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Abstract

The pull back of a flat bundle E → X along the evaluation map π : LX → X from
the free loop space LX to X comes equipped with a canonical automorphism given by the
holonomies of E. This construction naturally generalizes to flat Z-graded connections on X .
Our main result is that the restriction of this holonomy automorphism to the based loop
space Ω∗X of X provides an A∞ quasi-equivalence between the dg category of flat Z-graded
connections on X and the dg category of representations of C•(Ω∗X), the dg algebra of
singular chains on Ω∗X .

Dedicated to James Dillon Stasheff, with gratitude.
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Introduction

In a few words

Suppose that ∗ →֒ X is a pointed manifold, E is a flat vector bundle over X and

π : LX = {γ : S1 → X} → X

is the map given by evaluation at 1 ∈ S1 ⊂ C. There is an automorphism of the pull back
bundle π∗E, given by the holonomies of E. We denote by C•(Ω

M
∗ X) the Pontryagin algebra of

chains on the space of Moore loops in X. There is a natural map of dg algebras

C•(Ω
M

∗ X) → H0(Ω
M

∗ X) ∼= H0(Ω∗X) ∼= R[π1(X, ∗)].

The restriction of the holonomy automorphism to the based loop space gives E|∗ the structure
of a representation of π1(X, ∗) and therefore the structure of a module over the group ring
R[π1(X, ∗)]. Via the morphism above, the vector space E|∗ becomes a module over the Pontrya-
gin algebra. Thus, flat connections produce, via holonomies, the simplest kind of dg modules
over the Pontryagin algebra.
We show that one can obtain essentially all dg modules over the Pontryagin algebra if one

passes to flat Z-graded connections over X and considers their generalized holonomies. Even
better, this construction yields a weak equivalence (A∞ quasi-equivalence) between the dg cat-
egory FZ(X) of flat Z-graded vector bundles over X and the dg category of representations of
C•(Ω

M
∗ X), see Theorem 4.16 in §3.3.

In more words

There are many equivalent points of view on the notion of a local system over a manifold X.
Some of the possibilities are listed in the following table:

point of view local system

I infinitesimal flat connection

T topological (& simplicial) representation of π1(X)

H homological locally constant sheaf

L free loop space automorphism over LX

A higher version of the notion of a local system, called ∞-local system, has appeared in
several recent works, including Block-Smith [5], Arias Abad-Schätz [3], Holstein [11] and Malm
[15]. The word higher refers to the fact that, while local systems correspond to representations
of the fundamental groupoid π1(X), ∞-local systems correspond to representations of the whole
homotopy type of X i.e. the infinity groupoid π∞(X) of X. It turns out that all the different
points of view on local systems mentioned above generalize to the ∞-local system case:
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point of view ∞-local system

I infinitesimal flat Z-graded connection

S simplicial representation of π∞(X)

T topological representation of C•(Ω
M
∗ X)

H homological homotopy locally constant sheaf

L free loop space A∞-automorphism over LX

The fact that the different points of view on local systems are equivalent can be given a
precise meaning: each of the points of view can be used to define a category of local systems,
and all the resulting categories are equivalent. Interestingly, there is a similar situation for
∞-local systems: each of the points of view I, S, T, H defines a dg category and all these dg

categories are equivalent. The equivalence of I and S was proved by Block-Smith [5] extending
ideas of Igusa [13]. The equivalence between S,T and H was proved by Holstein [11], using the
homotopy theory of dg categories. The present work is concerned with point of view L and a
direct comparison between points of view I and T.
Let us be more explicit about what is meant by point of view L. We will denote by π : LX → X

the map given by evaluation at 1 ∈ S1 ⊂ C. Given a vector bundle E over X, the pull back
bundle π∗E is naturally a flat vector bundle over LX. Moreover, there is a natural automorphism
hol ∈ Aut(π∗E) given by the holonomies of E. Also, the automorphism hol, when seen as a
section of End(π∗E) is covariantly constant. Hence, hol is an automorphism of the bundle π∗E
together with its flat connection. The following result asserts that the same holds in the case of
∞-local systems:

Theorem 3.9. Let E → X be a flat graded vector bundle and denote by π : LX → X the

natural projection given by evaluation at 1 ∈ S1. Then π∗E is a flat graded vector bundle over

LX which has a distinguished automorphism hol(E) ∈ Aut(π∗E), characterized by the property

that if U ⊆ X is an open subset over which E trivializes, i.e. E|U ∼= U × V , we have

hol(E)|LU = σEndV (1⊗ eα),

where d∇ = d+ α. Moreover, if f : Y → X is a smooth map then

hol(f∗E) = (Lf)∗hol(E),

with Lf : LY → LX given by Lf(γ) := f ◦ γ.

Here, σEndV is a twisted version of Chen’s iterated integral map σ, see [7] and [10]. Variants
of hol(E) appeared previously in the literature, see [6, 2] in the context of principal bundles,
and [13] in the context of Z-graded connections. The interpretation of hol(E) as a morphism in
the dg category FZ(LX) seems to be new.
Our next result is a categorical enhancement of Theorem 3.9. Pulling back along the evaluation

map π : LX → X induces a functor of dg categories π∗ : FZ(X) → FZ(LX). It turns out that
the generalized holonomies of any flat Z-graded vector bundle over X can be interpreted as an
A∞-automorphism hol of the dg functor π∗. For the precise statement we refer to Theorem 3.16
in §3.3 below.
Next, we explain the relationship between points of view I and T on higher local systems.

According to point of view T, an ∞-local system is a finite cochain complex of vector spaces
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(E, ∂) with the structure of a dg module over the Pontryagin algebra C•(Ω
M
∗ X), the dg algebra

so singular chains on the based Moore loops. Let E be a flat graded vector bundle over X
and denote by hol(E) the automorphism of π∗E provided by Theorem 3.9. We show that by
restricting the automorphism hol(E) to the based loop space, the fiber of E over the base point
∗ inherits the structure of a dg module over the Pontryagin algebra. This result provides an
explicit construction of an infinity local system in the sense of T, given a flat Z-graded connection
over X. Hence the passage from I to L and further to T produces an explicit A∞-functor ϕ̃ of
dg categories. Our main result about this A∞-functor is:

Theorem 4.16. Let X be a connected manifold. The A∞-functor

ϕ̃ : FZ(X) → Rep(C•(Ω
M

∗ X))

is a quasi-equivalence, i.e.

• the chain maps given by ϕ̂1 induce isomorphisms between the cohomologies of the Hom-

complexes,

• the induced functor between the homotopy categories is an equivalence.

This result can be seen as an explicit implementation of the equivalence between the points
of view I and T for ∞-local systems in terms of Chen’s iterated integrals. The existence of such
an equivalence can be also deduced by combining the equivalences I ∼ S (Block-Smith [5]) and
S ∼ H ∼ T (Holstein [11]). Our proof that the A∞-functor ϕ̃ is an quasi-equivalence relies
on the standard Riemann-Hilbert correspondence for flat vector bundles and on a result due to
Felix, Halperin and Thomas [9] on the Hochschild complex of the Pontryagin algebra.

One of our motivations for writing this paper was to bring into closer contact Chen’s iterated
integrals and the point of view of derived geometry. Most notably, Holstein’s article [11] was a
direct source of inspiration for the present work, as was Ben-Zvi and Nadler’s [4].

Organization of the paper

In §1 we recall various Hochschild complexes, the dg category of representations Rep(A) of a
dg algebra A and the dg category FZ(X) of flat Z-graded connections over a manifold X. In
§2 we define formal holonomies on the level of the bar complex of a dg algebra and establish
a formal version of gauge-invariance. Section §3 relates the formal holonomies to the free loop
space π : LX → X of a manifold X by means of Chen’s iterated integrals. We construct the
generalized holonomy hol(E) of a flat Z-graded vector bundle E → X and interpret it as an
automorphism of the flat pull back bundle π∗E ∈ FZ(LX). We extend this point of view and
obtain an A∞-automorphism hol of the dg functor π∗ : FZ(X) → FZ(LX). In §4 we first use
hol(E) to obtain a representation of the Pontryagin algebra of X, i.e. the dg algebra of chains
on the based (Moore) loop space ΩM

∗ X. We then recast the whole A∞-automorphism hol as an
A∞-functor ϕ̃ : FZ(X) → Rep(C•(Ω

M
∗ X)) and finally establish that ϕ̃ is a quasi-equivalence.

The proof of this fact uses a technical – and well-known – result which is proved in Appendix
A.
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Conventions

• LetW be a graded vector space. The suspension ofW , denote by sW , is the graded vector
space defined by

(sW )k := W k+1.

We will use cohomological grading conventions i.e. all complexes have coboundary oper-
ators which increase the degree by 1 and all dg algebras have differntials of degree 1. In
particular, the complex of singular chains C•(X) for X a topological space is concentrated
in non-positive degrees.

• We assume that all dg algebras come with a unit. If A is a dg algebra, the commutator
[a, b] of two elements a, b ∈ A will always mean the graded commutator, that is:

[a, b] = ab− (−1)|a||b|ba.

• Given a dg algebra A we will denote by MC(A) the set of Maurer-Cartan elements in A,
i.e.

MC(A) := {a ∈ A1 : da+ a · a = 0}.

• All vector bundles are assumed to be complex.

• Given a dg category C, we denote by H0C its homotopy category, i.e. the category that
has the same objects as C and satisfies:

HomH0C(X,Y ) = H0(Hom(X,Y )).

Acknowledgements. We would like to thank David Mart́ınez Torres for his help with the proof
of Lemma 3.6 and Dan Christensen, Peter Teichner and Konrad Waldorf for helpful discussions.
Camilo Arias Abad would also like to thank Marco Gualtieri, Alberto Garćıa-Raboso and the
other participants of the Glab seminar at the Fields Institute for interesting discussions on
related subjects.

1 Preliminaries

In this section all dg algebras are assumed to have an augmentation ǫ : A → R. We denote by
Ā the augmentation ideal ker ǫ.

1.1 Hochschild complexes

Definition 1.1. Let A be a dg algebra and M a dg bimodule over A. The Hochschild chain

complex HC•(A,M) is the graded vector space

HC•(A,M) :=
⊕

k≥0

M ⊗ (sĀ)⊗k,

equipped with the boundary operator b = b0 + b1, where

b0(m⊗ a1 ⊗ · · · ⊗ an) = dm⊗ a1 ⊗ · · · ⊗ an +

n∑

i=1

(−1)|m|+···+|ai−1|−im⊗ · · · ⊗ dai ⊗ · · · ⊗ an,

5



and

b1(m⊗ · · · ⊗ an) = (−1)|m|+1ma1 ⊗ · · · ⊗ an +

+

n−1∑

i=1

(−1)|m|+···+|ai|−i+1m⊗ · · · ⊗ (aiai+1)⊗ · · · ⊗ an

+(−1)(|m|+···+|an−1|−n−1)(|an|−1)anm⊗ · · · ⊗ an−1.

The cohomology of this complex, denoted HH•(A,M), is called the Hochschild homology of A
with coefficients in M .

Remark 1.2. In the special case where M = R is the trivial bimodule we will write HC•(A)
instead of HC•(A,R) and HH•(A) instead of HH•(A,R). In the case where M = A we obtain
the bar complex of A, which we denote by BA instead of HC(A,A). Similarly we write H•(A)
instead of HH•(A,A).

Remark 1.3. The Hochschild complex HC•(A) comes equipped with a comultiplication ∆ given
by

∆(a1 ⊗ · · · ⊗ ak) =
k∑

i=0

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ ak).

Following [10], we note that if A is graded commutative, the bar complex BA has a natural
product ∗ given by

(β ⊗ a1 ⊗ · · · ⊗ ak) ∗ (γ ⊗ ak+1 ⊗ · · · ⊗ al+k) =

= (−1)(|a1|+···+|ak|−k)|γ|
∑

χ∈Sk,l

[a1 ⊗ · · · ⊗ ak+l](χ)βγ ⊗ aχ(1) ⊗ · · · ⊗ aχk+l
,

where Sk+l is the symmetric group, Sk,l the set of shuffle permutations and

[a1 ⊗ · · · ⊗ ak+l] : Sk+l → {1,−1}

is the Koszul character sign, i.e. the unique character such that:

[a1 ⊗ · · · ⊗ ak+l](µ) = (−1)(|ai|−1)(|ai+1|−1),

if µ is the transposition (i, i + 1). The product ∗ is associative, graded commutative and com-
patible with b, and hence gives BA the structure of a commutative dg algebra. Observe that the
inclusion i : A →֒ BA is a morphism of dg algebras. The coboundary operator b, the product ∗
and the coproduct ∆ then make HC•(A) into a dg Hopf algebra.

Definition 1.4. Let A be a dg algebra and M a dg bimodule over A. The Hochschild cochain

complex HC•(A,M) of A with values in M is the cochain complex

HC•(A,M) = Hom(HC•(A),M),

with differential b defined by the formula:

b(η)(a1 ⊗ · · · ⊗ ak) := d(η(a1 ⊗ · · · ⊗ ak))− (−1)|η|η(b(a1 ⊗ · · · ⊗ ak))

+(−1)|η|+|a1|+···+|ak−1|+kη(a1 ⊗ · · · ⊗ ak−1)ak

+(−1)(|η|+1)(|a1 |+1)+1a1η(a2 ⊗ · · · ⊗ ak).

The Hochschild cohomology HH•(A,M) of A with values in M is the cohomology of HC•(A,M).
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Definition 1.5. Let B be a dg algebra, seen as a dg module over A via the augmentation map.

The Hochschild cochain complex HC•(A,B) of A with values in B is equipped with a cup product

(ϕ ∪ ψ)(a1 ⊗ · · · ⊗ ap+q) := (−1)|ψ|(|a1|+···+|ap|−p)ϕ(a1 ⊗ · · · ⊗ ap) · ψ(ap+1 ⊗ · · · ⊗ ap+q).

The cup product is compatible with the differential b and gives HC•(A,B) the structure of a dg

algebra.

Remark 1.6. The cup product can be expressed in terms of the coproduct ∆ in HC(A) and
the multiplication map mB : B ⊗B → B of B as follows:

ϕ ∪ ψ := mB ◦ (ϕ⊗ ψ) ◦∆.

1.2 Representations of dg algebras

Let A and B be dg algebras. Denote by TwHom(A,B) the set of pairs (β, ϕ), where β ∈ MC(B)
and ϕ : A → Bβ is a unital A∞-morphism. Here Bβ is the algebra B with twisted differential
d+ [β,−].

Lemma 1.7. There is a natural bijection between MC(HC•(A,B)) and TwHom(A,B).

Proof. Let µ be a Maurer-Cartan element of HC•(A,B). We denote by µ(k) the restriction of µ

to (sĀ)⊗k, i.e.

µ =
∑

k≥0

µ(k), µ(k) : (sĀ)
⊗k → B.

The element β := µ0(1) ∈ B1 satisfies the Maurer-Cartan equation. Then we set ϕ := {ϕk}k≥1,
where:

ϕk : (sA)
⊗k → sB,

is defined as follows:

• For k = 1, ϕ(1)(a) = s(µ1(a)) for a ∈ sĀ and ϕ1(s1) = s1.

• For k > 1, ϕ(k) := s ◦ µk ◦ p where p : (sA)⊗k → (sĀ)⊗k, is the projection map that uses
the identification Ā ∼= A/R.

It is a standard computation that ϕ : A → Bβ is an A∞-morphism. Since µ can be recovered
from the pair (β, ϕ) we conclude that the assignment:

µ 7→ (β, ϕ),

is bijective.
�

Definition 1.8. We denote by MC+(HC
•(A,B)) those Maurer-Cartan elements of (HC•(A,B), b,∪)

whose restriction to R = (sĀ)⊗0 ⊂ HC•(A) is zero.

Corollary 1.9. There is a one-to-one correspondence between elements of MC+(HC
•(A,B))

and A∞-morphisms from A to B.
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Definition 1.10. Let M be a dg B-B′-module and τ , τ ′ elements of MC+(HC
•(A,B)) and

MC+(HC
•(A,B′)), respectively. We can then twist the coboundary operator b on HC•(A,M) by

bτ,τ ′ϕ = bϕ+ τ ∪ ϕ− (−1)|ϕ|ϕ ∪ τ ′.

Definition 1.11. Let A be a dg algebra. We denote by Rep(A) the dg category defined as

follows. The objects of Rep(A) are complexes (V, ∂) of finite total dimension, together with an

element

τ ∈ MC+(HC
•(A,EndV )).

If (V, τ) and (V ′, τ ′) are objects of Rep(A) then:

HomRep(A)((V, τ), (V
′, τ ′)) := HC•(A,Hom(V, V ′)),

with coboundary operator twisted by τ and τ ′, and composition given by the cup product.

Remark 1.12. In other words, objects of the dg category Rep(A) are A∞-morphisms with
domain A and codomain a dg algebra of the form (EndV, [∂,−], ◦), with (V, ∂) a complex of
finite total dimension. Such morphisms are also known as A∞-modules over A. Furthermore,
the cocycles of the morphism complex HC•(A,Hom(V,W )) in degree 0 correspond exactly to
morphisms of the A∞-modules V and W . The condition of such a cocycle to be a coboundary
corresponds exactly to the notion of being null-homotopic in the sense of [14]. It is a standard
fact that every object of Rep(A) is quasi-isomorphic to one of the form ((V, 0), τ), i.e. one where
the differential on the complex is trivial, see [14]. One way to prove this is via homotopy transfer,
which allows one to replace a complex (V, ∂) by its cohomology H(V ), seen as a complex with
zero differential.

1.3 Flat Z-graded connections

Definition 1.13. A Z-graded vector bundle E → X is a complex vector bundle E of the form

E =
⊕

k∈Z

Ek,

where each of the Ek is a complex vector bundle of finite rank and Ek = 0 for |k| >> 0. The

space of differential forms with values in E is:

Ω(X,E) :=
⊕

i,k

Ωi(X,Ek) =
⊕

i,k

Γ(Λi(T ∗X)⊗ Ek).

We say that an element α ∈ Ωi(X,Ek) has form-degree i, internal degree k and total degree

k + i. We will be mostly interested in the total degree and write:

Ω(X,E)p :=
⊕

i+k=p

Ωi(X,Ek).

The vector space Ω(X,E) has the structure of a graded module over the algebra Ω(X).

Definition 1.14. A Z-graded connection D on a graded vector bundle E is a linear operator

D : Ω(X,E)• → Ω(X,E)•+1

which increases the total degree by 1 and satisfies the Leibniz-rule

D(α ∧ η) = dα ∧ η + (−1)|α|α ∧Dη,

for any homogeneous α ∈ Ω•(X) and η ∈ Ω(X,E). We say that D is flat if D2 = 0.
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Remark 1.15. If E is a trivial vector bundle X × V , where V is a graded vector space, there
is a bijective correspondence

MC(Ω(X) ⊗ EndV ) ↔ {flat Z-graded connections on E}

given by
α 7→ d+ [α,−].

Definition 1.16. If X is a smooth manifold the dg category FZ(X) of flat Z-graded connections

is defined as follows. The objects of FZ(X) are Z-graded vector bundles endowed with flat Z-

graded connections. If E,E′ are objects of FZ(X) then:

Hom(E,F ) := HomΩ(X)−mod(Ω(X,E),Ω(X,E′)) = Ω(X,Hom(E,E′)),

which is a cochain complex with coboundary operator given by:

dφ := D′ ◦ φ− (−1)|φ|φ ◦D.

For further details on the structure of these dg categories the reader may consult [3].

2 The bar complex and formal holonomies

2.1 Formal holonomies

The following well-known lemma – see [1] for instance – explains how to associate a cochain in
the completed bar complex B̂A of a dg algebra A to a Maurer-Cartan element of A.

Lemma 2.1. Let A be a dg algebra and a ∈ MC(A) a solution to the Maurer-Cartan equation.

Set

1⊗ ea :=
∑

k≥0

1⊗ a⊗k ∈ B̂A,

where B̂A is the completion of BA, i.e. B̂A :=
∏
k≥0A⊗ (sĀ)⊗k. Then:

b(1⊗ ea) = 0.

Proof. Let us compute:

b(
∑

k≥0

1⊗ a⊗k) = −
∑

k≥0

(
k∑

i=1

1⊗ · · · ⊗ da⊗ · · · ⊗ a+

k−1∑

i=1

1⊗ · · · ⊗ a · α⊗ · · · ⊗ a

)

= −
∑

k≥0

(
k∑

i=1

1⊗ · · · ⊗ (da+ α · a)⊗ · · · ⊗ a

)
= 0.

�

Proposition 2.2. Let A be a commutative dg algebra and K a graded algebra. The linear map

φK : B̂(A⊗K) → B̂A⊗K,

a0 ⊗ k0 ⊗ · · · ⊗ ar ⊗ kr 7→ (−1)
∑

i<j |ki|(|aj |+1)a0 ⊗ a1 ⊗ · · · ⊗ ar ⊗ k0 · · · kr

has the following properties:

9



1. If i : A⊗K →֒ B̂(A⊗K) and j : A⊗K →֒ B̂A⊗K are the natural inclusions, then:

φK ◦ ι = j.

2. For any β ∈ A⊗K of degree 1 the identity

φKb(1⊗ eβ) = bφK(1⊗ eβ) + [j(β), φK (1⊗ eβ)]

holds.

Proof. The first assertion is a simple check, so we pass to item (2). To obtain an expression for
φK ◦ b(1⊗ eβ), we observe that φK factors as follows:

B̂(A⊗K)
κ

// B̂A⊗ TK
id⊗m

// B̂A⊗K,

where TK is the tensor algebra on K, the first map κ is the canonical isomorphism of graded
vector spaces and the second map acts by multiplication m(k0 ⊗ · · · ⊗ kr) := k0 · · · kr.
Our aim is to compute

κb(1 ⊗ eβ)− bκ(1⊗ eβ).

Since κ commutes with the operator b0, we can replace b by b1 above.
Writing β =

∑m
j=1 aj ⊗ kj , we obtain that κb1(1⊗ eβ) is the sum over i1, . . . , ir ∈ {1, . . . ,m}

of the expression:

(−1)τ+1(ai1 ⊗ ai2 ⊗ · · · ⊗ air)⊗ (ki1 ⊗ · · · ⊗ kir) +
r−1∑

l=1

(−1)τ+|ki1 |+···+|kil |+1(1⊗ ai1 ⊗ · · · ⊗ ailail+1
⊗ · · · ⊗ air)⊗ (1⊗ ki1 ⊗ · · · ⊗ kilkil+1

⊗ · · · ⊗ kir) +

(−1)τ (air ⊗ ai1 ⊗ · · · ⊗ air−1)⊗ (kir ⊗ ki1 ⊗ · · · ⊗ kir−1),

where τ :=
∑

a<b |kia ||kib |.
On the other hand, b1κ(1⊗ eβ) is the sum over i1, . . . , ir ∈ {1, . . . ,m} of the terms:

(−1)τ+1(ai1 ⊗ ai2 ⊗ · · · ⊗ air)⊗ (1⊗ ki1 ⊗ · · · ⊗ kir) +
r−1∑

l=1

(−1)τ+|ki1 |+···+|kil |+1(1⊗ ai1 ⊗ · · · ⊗ ailail+1
⊗ · · · ⊗ air)⊗ (1⊗ ki1 ⊗ · · · ⊗ kil ⊗ kil+1

⊗ · · · ⊗ kir) +

(−1)τ+|kir |(|ki1 |+···+|kir−1
|)(air ⊗ ai1 ⊗ · · · ⊗ air−1)⊗ (ki1 ⊗ · · · ⊗ kir).

We conclude that the difference

φKb(1⊗ eβ)− bφK(1⊗ eβ)

is the sum over all indices of the following terms:

(−1)τ (air ⊗ ai1 ⊗ · · · ⊗ air−1)⊗ (kirki1 · · · kir−1)−

(−1)τ+|kir |(|ki1 |+···+|kir−1
|)(air ⊗ ai1 ⊗ · · · ⊗ air−1)⊗ (ki1 · · · kir).

This sum is precisely [j(β), φK (1⊗ eβ)]. �
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Corollary 2.3. Let A and B be commutative dg algebras and

ϕ : B̂A→ B

a morphism of dg algebras. Given a graded algebra K, we consider the linear map

ϕK : B̂(A⊗K) → B⊗̂K

defined as the composition:

ϕK := (ϕ⊗ id) ◦ φK .

For any element β ∈ A⊗K of degree 1, the identity

ϕKb(1⊗ eβ) = dϕK(1⊗ eβ) + [(ϕ⊗ id)(β), ϕK(1⊗ eβ)]

holds. In particular, if β is a Maurer-Cartan element of A⊗K, then

dϕK(1⊗ eβ) + [(ϕ⊗ id)(j(β)), ϕK (1⊗ eβ)] = 0.

Proof. This is a formal consequence of Propositon 2.2 because (ϕ ⊗ id) is a morphism of dg
algebras. �

2.2 Formal gauge-invariance

Remark 2.4. Let A be a dg algebra and denote by U(A) the group of invertible elements of
degree zero. The group U(A) acts on the right on A by the formula

x • g := g−1xg + g−1dg.

Moreover, this action restricts to the Maurer-Cartan set MC(A).
We want to understand the behaviour of the gauge-action under the assignment

(A⊗K)1 → B̂A⊗K, β 7→ φE(1⊗ eβ).

It turns out that one needs to pass to a certain quotient complex of BA introduced by Chen in
his study of the algebraic topology of the loop space, see [7]. Chen studied this quotient in more
detail in [8], we follow the exposition in [10].

Definition 2.5. Let A be a dg algebra concentrated in non-negative degrees. Given f ∈ A0, and

i ≥ 1, we define operators Si(f) and Ri(f) on BA as follows:

Si(f)(a0 ⊗ a1 ⊗ · · · ⊗ ak) := a0 ⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ f ⊗ ai ⊗ · · · ⊗ ak

and define Ri(f) to be the commutator [b, Si(f)].

Definition 2.6. Let A be a dg algebra concentrated in non-negative degrees. The subcomplex of

degenerate chains of BA, denoted by D(A), is the linear span of the images of Si(f) and Ri(f),
for all f ∈ A0 and all i ≥ 1. The normalized Hochschild complex N(A) of A is the quotient

complex

N(A) = BA/D(A).
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In the case where A = Ω•(X) is the algebra of differential forms on a manifold, passing to
the quotient complex N(Ω•(X)) is natural, since D(Ω•(M)) coincides with the kernel of Chen’s
iterated integral map σ which maps BΩ•(X) to Ω•(LX). In [7], Chen shows that if A is a dg
algebra concentrated in non-negative degrees such that H0(A) = R, D(Ω•(X)) is acyclic. If A is
assumed to be graded commutative, D(A) is an ideal with respect to the shuffle product, hence
N(A) has the structure of a commutative dg algebra.
We will denote by N̂(A) the space

N̂(A) := B̂(A)/D̂(A),

where D̂(A) is the completion of D(A). In case A is graded commutative, the shuffle product
extends in a natural way to give N̂(A) the structure of a commutative dg algebra.

Lemma 2.7. Let A be a commutative dg algebra and K a graded algebra. For any g ∈ A0 ⊗K0

and any

X = 1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn) ∈ B(A⊗K)

the following equalities hold in N(A) ⊗K:

φK(1⊗ g(a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn))− φK(1⊗ dg ⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn)) = gφK(X)

φK(1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn)g) + φK(1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn)⊗ dg) = φK(X)g.

Proof. We will prove only the second equation, the first one is analogous. Since both sides are
linear in g we may assume that g = a⊗ k. Let us set

ǫ =
∑

i<j

|ki|(|aj |+ 1)

and compute:

φK(1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn)g) + φK(1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn)⊗ dg) =

φK(1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (ana⊗ knk)) + φK(1⊗ (a1 ⊗ k1)⊗ · · · ⊗ (an ⊗ kn)⊗ (da⊗ k)) =

(−1)ǫ(1⊗ (a1 ⊗ · · · ⊗ ana)⊗ (k1 · · · knk) + (−1)ǫ(1⊗ (a1 ⊗ · · · ⊗ an ⊗ da)⊗ (k1 · · · knk) =

(−1)ǫa⊗ a1 ⊗ · · · ⊗ an ⊗ (k1 · · · knk) = φK(X)g.

Note that when passing to the last line, we have used that the computation takes place in
N(A)⊗K, and that the equation

1⊗ a1 ⊗ · · · ⊗ (ana) + 1⊗ a1 ⊗ · · · ⊗ an ⊗ da = a⊗ a1 ⊗ · · · ⊗ an

holds in N(A). �

Proposition 2.8. Let A be a commutative dg algebra and K a graded algebra. We consider the

map

φ̂K : (A⊗K)1 → N(A)⊗̂K, β 7→ φK(1⊗ eβ),

with φK defined as in Proposition 2.2. For any invertible element g ∈ A0 ⊗K0 we have:

φK(1⊗ eβ•g) = g−1φK(1⊗ eβ)g.

The expression on the right is defined via the inclusion A⊗K →֒ N(A)⊗K.
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Proof. We need to prove the equality

φK(1⊗ eβ•g) = g−1φK(1⊗ eβ)g.

Expanding the exponential 1⊗ eβ•g = 1⊗ eg
−1βg+g−1dg we obtain the expression:

1⊗ eβ•g =
∑

r≥0

1⊗ eg
−1dg ⊗ (g−1βg ⊗ eg

−1dg)⊗r.

Therefore, it is enough to prove that for r fixed we have:

φK(1⊗ eg
−1dg ⊗ (g−1βg ⊗ eg

−1dg)⊗r) = g−1φK(1⊗ β⊗r)g. (1)

To this end, we set
N′(A⊗K) := B(A⊗K)/D′(A⊗K),

where D′(A⊗K) ⊆ D(A⊗K) is the vector subspace spanned by the images of elements of the
form Si(f), Ri(f) where f ∈ A0 ⊗K0. The map φK : B(A ⊗K) → N(A) ⊗K factors through
the quotient N′(A⊗K). We claim that for each r ≥ 2 the following equality holds in N′(A⊗K):

1⊗ eg
−1dg ⊗ (g−1βg ⊗ eg

−1dg)⊗r = 1⊗ eg
−1dg ⊗ g−1β ⊗ β⊗r−2 ⊗ βg ⊗ eg

−1dg (2)

Since the computation occurs in N′(A ⊗ K), we have the following identity that will be used
repeatedly:

· · · xi−1 ⊗ dg ⊗ xi ⊗ · · · = · · · ⊗ xi−1 ⊗ gxi ⊗ · · · − · · · ⊗ xi−1g ⊗ xi ⊗ · · · (3)

Let us now use Equation (3) to show that the following identity also holds in N ′(A⊗K):

· · · ⊗ xg ⊗ eg
−1dg ⊗ g−1y ⊗ · · · = · · · x⊗ y ⊗ · · · (4)

For this we expand · · · ⊗ xg ⊗ eg
−1dg ⊗ · · · and simplify as follows:

∑

r≥0

· · · ⊗ xg ⊗ (g−1dg)⊗r ⊗ g−1y ⊗ · · ·

= · · · ⊗ xg ⊗ g−1y ⊗ · · · +
∑

r≥1

· · · ⊗ xg ⊗ (g−1dg)⊗r ⊗ g−1y ⊗ · · ·

= · · · ⊗ xg ⊗ g−1y ⊗ · · · +
∑

r≥1

· · · ⊗ xg ⊗ (g−1dg)⊗r ⊗ d(g−1)⊗ y ⊗ · · ·

+
∑

r≥1

· · · ⊗ xg ⊗ (g−1dg)⊗r−1 ⊗ g−1dgg−1 ⊗ y ⊗ · · ·

= · · · ⊗ xg ⊗ g−1y ⊗ · · · − · · · xg ⊗ d(g−1)⊗ y ⊗ · · ·

= · · · ⊗ x⊗ y ⊗ · · ·

This completes the proof of Equation (4) which clearly implies Equation (2). Using a telescopic
sum as above one can also prove that the following identities hold in N′(A⊗K):

1⊗ eg
−1dg ⊗ g−1x⊗ · · · = (1⊗ g−1x⊗ · · · ) − (1⊗ d(g−1)⊗ x⊗ · · · ) (5)
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· · · ⊗ yg ⊗ eg
−1dg = (· · · ⊗ yg) + (· · · ⊗ y ⊗ dg) (6)

We can now use Equations (2),(5) and (6) together we Lemma 2.7 to prove Equation (1) as
follows:

φK(1⊗ eg
−1dg ⊗ (g−1βg ⊗ eg

−1dg)⊗r)

= φK(1⊗ eg
−1dg ⊗ g−1β ⊗ β⊗r−2 ⊗ βg ⊗ eg

−1dg)

= φK(1⊗ eg
−1dg ⊗ g−1β ⊗ β⊗r−2 ⊗ βg) + φK(1⊗ eg

−1dg ⊗ g−1β ⊗ β⊗r−2 ⊗ β ⊗ dg)

= φK(1⊗ eg
−1dg ⊗ g−1β ⊗ β⊗r−1)g

=
(
φK(1⊗ g−1β ⊗ β⊗r−1)− φK(1⊗ d(g−1)⊗ β⊗r)

)
g

= g−1φK(1⊗ βr)g.

�

Corollary 2.9. Let A,B be graded commutative dg algebras and

ϕ : B̂(A) → B

a morphism of filtered dg algebras whose kernel contains D(A). Given any graded algebra K, we

consider the linear map

ϕ̃K : (A⊗K)1 → B⊗̂K, β 7→ ϕK(1⊗ eβ),

where ϕK := (ϕ⊗ id) ◦ φK . The map ϕ̃K is equivariant with respect to U0(A⊗K), the group of

invertible elements of A0 ⊗K0, which acts on B⊗̂K by conjugation via the inclusion:

A⊗K →֒ BA⊗K → B ⊗K.

Proof. This is a direct consequence of Proposition 2.8. �

3 Parallel transport and automorphisms over LX

We are interested in describing ∞-local systems over X in terms of the free loop space LX. In
the case of ordinary local systems, there is the following well-known result, which appears for
instance in Tadler, Wilson and Zeinalian [16].

Lemma 3.1. (E,∇) be a vector bundle with a flat connection and π : LX → X be the evaluation

at 1 ∈ S1. Then π∗E is a vector bundle with flat connection π∗∇. Moreover, the holonomies of

(E,∇) define an automorphism of the pair (π∗E, π∗∇).

We will show that Lemma 3.1 generalizes to the case of flat Z-graded connections.
We treat the loop space LX as a diffeological space, following ideas going back to the seminal

work of Chen [7]. The interested reader is referred to the book [12] for a careful introduction to
the theory of diffeological structures.
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3.1 Holonomy as an automorphism over LX

Definition 3.2. The iterated integral map

σ : BΩ•(X) → Ω•(LX)

is defined as follows. Let ev : ∆k ×LX → X×(k+1) be the evaluation map:

ev(t1, · · · , tk, γ) := (γ(1), γ(e2πit1 ), . . . , γ(e2πitk )).

The map σ is the composition

Ω•(X)⊗ (sΩ•(X))⊗k ∼= Ω•(X)⊗k+1 ι
// Ω•(X×(k+1))

ev∗
// Ω•(∆k × LX)

∫
∆k

// Ω•(LX).

Theorem 3.3 (Chen [7]). The iterated integral map

σ : BΩ•(X) → Ω•(LX)

is a morphism of dg algebras. If X is connected, the kernel of σ equals the subcomplex D(Ω•(X)).
Moreover, if X is simply-connected then σ induces an isomorphism in cohomology:

H(Ω•(X)) ∼= H•(LX).

Remark 3.4. In the following, we will always assume that X is connected and that the iterated
integral map σ denotes the induced map on the quotient

σ : N(Ω•(X)) = BΩ•(X)/D(Ω•(X)) → Ω•(LX).

Our aim is to define generalized holonomies by applying the results of §2.1 and §2.2 to A =
Ω•(X) and K = EndV , with V some complex of vector spaces. We first prove some auxiliary
results.

Lemma 3.5. Let W be an m-dimensional compact manifold with boundary. If γ : S1 →W ◦ is

a smooth map, there exists an open set U ⊂W which contains γ(S1) and is homotopy equivalent

to a finite CW -complex of dimension 1.

Proof. Let T be a smooth triangulation of W and D ⊂ W be the m − 2 skeleton of the dual
decomposition of T . We recall that D is defined as follows: given a k-simplex ∆ in T , then

∆ ∩D :=
⋃

|σ|=2

D(σ),

where the union runs over all two-dimensional faces σ of ∆ and D(σ) is defined to be the convex
hull of the baricenters of all faces of ∆ that contain σ.
It is well known that U =W \D deformation retracts onto the 1-skeleton of the triangulation

T . For completeness, let us reproduce the proof of this fact. For each k ≥ 0 denote by Tk the
k-skeleton of the triangulation T . Clearly, T1 ∩ U = T1 and therefore it is enough to prove that
if k > 1 then Tk ∩ U deformation retracts onto Tk−1 ∩ U . Consider a k-dimensional simplex ∆
of T and let b ∈ ∆ be its baricenter. We need to prove that ∆ ∩ U deformation retracts onto
∂(∆) ∩ U . Since k > 1 we have b ∈ D. Any point in v ∈ ∆ \ {b} can be written uniquely as a
convex combination v = tb+ (1− t)w where w ∈ ∂∆ and this gives a deformation retraction of
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∆ \ {b} onto ∂∆. We claim that this retraction restricts to a deformation retraction of ∆ ∩ U
onto ∂(∆) ∩ U . We need to prove that for any point v = tb + (1 − t)w which lies in U , the
segment from v to w lies in U . Suppose this were not the case and choose z ∈ D in the segment
from v to w. By definition z ∈ D(σ) for some two dimensional face σ of ∆. We know that
D(σ) ∩∆ is convex and also b ∈ D(σ). Since v is in the segment from z to b we conclude that
v ∈ D. This contradicts the assumption.
For each m-simplex ∆ of T , D ∩ ∆ is the union of finitely many compact submanifolds of

dimension m−2. By general position, there exists an ambient isotopy Γ that takes D to D′ and
such that D′ ∩ γ(S1) = ∅. Therefore, U ′ :=W \D′ satisfies the conditions of the lemma. �

Lemma 3.6. Let X be a smooth manifold without boundary and γ : S1 → X be a smooth map.

Then there exists an open subset U ⊂ X which contains γ(S1) and which is homotopy equivalent

to a CW-complex of dimension 1.

Proof. Let f : X → R be a proper Morse function and let ak, bk ∈ R be regular values of f such
that limk→∞ ak = −∞ and limk→∞ bk = +∞. Since the image of γ is compact, there exists
n >> 0 such that γ(S1) ⊂ f−1(]an, bn[). We consider

W := f−1([an, bn]),

which is a compact manifold with boundary which contains γ(S1) in its interior. By Lemma 3.5
there exists an open neighbourhood Ũ ⊂ W which contains γ(S1) and is homotopy equivalent
to a CW-complex of dimension 1. We claim that

U := Ũ ∩ f−1((an, bn))

satisfies the conditions of the lemma. By construction γ(S1) ⊂ U , which is open in X. Also, Ũ
is a manifold with boundary with interior U and therefore the inclusion U →֒ Ũ is a homotopy
equivalence. We conclude that U is homotopy equivalent to a CW-complex of dimension 1. �

Remark 3.7. By the same arguments one sees that the image of a smooth map f : M → X,
with M a compact manifold of dimension m, is contained in an open neighborhood U ⊂ X that
is homotopy equivalent to a CW-complex of dimension m.

Corollary 3.8. The image of every smooth loop γ : S1 → X is contained in an open subset

U ⊂ X which has the property that the restriction of an arbitrary complex vector bundle E → X
to U is trivializable.

Proof. By Lemma 3.6, the image of γ is contained in an open subset U ⊂ X which is homotopy
equivalent to a finite one-dimensional CW-complex. Since GLn(C) is connected, any complex
vector bundle over a finite, one-dimensional CW-complex is trivializable. �

We can now state the main result of this section:

Theorem 3.9. Let E → X be a flat graded vector bundle and denote by π : LX → X the

natural projection given by evaluation at 1 ∈ S1. Then π∗E is a flat graded vector bundle over

LX which has a distinguished automorphism hol(E) ∈ Aut(π∗E), characterized by the property

that if U ⊆ X is an open subset over which E trivializes, i.e. E|U ∼= U × V , we have

hol(E)|LU = σEndV (1⊗ eα),
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where d∇ = d+ α. Moreover, if f : Y → X is a smooth map then

hol(f∗E) = (Lf)∗hol(E),

with Lf : LY → LX given by Lf(γ) := f ◦ γ.

Proof. Let us first consider the case of a trivial graded vector bundle M × V with flat Z-graded
connection given by a form α. By definition, we have

hol(E) := σEndV (1⊗ eα).

We notice that, strictly speaking, the right hand side of the above definition is a series of
differential forms on LX. Its convergence is discussed carefully in [13]. From the point of view
of the diffeological structure on LX, any plot f : U → LX yields a series of differential forms

f∗σEndV (1⊗ α) + f∗σEndV (1⊗ α⊗2) + · · ·

on U with values in EndV . Inspection of the defining formulas of f∗σEndV (1 ⊗ eα) shows that
this series converges in the C∞ Whitney-topology. One can define f∗σEndV (1⊗ eα) as the limit
and check that one thus obtains a differential form on LX in the diffeological sense.
In view of Lemma 2.1, Corollary 2.3 and Theorem 3.3, we know that hol(E) satisfies

dhol(E) + [π∗α,hol(E)] = 0,

and therefore defines an endomorphism of the flat bundle (π∗E, d+π∗α). In order to check that
hol(E) is invertible, it suffices to check that the 0-form component is so. This is true because it
is the ordinary holonomy of the underlying connection. Notice that Corollary 2.9 and Theorem
3.3 imply that the definition of hol(E) for trivializable graded bundles is independent of the
chosen trivialization. Corollary 3.8, implies that LX can be covered by open subsets of the form
LU where U ⊆ X is an open such that E|U trivializes. Since hol(E) is well defined over each
open LU , and these definitions agree on the intersections LU ∩ LU ′ = L(U ∩ U ′), it is globally
well defined.
The remaining claim follows from naturality of Chen’s iterated integral map. �

Remark 3.10.

(1) The naturality of the holonomy under pull backs along smooth maps is not imposed in the
definition, but follows from the fact that it is specified on sufficiently small opens of the
loop space.

(2) We remark that hol(E) is well defined for any graded vector bundle E that comes equipped
with a Z-graded connection – i.e. the local defining formulas make perfect sense regardless
of whether or not the Z-graded connection is flat. The flatness of the Z-graded connec-
tion only enters in the verification that hol(E) is constant with respect to the pull back
connection on π∗E.

3.2 Inverting the holonomy = reversing the loops

For later use it will be helpful to work out a more explicit description of the inverse to hol(E).
As in the case of ordinary holonomies, the inverse is given by considering the holonomy of the
reversed loop. We denote the map which reverses a loop by r, i.e.

r : LX → LX, r(γ)(eit) := γ(e−it).
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Remark 3.11. Let us consider the space of pairs of composable loops, i.e. pairs of loops with
the same base point. It is given by the fibre product LX ×X LX and is the domain of three
interesting maps:

LX ×X LX
c

//

pr2
&&▼

▼▼
▼▼

▼▼
▼▼

▼

pr1
xxqq
qq
qq
qq
qq

LX

LX LX.

Here c denotes the concatenation map1

c(γ, γ′) :=

{
γ(2t) for t ≤ 1

2 ,

γ′(2t− 1) for t ≥ 1
2 .

and pr1 and pr2 are the projection maps.
In the following, we will rely on two important properties of iterated integrals with regard to

these maps, which were established by Chen in [7], see also the exposition in [2]:

1. For all α1, . . . , αk ∈ Ω•(X), the following identity holds in Ω•(LX ×X LX):

c∗σ(1 ⊗ α1 ⊗ · · · ⊗ αk) =

k∑

i=0

pr∗1σ(1⊗ α1 ⊗ · · · ⊗ αi) ∧ pr∗2σ(1⊗ αi+1 ⊗ · · · ⊗ αk).

2. For all α1, . . . , αk ∈ Ω•(X), the following identity holds in Ω•(LX):

(c ◦ (id× r))∗σ(1 ⊗ α1 ⊗ · · · ⊗ · · ·αk) = 0.

For the holonomy automorphism, these properties imply the following result:

Proposition 3.12. Let E be a graded vector bundle over X, which comes equipped with a

Z-graded connection.

1. The holonomy hol(E) of E satisfies the following factorization property:

c∗hol(E) = pr∗1hol(E) ∧ pr∗2hol(E).

2. The pull back of hol(E) along the reversal map r is the inverse of hol(E), i.e.

hol(E) ∧ r∗hol(E) = id = r∗hol(E) ∧ hol(E).

Proof. The proof of the first claim proceeds by reduction to the local case. Locally, hol(E) is
given by σEnd(V )(1⊗ eα) for some differential form α with values in the endomorphism algebra
of a graded vector space. The factorization then follows from part 1. of Remark 3.11. In the
same fashion, one obtains the second claim from part 2. of the same remark. �

1Strictly speaking, concatenation might lead us out of the space of smooth loops. One way to circumvent this
problem is to define LX as the space of loops which are constant in a neighborhood of 1 ∈ S

1.
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3.3 Automorphism of the pull back functor

In §3.1 we constructed an automorphism hol(E) ∈ Aut(π∗E, π∗D) in the dg category FZ(LX) of
flat graded vector bundles over LX. This automorphism is given by the higher holonomies of the
flat Z-graded vector bundle E. We will now show that this construction lifts to the categorical
level, i.e. we will construct a natural automorphism of the pull back functor π∗ : FZ(X) →
FZ(LX).

Remark 3.13. Pull back along any smooth map f : Y → X induces a dg functor

f∗ : FZ(X) → FZ(Y ).

In particular, the evaluation map π : LX → X, γ 7→ γ(1) yields a dg functor

π∗ : FZ(X) → FZ(LX).

Definition 3.14. Let F , G : C → D be dg functors between dg categories. An A∞-transformation

µ : F =⇒ G is the following data:

• An assignment ρ0 : ObC → Z0Hom(F (−), G(−)) and

• A collection of linear maps ρr : sHom(Ar−1, Ar)⊗· · ·⊗sHom(A0, A1) → Hom(F (A0), G(Ar))
of degree 0 for r > 0,

such that for all composable chains of morphisms (fr, . . . , f1) in C the relation

G(fr) ◦ ρr−1(fr−1, . . . , f1)− (−1)#ρr−1(fr, . . . , f2) ◦ F (f1) = ρ•b(fr, . . . , f1)− dρr(fr, . . . , f1)

is satisfied where # is |f2|+ · · ·+ |fr| − r + 1.

Remark 3.15. Given two dg categories C and D, one can form a category dg−FunA∞(C,D)
whose objects are the dg functors form C to D and whose morphisms are A∞-transformations.
The composition of two A∞-transformations ρ : F =⇒ G and λ : G =⇒ H is given by

(λ ◦ ρ)r :=
r∑

i=0

λi ◦ ρr−i.

An A∞-transformation ρ from F to itself is called an A∞-automorphism if it is invertible in
dg−FunA∞(C,D).

Theorem 3.16. Let X be a manifold and π∗ : FZ(X) → FZ(LX) be the dg functor induced by

pull back along the evaluation at 1 ∈ S1. There is an A∞-automorphism

hol : π∗ =⇒ π∗,

characterized by the property that if ι : U →֒ X is the inclusion of an open set on which every

vector bundle trivializes, then the A∞-transformation:

(Lι)∗ ◦ hol : (Lι)∗ ◦ π∗ =⇒ (Lι)∗ ◦ π∗,

is described as follows with respect to trivializations:

(Lι)∗ ◦ hol(E(0)) ∼= σEndV (0)(1⊗ eα0),

(Lι)∗ ◦ hol(φr, . . . , φ1) ∼= σEndW (1⊗ eαr ⊗ βr ⊗ eαr−1 ⊗ · · · ⊗ eα1 ⊗ β1 ⊗ eα0).

Here E(0), . . . , E(r) are objects in FZ(X), φi ∈ Hom(E(i − 1), E(i)) and we have chosen

trivializations ι∗(E(i)) ∼= U × V (i) such that D(i) := d + αi and φi = βi where αi ∈ Ω•(U) ⊗
End(V (i)), βi ∈ Ω•(U)⊗Hom(V (i− 1), V (i)) and W =

⊕
i V (i).
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Proof. In view of Corollary 3.8 we know that there is at most one A∞-transformation which
has a local expression as above. Let us check locally that the expression above satisfies the
conditions of an A∞-transformation. The fact that

σEndV (0)(1⊗ eα0),

provides an automorphism of π∗E is guaranteed by Theorem 3.9. In order to prove that the
equations for an A∞-transformations are satisfied, we consider the differential form

γ := α0 + · · ·+ αr + β1τ1 + · · · + βrτr ∈ Ω•(U)⊗ EndW ⊗ Fτ ,

where τ1, . . . , τr are formal variables of degree 1− |βi| and Fτ is the free graded (but not graded
commutative!) algebra on these variables. By Corollary 2.3, we know that:

[(π∗ ⊗ id)(γ), σEndW⊗Fτ
(1⊗ eγ)] = σEndW⊗Fτ

b(1⊗ eγ)− dσEndW⊗Fτ
(1⊗ eγ),

which is an equation in Ω•(LX)⊗ EndW ⊗ Fτ . As the components of this equation in front of
τrτr−1 · · · τ1 ∈ Fτ we find:

π∗(φr)◦holr−1(φr−1, . . . , φ1)−(−1)|φ2|+···+|φr|−r+1holr−1(φr, . . . , φ2)◦π
∗(φ1) = [holr, d](φr , . . . , φ1).

This is precisely the condition required from an A∞-transformation. Corollary 2.9 implies that
the expression above is gauge invariant and therefore the local transformations glue to a global
one.
It remains to prove that hol is invertible. We define a new A∞-transformation r∗hol which

is the composition of hol and the pull back along the reversal map r : LX → LX. The fact
that r∗hol is an A∞-transformation is easy to check. The claim that r∗hol is inverse to hol is a
formal consequence of the fact that the pull back r∗hol(E) along the reversal map r : LX → LX
is inverse to hol(E): if we apply this to the formal connection γ from above, we obtain the
following equation in Ω•(LX)⊗ EndW ⊗ Fτ :

σEndW⊗Fτ
(1⊗ eγ) ∧ r∗σEndW⊗Fτ

(1⊗ eγ) = 1.

If we extract the coefficient in front of τrτr−1 · · · τ1, this yields

r∑

i=0

hol(φr, . . . , φi+1) ∧ r
∗hol(φi, . . . , φ1) = 0

provided r > 0, which is the desired result.
�

4 Restriction to the based loop space

4.1 Representations of the Pontryagin algebra

Let ∗ →֒ X be a pointed manifold.

Definition 4.1. The space of based loops Ω∗X of (X, ∗) is the space of all smooth maps from

S1 ⊂ C to X that map a neighborhood of 1 to the base point ∗.
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Remark 4.2. The diffeological space Ω∗X comes equipped with the concatenation map c, which
is the restriction of the concatenation map c : LX ×X LX → LX which was considered in §3.2.
We notice that concatenation is not associative, but this can be fixed by passing to Moore loops.

Definition 4.3. The space of based Moore loops ΩM
∗ X of (X, ∗) is the space of pairs (γ, l), where

l ∈ R≥0 and γ : R≥0 → X is a smooth map which takes the value ∗ in a neighbourhood of 0 and

also in the interval (l− ǫ,∞) for some ǫ > 0. The based Moore loop space inherits the subspace

topology and diffeology from C∞(R≥0,X)× R.

Remark 4.4. 1. The space ΩM
∗ X has the structure of a topological and diffeological monoid

with concatenation product c defined by

c((γ, l), (γ′, l′)) := (γ ∗ γ′, l + l′)

where

(γ ∗ γ′)(t) 7→

{
γ(t) for t ≤ l

γ′(t− l) for t ≥ l′.

There is a natural homotopy equivalence q : ΩM
∗ X → Ω∗X defined by:

q(γ, l)(e2πiθ) := γ(lθ), for θ ∈ [0, 1].

This map is also compatible with the diffeological structure.

2. Since ΩM
∗ X is a topological monoid, its singular chain complex has the structure of a dg

Hopf algebra. We will only be interested in the differential and the multiplication, which
is given by the composition

C•(Ω
M
∗ X)⊗ C•(Ω

M
∗ X)

EZ
// C•(Ω

M
∗ X × ΩM

∗ X)
c∗

// C•(Ω
M
∗ X),

where EZ is the Eilenberg-Zilber map defined by

EZ(µ ⊗ ν)(t1, · · · , tr+s) :=
∑

χ∈Σ(r,s)

(−1)|χ|(EZχ(µ⊗ ν))(t1, · · · , tr+s)

=
∑

χ∈Σ(r,s)

(−1)|χ|(µ(tχ(1), · · · , tχ(r)), ν(tχ(r+1), · · · , tχ(r+s))).

We refer to this multiplication as the Pontryagin product.

3. The dg algebra C•(Ω
M
∗ X) comes equipped with a natural augmentation map ǫ, which is

induced by the map from ΩM
∗ X to a point.

Definition 4.5. The iterated integral map

σ : HC•(Ω
•(X)) → Ω•(Ω∗X)

is defined as follows. Let ev : ∆k ×Ω∗X → X×k be the evaluation map:

ev(t1, · · · , tk, γ) := (γ(e2πit1), · · · , γ(e2πitk )).

The map σ is the composition

(sΩ•(X))⊗k
∼=

// Ω•(X)⊗k
ι

// Ω•(X×k)
ev∗

// Ω•(∆k × Ω∗X)

∫
∆k

// Ω•(Ω∗X).
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Remark 4.6. There is a natural map:

BΩ•(X) → HC•(Ω(X)), α0 ⊗ · · · ⊗ αr 7→ (α0|∗)α1 ⊗ · · · ⊗ αr

which makes the following diagram commute

B(Ω•(X))
σ

//

��

Ω•(LX)

ι∗

��

HC•(Ω(X))
σ

// Ω•(Ω∗X)

.

In particular, if E is a trivial graded vector bundle with flat Z-graded connection D = d + α,
then the restriction hol∗(E) ∈ Ω•(Ω∗X)⊗EndE|∗ of hol(E) to the based loop space is given by
the formula

hol∗(E) := σEndE|∗(e
α).

Theorem 4.7 (Chen [7]). The iterated integral map

σ : HC•(Ω
•(X)) → Ω•(Ω∗X)

is a morphism of dg algebras. Moreover, if X is simply-connected, then σ induces an isomor-

phism

HH•(Ω
•(X)) ∼= H•(Ω∗X).

Observe that the map q : ΩM
∗ X → Ω∗X does not respect concatenation. Nevertheless, the

following holds:

Lemma 4.8. On the image of Chen’s iterated integral map

σ : HC•(Ω
•(X)) → Ω•(Ω∗X)

the maps c∗ ◦ q∗ and (q × q)∗ ◦ c∗ coincide.

Proof. Out of two Moore loops (γ, l) and (γ′, l′) inX, one can form the two loops q(c((γ, l), (γ′, l′)))
and c(q(γ, l), q(γ′, l′)). We notice that these two loops are related by the following piecewise lin-
ear bijection of the unit interval (we identify S1 with R/Z):

τ(t) :=

{
t 2l
l+l′ for t ≤ 1

2
l

l+l′ + (2t− 1) l′

l+l′ for t ≥ 1
2

,

that is
q(c((γ, l), (γ′, l′))) ◦ τ = c(q(γ, l), q(γ′, l′)).

It is well-known that such reparametrization of S1 leave iterated integrals unchanged. A
discussion of this fact can for instance be found in [3], §3 – and in particular Definition 3.11,
Lemma 3.12 and Remark 3.13 in loc.cit. In the case at hand, this means that for any plot
f̂ × ĝ : U → ΩM

∗ X × ΩM
∗ X, and any collection of differential forms α1, . . . , αk ∈ Ω•(X), the

equality
(q ◦ c ◦ f̂ × ĝ)∗σ(α1, . . . , αk) = (c ◦ q × q ◦ f̂ × ĝ)∗σ(α1, . . . , αk)

holds. This completes the proof.
�
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Suppose now that E → X is a flat graded vector bundle. Theorem 3.9 asserts that the pull
back of (E,D) along the projection

π : LX → X, γ 7→ γ(1)

comes equipped with a natural automorphism hol(E) ∈ Ω•(LX,EndE). If we restrict this
element to Ω∗X, the bundle π∗E trivializes and we obtain an element

hol∗(E) ∈ Ω•(Ω∗X,EndE|∗) ∼= Ω•(Ω∗X)⊗ EndE|∗.

Proposition 4.9. Let c be the concatenation map on ΩM
∗ X, q : ΩM

∗ X → Ω∗X the map defined

above and pr1,pr2 : Ω
M
∗ X × ΩM

∗ X → ΩM
∗ X the natural projection maps. Then the identity

c∗(q∗hol∗(E)) = pr∗1(q
∗hol∗(E)) ∧ pr∗2(q

∗hol∗(E))

holds.

Proof. Recall that by Proposition 3.12 in §3.2, hol(E) satisfies the factorization property

c∗hol(E) = pr∗1hol(E) ∧ pr∗2hol(E).

This implies that the same factorization holds for the restriction of hol(E) to Ω∗X. Since by
Lemma 4.9 pulling back along q∗ is compatible with the concatenation map on the image of
Chen’s map σ, the claimed factorization for q∗hol∗(E) follows. �

Theorem 4.10. The linear map

ĥol∗(E) : C•(Ω
M

∗ X) → EndE|∗, ν 7→ (−1)
(k+1)(k+2)

2

∫

∆k

ν∗(q∗hol∗(E))

is a morphism of dg algebras. Here k is the dimension of the simplex ν and EndE|∗ is seen as

a dg algebra with differential [∂,−], where ∂ is the restriction of the flat Z-graded connection to

the base point.

Proof. We denote the flat Z-graded connection on E by D. The map ĥol∗(E) is compatible
with the differentials since hol(E) ∈ Ω•(LX,π∗End(E)) is parallel with respect to π∗D and the
restriction of π∗D to the based loop space is dDR + ∂∗.
Concerning the compatibility with the products, take two chains ν and µ on ΩM

∗ X. We claim
that

ĥol∗(E)(c∗EZ(µ⊗ ν)) = ĥol∗(E)(µ) ◦ ĥol∗(E)(ν).

We evaluate the left-hand side:

ĥol∗(E)(c∗EZ(µ⊗ ν)) = (−1)
(r+s)(r+s+1)

2

∫

∆r+s

(c ◦ EZ(µ⊗ ν))∗(q∗hol∗(E))

= (−1)
(r+s+1)(r+s+2)

2

∑

χ∈Σ(r,s)

(−1)|χ|
∫

∆r+s

(EZχ(µ⊗ ν))∗c∗(q∗hol∗(E))

= (−1)
(r+s+1)(r+s+2)

2

∑

χ∈Σ(r,s)

(−1)|χ|
∫

∆r+s

(EZχ(µ⊗ ν))∗(pr∗1q
∗hol∗(E) ∧ pr∗2q

∗hol∗(E))

= (−1)
(r+s+1)(r+s+2)

2

∫

∆r×∆s

(µ× ν)∗(pr∗1q
∗hol∗(E) ∧ pr∗2q

∗hol∗(E))

= (−1)
(r+1)(r+2)

2
+

(s+1)(s+2)
2

(∫

∆r

µ∗(q∗hol∗(E))

)
◦

(∫

∆s

ν∗(q∗hol∗(E))

)

= ĥol∗(E)(µ) ◦ ĥol∗(E)(ν).
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To pass from the second to the third line we applied Proposition 4.9. The transition from the
third to the forth line uses the fact that EZχ(σ, µ) is the composition of

ψχ : ∆r+s → ∆r ×∆s, (t1, · · · , tr+s) 7→ ((tχ(1), · · · , tχ(r)), (tχ(r+1), · · · , tχ(r+s)))

with σ × µ : ∆r ×∆s → ΩM
∗ X × ΩM

∗ X and that

ψ :
∐

χ∈Σ(r,s)

∆r+s → ∆r ×∆s, ψ =
∐

χ∈Σ(r,s)

ψχ

is a diffeomorphism away from a subset of measure zero. Notice that ψχ is orientation preserving
if and only if χ is an even permutation.
Concerning the additional sign, we observe that in the passage from the fourth to the fifth line,

we have to separate the endomorphism-valued part from the rest of the expression. In doing so,
one picks up a Koszul sign (−1)rs, which exactly accounts for the change from (r+s+1)(r+s+2)

2 to
(r+1)(r+2)

2 + (s+1)(s+2)
2 . �

Remark 4.11. In Theorem 4.10, the proof of the compatibility with the products is independent
of the flatness of the Z-graded connection on E. The flatness enters only in the compatibility
with the differentials.

4.2 The A∞-functor

The aim of this subsection is to extend the assignment E 7→ ĥol∗(E) to an A∞-funtor from the
dg category FZ(X) of flat graded vector bundles over X to the dg category Rep(C•(Ω

M
∗ X)) of

representations of C•(Ω
M
∗ X).

Recall from §3.3 that the assignment E 7→ hol(E) naturally extends to an automorphism of
the dg functor π∗ : FZ(X) → FZ(LX). More concretely, this amounts to the existence of certain
linear maps

holr : sHom(Er−1, Er)⊗ · · · ⊗Hom(E0, E1) → Hom(π∗E0, π
∗Er)) = Ω•(LX,Hom(π∗E0, π

∗Er)),

which serve as a system of coherent homotopies for the failure of hol to be a natural transfor-
mation from π∗ to itself. Upon restriction to the based loop space, one obtains a family of maps
into Ω•(Ω∗X)⊗Hom(E0|∗, Er|∗).
The following lemma, which can be proved by a simple computation, is useful for replacing

Ω•(Ω∗X) by the Hochschild cochain complex sHC•(C•(Ω
M
∗ X)).

Lemma 4.12.

1. Let Y be a diffeological space and consider the space C•(Y ) as a complex. There is a

morphism of complexes

IY : Ω•(Y ) → (sHC•(C•(Y )), b̃0),

given by

IY (α)(sµ1 ⊗ · · · ⊗ sµk) :=

{
(−1)

(|α|+1)(|α|+2)
2

∫
µ1
α if k = 1

0 otherwise.

Here b̃0 is the coboundary operator induced from b0 under suspension.
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2. If V is a complex, we obtain a morphism of complexes

IYV : Ω•(Y )⊗ V → sHC•(C•(Y ), V )

given by the composition

Ω•(Y )⊗ V
IY ⊗id

// sHC•(C•(Y ))⊗ V
∼=

// sHC(C•(Y ), V ),

where the last morphism consists of rearrangements and Koszul-signs.

3. The map IYV is natural in Y and V .

Lemma 4.13. Assume Y is a diffeological monoid, with multiplication map c. Equip C•(Y )
with the corresponding multiplication ∗. Moreover, let B be a dg algebra and α ∈ Ω•(Y ) ⊗ B a

differential form on Y that satisfies the factorization property

c∗α = pr∗1α1 ∧ pr∗2α2.

Then IYB (α) satisfies

b̃IYB (α) + ∪̃(IYB (α1)⊗ IYB (α2)) = 0.

Here b̃ and ∪̃ denote the operators corresponding to the Hochschild differential b and the cup

product ∪ under suspension.

Proof. We only consider the case of trivial coefficients, the general case is analogous. Let µ and
ν be two chains on Y . Computation leads to

b̃1(I
Y (α))(sµ ⊗ sν) = −(−1)|α2|+

(|α|+1)(|α|+2)
2

∫

µ∗ν
α,

∪̃(IY (α1)⊗ IY (α2))(sµ ⊗ sν) = (−1)|α2|+|α1||α2|+
(|α1|+1)(|α1|+2)

2
+

(|α2|+1)(|α2|+2)
2

(∫

µ

α1

)(∫

ν

α2

)
,

which sum to zero because ∫

µ∗ν
α =

(∫

µ

α1

)(∫

ν

α2

)
,

as in the proof of Theorem 4.10.
�

Definition 4.14. For r ≥ 1, we define linear maps

ϕr : sHom(Er−1, Er)⊗ · · · ⊗ sHom(E0, E1) → sHC•(C•(Ω∗X),Hom(E0|∗, Er|∗))

of degree 0 as the compositions I
ΩM

∗ X

Hom(E0|∗,Er|∗)
◦ holr.

Theorem 4.15. The collection of multilinear maps (ϕ̃r)r≥1 defined by

ϕ̃1(sφ) := φ|∗ + ϕ1(sφ), and ϕ̃r = ϕr for r > 1,

yields an A∞-functor from the dg category FZ(X) of flat Z-graded connections over X to the dg

category Rep(C•(Ω
M
∗ X)) of representations of C•(Ω

M
∗ X).
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Proof. Let (φr, . . . , φ1) be a composable chain of morphisms in FZ(X). Checking that (ϕ̃r)r≥1

is an A∞-functor amounts to check that the various ways to apply the maps ϕ̃r, the differ-
entials and the compositions in the dg categories are compatible, i.e. produce elements of
sHC•(C•(Ω

M
∗ X)),Hom(E0|∗, Er|∗)) that satisfy a linear relation. By construction, all elements

of sHC•(C•(Ω
M
∗ X)),Hom(E0|∗, Er|∗)) that arise in these considerations are linear maps with

domain either sC•(Ω
M
∗ X) or (sC•(Ω

M
∗ X))⊗2.

Let us first focus on the component in sHom(sC•(Ω
M
∗ X),Hom(E0|∗, Er|∗), i.e. the Hochschild

cochains we can produce from φr, . . . , φ1 which depend in a linear fashion on sC•(Ω
M
∗ X). The

defining equation in this component reads

ϕ̃•(b(φr ⊗ · · · ⊗ φ1)) = b̃0ϕ̃r(φr ⊗ · · · ⊗ φ1)

+∪̃(sφr|∗ ⊗ ϕ̃r−1(φr−1 ⊗ · · · ⊗ φ1)

+∪̃(ϕ̃r−1(φr ⊗ · · · ⊗ φ2)⊗ sφ1|∗),

where b̃0 and ∪̃ are the operations on the shifted Hochschild cohomology complexes induced from
the terms in the Hochschild differential which do not increase the number of arguments, and the
cup product, respectively. It is straightforward to check that this equation is a consequence of
the defining equations for hol to be an A∞-transformation.
Concerning the component in sHom((sC•(Ω

M
∗ X))⊗2,Hom(E0|∗, Er|∗)) the defining relation

reads
b̃1ϕ̃r(φr ⊗ · · · ⊗ φ1) +

∑

k+l=r

∪̃(ϕ̃k(φr ⊗ · · · ⊗ φl+1)⊗ ϕ̃l(φl ⊗ · · · ⊗ φ1)) = 0.

Observe that as a consequence of Proposition 4.8, we have the following equality of differential
forms over ΩM

∗ X × ΩM
∗ X with values in Hom(E0|∗, Er|∗):

c∗holr(φr ⊗ · · · ⊗ φ1) =
∑

k+l=r

pr∗1holk(φr ⊗ · · · ⊗ φl+1) ∧ pr∗2holl(φl ⊗ · · · ⊗ φ1).

Hence we can apply Lemma 4.13 and obtain the remaining relations for ϕ̃ to be an A∞-functor.
�

4.3 Reconstructing a flat Z-graded connection

The aim of this subsection is to prove that the A∞-functor ϕ̃ : FZ(X) → Rep(C•(Ω
M
∗ X)) is an

A∞ quasi-equivalence of dg categories, i.e. to establish

Theorem 4.16. Let X be a connected manifold. The A∞-functor

ϕ̃ : FZ(X) → Rep(C•(Ω
M

∗ X))

is a quasi-equivalence, i.e.

1. The chain maps given by ϕ̃1 induce isomorphisms between the cohomologies of the Hom-

complexes.

2. The induced functor between the homotopy categories is an equivalence.

Let us start by proving the first claim of Theorem 4.16 for the case of ordinary flat vector
bundles. It turns out that this reduces to a result due to Félix, Halperin and Thomas [9].
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Proposition 4.17. Let X be a connected manifold. The restriction of ϕ̃1 to the trivial coefficient

system R yields a chain map

ϕ : Ω•(X) → HC•(C•(Ω
M

∗ X))

which induces an isomorphism in cohomology. Furthermore, the result extends to the case of

coefficients with values in ordinary flat vector bundles (E,∇), and the module over C•(Ω
M
∗ X)

determined by the holonomy representation corresponding to (E,∇). Explicitly, the chain map

ϕ is given by

β 7→ ϕβ(sµ1 ⊗ · · · ⊗ sµm) :=





1 7→ β|∗ if m = 0,

sµ 7→ ±
∫
∆k×[0,1] µ̂

∗β if m = 1,

0 otherwise,

where µ̂ : ∆k × [0, 1] → X is the map adjoint to q ◦ µ : ∆k → ΩM
∗ X → Ω∗X.

Proof. We first consider the case of trivial coefficients R. It is established in [9], Theorem 6.3,
that one has a span of quasi-isomorphisms of dg coalgebras

HC•(C•(Ω
M
∗ X), C•(P

M
∗ X))

r

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

ev∗

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

HC•(C•(Ω
M
∗ X)) C•(X).

Here PM
∗ X denotes the space of Moore paths which start at the based point ∗. The Moore loops

based at ∗ act on this space by pre-composition and thus equip C•(P
M
∗ X) with a dg module

structure over C•(Ω
M
∗ X). The morphism r is induced by the augmentation map C•(P

M
∗ X) → R,

while ev∗ pushes chains on PM
∗ X forward to X along the evaluation map and maps everything

else to zero. Dualizing, one obtains that the dg algebras C•(X) and HC•(C•(Ω
M
∗ X)) are quasi-

isomorphic, see Theorem 7.2 of [9]. We claim that the induced map in cohomology

H•(X) → HH•(C•(Ω
M

∗ X))

coincides with H•(ϕ) modulo (inessential) signs.
In order to verify this claim, we have to understand how to find a cocycle x̃ ofHC•(C•(Ω

M
∗ X), C•(P

M
∗ X))

which maps under r to a given cocycle x of HC•(C•(Ω
M
∗ X)). One proceeds as follows: define

x(0) to be the image of x under the inclusion x 7→ 1 ⊗ x ⊂ HC•(C•(Ω
M
∗ X), C•(P

M
∗ (X)). Since

the inclusion is not a chain map, x(0) fails to be a cocycle. The defect for closedness is given by
the image of x(0) under the linear map

M : HC•(C•(Ω
M

∗ X), C•(P
M

∗ (X)) → HC•(C•(Ω
M

∗ X), C•(P
M

∗ (X)),

ξ ⊗ sµ1 ⊗ · · · ⊗ sµk 7→ (ξ · µ1)⊗ sµ2 ⊗ · · · ⊗ sµk.

Recall that PM
∗ X is contractible, hence we obtain a homotopy operator h on C•(P

M
∗ (X)), which

we extend to the Hochschild chain complex. If one defines

x(1) := −hM(x(0)),
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the sum x(0) + x(1) is still not closed, but the failure can be expressed as −[M,h]M(x(0)). Now
consider the formal expression

x̃ := x(0) + x(1) + x(2) + · · · ,

where for k ≥ 1 we set x(k) := (−1)kh([M,h])k−1M(x(0)). Since M decreases the tensor degree,
x̃ is well-defined. Moreover, it is closed and maps to x under r by construction. To finally obtain
a singular chain on X, we apply ev∗ to x̃.
We claim that for k ≥ 2, the smooth singular chains ev∗(x(k)) pair to zero with any differential

form on X and hence are cohomologically negligible. As a consequence, the map

H(ev∗) ◦H(r)−1 : HH•(C•(Ω
M

∗ X)) → H•(X)

can be represented by x 7→ ev∗(x(0) + x(1)). Using that for µ ∈ C•(P
M
∗ X) and β ∈ Ω•(X) the

identity ∫

ev∗h(µ)
β = ±

∫

µ

σ(sβ) (∗)

holds, one sees that the above map is dual to ϕ on the level of cohomology.
To prove that for k ≥ 2 the chains ev∗(x(k)) pair to zero with every differential form, one

uses (∗) and the fact that all pairings between singular chains and differential forms on the path
space that have the form ∫

h(µ)
σ(sβ)

vanish. This is true because the chain ev∗hh(µ) onX, which is given by simplicial approximation
of

∆k × [0, 1]×2 → X, ((t1, . . . , tk), s, s
′) 7→ µ(t1, . . . , tk)(st),

has nowhere full rank. We observe that the whole proof remains valid if one replaces the trivial
coefficient system R by a flat vector bundle. �

Definition 4.18. Let E be a graded vector bundle over X. The auxiliary grading on Ω•(X,E)
and HC•(C•(Ω

M
∗ X), E|∗) is given by the following graded subspaces for k ≥ 0:

• Ω(k)(X,E) := Ωk(X,E), i.e. the auxiliary grading equals the form-degree.

• HC•
(k)(C•(Ω

M
∗ X), E|∗) = Hom(HC−k(C•(Ω

M
∗ X)), E|∗), i.e. the auxiliary grading is dual to

the total degree of HC•(C•(Ω
M
∗ X)).2

The auxiliary gradings determine filtrations F•Ω
•(X,E) and F•HC

•(C•(Ω
M
∗ X), E|∗):

• FrΩ
•(X,E) :=

⊕
k≥r Ω

•
(k)(X,E),

• FrHC
•(C•(Ω

M
∗ X), E|∗) =

⊕
k≥r HC

•
(k)(C•(Ω

M
∗ X), E|∗).

Remark 4.19. The graded subspaces FrΩ
•(X,E) and FrHC

•(C•(Ω
M
∗ X), E|∗) are dg submod-

ules of Ω•(X,E) and HC•(C•(Ω
M
∗ X), E|∗), respectively. The corresponding filtrations are de-

scending and complete, i.e. the intersection of all the subspaces is zero. Moreover they
are locally finite in the sense that, if we fix p ∈ Z, the intersections of FrΩ

•(X,E) and
FrHC

•(C•(Ω
M
∗ X), E|∗) with the subspaces of total degree p are non-zero only for a finite number

of r ≥ 0.

2We remind the reader that we always work with cohomological gradings – as a consequence the dg algebra of
singular chains is concentrated in non-positive degrees.
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Corollary 4.20. The A∞-functor ϕ̃ induces isomorphisms between the homomorphism com-

plexes, i.e. for any graded vector bundles E, F over X with flat Z-graded connection, the chain

map

ϕ̃1 : Ω
•(X,Hom(E,F )) → HC•(C•(Ω

M

∗ X),Hom(E|∗, F |∗))

induces an isomorphism on cohomology.

Proof. Let F•Ω
•(X,Hom(E,F )) and F•HC

•(C•(Ω
M
∗ X),Hom(E|∗, F |∗)) be the filtrations in-

troduced in Definition 4.18. The map ϕ̃1 is compatible with the filtrations. Since the as-
sociated spectral sequences E and F converge to the cohomologies of Ω•(X,Hom(E,F )) and
HC•(C•(Ω

M
∗ X),Hom(E|∗, F |∗)), it suffices to check that ϕ̃1 induces an isomorphism between the

second pages of E and F , respectively.
The first sheets are given by

E1 = Ω•(X,Hom(H∂(E),H∂(F ))) and F1 = HC•(C•(Ω
M

∗ X),Hom(H∂(E|∗),H∂(F∗))),

whereH∂(E) andH∂(F ) refer to cohomology with respect to the fibrewise coboundary operators
∂ on E and F . The induced coboundary operators on the second sheets are given by the
covariant derivative with respect to the induced flat connection [∇] on the graded vector bundle
Hom(H∂(E),H∂(F )) and the Hochschild coboundary operator b, twisted by the holonomies with
respect to [∇]. Moreover, the induced chain map coincides with ϕ from Proposition 4.17 and
hence induces an isomorphism between the second sheets E2 and F2, respectively. �

Proposition 4.21. The A∞-functor ϕ̃ : FZ(X) → Rep(C•(Ω
M
∗ X)) is quasi-surjective, i.e for

every object τ of Rep(C•(Ω
M
∗ X)) there is a flat graded vector bundle E such that ĥol∗(E) is

quasi-isomorphic to τ .

Proof. Recall from §1.2 that every object in Rep(C•(Ω
M
∗ X)) is quasi-isomorphic to one where

the underlying complex is of the form (V, 0), i.e. has trivial coboundary operator. Let τ be such
an object. By definition, τ is a Maurer-Cartan element of the dg algebra HC•(C•(Ω

M
∗ X),EndV ).

We decompose τ with respect to the auxiliary degree we introduced in Definition 4.18, i.e.

τ =
∑

k≥0

τ(k), τ(k) ∈ Hom(HC−k(C•(Ω
M

∗ X)),EndV ).

Since C•(Ω
M
∗ X) is concentrated in non-positive degrees, the only component of HCk(C•(Ω

M
∗ X))

in degree 0 is R. Since the restriction of τ to R is required to vanish, we conclude that τ(0) vanishes
as well. We next consider the component τ(1). By definition, it is given by the restriction of τ(1)
to elements of HC•(C•(Ω

M
∗ X)) of degree −1. This are exactly the chains on ΩM

∗ X of degree 0,
i.e. linear combinations of points in ΩM

∗ X. The map

τ(1) : C0(Ω
M

∗ X) → EndV

is part of the linear component τ1 of an A∞-morphism from C•(Ω
M
∗ X) to EndV . Hence it induces

a morphism of graded algebras on the level of homology. Since the coboundary operator on V
is trivial we obtain a morphism of graded algebras

[τ(1)] : H0(Ω
M

∗ X) → EndV.
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We note that H0(Ω
M
∗ X) is the group-ring of the fundamental group π1(X, ∗) of X. By the

universal property of the group-ring, [τ(1)] corresponds to a morphism of groups

ρτ : π1(X, ∗) → GL(V ),

i.e. a representation of the fundamental group of X. By the adjoint bundle construction, there
is a vector bundle E, equipped with a flat connection ∇, such that the holonomy representation
of (E,∇) coincides with ρτ . The Z-grading on V induces a Z-grading on E, which is preserved
by ∇. We now consider the restriction of the A∞-functor ϕ̃ to the object (E,∇). This gives us
an A∞-morphism

ϕ̃ : Ω•(X,EndE) → HC•(C•(Ω
M

∗ X),EndV ).

The left-hand side is equipped with the covariant derivative corresponding to ∇, while the
right-hand side is equipped with the Hochschild boundary operator twisted by ρτ . We observe
that

τ+ :=
∑

k≥2

τ(k)

is a Maurer-Cartan element of the right-hand side. By Proposition A.9 from Appendix A we
can find a Maurer-Cartan element α =

∑
k≥2 α(k) of Ω•(X,EndE) such that ϕ̃∗(ω) is gauge-

equivalent to τ+. Finally, we observe that this is tantamount to saying that the A∞-functor ϕ̃
sends E, equipped with the the flat Z-graded connection corresponding to (∇, α2, α3, . . . ), to an
object of Rep(C•(Ω

M
∗ X)) which is isomorphic to τ . This completes the proof. �

As a consequence we have the following result:

Corollary 4.22. Let X be a connected manifold. The dg categories FZ(X) and Rep(C•(Ω
M
∗ X))

are quasi-equivalent.

Remark 4.23. One can obtain this corollary in a less direct way by combining

• The quasi-equivalence between FZ(X) and Rep∞(π∞(X)), established by Block-Smith [5].

• The quasi-equivalence between Rep∞(π∞(X)) and Rep∞(C•(Ω
M
∗ X)), established by Hol-

stein [11].

Appendix

A The Maurer-Cartan equation in a filtered dg algebra

Here we establish a technical result regarding Maurer Cartan elements of dg algebras that are
equipped with an auxiliary grading. This result is used in the proof of Proposition 4.21.

Definition A.1. A filtration on a dg algebra A is a decreasing sequence of dg ideals

A = F0(A) ⊇ F1(A) ⊇ F2(A) ⊇ · · · ,

such that: ⋂

k∈N

Fk(A) = 0,

and

Fi(A) · Fj(A) ⊆ Fi+j(A).
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The filtration is said to be complete if the natural inclusion

A →֒ Â := lim−→A/Fk(A)

is an isomorphism.

Definition A.2. Let A,B be filtered algebras. We say that an A∞-morphism ψ : A → B is

filtration preserving if

ψk(a1, · · · ak) ∈ Fl1+···+lk−1(B) whenever ai ∈ Fli(A).

We say that ψ : A→ B is strongly filtration preserving if

ψk(a1, · · · ak) ∈ Fl1+···+lk+k−1(B) whenever ai ∈ Fli(A).

Remark A.3. If A is a filtered algebra then each of the algebras Fk(A) inherits a filtration
given by

Fi(Fk(A)) := Fi+k(A).

If ψ : A → B is a filtration preserving A∞-morphism then for each k ≥ 1, ψ restricts to an
A∞-morphism:

ψ : Fk(A) → Fk(B),

which is strongly filtration preserving.

Remark A.4. A filtration on a dg algebra A induces a Hausdorff topology on the underlying
vector space of Â where the basis of neighbourhoods for zero is {Fk(A)}k∈N. Let A,B be dg
algebras with filtration. If ψ : A→ B is a strongly filtration preserving A∞-morphism then the
push-forward map

ψ∗ : MC(Â) → MC(B̂), ψ∗(α) :=
∑

k≥1

ψk(α
⊗k)

is well defined because the infinite sequence on the right is convergent.

Definition A.5. Let A be a dg algebra. An auxiliary grading on A is a decomposition

A =
⊕

k≥0

A(k),

with {A(k)}k≥0 a collection of graded subspaces of A such that:

• For fixed degree r ∈ Z we have Ar ∩A(k) = 0 for k ≫ 0.

• The collection {A(k)}k≥0 is compatible with the differential and the multiplication in the

sense that

dA(k) ⊆ A(k+1) and A(k) · A(l) ⊂ A(k+l)

hold.

Remark A.6. Let A be a dg algebra with an auxiliary grading, then there is an induced
filtration given by:

Fk(A) :=
⊕

l≥k

A(l).
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Recall that U(A) denotes the group of invertibles of degree 0 in A. Since the filtration is locally
finite, i.e. in each degree r only a finite number of intersections Ar ∩ FkA are non-trivial, the
filtration is complete.
Denote by G(A) the subset of U(A) given by elements of the form

eξ = 1 + ξ + ξ · ξ + ξ · ξ · ξ + ...

for some ξ ∈ F1(A)
0. The gauge-action of U(A) restricts to an action on the spaces MC(F2(A)).

The Maurer-Cartan equation for τ =
∑

k≥2 τ(k) ∈ MC(F2(A)) is equivalent to

dτ(k) = −
∑

r+s=k+1

τ(r) · τ(s)

for all k ≥ 2. An element eξ of G(A) acts on τ by

τ • eξ = e−ξτeξ + dξ.

In terms of the decomposition τ =
∑

k≥2 τ(k) we have

(τ • eξ)(k) = d(ξ(k−1)) +
∑

i1+···+ir+j+l1+···+ls=k

(−1)tξ(i1) · · · ξ(ir)τ(j)ξ(l1) · · · ξ(ls).

Definition A.7. Let A and B be two dg algebras with auxiliary gradings. An A∞-morphism

ψ : A→ B is said to be compatible with the auxiliary gradings if ψr maps A(k1) ⊗ · · · ⊗A(kr) to

B(k1+···kr−r+1).

Remark A.8. Let ψ : A → B be an A∞-morphism compatible with auxiliary gradings on A
and B, respectively. Then ψ restricts to a map:

ψ : F2(A) → F2(B),

which is strongly filtration preserving and therefore there is a well defined push forward map

ψ∗ : MC(F2(A)) → MC(F2(B)).

Proposition A.9. Let A and B be two dg algebras, equipped with auxiliary gradings. Suppose

that ψ : A → B is an A∞ quasi-isomorphism which is compatible with the auxiliary gradings.

Then the push-forward map

ψ∗ : MC(F2(A)) → MC(F2(B))

is surjective on gauge-equivalence classes of MC(F2(B)).

Proof. Let τ be a Maurer-Cartan element of F2(B). We will work inductively with respect to
the auxiliary grading. It suffices to prove the following statement for any k ≥ 1. Given

µ[k] :=
∑

2≤l≤k

µ(l) ∈ A1, with µ(l) ∈ A1
(l)

such that:
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(i) For all 2 ≤ l ≤ k the equation

dµ(l) +
∑

r+s=l+1

µ(r) · µ(s) = 0

holds.

(ii) we have ψ∗(µ[k]) ≡ τ mod(Fk+1(B)).

Then there exists µ(k+1) ∈ A1
(k+1) and ξ(k) ∈ B0

(k) such that

µ[k + 1] := µ[k] + µ(k+1),

satisfies the Maurer-Cartan equation modulo Fk+3(A) and

ψ∗(µ[k + 1]) = τ • eξ(k) mod(Fk+2(B)).

Note that the claim above is indeed enough to prove the proposition, because the infinite product

eξ(1)eξ(2)eξ(3) · · · =: g

and the infinite sum ∑

k≥2

µ(k) =: µ

are convergent and satisfy ψ∗(µ) = τ ∗ g.
We will now prove the claim above. Consider the quantity:

R(k+2) :=
∑

r+s=k+2

µ(r) · µ(s).

The induction hypothesis (i) implies that R(k+2) is closed. We claim that the cohomology class
of R(k+2) is zero. In order to prove this, define X(k+2) to be the component in B(k+2) of the
sum: ∑

p,q

ψp+q+1((µ[k])
⊗p ⊗ (dµ[k] + µ[k] · µ[k])⊗ (µ[k])⊗q) ∈ B.

On the one hand, the induction hypothesis (i) guarantees that

dµ[k] + µ[k] · µ[k] = R(k+2) mod(Fk+3(A)),

which implies that
Xk+2 = ψ1(R(k+2)).

On the other hand, since ψ is an A∞-morphism, X(k+2) equals the B(k+2)-component of

dψ∗(µ[k]) + ψ∗(µ[k]) · ψ∗(µ[k]),

which equals the B(k+2)-component of

dψ∗(µ[k]) +
∑

r+s=k+2

τ(r) · τ(s) = d
(
ψ∗(µ(k))− τ(k+1)

)
,

33



We conclude that

ψ1(R(k+2)) = X(k+2) = d
(
(ψ∗(µ[k]))(k+1) − τ(k+1)

)
,

and in particular that the cohomology class of ψ1(R(k+2)) is trivial. Since ψ1 induces an iso-
morphism in cohomology, this implies that the cohomology class of R(k+2) is trivial as well.
Therefore there exists µ(k+1) such that

dµ(k+1) = −R(k+2) = −
∑

r+s=k+2

µ(r) · µ(s),

as desired. Moreover, the component of τ(k+1) − ψ∗(µ[k] + µ(k+1)) in B(k+1) is closed since

d
(
(ψ∗(µ[k] + µ(k+1)]))(k+1) − τ(k+1)

)
= d(ψ∗(µ[k])(k+1)) + d(ψ1(µ(k+1))− d(τ(k+1))

= X(k+2) + ψ1(dµ(k+1)) = X(k+2) − ψ1(R(k+2)) = 0.

Because ψ1 induces an isomorphism in cohomology, we can find a cocycle λ(k+1) ∈ A and an
element ξ(k) ∈ B(k) such that

τ(k+1) + dξ(k) = ψ∗(µ[k] + µ(k+1))(k+1) + ψ1(λ(k+1)).

holds. Finally we set µ′[k + 1] := µ[k] + µ(k+1) + λ(k+1) and observe that by construction we
have

ψ∗(µ
′[k + 1]) = τ • eξ(k) mod (Fk+2(B)).

This completes the inductive argument and hence the proof.
�
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