λ) N2,1(λ) Id

 .

Since N−(0) is a selfadjoint operator in L2(Σ) and kerN−(0) = {c ∈ C}, we have
N−(0)P0 = P0N−(0) = 0. Then thanks to

Pi

(
N(λ)−N(0)

)
Pj = δij

(
µj(λ)− µj(0)

)
+ Pi

(
N−(λ)−N−(0)

)
Pj , i, j ∈ [0, 1/R],

where δij is the Kronecker delta function, and

Pj

(
N(λ)−N(0)

)
(Id−P) = Pj

(
N−(λ)−N−(0)

)
(Id−P), j ∈ [0, 1/R],

together with (2.17) and (2.22), we obtain ∥A − B∥1 = O(λϵ) with some ϵ > 0.
From (2.23) and (2.24) we get

detζ N(λ) = detFr

 N0,0(λ) 0 0
0 N1,1(0) N1,2(0)N2,2(0)

−1

0 N2,1(0) Id

detζ N2,2(0)(1 +O(λϵ)).

(2.25)
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It remains to note that

N0,0(λ) = (µ0(λ) + P0(N−(λ)−N−(0))P0 = (µ0(λ) +O(λ2))P0,

det∗ζ N(0) = detFr

(
N1,1(0) N1,2(0)N2,2(0)

−1

N2,1(0) Id

)
detζ N2,2(0).

This together with (2.25) and (2.16) completes the proof.

Corollary 1. The spectral shift function ξ in (2.9) satisfies

ξ(λ ; ∆,∆D) = (lnλ2)−1 +O
(
(lnλ)−2

)
, λ→ 0 + . (2.26)

Proof. By [6, Theorem 3.5] we have ξ(λ) = π−1Arg detN(
√
λ2 + i0) as λ2 → 0+, where

Arg z ∈ (−π, π], and ξ(λ) = 0 if λ2 < 0. Calculation of the argument in the asymptotic
obtained in Propositon 1 gives (2.26).

2.3.2 The case K > 1

Let us outline the changes in Proposition 1 and Corollary 1 needed in the case K >

1. Now we have N+(λ) = ⊕K
j=1N

(j)
+ (λ), where each N

(j)
+ (λ) is defined on the circle

{y ∈ Cj : |y| = R1/kj} as in (2.4). The first eigenvalue of N
(j)
+ (λ) is µ0(λ) and the

corresponding eigenspace consists of constant functions on the circle. As a consequence,
in the estimate (2.25) the eigenvectors in N+ with eigenvalue µ0(λ) contribute at the
order O( 1

ln λ) instead of O(λϵ) and this is not good enough for our purpose.
We thus introduce P0 the orthogonal projection onto the eigenspace of N+(λ) corre-

sponding to µ0(λ) (note that P0 does not depend on λ, and that rankP0 = K). Observe
that we have kerN(0) ⊂ ker(Id−P0). We repeat the argument of Proposition 1, where
P0 is now the orthogonal projection onto kerN(0) = {c ∈ C}, P1 = (Id−P0)P where P
is the spectral projection of N+(0) on the interval [0, 1/R], and P2 = (Id−P). Clearly,
N+(λ)P0 = µ0(λ)P0 and N+(λ)(Id−P0) = (Id−P0)N+(λ).

The same argument as in the case K = 1 leads to

detζ N(λ) = − 1

R lnλ
detFr

(
N1,1(0) + µ0(λ)P0(Id−P0) N1,2(0)N2,2(0)

−1

N2,1(0) Id

)
×detζ N2,2(0)

(
1−

(
ln
R

2
+
πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
.

(Note that in the case K = 1 we have P0 = P0 and the term µ0(λ)P0(Id−P0) does not
appear.) This together with (2.16) and (2.24) gives

detζ N(λ) = − 1

R lnλ
detFr

(
N1,1(0)− 1

R lnλP0(Id−P0) N1,2(0)N2,2(0)
−1

N2,1(0) Id

)
×detζ N2,2(0)

(
1−

(
ln
R

2
+
πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
.

Here the Fredholm determinant is a holomorphic function of the parameter τ := 1
R lnλ ,

we have

detζ N(λ) = − 1

R lnλ
det∗ζ N(0)

(
1−

(
C + ln

R

2
+
πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
(2.27)
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with some constant C = C(R).
We observe that C must be real since detζ N(λ) is positive for λ ∈ C, Arg λ = π/2 (as

N(λ) is a positive self-adjoint operator for those values of λ). Thus C does not influence
the calculation of the argument in the asymptotic of detζ N(λ) and Corollary 1 remains

valid for K > 1. We will use Corollary 1 to define a relative determinant of (∆, ∆̊) at
the energy 0.

2.4 The relative determinant and the gluing formula at energy 0

In this section we prove the following Theorem.

Theorem 4. The gluing formula

det∗ζ(∆, ∆̊) = C det∗ζ N · detζ ∆D
−

is valid, where N, ∆D
− depend on R. The constant C depends on R but not on the moduli

parameters z1, . . . zM .

Observe that this theorem first requires a definition for the left-hand side of the
equality. Once this is done, we will let λ go to zero in (2.13) and study the limit of both
sides.

As before the case K = 1 is simpler than the general one. We will present the proof
for this case first. The case K > 1 is more technically involved but the arguments we
need can be adapted from [14].

2.4.1 The case K = 1

In this case, the definition of det∗ζ(∆, ∆̊) is rather straightforward, since, for K = 1, the
following definition for the relative zeta function makes sense.

ζ(s;∆, ∆̊) =

(∫ 1

0
+

∫ ∞

1

)
ts−1

Γ(s)
Tr
(
e−t∆ − e−t∆̊

)
dt. (2.28)

Indeed, the first integral defines an analytic in ℜs > 1 function that has a meromorphic
continuation to C with no pole at zero by the usual argument based on short time heat
trace asymptotic

Tr
(
e−t∆ − e−t∆̊

)
∼
∑
j≥−2

ajt
j/2, t→ 0 + . (2.29)

For the second integral we need the long time heat trace behaviour given by the
following lemma

Lemma 2. Assume that K = 1. Then

Tr
(
e−t∆ − e−t∆̊

)
= O

(
(ln t)−2

)
as t→ +∞.

Proof. Since ∆D
+ ≡ ∆̊D

+ and the operators ∆D
− , ∆̊

D
− are Dirichlet Laplacians on compact

manifolds, we have

Tr
(
e−t∆ − e−t∆̊

)
= Tr

(
e−t∆ − e−t∆D

−⊕∆D
+
)
− Tr

(
e−t∆̊ − e−t∆̊D

−⊕∆̊D
+
)

+Tr e−t∆D
− − Tr e−t∆̊D

−

= −t
∫ ∞

0
e−tλ2

(ξ(λ ; ∆,∆D)− ξ(λ ; ∆̊, ∆̊D))2λ dλ+O(e−tδ), t→ +∞,

(2.30)
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where δ > 0 is the smallest eigenvalue in the spectra of ∆D
− and ∆̊D

− . (In (2.30) we also

used (2.9) for ∆ and ∆̊.) As a consequence of Corollary 1 (which is also valid for ξ̊ in
the case K = 1) we have

ξ(λ ; ∆,∆D)− ξ(λ, ∆̊, ∆̊D) = O
(
(lnλ)−2

)
, λ→ 0 + .

This together with (2.30) implies the assertion; see e.g. [17, Theorem 1.7] for details.

As a consequence, the second integral in (2.28) defines a holomorphic in ℜs < 0
function that has a continuous in ℜs ≤ 0 derivative. Thus ζ(s;∆, ∆̊) is a meromorphic
function in ℜs < 0 and ζ ′(s;∆, ∆̊) tends to a certain limit ζ ′(0;∆, ∆̊) as s → 0−. The
relative zeta regularized determinant is defined to be

detζ(∆, ∆̊) = e−ζ′(0;∆,∆̊). (2.31)

We now prove the gluing formula in the case K = 1. First observe that, by Propo-
sition 1 (applied also to N̊(λ)) we have

detζ N(λ)

detζ N̊(λ)
→

det∗ζ N(0)

det∗ζ N̊(0)
as λ2 → 0−, K = 1. (2.32)

The limit λ→ 0 is then addressed by the

Proposition 2. In the case K = 1 we have

detζ(∆− λ2, ∆̊− λ2) → detζ(∆, ∆̊) as λ2 → 0−,

where the determinant detζ(∆, ∆̊) has been defined in (2.31).

Proof. Let us write the relative zeta function in the form

ζ(s;∆− λ2, ∆̊− λ2) =

(∫ 1

0
+

∫ ∞

1

)
ts−1etλ

2

Γ(s)
Tr
(
e−t∆ − e−t∆̊

)
dt.

Thanks to (2.10) the first integral converges for ℜs > 1 uniformly in λ ≤ 0 and has a
meromorphic continuation to C with no pole at zero (by the usual argument based on the
short time heat trace asymptotic (2.29)). Due to Lemma 2 the second integral defines
a holomorphic in ℜs < 0 and continuous in λ2 ≤ 0 and ℜs ≤ 0 function. Moreover, as
1/Γ(s) has a first order zero at s = 0, Lemma 2 also implies that the first derivative
with respect to s of the second integral is also continuous in λ2 ≤ 0 and ℜs ≤ 0. Thus
we obtain

ζ ′(0;∆− λ2, ∆̊− λ2) → ζ ′(0;∆, ∆̊), λ2 → 0− .

where ζ ′(0;∆, ∆̊) is defined using (2.28).

Proof of Theorem 4 in the case K = 1. We pass to the limit as λ2 → 0− in (2.13). Since
∆D

− is positive, we have detζ(∆
D
− −λ2) → detζ ∆

D
− as λ2 → 0−, and the same is true for

∆̊D
− . Thanks to (2.32) and Proposition 2 we obtain

detζ(∆, ∆̊) detζ ∆̊
D
−

detζ ∆
D
−

=
det∗ζ N(0)

det∗ζ N̊(0)
,

which proves Theorem 4, where N(0) is denoted by N and the constant

C =
(
detζ ∆̊

D
− det∗ζ N̊(0)

)−1

is moduli independent.
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2.4.2 The case K > 1

In the case K > 1 we have N̊(λ) = ⊕K
j=1N̊

(j)(λ), where N̊(j)(λ) is the Neumann jump

operator on the circle {y ∈ Cj : |y| = R1/kj} located on the infinite cone (Cj , |dykj |2).
We have

detζ N̊(λ) =
K∏
j=1

detζ N̊
(j)(λ), det∗ζ N̊(0) =

K∏
j=1

det∗ζ N̊
(j)(0).

We apply Proposition 1 to each detζ N̊
(j)(λ), j = 1, . . . ,K and get

detζ N̊(λ) = (−R lnλ)−K det∗ζ N(0)
(
1−

(
ln
R

2
+
πγ

2
− i

π

2

) K

lnλ
+O

( 1

(lnλ)2

))
, (2.33)

as |λ| → 0+, ℑλ ≥ 0.
Thanks to the relation ξ(λ ; ∆̊, ∆̊D) = π−1Arg det N̊(

√
λ2 + i0) as λ2 → 0+, calcu-

lation of the argument in (2.33) leads to

ξ(λ ; ∆̊, ∆̊D) = K(lnλ2)−1 +O((lnλ)−2), λ→ 0+,

where ξ(· ; ∆̊, ∆̊D) ∈ L1(R+, (1 + λ2)−2 dλ2) is the spectral shift function satisfying

Tr
(
(∆̊ + 1)−1 − (∆̊D + 1)−1

)
= −

∫ ∞

0
ξ(λ ; ∆̊, ∆̊D)(1 + λ2)−2 dλ2;

cf. Corollary 1. This together with Corollary 1 gives

ξ(λ,∆,∆D)− ξ(λ, ∆̊, ∆̊D) = −(K − 1)(lnλ2)−1 +O((lnλ)−2), λ→ 0 + . (2.34)

Besides, Proposition 1 together with (2.33) implies that(
ln
i

λ

)1−K detζ N(λ)

detζ N̊(λ)
→ Rℓ−1

det∗ζ N(0)

det∗ζ N̊(0)
as λ2 → 0−, K ≥ 1. (2.35)

Recall that for λ2 < 0 the relative zeta function is defined as the meromorphic
continuation of

ζ(s; ∆− λ2, ∆̊− λ2) =

∫ ∞

0

ts−1etλ
2

Γ(s)
Tr
(
e−t∆ − e−t∆̊

)
dt (2.36)

from ℜs > 1.
We have

Tr
(
e−t∆−e−t∆̊

)
= Tr

(
e−t∆−e−t∆D

−⊕∆D
+
)
−Tr

(
e−t∆̊−e−t∆̊D

−⊕∆̊D
+
)
+Tr e−t∆D

− −Tr e−t∆̊D
− .

(Now the short time asymptotic (2.29) is a consequence of (2.10) and similar short time

asymptotics for Tr
(
e−t∆̊−e−t∆̊D)

, Tr e−t∆D
− , and Tr e−t∆̊D

− .) LetN(λ) =
∑

j:λ2
j≤λ2 dimker(∆D

−−
λ2j ), where λ

2
j are the eigenvalues of ∆D

− , be the counting function of ∆D
− . Similarly, let

N̊(λ) be the counting function of ∆̊D
− . Then

Tr(e−t∆D
− − e−t∆̊D

− ) = t

∫ ∞

0
e−tλ2

(
N(λ)− N̊(λ)

)
2λ dλ
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and
ξ(λ;∆ ; ∆̊) = ξ(λ ; ∆,∆D)− ξ(λ ; ∆̊, ∆̊D)−N(λ) + N̊(λ)

is the spectral shift function for the pair (∆, ∆̊) such that

Tr
(
e−t∆ − e−t∆̊

)
= −t

∫ ∞

0
e−tλ2

ξ(λ;∆, ∆̊)2λ dλ.

Since the operators ∆D
− and ∆̊D

− are positive, from (2.34) it follows the asymptotic

ξ(λ; ∆, ∆̊) = −(K − 1)(lnλ2)−1 +O((lnλ)−2), λ→ 0 + . (2.37)

Introduce a cutoff function χ ∈ C∞(R) such that χ(µ) = 1 for µ < 1/2 and χ(µ) = 0
for µ > 3/4. Following the scheme in [14] we write

Tr
(
e−t∆ − e−t∆̊

)
= e1(t) + e2(t),

where

e1(t) = −t
∫ ∞

0
e−tµ2

χ(µ)ξ(µ;∆, ∆̊)2µdµ,

e2(t) = −t
∫ ∞

0
e−tµ2

(1− χ(µ))ξ(µ;∆, ∆̊)2µdµ;

cf. (2.9). Note that e2 is exponentially decreasing as t → +∞. Thanks to the short
time asymptotic (2.29) and smoothness of e1 at t = 0, we see that e2(t) has a short
time asymptotic of the same form. Therefore for λ2 ≤ 0 the holomorphic in ℜs > 1 zeta
function

ζ2(s;λ
2) =

∫ ∞

0

ts−1etλ
2

Γ(s)
e2(t) dt

continues as a meromorphic function to C with no pole at zero and ζ ′2(0, λ
2) → ζ ′2(0, 0)

as λ2 → 0− by the usual argument.
We are now in position to define the regularized determinant det∗ζ(∆, ∆̊) We start

from ζ(s; ∆, ∆̊) = ζ1(s; 0) + ζ2(s; 0), where ζ1(s; 0) is defined by

ζ1(s; 0) =

∫ ∞

0

ts−1

Γ(s)
e1(t) dt = s

∫ ∞

0
(−µ2)−s−1χ(µ)ξ(λ;∆, ∆̊)2µdµ. (2.38)

From this expression and (2.34) one can easily see that ζ1(s; 0) is a holomorphic function
in ℜs < 0, and we already know that ζ2(s; 0)is a meromorphic function of s ∈ C with
no pole at 0.

The asymptotic behaviour of ζ(s; 0) near s = 0 is given by the following proposition.

Proposition 3. Set

Z ′
0 :=ζ

′
2(0; 0) + (K − 1) lim

δ→0+

(∫ ∞

δ

χ(µ)dµ

µ lnµ
+ ln ln

1

δ

)
− 2

∫ ∞

0
µ−1χ(µ)

(
ξ(µ;∆, ∆̊)− (K − 1)(lnµ2)−1

)
dµ+ (K − 1)(γ + ln 2).

When s→ 0− we have

ζ(s;∆, ∆̊) = ζ2(0; 0) + s(K − 1) ln(−s) + sZ ′
0 + o(s).

We define det∗ζ(∆, ∆̊) := e−Z′
0 .
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Proof. Since ζ2(s; 0) is a meromorphic function of s with no pole at zero, as s→ 0− we
have

ζ(s;∆, ∆̊) = ζ1(s; 0) + ζ2(0; 0) + sζ ′2(0; 0) +O(s2).

It remains to study the behaviour of

ζ1(s; 0) = s

∫ ∞

0
(−µ2)−s−1χ(µ)ξ(µ;∆, ∆̊)2µdµ

as s → 0−. We represent the last integral as a sum of two integrals. Due to (2.37) the
first integral

s

∫ ∞

0
(−µ2)−s−1χ(µ)

(
ξ(µ;∆, ∆̊) + (K − 1)(lnµ2)−1

)
2µdµ

converges uniformly in s ≤ 0 and thus gives the contribution

−s
∫ ∞

0
2µ−1χ(µ)

(
ξ(µ;∆, ∆̊) + (K − 1)(lnµ2)−1

)
dµ

into the expansion of ζ(s;∆, ∆̊). For the second integral we have

s(1−K)

∫ ∞

0
(−µ2)−s−1χ(µ)(K − 1)(lnµ2)−1

)
2µdµ =

s(1−K)

(
− ln(−s) + γ + ln 2− lim

δ→0+

(∫ ∞

δ

χ(µ)dµ

µ lnµ
+ ln ln

1

δ

)
+ o(1)

)
;

see [14, p.13].

The proof of the gluing formula will also require that we understand the limit when
λ goes to 0. At this stage we have

ζ(s;∆− λ2, ∆̊− λ2) = ζ1(s;λ
2) + ζ2(s;λ

2),

where only properties of the zeta function

ζ1(s;λ
2) =

∫ ∞

0

ts−1etλ
2

Γ(s)
e1(t) dt = s

∫ ∞

0
(λ2 − µ2)−s−1χ(µ)ξ(λ;∆, ∆̊)2µdµ (2.39)

remain unknown. Notice that the last integrand is compactly supported and therefore
the integral converges uniformly near s = 0 for fixed λ2 < 0 due to (2.37). We get

ζ ′1(0;λ
2) =

∫ ∞

0
(λ2 − µ2)−1χ(µ)ξ(µ;∆, ∆̊)2µdµ. (2.40)

Proposition 4. As λ2 → 0− we have

ζ ′(0;∆− λ2, ∆̊− λ2) = ln

(
ln
i

λ

)1−K

+ (K − 1) lim
δ→0+

(∫ ∞

δ

χ(µ) dµ

µ lnµ
+ ln ln

1

δ

)
−2

∫ ∞

0
µ−1χ(µ)

(
ξ(µ;∆, ∆̊) + (K − 1)(lnµ2)−1

)
dµ+ ζ ′2(0; 0) + o(1).
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Proof. We only need to study the behaviour of ζ ′(0;λ2) in (2.40) as λ2 → 0−. Thanks
to (2.37) the integral∫ ∞

0
(λ2 − µ2)−1χ(µ)

(
ξ(µ;∆, ∆̊) + (K − 1)(lnµ2)−1

)
2µdµ

converges uniformly in λ2 ≤ 0 and thus tends to

−
∫ ∞

0
2µ−1χ(µ)

(
ξ(µ;∆, ∆̊) + (K − 1)(lnµ2)−1

)
dµ

as λ2 → 0−. It remains to note that∫ ∞

0
(λ2 − µ2)−1χ(µ)(lnµ2)−12µdµ = ln ln

i

λ
− lim

δ→0+

(∫ ∞

δ

χ(µ) dµ

µ lnµ
+ ln ln

1

δ

)
+ o(1);

as λ2 → 0−; see [14, p. 12 and appendix].

Note that by definition of det∗ζ(∆, ∆̊) = e−Z′
0 we have

ζ ′(0;∆− λ2, ∆̊− λ2) = ln

(
ln
i

λ

)1−ℓ

−
(
−Z ′

0 − (ℓ− 1)(γ + ln 2)
)
+ o(1), λ2 → 0−,

see Prop. 4.

Proof of Theorem 4 in the general case. From Propositions 4 and 3 we immediately get(
ln
i

λ

)1−K

detζ(∆− λ2; ∆̊− λ2) → e(1−K)(γ+ln 2) det∗ζ(∆, ∆̊), λ2 → 0− . (2.41)

We pass in (2.13) to the limit as λ2 → 0−. Taking into account (2.35) and (2.41) we
obtain

det∗ζ(∆, ∆̊) detζ ∆̊
D
−

detζ ∆
D
−

=
(
Reγ+ln 2

)K−1det
∗
ζ N(0)

det∗ζ N̊(0)
.

This proves Theorem 4, where N ≡ N(0) and the constant

C =
(
Reγ+ln 2

)K−1
/
(
detζ ∆̊

D
− det∗ζ N̊(0)

)
is moduli independent.

Remark 1. The proof of the gluing formula holds verbatim for a more general class of
metrics under the following two assumptions. First, the structure at infinity is given by
the union of K conical/Euclidean ends. Second, we have to assume nothing bad happens
with the Laplace operator ∆D

− of the compact part. In particular we have to assume that
it has a well-defined zeta-function that extends to the complex plane with no pole at 0.
It works for instance if the metric is smooth in the compact part or, if it is flat with
conical singularities and we have chosen the Friedrichs extension.
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2.5 Closing the Euclidean (conical) ends with the help of gluing for-
mulas

Let R be a sufficiently large positive number such that all the critical values of the
meromorphic function f lie in the ball {|z| < R}.

In the holomorphic local parameter ηj = y−1/kj in a vicinity Uj (|yj | > R) of the
j-th conical end of the angle 2πkj (kj ≥ 1) of the Riemannian manifold (X, |df |2) (i. e.
a pole of f of order kj) the metric m = |df |2 takes the form

m = k2j
|dηj |2

|ηj |2kj+2
.

Let χj be a smooth function on C such that χj(ξ) = χj(|η|), |χj(η)| ≤ 1, χj(η) = 0
if |η| > (R+1)−1/kj , χj(η) = 1 if |η| < (R+2)−1/kj . Introduce the metric m̃ on X such
that

m̃ =

{
m for |z| < R

[1 + (|ηj |2kj+2 − 1)χj(ηj)]m in Uj .

Since the (Friedrichs extension of) the Laplace operator ∆m̃ has discrete spectrum
and the corresponding operator ζ-function is regular at s = 0 (see e. g. [19]and references
therein), one can define the determinant det∗∆m̃ via usual Ray-Singer zeta regulariza-
tion. Moreover, for this determinant the usual BFK gluing formula ([4], Theorem B∗)
holds (under the condition that the contour cutting the surface X does not pass through
the conical singularities of the metric m̃). Applying this standard BFK gluing formula,
we get

ln det∗ζ∆
m̃ = lnC0 + ln detζ∆

D
− + ln det∗ζN + ln det∆m̃

ext , (2.42)

where ∆m̃
ext is the operator of the Dirichlet problem for ∆m̃ in the union ∪jUj . Using

conformal invariance we see that N is the same as in Theorem 1 and C0 is a moduli
independent constant (C0 =

Area(X,m̃)
length(Σ) ).

Now equation (2.42) and Theorem 1 imply the following proposition.

Proposition 1. The relative zeta regularized determinant det∗ζ(∆, ∆̊) and the zeta-

regularized determinant detζ∆
m̃ has the same variations with respect to moduli i. e.

one has
∂zk ln det

∗
ζ(∆, ∆̊) = ∂zk ln detζ∆

m̃ (2.43)

for k = 1, . . . ,M .

Thus, the relative determinant of the Laplacian on a noncompact surface (X,m) with
conical points and conical/Euclidean ends can be studied via consideration of the zeta-
regularized determinant of Laplacian on a compact surface (X, m̃) with conical points.
The latter surface is flat everywhere except the conical singularities (whose positions
vary when one changes the moduli z1, ·, zM ) and smooth ends of nonzero curvature
which remain unchanged.

In the next two sections we study some spectral properties of compact surfaces with
conical points. The final goal is to derive the variational formulas for ln detζ∆

m̃.
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3 S-matrix

In this section we introduce the so-called S-matrix and relate its behavior at λ = 0
with the Schiffer projective connection. The definition of the S-matrix is related to
the general theory of boundary triplets (see [13] sect. 13) and more specifically to the
general theory of self-adjoint extensions of elliptic operators in singular settings (see
[32]). Here we will follow closely [15]. However, we should point out that some of the
constants in the latter reference are badly taken into account and the normalization we
use here is slightly different. The context is also slightly different.

It is convenient to introduce the S-matric in the following general setting

3.1 General Setting and normalizations

Let (X, m̃) be a compact singular Riemannian surface (possibly with boundary). Let P
be an interior point of X such that in a neighbourhood V of p the metric is isometric
to a neighbourhood of the tip of the Euclidean cone of angle 2ℓπ.

We set X0 := X\{P} and Xε := X\B(p, ε).We also denote by γr the circle of radius
r centered at p.

We will occasionnally use several different ways of parametrizing V.

• Polar coordinates (r, θ) ∈ (0, rmax)× R/2ℓπZ,

• Local complex coordinate z. The 1-form dz is well-defined on V \{p} and extends
to V to a holomorphic one form α with a zero of order ℓ−1 at p. Note that it may
not extend to the all of X.

• Distinguished complex parameter y such that α = ℓyℓ−1dy.

The Riemannian area element dS is Euclidean near p and the associated scalar
product is

⟨u, v⟩ =

∫
X
uvdS

We now want to consider the Laplace operator that is associated with m̃.We assume
that the only singularities in m̃ are P and maybe some other conical singularities. We
take ∆ to be the Friedrichs extension of the Riemannian Laplace operator that is defined
on functions that vanish near the singularities.

Remark 2. Actually we don’t really care about what extension we have chosen at the
other singularities as long as ∆ is a self-adjoint extension of the Laplace operator de-
fined on functions smooth away of all kind of singularity and that at P , the Friedrichs
extension has been chosen.

By definition we set H2(X) to be the domain of ∆ and by H1 to be its form do-
main.We denote by ∆0 the restriction of ∆ to functions in H2(X) that vanish near p
and by ∆∗

0 its formal adjoint. By choice, the self-adjoint extension ∆ corresponds to the
Friedrichs extension of ∆0. We will also denote by H2

0 := dom∆0. Near P, we have

∆∗
0 = −4∂z∂z = −4

(
ℓ2|y|2(ℓ−1)

)−1
∂y∂y.
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We define

c0 =
1

2
√
ℓπ

cν =
1

2
√
νℓπ

.

(3.1)

and the following singular functions.
We first fix a cut-off function ρ such that ρ has support in r ≤ rmax and is identically

1 near r = 0.

F 0(z) = c0 ln(zz)ρ(z) = c0 ln(r
2)ρ(z),

F a
ν (z) = cνz

−νρ(z), ν =
k

ℓ
, 0 < k < ℓ

F h
ν (z) = cνz

−νρ(z), ν =
k

ℓ
, 0 < k < ℓ.

The h stands for holomorphic and a for antiholomorphic in agreement with the behaviour
of the corresponding F near 0.

By separating variables near P it can be shown that any function in dom(∆∗
0) admits

the following expression (cf. [19], [29])

u = c0Λ
0(u) + c0Λ

0,−(u)F 0(z)

+
∑
ν

cνΛ
h,−
ν (u)z−ν + cνΛ

a,−
ν (u)z−ν

+
∑
ν

cνΛ
h
ν(u)z

ν + cνΛ
a
ν(u)z

−ν

+ u0

(3.2)

where the Λ are linear functionals on dom(∆∗
0) that vanish on H2

0 and u0 is in dom(∆).
Observe that we have

Λa
ν(u) = Λh

ν(u).

We oriente any circle around p positively so that Stokes’ formula for a one-form ω
in Xε reads ∫

Xε

dω = −
∫
γε

ω.

We define Green’s formula for u, v ∈ dom(∆∗) by

G(u, v) := ⟨∆∗u, v⟩ − ⟨u,∆∗v⟩

=

∫
∆∗u · v − u ·∆∗v dS

= lim
ε→0

∫
Xε

∆∗u · v − u ·∆∗v dS

=
2

i
lim
ε→0

∫
Xε

d (∂zuv dz + u∂zv dz)

= lim
ε→0

2

i

∫
γε

∂zuv dz + u∂zv dz.

(3.3)
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Since we have set c0 and cν so that
2c20
i

∫
γε

dz

z
= 1 and

2νc2ν
i

∫
γε

dz

z
= 1, the appli-

cation of Green’s formula gives the following normalized expression

G(u, v) = Λ0,−(u)Λ0(v)− Λ0(u)Λ0,−(v)

+
∑
ν

Λh,−
ν (u)Λa

ν(v)− Λa
ν(u)Λ

h,−
ν (v)

+
∑
ν

Λh
ν(u)Λ

a,−
ν (v)− Λa,−

ν (u)Λh
ν(v).

The domain of the Friedrichs extension of ∆ is characterized by requiring that all the
coefficients with the superscript − vanish and it follows from Green’s formula that the
linear functionals Λa,h,0

ν are continuous over H2(X) and supported at p. It also follows
from the general theory that any linear functional Λ that is continuous over H2 and
supported at p can be written as a linear combination of the linear functionals Λ0, Λ

a
ν

and Λh
ν . Finally, we also have for H2

0 in the following equivalent expression :

H2
0 = {u ∈ H2, | ∀ν, Λ♯

ν(u) = 0, ♯ = a, h }.

3.2 Definition of the S-matrix

We follow closely [15] paying special attention to conjugations and normalizing constants.
In the following the symbols ♯ and ♭ are to be substituted by 0, h or a. When the

superscript is 0 the subscript ν is 0, when it is a or h, ν = j
ℓ where j ranges from 1 to

ℓ− 1.
We define

f ♯ν(·; λ) = (∆∗
0 − λ)F ♯

ν

g♯ν(·; λ) = − (∆− λ)−1 f ♯ν(·; λ)
G♯

ν(·; λ) = F ♯
ν + g♯ν(·;λ)

S♯♭
µν = Λ♯

µ

(
g♭ν(·; λ)

) (3.4)

Observe that by definition the g-functions belong toH2 which makes the latter definition
consistent when seeing Λ♯

µ as a linear functional over H2. Since Λ♯
µ also makes sense as

a linear functional over ker(∆∗ − λ) we may also write

S♯♭
µν = Λ♯

µ

(
G♭

ν(·; λ)
)

Remark 3. The functions F, f, g depend on the initial choice of ρ but the linear
functionals Λ and the functions G don’t.

The S-matrix is defined by blocks :

S :=

 S00 S0h
0ν S0a

0ν

Sh0
µ0 Shh

µν Sha
µν

Sa0
µ0 Sah

µν Saa
µν

 (3.5)
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Remark 4. When there are several conical points on the surface, there are several ways
of defining a S-matrix depending on how many points we want to take into account. In
[15], the S-matrix that is constructed takes all the conical points into account whereas
here, only the conical point P is considered (even if there are other conical points on the
surface). Thus the S-matrix that is constructed here is only a part on the one in [15].

Applying Green’s formula, we have that for any test function u ∈ H2

Λ♯
ν(u) = G(u, F ♯)

=

∫
(∆− λ)u · F ♯

ν − u · f ♯ν(·;λ)dS

=

∫
(∆− λ)u · F ♯

ν + u · (∆− λ)g♯ν(·;λ)dS

=

∫
(∆− λ)u ·G♯

ν dS

(3.6)

Observe that F 0,a,h = F 0,h,a and we have used that both u and g are in H2 and that ∆
is real (i.e. commutes with complex conjugation) and self-adjoint.

Applying the precedent equation to the g-functions gives the following alternative
expressions for the S-matrix coefficients (we omit the dependence with respect to λ):

S♯♭
µν =

∫
G♯

µ (∆− λ) g♭ν dS

= −
∫
G♯

µf
♭
ν dS

(3.7)

Remark 5. The S-matrix allows the description of the elements of ker(∆∗
0 − λ) in

the following way. For any element u ∈ dom(∆∗
0), denote by L± the collection of its

coefficients Λ♯,±
ν that describe the singular behaviour of u near p. We then have

(∆∗
0 − λ)u = 0 ⇔ L+ = S(λ)L−.

This is a formal analogy with a typical scattering situation. In the latter, plane waves
have an incoming and outgoing part that are related through the scattering matrix. In
our setting, solutions to the equation (∆∗

0 − λ)u play the role of planes wave, L± are
their incoming and outgoing parts and the S-matrix then is the scattering matrix.

4 Basic properties of the S-matrix

4.0.1 Analyticity and complex conjugation

From the analyticity of the resolvent we get that the S-matrix depends analytically on
λ.

From the expression

S♯♭
µν(λ) = −

∫
G♯

µ(·;λ)f ♭ν(·;λ) dS

and the fact that

fa,hν (·, λ) = fh,aν (·;λ)

Ga,h(·;λ) = Gh,a
ν (·;λ),
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we get the following identities :

Shh(λ) = Saa(λ)

Sah(λ) = Sha(λ).
(4.1)

4.0.2 Behavior for λ going to −∞

On the half-line, consider the equation

−u′′ − 1

r
u′ +

ν2

r2
u = λu.

Since ν ̸= 0, any solution to this equation has the following asymptotic behaviour near
0 :

u = a−r
−ν + a+r

ν + o(rν).

and the vector space of solutions that belongs to L2(rdr) is one-dimensional. We set
kν(r;λ) to be the unique solution to this equation which is in L2(rdr) and that is
normalized in such a way that

F h
ν (r, θ)− kν(r;λ) exp(−iνθ) = O(rν),

F a
ν (r, θ)− kν(r;λ) exp(iνθ) = O(rν)

(i.e. we adjust the coefficient of r−ν in k♯ν so that it coincides with the coefficient of F ♯
ν).

By inserting a cut-off ρ, we define

Kh
ν (r, θ;λ) := kν(r;λ) exp(−iνθ)ρ(r)
Ka

ν (r, θ;λ) := kν(r;λ) exp(iνθ)ρ(r)

as a function on X.
We compute R♯

ν(·;λ) = (∆∗
0 − λ)K♯

ν , ♯ = a, h.

Lemma 1. We have for ♯ = a, h

G♯
ν(·;λ) = K♯

ν − [∆− λ]−1R♯
ν .

Proof. By construction it is straightforward that both sides of the equation are in
ker(∆∗

0−λ) and by choice of normalization, both share the same singular behaviour.

We define by κν(λ) the coefficient of rν in the asymptotic expansion of kν(·;λ).
Corollary 1. When ℜλ goes to −∞ we have

Shh(λ) = O(|λ|−∞)

Saa(λ) = O(|λ|−∞)

Sah(λ) = diag(κν(λ)) + O(|λ|−∞)

Sha(λ) = diag(κν(λ)) + O(|λ|−∞)

Proof. Use the asymptotic expansion of Bessel functions to prove that ∥R♭
ν∥L2 = O(|λ|−∞).

This implies that Λ♯
ν

(
[∆− λ]−1R♭

ν

)
= O(|λ|−∞). Thus all entries of the S-matrix are

given by Λ♯
µ(K♭

ν) up to O(|λ|−∞). The first term is seen to be 0 except for the diagonal
terms in Sah or Sha for which it is κν(λ).

Remark 6. A different proof is given in [15] using the heat kernel.
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4.0.3 Differentiation with respect to λ

We denote by a dot the differentiation with respect to λ. Differentiating the defining
equation for g♯ν we find that

ġ♭ν = (∆− λ)−1G♭
ν

Thus we get

Ṡ♯♭
µν = Λ♯

µ

(
ġ♭ν

)
=

∫
G♯

µG
♭
ν dS.

(4.2)

From this relation we get the following proposition.

Proposition 5. For any λ, Saa(λ) and Shh(λ) are symmetric matrices and

tSah(λ) = Sha(λ). (4.3)

Proof. The expression for Ṡ♯♭
µν yields that Ṡaa and Ṡhh are symmetric matrices. Since

both tends to a symmetric matrix (actually 0) when λ goes to −∞, the first part of the
claim follows. In the same way we have

Ṡah
µν − Ṡha

νµ = 0

Since Sah and tSha tends to the same diagonal matrix for λ going to −∞, the second
part of the claim also follows.

Putting together the identities (4.1) and (4.3) we obtain that Sah is hermitian for
λ real and actually is an analytic family of hermitian matrices (meaning that Sah(λ) =(
Sah(λ)

)∗
).

4.0.4 Behavior for λ going to 0

The matrix S(λ) is well defined a priori only for λ in the resolvent set of ∆. However it

is always possible to define the function f ♯ν(· ; λ = 0).Whenever ♯ ̸= 0 the latter function

is in the range of ∆. We can thus find solutions g♯ν(·; 0) to the equation

∆g∗ν = −f∗ν (·, 0).

The latter solutions are defined only up the addition of a constant. It follows that for
♯ ̸= 0 and ♭ ̸= 0 the definition of S♯♭

µν(0) makes sense and it can be seen that the following
holds.

Proposition 2. For ♯ ̸= 0 and ♭ ̸= 0 the matrix-valued function λ 7→ S♯♭(λ) extends
holomorphically to a neighbourhood of 0. Moreover S♯♭(0) depends only on the conformal
class of m̃.

Proof. For λ close to 0 we have

g♯ν =
1

λ

∫
X
fν(· , λ) dS + g♯,⊥ν (· , λ),
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where
∫
X g♯,⊥ν = 0. Since λ 7→

∫
X f ♯ν(λ; 0) = 0, is holomorphic and vanish at 0, we

obtain that λ 7→ G∗
ν can be holomorphically continued to a neighbourhood of 0. The

first statement follows. The second statement follows by remarking that G♯
ν is a function

in dom(∆∗
0) such that ∆∗

0G
♯
ν = 0 and the singular behaviour near p is prescribed. Both

conditions are conformally invariant so that if we change the metric in its conformal
class, we may only change G by adding a constant. This will not affect the coefficients
in the S-matrix we are considering here.

4.1 S(0) and the Schiffer projective connection

Chose a marking for the Riemann surface X, i. e. the canonical basis a1, b1, . . . , ag, bg
of H1(X,Z). Let {v1, . . . , vg} be the basis of holomorphic differentials on X normalized
via ∫

ai

vj = δij .

Then the matrix of b-periods of the marked Riemann surface X is defined via

B = ||
∫
bi

vj || .

Let W ( · , · ) be the canonical meromorphic bidifferential on X ×X, with properties
W (P,Q) =W (Q,P ), ∫

ai

W ( · , P ) = 0

and ∫
bj

W ( · , P ) = 2πivj(P )

The bidifferential W has the only double pole along the diagonal P = Q. In any
holomorphic local parameter x(P ) one has the asymptotics

W (x(P ), x(Q)) =

(
1

(x(P )− x(Q))2
+H(x(P ), x(Q))

)
dx(P )dx(Q), (4.4)

H(x(P ), x(Q)) =
1

6
S(x(P )) +O(x(P )− x(Q)),

as Q→ P , where SB(·) is the Bergman projective connection.
The Schiffer bidifferential S(P,Q) is defined via

S(P,Q) =W (P,Q)− π
∑
i,j

(ℑB)−1
ij vi(P )vj(Q)

The Schiffer projective connection, SSch, is defined via the asymptotic expansion

S(x(P ), x(Q)) =

(
1

(x(P )− x(Q))2
+

1

6
SSch(x(P )) +O(x(P )− x(Q))

)
dx(P )dx(Q)

One has the equality

SSch(x) = SB(x)− 6π
∑
i,j

(ℑB)−1
ij vi(x)vj(x) . (4.5)
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In contrast to the canonical meromorphic differential and the Bergman projective
connection the Schiffer bidifferential and the Schiffer projective connection are indepen-
dent of the marking of the Riemann surface X.

Introduce also the so-called Bergman kernel (which is in fact the Bergman reproduc-
ing kernel for holomorphic differentials on X) as

B(x, x̄) =
∑
ij

(ℑB)−1
ij vi(x)vj(x) .

Proposition 6. Let X be a Riemann surface and let m̃ be a conformal metric on X,
suppose that m̃ has a conical singularity of angle 2ℓπ at p. Let also x be the distinguished
local parameter for m̃ near p. Then there is the following relation between the entries
of the holomorphic-holomorphic part, Shh(0), of the S-matrix :

ℓ−1∑
k=1

√
k(ℓ− k)

m
Shh

ℓ
m

ℓ−k
m

(0) = − 1

6ℓ(ℓ− 2)!

(
d

dx

)ℓ−2

SSch(x)
∣∣∣
x=0

. (4.6)

Remark 7. The same would hold true for a conical singularity of angle β with 2π(ℓ−
1) < β ≤ 2πℓ.

Remark 8. Observe that the left-hand-side of equation (4.6) can be written using the
indices µ, ν = k

ℓ as ∑
µ+ν=1

√
µ
√
νShh

µν (0).

Proof. Introduce the following one forms Ωk and Σk on X:

Ωk = − 1

(k − 1)!

(
d

dx

)k−1 W ( · , x)
dx

∣∣∣
x=0

+
2πi

(k − 1)!

∑
α,β

(ℑB)−1
αβ

{
ℑv(k−1)

β (0)
}
vα(·)

Σk = −i 1

(k − 1)!

(
d

dx

)k−1 W ( · , x)
dx

∣∣∣
x=0

+
2πi

(k − 1)!

∑
α,β

(ℑB)−1
αβ

{
ℜv(k−1)

β (0)
}
vα(·) ,

where

v
(k−1)
β (0) :=

(
d

dx

)k−1 vβ(x)

dx

∣∣∣
x=0

.

All the periods of the differentials Ωk and Σk are pure imaginary, therefore, one can
correctly define the function fk on X via

fk(Q) = ℜ
{∫ Q

P0

Ωk

}
− iℜ

{∫ Q

P0

Σk

}
where P0 is an arbitrary base point not coinciding with P . Clearly, fk is harmonic in
X \ {P} and

fk(x) =
1

xk
+ const +

∞∑
j=1

(cjx
j + dj x̄

j) (4.7)

in a vicinity of P . One gets

cl = − 1

l!(k − 1)!
∂l−1
x ∂k−1

y H(x, y)
∣∣∣
x=y=0

+
π

l!(k − 1)!

∑
α,β

(ℑB)−1
αβ v

(k−1)
β (0)v(l−1)

α (0)
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and

Shh
k
m

l
m

(0) =

√
l

k
cl

This implies that

m−1∑
k=1

√
k(m− k)

m
Shh

k
m

m−k
m

(0) = − 1

m

m−2∑
k=0

1

k!(m− 2− k)!
∂m−2−k
x ∂kyH(x, y)

∣∣∣
x=y=0

+

π
1

m(m− 2)!

(
d

dx

)m−2∑
α,β

(ℑB)−1
αβ

vα(x)vβ(x)

(dx)2

∣∣∣
x=0

.

Since
1

6
SB(x) = H(x, x) =

∞∑
n=0

1

n!
(∂x + ∂y)

nH(x, y)
∣∣∣
x=y

xn,

one has
1

6
S
(n)
B (0) =

n∑
p=0

n!

p!(n− p)!
∂px∂

n−p
y H(0, 0),

which implies the proposition.

Remark 9. From (4.7) with k = 1 it follows that for conical angles 2π < β ≤ 4π(
Shh(0) Sha(0)
Sah(0) Saa(0)

)
=

(
−1

6SSch(0) B(0, 0)

B(0, 0) − 1
6SSch(0)

)
,

where the Schiffer projective connection and the Bergman kernel are calculated in the
distinguished local parameter at P .

5 Variational formulas with respect to moduli

In this section we derive the variational formulas for ln det∆m̃. This derivation goes as
follows. First, using Kato-Rellich theory (see [Kato]), we prove the variational formulas
for the individual eigenvalues of the operator ∆m̃. Using these formulas and the contour
integral representation of the zeta-function of ∆m̃, we express the variations of the value
ζ ′
∆m̃(0) with respect to the critical value zk through a combination of the matrix elements
of the S-matrix at the conical point Pk (the zero of the meromorphic differential df) of
the metric m̃. The latter combination is the one appearing in Proposition 6 and can be
expressed through the Schiffer projective connection.

5.1 Variational formula for eigenvalues of ∆m̃

Remark 10. In this section we will use w for the moduli parameter and on the surface
we will use the complex parameter z and (x, y) for the associated local cartesian coordi-
nates (so that z = x + iy). We warn the reader that in the rest of the paper we use zi
as the moduli parameters and x as a local complex parameter on X.
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5.1.1 Moving conical points

Let m̃ be a metric as constructed in section 2.5. Let P be one of its conical point. For
w ∈ C we want to define a metric m̃w obtained by moving P of the amount w. The
following makes this construction precise.

Let C be the complex plane with pointed origin. We set X̃w to be the ℓ-fold covering
of C with one ramification point at w so that X̃w can be identified with the Euclidean
cone of total angle ℓπ.

Fix a cutoff function ρ and define ϕw from C to itself by

ϕw(z) = z + ρ(|z|)w.

For w small enough, this defines a family of smooth diffeomorphisms from C to itself
that coincide with the identity outside the ball {z | ρ(|z|) ̸= 0}. The cone X̃0 can be
obtained by gluing together ℓ copies of the plane after cutting along a fixed half-line d
that emanates from the origin. The cone X̃w can then be obtained by gluing ℓ copies of
C after cutting it along ϕw(d).

The function ϕw thus defines a family of smooth diffeomorphisms from X̃0 onto X̃w.
Let gw be the metric that is obtained on X̃0 by pulling-back the Euclidean metric on
X̃w by ϕw.

We write w = a+ ib and use the local cartesian coordinates x+ iy = z near P. We
obtain for the metric gw = A(x, y;w)dx2+2B(x, y;w)dxdy+C(x, y;w)dy2 the following
expressions :

Dϕw =

(
1 + ax

r ρ
′
1(r)

ay
r ρ

′
1(r)

bx
r ρ

′
1(r) 1 + by

r ρ
′
1(r)

)
(
A B
B C

)
= tDϕwDϕw.

(5.1)

It follows by inspection that the coefficients of gw are polynomials in a, b. Observe that
gw coincide with g0 outside a ball centered at p so that gw can be smoothly extended
by any Riemannian metric that coincide with the Euclidean one in a annulus centered
at p. This allows us to define a metric gw on our given setting X0 that corresponds to
some Xw that is obtained by fixing the exterior of a small ball centered at p and, in an
even smaller ball by shifting the conical point of w.

We still denote the metric on X0 by gw. We denote by Jw the jacobian determinant
of gw, by qw the Dirichlet energy quadratic form associated with gw and by nw the
Riemannian L2 scalar product.

We thus have the following expressions (for a real u that is supported near p)

qw(u) =

∫
X0

[
C(∂xu)

2 − 2B∂xu∂yv +A(∂yu)
2
]
J
− 1

2
w dxdy

nw(u) =

∫
u2J

1
2
wdxdy

(5.2)

Observe that for u supported away of p then qw(u) and nw(u) do not depend of w.
In order to apply spectral perturbation theory, we will need the first order variations

of qw(u) and nw(u). We record here the relevant Lemma.
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Lemma 2. For any λ and any u we have

[−∂wq + λ∂wn]w=0 (u) = 2

∫
X0

(∂zu)
2 zρ

′(r)

r
dxdy +

λ

2

∫
X0

u2
zρ′(r)

r
dxdy

[−∂wq + λ∂wn]w=0 (u) = 2

∫
X0

(∂zu)
2 zρ

′(r)

r
dxdy +

λ

2

∫
X0

u2
zρ′(r)

r
dxdy

(5.3)

Proof. Denote by

Gw :=

(
C −B
−B A

)
so that we have

qw(u) :=

∫
X0

t∇uG∇u · J− 1
2

w dxdy.

Differentiating at w = 0, we obtain

∂wqw(u) =

∫
X0

t∇u ·
(
∂wG− 1

2
∂wJI

)
· ∇udS.

A straightforward computation yields

∂aG− 1

2
∂aJI =

(
−xρ′

r −yρ′

r

−yρ′

r
xρ′

r

)

∂bG− 1

2
∂bJI =

(
yρ′

r −xρ′

r

−xρ′

r −yρ′

r

)

From this we find

t∇u ·
(
∂wG− 1

2
∂wJI

)
· ∇u = t∇u ·

(
− zρ′

2r
izρ′

2r
izρ′

2r
zρ′

2r

)
· ∇u

= −zρ
′

2r

(
(∂xu)

2 − (∂yu)
2 − 2i∂xu∂yu

)
= −2zρ′

r
(∂zu)

2.

The other terms proceed in the same way.

5.1.2 Variational formulas for eigenvalues of m̃

In this section, we compute variational formulas for the eigenvalues of m̃w. In order to do
so we use the Kato-Rellich perturbation theory. Since we may only consider directional
derivatives, we thus fix w and define qt = qtw and nt = ntw.

It should be noticed that the family of metrics gw is smooth in w but not analytic
(see 5.1) but the map t 7→ qtw is analytic in t.

The eigenvalue equation that gives the spectrum of qt relatively to nt is

qt(ut, v) = Etnt(ut, v). (5.4)

This problem is analytic in t so that the eigenvalues are organized into real-analytic
branches (see [Kato]).
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The first-order variation for the eigenbranch (Et, ut) is given by the following Feynman-
Hellmann formula

dE

dt
=
dq

dt
(u)− E

dn

dt
(u) (5.5)

which is obtained by differentiating eq. (5.4) with v fixed and then evaluating at v = ut.

Proposition 3. Let r be small enough and set

∂wE =
2

i

∫
γr

(∂zu)
2dz − E

4
u2dz

∂wE = −2

i

∫
γr

(∂zu)
2dz − E

4
u2dz.

(5.6)

Let (Et, ut) be an eigenbranch of qt := qtw then E′ = d
dt |t=0

Et is given by

E′ = w∂wE + w∂wE,

where in the expression of ∂wE and ∂wE, u = u0 the eigenvector of the eigenbranch
(Et, ut) at t = 0 .

Remark 11. We remind the reader of one subtlety of perturbation theory (see [Kato,
28]). In case of a multiple eigenvalue E0, for any family qt there are several eigen-
branches emanating from E0, and the initial corresponding eigenvectors may actually
depend of the chosen family. In particular the expressions ∂wE and ∂wE also depends
on the initial w that defines qt. In other terms, for any direction w it is possible to
organize the spectrum into eigenvalues branches but it may not be possible to organize
the eigenvalues as functions that are differentiable with respect to w varying in the ball.

Proof. We start with the one form

ωu = ρ(z) ·
(
(∂zu)

2dz − E

4
u2dz.

)
Since (E, u) is an eigenpair of the Laplace operator we compute

dωu = −
[
zρ′

2r
(∂zu)

2 +
E

4
· zρ

′

2r
u2
]
dz ∧ dz.

We now use Stokes formula to obtain∫
γr

ωu = −
∫
X
dωu

=

∫
X

[
zρ′

2r
(∂zu)

2 +
E

4
· zρ

′

2r
u2
]
dz ∧ dz

=
1

2

∫
X

[
zρ′

r
(∂zu)

2 +
E

4
· zρ

′

r
u2
]
(−2idxdy).

On the other hand, in (5.5) we use the formulas provided by Lemma 2 to obtain :

∂wE = − 2

∫
X0

(∂zu)
2 zρ

′(r)

r
dxdy − E

2

∫
X0

u2
zρ′(r)

r
dxdy (5.7)

Comparing the two yields the first formula. The second one follows either from the same
computation or using complex conjugation.
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Since ωu is closed in B(p, r0) \ {p} we may let tend r to 0 in the preceding formulas.
We thus obtained a formula for ∂wE that is expressed only through the asymptotic
expansion of u near p.

Recall that by definition of the linear functionals Λ♯
ν , we have in the local coordinate

z the following expansion near p

u(z) := c0Λ
0(u) +

∑
ν

cνΛ
h
ν(u)z

ν + cνΛ
a(u)zν + u0.

with u0 ∈ H2
0 . By letting r go to zero we obtain the following lemma.

Lemma 3. Let A = [aµν ] be the matrix defined by{
aµν = 4πµcµ · νcν if µ+ ν = 1,
aµν = 0 otherwise.

We have the alternative expression

∂wE =
∑

µ+ν=1

Λh
ν(u)aµνΛ

h
µ(u)

∂wE =
∑

µ+ν=1

Λa
ν(u)aµνΛ

a
µ(u).

(5.8)

Proof. We prove the formula for ∂wE, the proof is the same for ∂wE. First observe that
since u is bounded we have

lim
r→0

∫
γr

u2dz = 0.

Now, if u0 is smooth and compactly supported away of p, using Stokes’ formula, we have
that for any v ∈ H2∫

γr

∂zv∂zu0dz =
1

4

∫
Br

∆v∂zu0 + ∂zv∆u0 dz ∧ dz

By continuity, this equality persists for u0 ∈ H2
0 . It follows that for any u ∈ H2 and any

u0 ∈ H2
0 we have

lim
r→0

∫
γr

∂zu∂zu0dz = 0.

It follows that

∂wE = lim
r→0

∫
γr

(∂z(u− u0))
2 dz.

By definition we have

u− u0 = c0Λ
0(u) +

∑
ν

cνΛ
h
ν(u)z

ν + cνΛ
a(u)zν

so that the claim follows by a direct computation.

Using the definition of Λh
ν and the fact that u is an eigenfunction we obtain.

Corollary 2. For any λ ∈ C \ [0,∞) the series
∑

En∈spec(∆m̃) ∂wEn(En − λ)−2 is abso-
lutely convergent and ∑

En∈spec(∆m̃)

∂En

(En − λ)2
= Tr

(
A
∂Shh

∂λ
(λ)

)
.
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Proof. To get the absolute convergence, it suffices to show that, for any ν

∑
En∈spec(∆m̃)

∣∣∣∣Λh
ν(un)

En − λ

∣∣∣∣2 < ∞.

Since

Λh
ν(un) =

∫
(∆− λ)unG

h
ν = (En − λ)⟨Gh

ν , u⟩,

the claims follows by remarking that u is an orthonormal basis. By Plancherel formula,
we then obtain ∑

En∈spec(∆m̃)

∂wEn

(En − λ)2
=
∑
µ,ν

aµν

∫
X
Gh

µ(x ; λ)G
h
ν(x ; λ) dS.

We now remark that using (4.2)∫
X
Gh

µ(x ; λ)G
h
ν(x ; λ) dS =

∂λS
hh
µν

∂λ
,

and A is a symmetric matrix.

Remark 12. We have a similar formula, involving Saa for
∑

En∈spec(∆m̃)
∂En

(En−λ)2
.

5.2 Variational formula for ζ ′(0 ; ∆m̃)

We prove the following proposition.

Proposition 4. Let m̃w be the family of metrics defined above, Shh be the holomorphic-
holomorphic part of the corresponding S-matrix and A be the matrix defined in Lemma
3. We have

∂wζ
′(0 ; ∆m̃) = Tr

(
AShh(0)

)
=

∑
µ+ν=1

√
µ
√
νShh

µν (0). (5.9)

Proof. We start from the following integral representation of the zeta-function of the
operator ∆m̃ − λ through the trace of the second power of the resolvent:

sζ(s+ 1;∆m̃ − λ) =
1

2πi

∫
Γλ

(z − λ)−sTr
(
(∆m̃ − z)−2

)
dz, (5.10)

where Γλ is a contour connecting −∞+ iϵ with −∞− iϵ and following the cut (−∞, λ)
at the (sufficiently small) distance ϵ > 0. Using Corollary 2, differentiation under the
integral sign is legitimate and we obtain

s∂wζ(s+ 1,∆m̃ − λ) =
1

2πi

∫
Γλ

(z − λ)−s
∑

En∈spec(∆m̃)

−2∂wEn

(En − z)3
dz. (5.11)

Using again Corollary 2, it is legitimate to make an integration by parts under the
integral sign to get

s∂wζ(s+ 1,∆m̃ − λ) =
−s
2πi

∫
Γλ

(z − λ)−s−1
∑

En∈spec(∆m̃

∂wEn

(En − z)2
dz. (5.12)
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We can now divide by s, use Corollary 2 again and replace s+1 by s to finally obtain

∂wζ(s,∆
m̃ − λ) =

−1

2πi

∫
Γλ

(z − λ)−sTr
(
A∂zS

hh(z)
)
dz. (5.13)

Using the behaviour at infinity of Shh we can make an integration by parts again
and obtain

∂wζ(s,∆
m̃ − λ) =

−s
2πi

∫
Γλ

(z − λ)−s−1Tr
(
AShh(z)

)
dz. (5.14)

Differentiating with respect to s and setting s = 0 gives

∂wζ
′(0,∆m̃ − λ) =

−1

2πi

∫
Γλ

(z − λ)−1Tr
(
AShh(z)

)
dz.

The claim follows by applying Cauchy’s theorem.

Now, using Proposition 1, the preceding Proposition and Proposition 6 we arrive at
the following corollary.

Corollary 3. Let Pm be a zero of the meromorphic differential df of multiplicity ℓm and

let zm = f(Pm) be the corresponding critical value of f . Let also xm = (z − zm)
1

lm+1 be
the distinguished local parameter in a vicinity of Pm. Then

∂zm ln det∗ζ(∆, ∆̊) =
1

6(ℓm + 1)(ℓm − 1)!

(
d

dxm

)ℓm−1

SSch(xm)
∣∣∣
xm=0

. (5.15)

6 Integration of the equations for lnDet and explicit ex-
pressions for the τ-function

Let, as before, B be the matrix of b-periods of the Torelli marked Riemann surface X
and let {vα}α=1,...,g be the basis of the normalized holomorphic differentials on X. Using
the Rauch formulas (see, e. g., [22], [23], [20]),

∂zmBαβ =

∮
Pm

vαvβ
df

,

one immediately gets the relation

∂zm ln detℑB =
1

2i
Tr
[
(∂zmB)(ℑB)−1

]
=

1

2i

∮
Pm

∑
αβ ℑB

−1
αβvαvβ

df
, (6.1)

where the contour integrals are taken over a small contour on X encircling the point Pm

(in the positive direction).
Now, using relation (4.5), equations (6.1) and (5.15) together with elementary prop-

erties of the Schwarzian derivative (see, e. g. [36]), we arrive at the following version of
Corollary 3 rewritten in the invariant form.
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Theorem 5. Let Pm be a zero of the meromorphic differential df of multiplicity lm and

let zm = f(Pm) be the corresponding critical value of f . Let also xm = (z − zm)
1

lm+1 be
the distinguished local parameter in a vicinity of Pm. Then

∂zm ln
det∗ζ(∆, ∆̊)

detℑB
= − 1

12πi

∮
Pm

SB − Sf
df

(6.2)

where SB is the Bergman projective connection, Sf =
f ′′′f ′− 3

2
(f ′′)2

(f ′)2 is the Schwarzian

derivative.

Remark 13. Notice that the difference SB − Sf is a quadratic differential, therefore,
under the contour integral in (6.2) stands a meromorphic one form.

It should be noted that the right hand side of (6.2) depends holomorphically on
moduli z1, . . . , zM and, therefore, one has

∂2zmz̄n ln
det∗ζ(∆, ∆̊)

detℑB
= 0 .

This implies the relation
det∗ζ(∆, ∆̊) = C detℑB |τ |2 , (6.3)

where τ is a holomorphic function of moduli z1, . . . , zM (actually, τ is a holomorphic
section of some holomorphic line bundle over the Hurwitz space, see [25] for further
information, here restrict ourselves to local considerations: the reader may assume for
simplicity that all happens in a small vicinity of the covering f : X → CP 1 in the
Hurwitz space H(M,N)) subject to the system of PDE

∂zm ln τ = − 1

12πi

∮
Pm

SB − Sf
df

(6.4)

and C is a moduli independent constant.
System of PDE (6.4) first appeared in the context of the theory of isomonodromic

deformations and Frobenius manifolds in [20] and [22], where, in particular, it was
explicitly integrated. We remind these results in the next subsection.

6.1 Explicit expressions for τ

In this section we recall explicit formulas for the holomorphic solution, τ , of the system
(6.4) derived in [22], [20] (see also [24] and [23] for alternative and more straightforward
proofs). The result should be formulated separately for low genera g = 0, 1 and for
higher genus g > 1. We start with the higher genus situation.

Let g > 1. Take a nonsingular odd theta characteristic δ and consider the corre-
sponding theta function θ[δ](t;B), where t = (t1, . . . , tg) ∈ Cg. Put

ωδ =

g∑
i=1

∂θ[δ]

∂ti
(0;B) ωi .

All zeroes of the holomorphic 1-differential ωδ have even multiplicities, and
√
ωδ is a

well-defined holomorphic spinor on X. Following Fay [9], consider the prime form 1

E(x, y) =
θ[δ]

(∫ y
x v1, . . . ,

∫ y
x vg;B

)
√
ωδ(x)

√
ωδ(y)

. (6.5)

1The prime form E(x, y) is the canonical section of the line bundle on X × X associated with the
diagonal divisor {x = y} ⊂ X ×X.
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To make the integrals uniquely defined, we fix 2g simple closed loops in the homology
classes ai, bi that cut X into a connected domain, and pick the integration paths that
do not intersect the cuts. The sign of the square root is chosen so that E(x, y) =

ζ(y)−ζ(x)√
dζ(x)

√
dζ(y)

(1 + O((ζ(y) − ζ(x))2)) as y → x, where ζ is a local parameter such that

dζ = ωδ.
We introduce local coordinates on X that we call distinguished with respect to f .

Consider the divisor (df) =
∑

k dk pk, pk ∈ X, dk ∈ Z, dk ̸= 0, of the meromorphic
differential df . We take z = f(x) as a local coordinate on X −

∪
k pk, and

xk =

(f(x)− f(pk))
1

dk+1 if dk > 0,

f(x)
1

dk+1 if dk < 0,
(6.6)

near pk ∈ X. In terms of these coordinates we have E(x, y) = E(z(x),z(y))√
dz(x)

√
dz(y)

, and we

define

E(z, pk) = lim
y→pk

E(z(x), z(y))

√
dzk
dz

(y),

E(pk, pl) = lim
x→pk
y→pl

E(z(x), z(y))

√
dxk
dζ

(x)

√
dxl
dζ

(y) .

Let Ax be the Abel map with the basepoint x, and let Kx = (Kx
1 , . . . ,K

x
g ) be the vector

of Riemann constants

Kx
i =

1

2
+

1

2
Bii −

∑
j ̸=i

∫
ai

(
vi(y)

∫ y

x
vj

)
dy (6.7)

(as above, we assume that the integration paths do not intersect the cuts on X). Then
we have Ax((df)) + 2Kx = ΩZ + Z ′ for some Z,Z ′ ∈ Zg . One has the following
expression for the holomorphic solution to (6.4)(see [22], here we follow the presentation
of this result in [25]):

τ(X, f) =

((∑g
i=1 vi(ζ)

∂
∂ti

)g
θ(t;B)

∣∣∣
t=Kζ

)2/3
e6−1π

√
−1⟨BZ+4Kζ ,Z⟩ W (ζ)2/3

∏
k<lE(pk, pl)

6−1dkdl∏
k E(ζ, pk)3

−1(g−1)dk
. (6.8)

Here θ(t;B) = θ[0](t;B) is the Riemann theta function, t = (t1, . . . , tg) ∈ Cg, and
W is the Wronskian of the normalized holomorphic differentials v1, . . . , vg on X; the
expression in (6.8) is independent of ζ ∈ X.

Let g = 1. Then the function τ(X, f) is given (see [20]) by the equation

τ(X, f) = [θ1
′(0 |B)]2/3

∏ℓ
k=1 h

(kj+1)/12
j∏M

m=1 f
lm/12
m

, (6.9)

where v(P ) is the normalized Abelian differential on the elliptic Torelli marked curve
X; v(P ) = fm(xm)dxm near Pm, where xm = (z− zm)1/(lm+1) is the distinguished local
parameter near the zero, Pm of the differential df ; fm ≡ fm(0); v(P ) = hj(ζj)dζj as
P → ∞j , ζj = z−1/kj , where kj is the multiplicity of the pole ∞j of f , hk ≡ hk(0); θ1
is Jacobi theta-function.
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Let g = 0 and let U : X → P1 be a biholomorphic map such that U(∞1) = ∞ and
U(P ) = (f(P ))1/k1 + o(1) as P → ∞1. Then (see [24])

τ(X, f) =

∏ℓ
j=2(

dU
dζj

∣∣
ζj=0

)(kj+1)/12∏M
m=1(

dU
dxm

∣∣
xm=0

)lm/12
. (6.10)

Summarizing (6.3) and (6.10,6.9 6.8), we get the main result of the present paper.

Theorem 6. Let (X, f) be an element of the Hurwitz space H(M,N) and let τ(X, f)
be given by expressions (6.10,6.9, 6.8). There is the following explicit expression for the
regularized relative determinant of the Laplacian ∆|df |2 on the Riemann surface X:

detζ(∆
|df |2 , ∆̊) = C detℑB |τ |2 , (6.11)

where C is a constant dependent only on the connected component of the space H(M,N)
containing the element (X, f).

6.2 Examples in genus 0

We finish the paper with two simple and especially instructive examples of the calculation
of the determinant of the Laplacian ∆|df |2 in genus zero.

Example 1. Let p be a polynomial with N − 1 simple critical points w1, . . . , wN−1

and let the corresponding critical values be z1, . . . , zN−1 (or, what is the same, a ramified
covering with N − 1 simple branch points and one branch point of multiplicity N over
the point at infinity of the base. In other words p is an element of the Hurwitz space
H0,N ([1]N ) of meromorphic functions of degree N on the Riemann sphere P1 with a
single pole of multiplicity N .

Let also w be the holomorphic coordinate on the cover P1 (more precisely, on P1 \
{∞}) and z be the holomorphic coordinate on the base P1. One can assume that the
leading coefficient of the polynomial p(w) is equal to one.

Introduce the distinguished local parameter xk =
√
z − zk at Pk. Then for xk ̸= 0

one has
dw

dxk
=

1

z′(w)
2xk =

w − wk

p′(w)− p′(wk)

2xk
w − wk

Passing to the limit xk → 0, one gets

2

[
w′(xk)

∣∣∣
xk=0

]2
=

1

p′′(wk)

Thus,

τ =

N−1∏
k=1

[
w′(xk)

∣∣∣
xk=0

]− 1
12

=

{
N−1∏
k=1

p′′(wk)

} 1
24

= R (p′, p′′)
1
24 , (6.12)

where R (f, g) is the resultant of polynomials f and g (since the τ -function is defined up
to multiplicative constant, the power of 2 is omitted) and

detζ(∆
|dp|2 , ∆̊) = C|R (p′, p′′)|

1
12 .
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Example 2.
Let r is a rational function with three simple poles (which can be assumed to coincide

with ∞, 0, 1,

r(w) = aw − b

w
− c

w − 1
+ d;

i. e., r is an element of the Hurwitz space H0,3(1, 1, 1) of meromorphic functions on P 1

of degree three with three simple poles.
Introducing the local parameter ζ = 1

z in vicinities of the poles w = 0 and w = 1 of
the cover, one gets for ζ ̸= 0

w′(ζ) = − 1

r′(w)
r2(w)

and, say, for w = 1

w′(0) = − lim
w→1

1

r′(w)
r2(w) = −c .

Analogously, w′(0) = −b at the pole w = 0. For the local parameter w̃ = w/a (for which
w̃(P ) = z(P ) + o(1) as P tends to the pole w = ∞ of the cover) one has w̃′(0) = −b/a
at the pole w = 0 and w̃′(0) = −c/a at the pole w = 1. On the other hand writing
r′(w) = f

g , where f and g are two polynomials and introducing the local parameter

xk =
√
z − zk near the critical point wk of r (k = 1, 2, 3, 4), one gets similarly to (6.12)

w̃′(xk) = a−1w′(xk),

C

4∏
k=1

[w′(xk)|xk=0]
2 =

4∏
k=1

1

r′′(wk)
=

R(f, g)

R(f, f ′)

Calculating the resultants, one gets

τ24 = a3b3c3M(a, b, c)

where

M(a, b, c) = a3 + b3 + c3 + 3a2b+ 3a2c+ 3b2a+ 3b2c+ 3c2a+ 3c2b− 21abc

and
detζ(∆

|dr|2 , ∆̊) = C|abc|1/4|M(a, b, c)|1/12 .
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