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NEW AND OLD RESULTS ON SPHERICAL VARIETIES

VIA MODULI THEORY

ROMAN AVDEEV AND STÉPHANIE CUPIT-FOUTOU

Abstract. Given a connected reductive algebraic group G and a finitely generated
monoid Γ of dominant weights of G, in 2005 Alexeev and Brion constructed a moduli
scheme MΓ for multiplicity-free affine G-varieties with weight monoid Γ. This scheme
is equipped with an action of an ‘adjoint torus’ Tad and has a distinguished Tad-fixed
point X0. In this paper, we obtain a complete description of the Tad-module structure in
the tangent space of MΓ at X0 for the case where Γ is saturated. Using this description,
we prove that the root monoid of any affine spherical G-variety is free. As another
application, we obtain new proofs of uniqueness results for affine spherical varieties and
spherical homogeneous spaces first proved by Losev in 2009. Furthermore, we obtain a
new proof of Alexeev and Brion’s finiteness result for multiplicity-free affine G-varieties
with a prescribed weight monoid. At last, we prove that for saturated Γ all the irreducible
components of MΓ, equipped with their reduced subscheme structure, are affine spaces.

Introduction

All objects considered in this paper are defined over an algebraically closed field k of
characteristic 0.

Let G be a connected reductive algebraic group. A G-variety (that is, an algebraic
variety equipped with a regular action of G) is called spherical if it is normal and contains
a dense orbit for the induced action of a Borel subgroup B ⊂ G. Famous examples of
spherical varieties are toric varieties, flag varieties, and symmetric varieties. Due to a
combination of numerous works and methods, the structure theory of spherical varieties
is now well understood and has recently led to a full classification of these objects; see
[Ti11, Chapter 5] for a review.

In this paper we obtain new results and also recover a number of already known facts
on spherical varieties via one single approach—that of moduli theory, which does not
involve any classification results in the theory of spherical varieties. Specifically, we are
concerned with the moduli theory developed by Alexeev and Brion in [AB05] for affine
spherical G-varieties and more generally for multiplicity-free affine G-varieties.

An affine G-variety X is said to be multiplicity-free if X is irreducible and the algebra
k[X ] of regular functions on X, regarded as a G-module, contains every simple G-module
with multiplicity at most 1. By a theorem of Vinberg and Kimelfeld [ViK78], an irreducible
affine G-variety is multiplicity-free if and only if it possesses a dense B-orbit. In particular,
affine spherical G-varieties are characterized as normal multiplicity-free affine G-varieties.

Given a multiplicity-free affine G-variety X, the G-module structure of k[X ] is encoded
in the weight monoid ΓX of X, consisting of all dominant weights λ of G for which k[X ]
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2 ROMAN AVDEEV AND STÉPHANIE CUPIT-FOUTOU

contains a simple G-submodule k[X ]λ with highest weight λ. This monoid is known to
be finitely generated. Besides, X is normal if and only if ΓX is saturated, that is, ΓX is
the intersection of a lattice with a cone.

One more invariant of a multiplicity-free affine G-varietyX is its root monoid ΞX , which
arises from the ring structure of k[X ]. By definition, ΞX is generated by all expressions
λ+µ− ν with λ, µ, ν ∈ ΓX such that the linear span of k[X ]λ ·k[X ]µ contains k[X ]ν . Let
Ξsat
X denote the saturation of ΞX , that is, the intersection of the lattice generated by ΞX

with the cone spanned by ΞX . An important property of the root monoid was discovered
by Knop in [Kn96], who proved that the monoid Ξsat

X is free.
In [AB05], Alexeev and Brion constructed and studied a moduli scheme MΓ for mul-

tiplicity-free affine G-varieties with prescribed weight monoid Γ. This scheme is affine
and of finite type; it is equipped with an action of an adjoint torus Tad (the quotient of a
maximal torus of G by the center of G) in such a way that the Tad-orbits of MΓ bijectively
correspond to the G-isomorphism classes of multiplicity-free affine G-varieties with weight
monoid Γ. Various examples of moduli schemes MΓ were further studied under different
assumptions on the monoid Γ. The case of monoids generated by a single element was
worked out in [Ja07]; the paper [BCF08] dealt with free monoids that are G-saturated (the
latter means that the monoid consists of all dominant weights of G lying in a fixed lattice);
several other special instances of free monoids were studied in [CF09, PVS12, PVS16]. In
all these cases, MΓ was shown to be an affine space (as a scheme). Finally, in [BVS16]
it was proved that for an arbitrary free monoid Γ all the irreducible components of MΓ,
equipped with their reduced subscheme structure, are affine spaces.

Given an arbitrary finitely generated monoid Γ of dominant weights of G, there always
exists a multiplicity-free affine G-variety X0 = X0(Γ) with weight monoid Γ such that
the linear span of k[X0]λ · k[X0]µ coincides with k[X0]λ+µ for all λ, µ ∈ Γ. Such varieties
were first considered and studied by Vinberg and Popov in [ViP72]. It is known from
[AB05] that the Tad-orbit in MΓ corresponding to X0 is just a Tad-fixed closed point (still
denoted by X0), hence the tangent space TX0

MΓ of MΓ at X0 is naturally equipped with
the structure of a Tad-module.

One of the main achievements of this paper is a complete description of the Tad-module
structure of TX0

MΓ purely in terms of Γ in the case where Γ is saturated (see Theorem 3.1).
In particular, we show that TX0

MΓ is a multiplicity-free Tad-module whose weights, up
to a sign, belong to a certain finite set Σ(G) depending only on G. The set Σ(G) turns
out to be a subset of the set of spherical roots of G that is well known in the theory of
spherical varieties.

As a first application of our description of TX0
MΓ, we show that, given an arbitrary

affine spherical G-variety X, every indecomposable element of the monoid ΞX is primitive
in the lattice ZΞX (see Proposition 4.10(b)). Combining this with the above-mentioned
result of Knop on the freeness of Ξsat

X , we derive that the monoid ΞX itself is free (see
Theorem 4.11).

As a second application, we obtain a new proof of the following uniqueness result for
affine spherical G-varieties: up to a G-isomorphism, every affine spherical G-variety X is
uniquely determined by the pair (ΓX ,ΣX), where ΣX is the set of spherical roots ofX, that
is, primitive elements of the lattice ZΓX lying on extremal rays of the cone spanned by ΞX

(see Corollary 4.16). This fact was first proved by Losev in [Lo09b]. It is worth noticing
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that the above-mentioned uniqueness result easily extends to arbitrary multiplicity-free
affine G-varieties (see Corollary 4.22).

As a third application, we derive a new proof of a rule that enables one to determine
the set ΣX of free generators of the monoid Ξsat

X of an affine spherical G-variety X starting
from the set ΣX of spherical roots (see Theorem 4.19). This rule was first obtained by
Losev in [Lo09a]. (In fact, Losev’s result deals with a much more general situation.)

We point out that in all the three above-mentioned applications our proofs easily reduce
to checking certain combinatorial properties of the set of weights of the Tad-module TX0

MΓ.
Using elementary additional material on spherical varieties, from the uniqueness result

for affine spherical G-varieties we derive the uniqueness property for spherical homo-
geneous spaces first obtained by Losev in [Lo09a]; see our Theorem 4.24 for a precise
statement.

We note that Losev’s proofs of the above-mentioned uniqueness results for affine spher-
ical varieties and spherical homogeneous spaces use Lie-theoretical methods; the already
known classification of affine spherical homogeneous spaces comes into play in his ap-
proach. It is also worth mentioning that one more independent proof of the unique-
ness property for spherical homogeneous spaces follows from a combination of Luna’s
paper [Lu01] and Cupit-Foutou’s one [CF09], the latter dealing with more complicated
aspects of moduli theory of affine spherical varieties than in this paper.

Making use of the uniqueness property for affine spherical G-varieties, we recover the
following result first obtained by Alexeev and Brion in [AB05]: there are only finitely
many G-isomorphism classes of multiplicity-free affine G-varieties with prescribed weight
monoid Γ (see Corollary 4.23); equivalently, MΓ contains only finitely many Tad-orbits.
The initial proof of this fact given in [AB05] used a vanishing theorem of Knop [Kn94].

At last, combining some of the above-mentioned results, we establish the following prop-
erty suspected by Brion in [Br13]: for saturated Γ, all the irreducible components of MΓ,
equipped with their reduced subscheme structure, are affine spaces (see Corollary 4.18).
In the above statement, considering the reduced subscheme structure of the irreducible
components of MΓ is essential: using the results of the present paper, in [ACF18, § 7.6]
we construct examples of saturated monoids Γ such that MΓ is a non-reduced point.

This paper is organized as follows. In § 1, we fix notation and conventions used in
this paper. In § 2 we gather some basic facts on multiplicity-free affine G-varieties and
moduli schemes MΓ. In § 3 we obtain our description of the Tad-module structure in the
tangent space of MΓ at X0 whenever Γ is saturated. Applications of this description
are presented in § 4. Appendix A lists sign conventions for Chevalley bases of simple
Lie algebras used in § 3.8. In appendix B we present some information on invariants of
spherical homogeneous spaces; this material is needed in §§ 4.3–4.4.
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1. Notation and conventions

Throughout this paper, all topological terms relate to the Zariski topology. All sub-
groups of algebraic groups are assumed to be closed. The Lie algebras of algebraic groups
denoted by capital Latin letters are denoted by the corresponding small Gothic letters.
A variety is a separated reduced scheme of finite type. A K-variety is a variety equipped
with a regular action of an algebraic group K. A K-isomorphism of two K-varieties is a
K-equivariant isomorphism.

Z+ = {z ∈ Z | z ≥ 0};
Q+ = {q ∈ Q | q ≥ 0};
k× is the multiplicative group of the field k;
|X| is the cardinality of a finite set X;
〈· , ·〉 is the natural pairing between HomZ(L,Q) and L, where L is a lattice;
V ∗ is the dual of a vector space V ;
K0 is the connected component of the identity of an algebraic group K;
Kx is the stabilizer of a point x under an action of a group K;
X(K) is the character group of a group K (in additive notation);
kχ is the value of a character χ ∈ X(K) at an element k of a group K;
Z(K) is the center of a group K;
NL(K) is the normalizer of a subgroup K in a group L;
Y is the closure of a subset Y of a scheme X;
k[X ] is the algebra of regular functions on a variety X;
k(X) is the field of rational functions on an irreducible variety X;
QuotA is the field of fractions of a commutative algebra A with no zero divisors;
DerA is the space of derivations of a commutative algebra A;
[l, l] is the derived subalgebra of a Lie algebra l;
OX is the structure sheaf of a scheme X;
TxX is the tangent space of a scheme X at a closed point x ∈ X;
G is a connected reductive algebraic group;
B ⊂ G is a fixed Borel subgroup;
T ⊂ B is a fixed maximal torus;
U ⊂ B is the unipotent radical of B;
Tad = T/Z(G) is the adjoint torus;
( · , ·) is a fixed inner product on X(T ) ⊗Z Q invariant with respect to the Weyl

group NG(T )/T ;
∆ ⊂ X(T ) is the root system of G with respect to T ;
∆+ ⊂ ∆ is the set of positive roots with respect to B;
Π ⊂ ∆+ is the set of simple roots;
α∨ ∈ HomZ(X(T ),Z) is the dual root corresponding to a root α ∈ ∆;
Λ+ ⊂ X(T ) is the monoid of dominant weights with respect to B;
V (λ) is the simple G-module with highest weight λ ∈ Λ+;
U(g) is the universal enveloping algebra of g.
The lattices X(B) and X(T ) are identified via restricting characters from B to T .
The lattice X(Tad) is canonically identified with ZΠ.
Highest weight vectors and lowest weight vectors of all simple G-modules are considered

with respect to B.
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For every λ ∈ X(T ), we set λ∗ = −w0λ where w0 is the longest element of the Weyl
group NG(T )/T .

If V is a vector space equipped with an action of a groupK, then the notation V K stands

for the subspace of K-invariant vectors and, for every character χ of K, the notation V
(K)
χ

stands for the subspace of K-semi-invariant vectors of weight χ.
Let K be a group and let K1, K2 be subgroups of K. We write K = K1 ⋋K2 if K is a

semidirect product of K1, K2 with K1 being a normal subgroup of K.
Let σ ∈ ZΠ and consider the expression σ =

∑
α∈Π

kαα, where kα ∈ Z for all α ∈ Π. The

support of σ is the set Supp σ = {α ∈ Π | kα 6= 0}. The type of σ is the type of the
Dynkin diagram of the set Supp σ. When the Dynkin diagram of Supp σ is connected, we
number the simple roots in Supp σ as in [Bo68] and denote the ith simple root by αi.

For every σ ∈ ZΠ \ {0}, the root subsystem of ∆ with set of simple roots Supp σ is
denoted by ∆σ.

For every subset F ⊂ X(T ), we set F⊥ = {α ∈ Π | 〈α∨, λ〉 = 0 for all λ ∈ F}. By
abuse of notation, for a single element λ ∈ X(T ) we write λ⊥ instead of {λ}⊥.

For every α ∈ ∆, the image of α∨ in t is denoted by hα.
For every α ∈ ∆, we fix a nonzero root vector eα ∈ g of weight α with respect to the

adjoint action of T . Moreover, we assume that the set {hα | α ∈ Π} ∪ {eα | α ∈ ∆}
is a Chevalley basis of the semisimple Lie algebra [g, g] (for details on Chevalley bases
see [Ca89, §§ 4.1–4.2]).

For every α, β ∈ ∆ with α+β ∈ ∆ we let Nα,β ∈ {±1,±2,±3,±4} be the corresponding
structure constant so that [eα, eβ] = Nα,βeα+β . One has |Nα,β| = p + 1 where p is the
largest integer such that β − pα ∈ ∆.

Let Q be a finite-dimensional vector space over Q.
A subset C ⊂ Q is called a (finitely generated convex) cone if there are finitely many

elements q1, . . . , qs ∈ Q such that C = Q+q1 + . . .+Q+qs.
The dimension of a cone is the dimension of its linear span.
The dual cone of a cone C ⊂ Q is the cone

C∨ = {ξ ∈ Q∗ | ξ(q) ≥ 0 for all q ∈ C}.

One always has (C∨)∨ = C.
A face of a cone C ⊂ Q is a subset F ⊂ C of the form

F = C ∩ {q ∈ Q | ξ(q) = 0}

for some ξ ∈ C∨. Each face of C is again a cone.
An extremal ray of a cone C is a face of dimension 1 having the form Q+q for some

q ∈ Q \ {0}.

2. Basic material

In this section, we collect basic material on multiplicity-free affine G-varieties and on
Alexeev and Brion’s moduli schemes.

2.1. Spherical G-varieties and multiplicity-free affine G-varieties.

Definition 2.1. A G-variety X is said to be spherical if X is normal and possesses a
dense (and hence open) B-orbit.
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It follows from the definition that every spherical G-variety is irreducible.
Given a G-variety X, the algebra k[X ] is naturally equipped with the G-module struc-

ture given by (gf)(x) = f(g−1x) for all g ∈ G, f ∈ k[X ], and x ∈ X.

Definition 2.2. An affine G-variety X is said to be multiplicity-free if X is irreducible
and every simple G-module occurs in k[X ] with multiplicity at most 1.

Theorem 2.3 ([ViK78, Theorem 2]). Let X be an irreducible affine G-variety. The

following conditions are equivalent:

(1) X is multiplicity-free.

(2) X possesses a dense B-orbit.

Corollary 2.4. Let X be an affine G-variety. The following conditions are equivalent:

(1) X is spherical.

(2) X is multiplicity-free and normal.

2.2. The weight monoid. Let X be a multiplicity-free affine G-variety.

Definition 2.5. The weight monoid of X, denoted by ΓX , is the set of all λ ∈ Λ+ such
that k[X ] contains a simple G-submodule isomorphic to V (λ).

Remark 2.6. As k[X ] is an integral domain, the product of two highest weight vectors in
k[X ] is nonzero and hence again a highest weight vector. It follows that ΓX is indeed a
submonoid in Λ+.

For every λ ∈ ΓX , we let k[X ]λ denote the simple G-submodule of k[X ] isomorphic
to V (λ), so that

k[X ] =
⊕

λ∈ΓX

k[X ]λ.

Given a submonoid Γ ⊂ X(T ), let k[Γ] denote the “semigroup algebra” of Γ, that is, the
algebra with basis {uλ | λ ∈ Γ} and multiplication given by uλuµ = uλ+µ for all λ, µ ∈ Γ.
We equip k[Γ] with an action of T given by the formula t · uλ = tλuλ for all t ∈ T and
λ ∈ Γ. Clearly, the multiplication of k[Γ] is T -equivariant.

Proposition 2.7 ([Po86, Theorem 2]). There is a T -equivariant isomorphism k[X ]U ≃
k[ΓX ].

Corollary 2.8. The monoid ΓX is finitely generated.

Proof. As the algebra k[X ] is finitely generated, so is k[X ]U by [Ha67, Theorem 3.1] (see
also [Po86, Corollary 4 of Theorem 4]). It remains to apply Proposition 2.7. �

Proposition 2.9. The algebra k[X ] is integrally closed if and only if so is k[X ]U .

Proof. This is a particular case of Vust’s normality criterion [Vu76, § 1.2, Theorem 1] (see
also [Po86, Corollary of Theorem 6]). �

Definition 2.10. A monoid Γ ⊂ X(T ) is said to be saturated if it satisfies the equality
Γ = ZΓ ∩Q+Γ in X(T )⊗Z Q.

Proposition 2.11. The following conditions are equivalent:

(1) X is normal (and hence spherical).
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(2) ΓX is saturated.

Proof. By [KKMS73, Ch. I, § 1, Lemma 1], the algebra k[ΓX ] is integrally closed if and
only if ΓX is saturated. Now the claim follows from Propositions 2.7 and 2.9. �

2.3. The root monoid and related invariants. Let X be a multiplicity-free affine
G-variety.

Definition 2.12. The root monoid of X, denoted by ΞX , is the monoid in X(T ) generated
by all expressions λ + µ− ν with λ, µ, ν ∈ ΓX such that the linear span of k[X ]λ · k[X ]µ
contains k[X ]ν .

It follows from the definition that ΞX is a submonoid of Z+Π. It is known that ΞX is
finitely generated, see [AB05, Proposition 2.13].

Let Ξsat
X denote the saturation of ΞX , that is, Ξsat

X = ZΞX ∩Q+ΞX .

Theorem 2.13 (see [Kn96, Theorem 1.3]). The monoid Ξsat
X is free.

According to Theorem 2.13, let ΣX ⊂ Z+Π be the set of free generators of the
monoid Ξsat

X , that is, the linearly independent set such that

Ξsat
X = Z+ΣX .

Along with the set ΣX , we shall also consider the set ΣX consisting of primitive elements
σ of the lattice ZΓX such that Q+σ is an extremal ray of the cone Q+ΞX ⊂ ZΓX ⊗Z Q.
Elements of ΣX are called spherical roots of X.

2.4. The G-variety X0. From now on until the end of § 2.8, Γ ⊂ Λ+ is an arbitrary
finitely generated monoid.

Fix an arbitrary finite generating system E ⊂ Γ and consider the G-module

V = V (E) =
⊕

λ∈E

V (λ)∗.

For every λ ∈ E, fix a lowest weight vector vλ ∈ V (λ)∗. Put

x0 =
∑

λ∈E

vλ, O = Gx0, and X0 = O ⊂ V.

Theorem 2.14 ([ViP72, Theorem 6]). The following assertions hold:

(a) up to a G-isomorphism, the G-variety X0 is independent of the choice of E;

(b) X0 is a multiplicity-free affine G-variety;

(c) ΓX0
= Γ;

(d) ΞX0
= {0}, that is, the linear span of k[X0]λ · k[X0]µ coincides with k[X0]λ+µ for

all λ, µ ∈ ΓX .

2.5. The definition of MΓ. Consider the G-module

(2.1) AΓ =
⊕

λ∈Γ

V (λ).

For every λ ∈ Γ, fix a highest weight vector uλ ∈ V (λ). Then AU
Γ =

⊕
λ∈Γ

kuλ. We equip

AU
Γ with an algebra structure by setting

(2.2) uλ · uµ = uλ+µ for all λ, µ ∈ Γ.
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Thus we get a canonical identification

(2.3) AU
Γ ≃ k[Γ].

Every scheme S is naturally equipped with the sheaf of OS-G-modules OS ⊗k AΓ.
We consider the contravariant functor

MΓ : (Schemes) → (Sets)

assigning to each scheme S the set of OS-G-algebra structures on the sheaf OS ⊗k AΓ

that extend the multiplication (2.2) on AU
Γ . By [AB05, Proposition 2.10], this definition

of MΓ agrees with that given in [AB05, Definition 1.11], see also [Br13, § 4.3].
The following result is a consequence of [AB05, Theorems 1.12 and 2.7], see also [Br13,

§ 4.3].

Theorem 2.15. The functor MΓ is represented by an affine scheme MΓ of finite type.

Let ML(AΓ) denote the set of all G-equivariant multiplication laws on AΓ extending
the multiplication (2.2) on AU

Γ .

Corollary 2.16. The set of closed points of MΓ is in bijection with the set ML(AΓ).

2.6. Relation of MΓ to multiplicity-free affine G-varieties with weight monoid Γ.

Consider a multiplicity-free affine G-variety X with weight monoid Γ. In view of Propo-
sition 2.7, there is a T -equivariant algebra isomorphism

(2.4) τ : k[X ]U
∼
−→ k[Γ].

Identifying k[Γ] with AU
Γ via (2.3), we get a T -equivariant isomorphism k[X ]U

∼
−→ AU

Γ .
Clearly, the latter isomorphism uniquely extends to a G-module isomorphism

(2.5) k[X ]
∼
−→ AΓ.

Transferring the algebra structure from k[X ] to AΓ via isomorphism (2.5), we obtain a
G-equivariant multiplication law on AΓ extending the multiplication of AU

Γ .
Let X1, X2 be two multiplicity-free affine G-varieties with weight monoid Γ and fix

T -equivariant isomorphisms τi : k[Xi]
U ∼
−→ k[Γ] (i = 1, 2). We say that the pairs (X1, τ1)

and (X2, τ2) are equivalent if there is a G-equivariant isomorphism k[X1]
∼
−→ k[X2] such

that the induced T -equivariant isomorphism k[X1]
U ∼

−→ k[X2]
U fits into a commutative

diagram

k[X1]
U k[X2]

U

k[Γ]

∼

τ1 τ2

Combining the above material with Corollary 2.16, we get

Proposition 2.17. The closed points of MΓ are in bijection with the equivalence classes

of pairs (X, τ), where X is a multiplicity-free affine G-variety with weight monoid Γ and

τ : k[X ]U
∼
−→ k[Γ] is a T -equivariant algebra isomorphism.
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2.7. Basic facts on the action of Tad on MΓ. Let AΓ be as in § 2.5. In view of (2.1),
every multiplication law m ∈ ML(AΓ) can be expressed as the sum

m =
∑

λ,µ,ν∈Γ

mν
λ,µ

where each component mν
λ,µ : V (λ)⊗ V (µ) → V (ν) is a G-module homomorphism.

Proposition 2.18 ([AB05, Proposition 2.11]). Modulo the identification of Corol-

lary 2.16, the action of Tad on the set of closed points of MΓ is described as follows:

(2.6) (t ·m)νλ,µ = tν−λ−µmν
λ,µ for all t ∈ Tad, m ∈ ML(AΓ).

Corollary 2.19. Modulo the identification of Proposition 2.17, suppose that (the equiv-

alence classes of ) two closed points (X1, τ1) and (X2, τ2) of MΓ lie in the same Tad-orbit.
Then X1 and X2 are G-isomorphic.

Theorem 2.20 ([AB05, Theorem 1.12 and Lemma 2.2]). The G-isomorphism classes of

multiplicity-free affine G-varieties with weight monoid Γ are in bijection with the Tad-orbits
in MΓ.

The following result is a consequence of Corollary 2.19 and Theorem 2.20.

Corollary 2.21. Suppose that X is a multiplicity-free affine G-variety with weight

monoid Γ. Then, modulo the identification of Proposition 2.17, the closed points of the

Tad-orbit in MΓ corresponding to X are all (equivalence classes of ) pairs of the form

(X, τ).

According to Theorem 2.20, for every multiplicity-free affine G-variety X with weight
monoid Γ we let CX denote the closure of the Tad-orbit in MΓ corresponding to the G-
isomorphism class of X.

Since ΞX0
= {0} by Theorem 2.14(d), it follows from (2.6) and Corollary 2.21 that the

Tad-orbit in MΓ corresponding to X0 is a Tad-fixed (closed) point. In what follows, by
abuse of notation, we denote this point by X0. In particular, CX0

= {X0}.

Theorem 2.22 ([AB05, Theorem 2.7]). The Tad-fixed point X0 ∈ MΓ is the unique closed

Tad-orbit in MΓ. Equivalently, X0 is contained in each Tad-orbit closure in MΓ.

Theorem 2.23 ([AB05, Proposition 2.13]). Let X be a multiplicity-free affine G-variety

with weight monoid Γ. The Tad-orbit closure CX ⊂ MΓ, equipped with its reduced sub-

scheme structure, is a multiplicity-free affine Tad-variety whose weight monoid is ΞX .

Corollary 2.24. Under the hypotheses of Theorem 2.23, the tangent space TX0
CX is a

multiplicity-free Tad-module whose set of weights is

{−τ | τ is an indecomposable element of ΞX}.

Proof. By Theorem 2.23, CX is a multiplicity-free affine Tad-variety with weight

monoid ΞX , so that k[CX ] =
⊕

ξ∈ΞX

k[CX ]
(Tad)
ξ . Recall from Theorem 2.22 that X0 is the

unique Tad-fixed closed point in MΓX
(and hence in CX), therefore it corresponds to the

maximal ideal
I =

⊕

ξ∈ΞX\{0}

k[CX ]
(Tad)
ξ ⊂ k[CX ].

Now the assertion follows from the Tad-equivariant isomorphism TX0
CX ≃ (I/I2)∗. �
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2.8. Characterizations of TX0
MΓ. In this subsection we present general facts on the

Tad-module structure of the tangent space TX0
MΓ.

Let E, V , vλ (λ ∈ E), x0, O, and X0 be as in § 2.4. Let a∗G : (g, v) 7→ g ∗v be the natural
action of G on V . Given t ∈ T , let t denote the image of t in Tad.

According to [AB05, § 2.1], we define an action a∗ad : (t, v) 7→ t ∗ v of Tad on V in the
following way. For every λ ∈ E and v ∈ V (λ)∗, we set

t ∗ v = t−λ(t−1 ∗ v),

and then extend the action to the whole V . Note that

(2.7) V Tad =
⊕

λ∈E

kvλ.

We introduce the semi-direct product G̃ = G⋋ Tad given by tgt
−1

= t−1gt for all t ∈ T
and g ∈ G. Then the actions a∗G and a∗ad extend to an action of G̃ on V , which will be
denoted by a∗. Observe that x0 ∈ V Tad by (2.7), and so the orbit Gx0 is Tad-stable and

hence G̃-stable. It follows that X0 is G̃-stable.
All actions of G̃ (resp. Tad) that will be considered in the remaining part of this sub-

section are induced by the action a∗ (resp. a∗ad) on V and its restriction to X0.
Let Ω1

V (resp. Ω1
X0

) denote the sheaf of differential 1-forms on V (resp. X0). Consider
the canonical closed immersion i : X0 →֒ V and let I be the corresponding ideal sheaf.
By [Ha77, Proposition II.8.12] or [Li02, Proposition 6.1.24(d)], there is an exact sequence
of coherent sheaves of OX0

-modules

i∗(I/I2) → i∗Ω1
V → Ω1

X0
→ 0.

We note that i∗Ω1
V ≃ OX0

⊗k V
∗ as OX0

-modules. Applying HomOX0
(−,OX0

) to the
above exact sequence, we obtain an exact sequence of coherent sheaves of OX0

-modules

(2.8) 0 → TX0
→ OX0

⊗k V → NX0
,

where

TX0
= HomOX0

(Ω1
X0
,OX0

)

is the tangent sheaf of X0 (that is, the sheaf of k-derivations of the sheaf OX0
) and

NX0
= HomOX0

(i∗(I/I2),OX0
)

is the normal sheaf of X0 in V . Taking global sections in (2.8) yields an exact sequence

of k[X0]-G̃-modules

(2.9) 0 → H0(X0, TX0
) → H0(X0,OX0

⊗k V ) → H0(X0,NX0
) → T 1(X0) → 0,

where T 1(X0), called the space of infinitesimal deformations of X0, is by definition the cok-
ernel of the map H0(X0,OX0

⊗k V ) → H0(X0,NX0
) in (2.9) (see [Ha77, Exercise III.9.8]).

The following characterization of the tangent space TX0
MΓ, which is implicitly con-

tained in [AB05], has already been mentioned in [Br13, Subsection 4.3]. For the reader’s
convenience, we provide it together with a proof.

Proposition 2.25. There is a Tad-module isomorphism TX0
MΓ ≃ T 1(X0)

G.
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Proof. Applying [AB05, Proposition 2.8], we obtain an exact sequence of Tad-modules

0 → DerG(k[X0]) → DerT (k[X0]
U) → TX0

MΓ → T 1(X0)
G → T 1(X0//U)

T → 0,

where X0//U = Spec k[X0]
U . By [AB05, Proposition 1.15(ii)], T 1(X0//U)

T is trivial.
Therefore it remains to prove that the map DerG(k[X0]) → DerT (k[X0]

U), given by re-
stricting derivations from k[X0] to k[X0]

U , is surjective (and hence an isomorphism). To
this end, let B act on k[G] by right multiplication and on k[X0]

U in such a way that
each T -eigenvector of weight λ is multiplied by the character −λ∗. Then there is a G-
equivariant isomorphism of algebras

(2.10) k[X0] ≃ (k[G]⊗k k[X0]
U)B,

where B-invariants are taken with respect to the diagonal action of B and the action of
G on the right-hand side is induced by that on k[G] by left multiplication. It is clear
from (2.10) that every T -equivariant derivation of k[X0]

U extends to a G-equivariant
derivation of k[X0]. �

Corollary 2.26. There is an exact sequence of Tad-modules

0 → H0(X0, TX0
)G → H0(X0,OX0

⊗k V )G → H0(X0,NX0
)G → TX0

MΓ → 0.

Proof. This follows by taking G-invariants in (2.9) and applying Proposition 2.25. �

Given a smooth open subset Y ⊂ X0, the restrictions to Y of all the sheaves appearing
in (2.8) are well known to be locally free, hence they may be regarded as the sheaves
of sections of vector bundles on Y . More precisely, TX0

|Y (resp. (OX0
⊗k V )|Y , NX0

|Y )
will be regarded as the sheaf of sections of the tangent bundle of Y (resp. trivial bundle
Y × V , normal bundle of Y in V ). If, in addition, Y is G-stable, then the three vector
bundles are G-linearized in a natural way.

Proposition 2.27. The exact sequence of Tad-modules

0 → H0(O, TX0
|O)

G → H0(O, (OX0
⊗k V )|O)

G → H0(O, NX0
|O)

G

identifies with

0 → (gx0)
Gx0 → V Gx0 → (V/gx0)

Gx0 .

Proof. As O is G-homogeneous, for every G-linearized vector bundle p : F → O the space
of its G-invariant sections is canonically isomorphic to (p−1(x0))

Gx0 . Applying this to our
three vector bundles yields the claim. �

By [Br13, Lemma 3.9], for every coherent sheaf F on X0 the restriction map
H0(X0,G) → H0(O, G|O) is injective, where G = HomOX0

(F ,OX0
). Combining this

with Corollary 2.26 and Proposition 2.27 we obtain the following result.

Proposition 2.28. There is a commutative diagram of Tad-modules

(2.11)
0 H0(X0, TX0

)G H0(X0,OX0
⊗k V )G H0(X0,NX0

)G TX0
MΓ 0

0 (gx0)
Gx0 V Gx0 (V/gx0)

Gx0

where the rows are exact and the vertical arrows are injective maps.
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Proposition 2.29. There is an exact sequence of Tad-modules

0 → H0(X0,NX0
)G̃ → H0(X0,NX0

)G → TX0
MΓ → 0.

Remark 2.30. H0(X0,NX0
)G̃ = [H0(X0,NX0

)G]Tad .

Proof of Proposition 2.29. The claim will follow as soon as we show that the image of the
map

(2.12) H0(X0,OX0
⊗k V )G → H0(X0,NX0

)G

in (2.11) coincides with H0(X0,NX0
)G̃. Since Gx0

contains a maximal unipotent subgroup
of G, it follows that the space V Gx0 is just the linear span of all vectors vλ with λ ∈ E,
which implies

(2.13) V Gx0 = V Tad

by (2.7). Therefore Tad acts trivially on V Gx0 and hence on H0(X0,OX0
⊗k V )

G. Thus

the image of the map (2.12) is contained in H0(X0,NX0
)G̃, and so there is a commutative

diagram of vector spaces

(2.14)
H0(X0,OX0

⊗k V )G H0(X0,NX0
)G̃

V Gx0 [(V/gx0)
Gx0 ]Tad

where the vertical arrows are injective maps. Further, note that

H0(X0,OX0
⊗k V ) ≃ k[X0]⊗k V

and k[X0] ⊗k V contains V (λ) ⊗ V (λ)∗ as a G-submodule for every λ ∈ E. Since
dim(V (λ)⊗ V (λ)∗)G ≥ 1 for every λ ∈ Λ+, it follows that dimH0(X0,OX0

⊗k V )
G ≥ |E|.

On the other hand, it is clear that dimV Gx0 = |E|. Consequently, the left vertical arrow
in (2.14) is an isomorphism. At last, the surjectivity of the natural map V Tad → (V/gx0)

Tad

along with (2.13) implies that the lower horizontal arrow in (2.14) is a surjective map.
The latter already suffices to conclude that the map given by the upper horizontal arrow
in (2.14) is also surjective. �

Combining Proposition 2.29 with Remark 2.30 we obtain

Corollary 2.31. All Tad-weights of TX0
MΓ are nonzero.

3. The tangent space of MΓ at X0

Throughout this section, we fix the following notation:
Γ ⊂ Λ+ is an arbitrary finitely generated and saturated monoid;
L = HomZ(ZΓ,Z);
Q = L ⊗Z Q = HomZ(ZΓ,Q);
K ⊂ Q is the cone dual to Q+Γ;
K1 ⊂ K is the set of primitive elements q in L such that Q+q is an extremal ray of K;
ι : HomZ(X(T ),Q) → Q is the natural restriction map.
For every σ ∈ ZΓ we define the set

(3.1) K1(σ) = {̺ ∈ K1 | 〈̺, σ〉 > 0}.
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3.1. Statement of the main result. We first describe the set Σ(G). By definition, an
element σ ∈ X(T ) belongs to Σ(G) if and only if σ ∈ Z+Π \ {0} and the expression of
σ as a linear combination of the simple roots in Supp σ appears in Table 1. (In row 3 of
this table, α and β are the two distinct simple roots in Supp σ.)

Table 1. The set Σ(G)

No.
Type of
Supp σ

σ Πσ Note

1 A1 α1 ∅

2 A1 2α1 ∅

3 A1 × A1 α + β ∅

4 Ar α1 + α2 + . . .+ αr

∅ for r = 2;
α2, α3, . . . , αr−1

for r ≥ 3
r ≥ 2

5 A3 α1 + 2α2 + α3 α1, α3

6 Br α1 + α2 + . . .+ αr

∅ for r = 2;
α2, α3, . . . , αr−1

for r ≥ 3
r ≥ 2

7 Br 2α1 + 2α2 + . . .+ 2αr α2, α3, . . . , αr r ≥ 2
8 B3 α1 + 2α2 + 3α3 α1, α2

9 Cr α1 + 2α2 + 2α3 + . . .+ 2αr−1 + αr α3, α4, . . . , αr r ≥ 3
10 Dr 2α1 + 2α2 + . . .+ 2αr−2 + αr−1 + αr α2, α3, . . . , αr r ≥ 4
11 F4 α1 + 2α2 + 3α3 + 2α4 α1, α2, α3

12 G2 α1 + α2 ∅

13 G2 4α1 + 2α2 α2

Each element σ ∈ Σ(G) comes together with a certain subset Πσ ⊂ Supp σ, which can
be defined as follows:

(3.2) Πσ = {γ ∈ Supp σ ∩ σ⊥ | σ − γ /∈ ∆+ or γ ∈ Supp(σ − γ)}.

For the reader’s convenience, in Table 1 we listed all roots in Πσ for each σ ∈ Σ(G). We
note that

• Πσ = Supp σ ∩ σ⊥ unless σ is in rows 6 or 9 of Table 1;
• Πσ = {γ ∈ Supp σ ∩ σ⊥ | σ − γ /∈ ∆+} unless σ is in row 11 of Table 1.

Observe that the set Σ(G) is finite and depends only on G.
We set

Φ(Γ) = {σ ∈ X(Tad) | −σ is a Tad-weight of TX0
MΓ}.

In other words, Φ(Γ) is the set of Tad-weights in the cotangent space of MΓ at X0.
Note that 0 /∈ Φ(Γ) by Corollary 2.31.

Theorem 3.1. The tangent space TX0
MΓ is a multiplicity-free Tad-module. Moreover, an

element σ ∈ X(Tad) belongs to Φ(Γ) if and only if the following conditions are satisfied:

(Φ1) σ ∈ ZΓ;

(Φ2) σ ∈ Σ(G);
(Φ3) Πσ ⊂ Γ⊥;
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(Φ4) if σ = α1 + . . .+ αr with Supp σ of type Br (r ≥ 2), then αr /∈ Γ⊥;

(Φ5) if σ = α+ β with α, β ∈ Π and α ⊥ β, then 〈α∨, λ〉 = 〈β∨, λ〉 for all λ ∈ Γ;

(Φ6) if σ = 2α for some α ∈ Π then 〈α∨, λ〉 ∈ 2Z for all λ ∈ Γ;

(Φ7) if σ /∈ Π then for every ̺ ∈ K1(σ) there exists δ ∈ Π \ Γ⊥ such that ι(δ∨) is a

positive multiple of ̺;
(Φ8) if σ = α ∈ Π then there exist two distinct elements ̺1, ̺2 ∈ K∩L with the following

properties:

(a) 〈̺1, α〉 = 〈̺2, α〉 = 1;
(b) ι(α∨) = b1̺1 + b2̺2 for some b1, b2 ∈ Q+ \ {0};
(c) K1(α) ⊂ {̺1, ̺2}.

Remark 3.2. In condition (Φ8) it is important that the elements ̺1, ̺2 be distinct.

Remark 3.3. Conditions (Φ1)–(Φ6) depend only on the lattice ZΓ, whereas (Φ7) and (Φ8)
are the only conditions involving the cone Q+Γ ⊂ ZΓ⊗Z Q.

Remark 3.4. In the case where Γ is free, a result similar to Theorem 3.1 is proved by Bravi
and Van Steirteghem in [BVS16]; see Theorem 4.1, Corollary 4.2, and Corollary 2.17 in
loc. cit. Although our proof and that of loc. cit. follow the same general strategy, below
we point out two main differences between the two approaches.

(1) When proving (Φ2) for every σ ∈ Φ(Γ), Bravi and Van Steirteghem establish a
more general fact that (Φ2) holds for any nonzero weight of the Tad-module (V/gx0)

Gx0 .
However, their arguments resort to an extensive case-by-case analysis of root systems. On
the other hand, in our proof of (Φ2) for σ ∈ Φ(Γ) we avoid long case-by-case considerations
thanks to Proposition 3.24, which imposes strong restrictions on an element in (V/gx0)

Gx0

arising from a Tad-eigenvector in TX0
MΓ.

(2) To prove that every σ ∈ X(Tad) satisfying (Φ1)–(Φ8) belongs to Φ(Γ) (for free Γ),
Bravi and Van Steirteghem use Theorem 2.23 and existence results for affine spherical
G-varieties X with ΓX = Γ and |ΣX | = 1, which trace back to the known classification
of so-called wonderful varieties of rank 1, see loc. cit. for details. In our proof, for every
σ ∈ X(Tad) satisfying (Φ1)–(Φ8) we explicitly construct an element in (V/gx0)

Gx0 that
gives rise to a Tad-eigenvector in TX0

MΓ of weight −σ.

Remark 3.5. In [BVS16], elements of Σ(G) are referred to as spherically closed spherical

roots of G.

We now briefly describe the contents of the remaining part of this section. In § 3.2 we
gather further notation and conventions needed for the proof of Theorem 3.1. In §§ 3.3–
3.6 we discuss several ingredients for the proof. The proof itself is divided into two steps
carried out in § 3.7 and § 3.8, respectively. At the first step we prove that the Tad-module
TX0

MΓ is multiplicity-free and every element of Φ(Γ) satisfies conditions (Φ1)–(Φ8). At
the second step we prove that every element σ ∈ X(Tad) satisfying (Φ1)–(Φ8) belongs
to Φ(Γ).

3.2. Preliminaries for the proof of Theorem 3.1. In this subsection we set up an
additional notation and make several conventions that will be used in our proof of Theo-
rem 3.1.

We fix an arbitrary finite generating system E ⊂ Γ. For every ̺ ∈ K1, we set

E̺ = {λ ∈ E | 〈̺, λ〉 = 0}.



NEW AND OLD RESULTS ON SPHERICAL VARIETIES 15

Next, for every λ ∈ E we fix a lowest weight vector vλ ∈ V (λ)∗ and put

V =
⊕

λ∈E

V (λ)∗, x0 =
∑

λ∈E

vλ, O = Gx0, and X0 = O ⊂ V.

From § 2.8, recall the group G̃ = G⋋ Tad and the action a∗G (resp. a∗ad, a
∗) of G (resp.

Tad, G̃) on V under which X0 is stable. Combining Propositions 2.28 and 2.29 we get a
diagram of Tad-equivariant maps

(3.3)
0 H0(X0,NX0

)G̃ H0(X0,NX0
)G TX0

MΓ 0

(V/gx0)
Gx0

where the upper row is exact and the vertical arrow is an injective map. We identify TX0
MΓ

with the unique Tad-submodule of H0(X0,NX0
)G complementary to H0(X0,NX0

)G̃ and
let TS denote the image of TX0

MΓ in (V/gx0)
Gx0 , so that

TS ≃ TX0
MΓ

as Tad-modules.
For our computations with the Tad-module (V/gx0)

Gx0 , it will be more convenient to
replace the actions a∗G, a∗ad, and a∗ with other ones as described below.

As in § 2.8, we let t denote the image in Tad of an element t ∈ T . Let θ ∈ AutG be a
Weyl involution of G relative to T , that is, θ(t) = t−1 for all t ∈ T . It is well known that

θ(B) ∩ B = T . We extend this involution to an involution of G̃ by setting θ(t) = t
−1

for
all t ∈ Tad.

We define a new action a : ((g, t), v) 7→ (g, t) · v of G̃ on V by (g, t) · v = θ(g, t) ∗ v. Let
aG (resp. aad) denote the restriction of a to G (resp. Tad).

Here are the most important features of the new actions.

(1) The action aad is opposite to the action a∗ad. In particular, the set Φ(Γ) is exactly
the set of weights of the Tad-module TS with respect to the action aad.

(2) For every λ ∈ E, the subspace V (λ)∗ ⊂ V , regarded as a G-module with respect
to the action aG, is isomorphic to V (λ) with vλ, viewed in V (λ), being a highest
weight vector.

From now on, we shall consider the diagram (3.3) only with respect to the actions a,
aG, and aad. According to (2), this implies the following changes in our notation:

• V =
⊕
λ∈E

V (λ);

• vλ is a highest weight vector of V (λ) for every λ ∈ E.

With the above new notation, aG becomes the usual action of G on V and the action aad
of Tad on V is given by

(3.4) t · v = tλ(t−1 · v) for all t ∈ T, λ ∈ E, and v ∈ V (λ).

For every λ ∈ E, let pλ : V → V (λ) be the canonical projection.
For every v ∈ V , let [v] denote the image of v under the natural map V → V/gx0.
Since the subspace gx0 ⊂ V is Tad-invariant, for every Tad-eigenvector q ∈ V/gx0 there

exists a Tad-eigenvector v ∈ V (of the same weight) such that [v] = q. This observation
will be always used in our study of (V/gx0)

Gx0 .
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3.3. The role of saturatedness of Γ. The saturatedness assumption on Γ will be essen-
tial in our proof of Theorem 3.1. Firstly, by Proposition 2.11 this assumption guarantees
that the variety X0 is normal, which is essentially used in the proof of Proposition 3.13
in § 3.5. Secondly, our arguments will often require the following crucial property of
saturated Γ.

Lemma 3.6. For every ̺ ∈ K1, there exists µ ∈ E such that 〈̺, µ〉 = 1.

Proof. It suffices to prove that {ν ∈ Γ | 〈̺, ν〉 = 1} 6= ∅. Since Γ is saturated, one has

(3.5) Γ = {ν ∈ ZΓ | 〈κ, ν〉 ≥ 0 for all κ ∈ K1}.

As ̺ is primitive in L, there exists ν0 ∈ ZΓ with 〈̺, ν0〉 = 1. If K1 = {̺} then ν0 ∈ Γ
by (3.5). Otherwise there exists an element η ∈ Z+E̺ such that 〈κ, η〉 > 0 for all
κ ∈ K1 \ {̺}. For each n ∈ Z+ consider the element νn = ν0 +nη. Clearly, 〈̺, νn〉 = 1 for
all n ∈ Z+. In view of (3.5) one has νn ∈ Γ when n is sufficiently large. �

3.4. Basic properties of (V/gx0)
Gx0 and its Tad-weights. The material presented in

this subsection is more or less known.
The following lemma is obvious.

Lemma 3.7. Suppose that E′ ⊂ E is a nonempty subset, x =
∑
λ∈E′

vλ ∈ V , and A is a

Gx-module. Then an element a ∈ A is Gx-fixed if and only if the following two conditions

hold:

(1) a is Tx-stable;
(2) eδa = 0 for all δ ∈ ∆+ ∪ (∆− ∩ ZE′⊥).

Moreover, condition (2) is equivalent to

(2′) eδa = 0 for all δ ∈ Π ∪ (−E′⊥).

Lemma 3.8. Suppose that σ is a Tad-weight of (V/gx0)
Gx0 . Then

(a) σ ∈ Z+Π;

(b) σ ∈ ZΓ.

Proof. (a) This follows from (3.4) and basic properties of T -weights in a simple G-module.
(b) It suffices to show that tσ = 1 for all t ∈ Tx0

. Assume the converse and take t ∈ Tx0

such that tσ 6= 1. Let v ∈ V
(Tad)
σ be such that [v] ∈ (V/gx0)

Gx0 \ {0}. As tλ = 1 for all
λ ∈ E, one has t · v = t−σv. Since Tx0

⊂ Gx0
, it follows that [v] = [t · v] = t−σ[v] and hence

[v] = 0, a contradiction. �

Lemma 3.9. Suppose that σ is a nonzero Tad-weight of V and v ∈ V
(Tad)
σ \ {0}. Then

there exists δ ∈ Π such that eδv 6= 0.

Proof. Assume that eδv = 0 for all δ ∈ Π. Then v is a sum of highest weight vectors in V .
As σ 6= 0, it follows that v = 0, a contradiction. �

Lemma 3.10. Let σ be a Tad-weight of (V/gx0)
Gx0 . Suppose that v ∈ V

(Tad)
σ is such that

[v] ∈ (V/gx0)
Gx0 . Then eδv ∈ V

(Tad)
σ−δ ∩ gx0 for every δ ∈ ∆+ ∪ (∆− ∩ ZE⊥).

Proof. By Lemma 3.7 the condition δ ∈ ∆+ ∪ (∆− ∩ZE⊥) implies eδv ∈ gx0. Clearly, eδv
is a Tad-eigenvector of weight σ − δ. �
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Lemma 3.11. Suppose that σ ∈ ZΠ. Then

V (Tad)
σ ∩ gx0 =





ke−σx0 if σ ∈ ∆+;

tx0 if σ = 0;

{0} otherwise.

Proof. This follows from the decomposition g = t⊕
⊕
δ∈∆

keδ and the fact that eδx0 = 0 for

all δ ∈ ∆+. �

Corollary 3.12. Let σ be a nonzero Tad-weight of (V/gx0)
Gx0 . Let v ∈ V

(Tad)
σ be such

that [v] ∈ (V/gx0)
Gx0 \ {0}. Suppose that δ ∈ ∆+ is such that δ 6= σ and eδv 6= 0. Then

(a) σ − δ ∈ ∆+;

(b) eδv = ce−(σ−δ)x0 for some c ∈ k×.

Proof. This is a direct consequence of Lemmas 3.10 and 3.11. �

3.5. Extension of sections. For every open subset Y ⊂ X0, we let NY denote the
restriction of the sheaf NX0

to Y .

Proposition 3.13. For a section s ∈ H0(O,NO), the following conditions are equivalent:

(1) s extends to X0.

(2) s extends to O ∪ O′ for each G-orbit O′ ⊂ X0 of codimension 1.

Proof. Let Y ⊂ X0 be the union of all G-orbits in X0 of codimension at most 1. Then Y
is an open G-stable subset of X0 and codimX0

(X0 \ Y ) ≥ 2. As X0 is normal, by [Br13,
Lemma 3.9] the restriction map H0(X0,NX0

) → H0(Y,NY ) is an isomorphism. Thus a
section s ∈ H0(O,NO) extends to X0 if and only if it extends to Y . But the latter is
obviously equivalent to (2). �

To describe all G-orbits in X0 of codimension 1, we need some additional notation.
First of all, we introduce the set

(3.6) P = {̺ ∈ K1 | E⊥ = E⊥
̺ }.

Note that every ̺ ∈ P is not proportional to an element of the form ι(α∨) with α ∈ Π.
Next, for every ̺ ∈ P we consider the vector

(3.7) z̺ =
∑

λ∈E̺

vλ ∈ V

and its G-orbit O̺ = Gz̺.
The following result is a consequence of [ViP72, Theorems 8 and 9].

Proposition 3.14. The map ̺ 7→ O̺ is a bijection between the set P and the G-orbits

in X0 of codimension 1.

Corollary 3.15. Suppose that σ is a nonzero Tad-weight of V and v ∈ V
(Tad)
σ . Let

s ∈ H0(O,NO)
G be the section defined by s(x0) = [v]. Then the following conditions are

equivalent:

(1) [v] ∈ TS.

(2) s extends to O ∪ O̺ for all ̺ ∈ P.
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Proof. This follows from the definition of TS (see § 3.2) along with Propositions 3.13
and 3.14. �

In what follows, for every ̺ ∈ P we regard the sheaf NO∪O̺ as the sheaf of sections of
the normal bundle of O∪O̺ in V . We denote the total space of this bundle by F̺ and let

p̺ : F̺ → O ∪O̺

be the canonical projection.
Fix an arbitrary element ̺ ∈ P and let φ̺ : k

× → T be the one-parameter subgroup of
T corresponding to ̺, that is, (φ̺(ξ))

χ = ξ〈̺,χ〉 for all χ ∈ X(T ) and ξ ∈ k×. For every
ξ ∈ k, consider the vector z̺(ξ) ∈ V given by

z̺(ξ) =

{
z̺ if ξ = 0;

φ̺(ξ)x0 otherwise.

Then we have z̺(ξ) = z̺ +
∑

λ∈E\E̺

ξ〈̺,λ〉vλ for all ξ ∈ k. Note that z̺(1) = x0. It follows

from Lemma 3.6 that the morphism k → O∪O̺ given by ξ 7→ z̺(ξ) is a closed immersion;
we denote its image by Z̺.

Lemma 3.16. Suppose that ̺ ∈ P. Then Tz̺X0 = gz̺ ⊕ ku̺ where

(3.8) u̺ =
∑

µ∈E:〈̺,µ〉=1

vµ.

Proof. We have Tz̺(Gz̺) = gz̺ and Tz̺Z̺ = ku̺. Since Gz̺ has codimension 1 in X0 and
X0 is normal, it follows that dim gz̺ = dimX0 − 1 and z̺ is a regular point of X0. The
proof is completed by observing that u̺ /∈ gz̺. �

Proposition 3.17. Let v ∈ V be such that [v] ∈ (V/gx0)
Gx0 and let s ∈ H0(O,NO)

G be

the section defined by s(x0) = [v]. Given ̺ ∈ P, the following conditions are equivalent:

(1) The section s extends to O ∪O̺.

(2) There exists lim
ξ→0

s(z̺(ξ)), that is, the restriction of s to O ∩ Z̺ extends to Z̺.

Proof. Obviously, (1) implies (2). It remains to prove the converse implication. Put
s(z̺) = lim

ξ→0
s(z̺(ξ)). Being in the closure of the φ̺(k

×)-orbit of s(x0), the point s(z̺)

is φ̺(k
×)-fixed. Further, observe that Gx0

= Gz̺(ξ) for all ξ ∈ k×, which implies that
every point s(z̺(ξ)) with ξ ∈ k× is Gx0

-fixed. Consequently, the point s(z̺) is Gx0
-fixed.

Next, as Q+E̺ is a face of codimension 1 of Q+Γ and Γ is saturated, it follows that
ZΓ ∩ Ker ̺ = ZE̺, which implies Tz̺ = Tx0

· φ̺(k
×). Combining this and the equality

E⊥ = E⊥
̺ with Lemma 3.7 we obtain Gz̺ = Gx0

· φ̺(k
×), hence s(z̺) is Gz̺-fixed. The

latter enables us to extend s to O̺ by the formula s(gz̺) = g(s(z̺)).
To complete the proof it remains to show that the extended map s : O ∪ O̺ → F̺ is a

morphism. First, as s(z̺) = lim
ξ→0

s(z̺(ξ)), it follows that the G-orbit Gs(z̺) is contained in

the closure of the G-orbit Gs(x0) in F̺. Next, since the map p̺ is G-equivariant and the
point s(x0) is Gx0

-fixed, it follows that Gs(x0) = Gx0
and hence Gs(x0) ≃ O. Similarly,

Gs(z̺) ≃ O̺. In particular, dimGs(z̺) = dimGs(x0)− 1, and so the set Gs(x0)∪Gs(z̺)

is open in Gs(x0). Now the restriction of p̺ to Gs(x0) ∪ Gs(z̺) is a bijective morphism
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onto O ∪ O̺, whence an isomorphism since O ∪ O̺ is smooth. Consequently, our map
s : O ∪ O̺ → Gs(x0) ∪Gs(z̺) is a morphism as required. �

The next proposition is an application of the previous one.

Proposition 3.18. Suppose that ̺ ∈ P and σ ∈ Z+Π. Let v ∈ V
(Tad)
σ be such that

[v] ∈ (V/gx0)
Gx0 \ {0} and let s ∈ H0(O,NO)

G be the section defined by s(x0) = [v].

(a) If 〈̺, σ〉 > 0 and
∑
λ∈E̺

pλ(v) /∈ gz̺, then s does not extend to O ∪ O̺.

(b) If 〈̺, σ〉 ≤ 0 then s extends to O ∪ O̺.

(c) If
∑
λ∈E̺

pλ(v) = 0 and there exists ν ∈ E \ E̺ with pν(v) 6= 0 and 〈̺, σ〉 > 〈̺, ν〉,

then s does not extend to O ∪O̺.

(d) If
∑

λ∈E̺

pλ(v) = 0 and 〈̺, σ〉 = 1 then s extends to O ∪ O̺.

Proof. Thanks to Proposition 3.17, in all the cases it is enough to prove the corresponding
statement about the existence of lim

ξ→0
s(z̺(ξ)). Before we proceed, let us make some

preparations.

Given w ∈ V
(Tad)
σ and ξ ∈ k, let [w]ξ denote the image of w in V/Tz̺(ξ)X0. Then for

every ξ ∈ k× one has

s(z̺(ξ)) = s(φ̺(ξ)x0) = ξ−〈̺,σ〉[
∑

λ∈E̺

pλ(v)]ξ +
∑

µ∈E\E̺

ξ〈̺,µ〉−〈̺,σ〉[pµ(v)]ξ.

Let NZ̺ denote the restriction of the sheaf NO∪O̺ to Z̺.
(a) Consider the section s′ ∈ H0(Z̺,NZ̺) given by

s′(z̺(ξ)) = [
∑

λ∈E̺

pλ(v)]ξ +
∑

µ∈E\E̺

ξ〈̺,µ〉[pµ(v)]ξ.

Clearly, s′(z̺) = [
∑
λ∈E̺

pλ(v)]0. It follows from Lemma 3.16 that (
⊕
λ∈E̺

V (λ))∩Tz̺X0 = gz̺,

whence the condition
∑
λ∈E̺

pλ(v) /∈ gz̺ implies s′(z̺) 6= 0. On the other hand, one has

s(z̺(ξ)) = ξ−〈̺,σ〉s′(z̺(ξ)) for all ξ ∈ k×. Since 〈̺, σ〉 > 0, it follows that lim
ξ→0

s(z̺(ξ)) does

not exist.
(b) It is easy to see that lim

ξ→0
s(z̺(ξ)) exists and is given by

lim
ξ→0

s(z̺(ξ)) =





∑
λ∈E̺

[pλ(v)]0 if 〈̺, σ〉 = 0;

0 if 〈̺, σ〉 < 0.

(c) We may assume that 〈̺, ν〉 ≤ 〈̺, µ〉 for all µ ∈ E \E̺ with pµ(v) 6= 0. Consider the
section s′ ∈ H0(Z̺,NZ̺) given by

s′(z̺(ξ)) =
∑

µ∈E\E̺:〈̺,µ〉=〈̺,ν〉

[pµ(v)]ξ +
∑

µ∈E\E̺:〈̺,µ〉>〈̺,ν〉

ξ〈̺,µ〉−〈̺,ν〉[pµ(v)]ξ.
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Clearly, s′(z̺) =
∑

µ∈E\E̺:〈̺,µ〉=〈̺,ν〉

[pµ(v)]0. Since 〈̺, σ〉 > 〈̺, ν〉 > 0, it follows that σ 6= 0

and hence ∑

µ∈E\E̺:〈̺,µ〉=〈̺,ν〉

pµ(v) /∈ ku̺.

As ku̺ = (
⊕

µ∈E\E̺

V (µ)) ∩ Tz̺X0 by Lemma 3.16, we find that s′(z̺) 6= 0. On the other

hand, we have s(z̺(ξ)) = ξ〈̺,ν〉−〈̺,σ〉s′(z̺(ξ)) for all ξ ∈ k×. Since 〈̺, ν〉 < 〈̺, σ〉, it follows
that lim

ξ→0
s(z̺(ξ)) does not exist.

(d) Clearly, lim
ξ→0

s(z̺(ξ)) exists and equals
∑

µ∈E:〈̺,µ〉=1

[pµ(v)]0. �

Remark 3.19. In [PVS16, Theorem 2.8] one can find a specialization of our Proposi-
tion 3.18 to the case where Γ is free.

3.6. Canonical representatives of Tad-eigenvectors in TS. The main results of this
subsection are Propositions 3.24 and 3.26.

Lemma 3.20. For every σ ∈ Z+Π \ {0} there exists δ ∈ Supp σ such that 〈δ∨, σ〉 > 0.

Proof. Assuming the converse we find that the angle between any two distinct elements
of the set {σ} ∪ Supp σ is non-acute. Since the latter set is contained in a half-space of
the Q-vector space spanned by Supp σ, the elements in {σ} ∪ Supp σ have to be linearly
independent, which is not the case. �

Recall from (3.1) the set K1(σ) ⊂ K1 defined for every σ ∈ ZΓ. As Φ(Γ) ⊂ ZΓ by
Lemma 3.8(b), the set K1(σ) is also defined for every σ ∈ Φ(Γ).

Lemma 3.21. Suppose that σ ∈ ZΓ ∩ (Z+Π \ {0}). Then K1(σ) 6= ∅.

Proof. By Lemma 3.20 there exists δ ∈ Π with 〈δ∨, σ〉 > 0. Now assume K1(σ) = ∅. Then
〈̺, σ〉 ≤ 0 for all ̺ ∈ K1, hence σ ∈ −Γ. The latter yields 〈δ∨, σ〉 ≤ 0, a contradiction. �

Corollary 3.22. Suppose that σ ∈ Φ(Γ). Then K1(σ) 6= ∅.

Proof. This follows from Corollary 2.31 along with Lemmas 3.8 and 3.21. �

Recall the subset P ⊂ K1 given by (3.6).

Lemma 3.23. Suppose that ̺ ∈ K1 \ P. Then there exists δ ∈ Π such that ι(δ∨) is a

positive multiple of ̺.

Proof. Since ̺ /∈ P, it follows that E⊥ 6= E⊥
̺ . Then there exist δ ∈ Π and µ ∈ E \ E̺

such that 〈δ∨, µ〉 > 0 and 〈δ∨, λ〉 = 0 for all λ ∈ E̺. Obviously, δ possesses the required
property. �

Proposition 3.24. Let σ ∈ Φ(Γ), ̺ ∈ K1(σ), v ∈ V
(Tad)
σ , and [v] ∈ TS \ {0}.

(a) If σ ∈ ∆+ then there exist v′ ∈ V
(Tad)
σ and c ∈ k such that v′ = v − ce−σx0 and

pλ(v
′) = 0 for all λ ∈ E̺.

(b) If σ /∈ ∆+ then pλ(v) = 0 for all λ ∈ E̺.
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Proof. Note that σ 6= 0 by Corollary 2.31. Recall the vector z̺ given by (3.7) and set
w =

∑
λ∈E̺

pλ(v). We consider two cases.

Case 1: ̺ ∈ P. Since [v] ∈ TS, it follows from Corollary 3.15 and Proposition 3.18(a)

that w ∈ gz̺. Applying an analogue of Lemma 3.11 for V
(Tad)
σ ∩ gz̺, we obtain the

following:

• if σ /∈ ∆+ then w = 0;
• if σ ∈ ∆+ then w = ce−σz̺ for some c ∈ k.

In the latter case, the vector v′ = v − ce−σx0 satisfies pλ(v
′) = 0 for all λ ∈ E̺.

Case 2: ̺ /∈ P. Assume that w 6= 0. By Lemma 3.23, there exists δ ∈ Π such that
ι(δ∨) is a positive multiple of ̺. Then 〈δ∨, σ〉 > 0 and 〈δ∨, λ〉 = 0 for all λ ∈ E̺. If σ = δ
then pλ(v) ∈ ke−δvλ = {0} for every λ ∈ E̺, which contradicts the assumption w 6= 0.
So in what follows we assume that σ 6= δ. We have 〈δ∨, λ − σ〉 = −〈δ∨, σ〉 < 0 for all
λ ∈ E̺, therefore eδw 6= 0 and hence eδv 6= 0. Corollary 3.12 implies that σ− δ ∈ ∆+ and
eδv = ce−(σ−δ)x0 for some c ∈ k×. In particular, eδpλ(v) = ce−(σ−δ)vλ for all λ ∈ E.

Let h ≃ sl2 be the Lie subalgebra of g generated by eδ and e−δ. Fix λ ∈ E̺ such that
pλ(v) 6= 0. Let Rλ ⊂ V (λ) be the h-submodule generated by e−(σ−δ)vλ. Since 〈δ∨, λ〉 = 0,
it follows that Rλ is a simple h-module with highest weight 2l − 〈δ∨, σ〉, where l is the
maximal integer such that σ − lδ ∈ ∆+. Note that pλ(v) ∈ Rλ since otherwise the
inequality 〈δ∨, λ− σ〉 < 0 would imply eδpλ(v) /∈ Rλ, which is not the case. We conclude
that pλ(v) = de−δeδpλ(v) for some scalar d ∈ k× that depends only on σ and δ (and not
on λ).

It follows from the previous paragraph that

w = cd
∑

λ∈E̺

e−δe−(σ−δ)vλ = cd
∑

λ∈E̺

[e−δ, e−(σ−δ)]vλ.

Recall that w 6= 0, therefore σ ∈ ∆+ and w = c′
∑
λ∈E̺

e−σvλ for some c′ ∈ k×. Now the

vector v′ = v − c′e−σx0 satisfies pλ(v) = 0 for all λ ∈ E̺. Since the assumption w 6= 0
implies σ ∈ ∆+, the proof is completed. �

Lemma 3.25. Under the assumptions of Proposition 3.24, suppose in addition that σ =
α ∈ Π and pλ(v) = 0 for all λ ∈ E̺. Then

(a) 〈α∨, µ〉 > 0 for all µ ∈ E \ E̺;

(b) there exists c ∈ k× such that

v = c
∑

µ∈E\E̺

〈̺, µ〉

〈α∨, µ〉
e−αvµ.

Proof. Consider the expression v =
∑

µ∈E\E̺

cµe−αvµ, where cµ ∈ k for all µ ∈ E \ E̺.

Combining Lemma 3.9 with Corollary 3.12(a) yields eαv 6= 0. It then follows from Lem-
mas 3.10 and 3.11 that eαv = yx0 for some y ∈ t. In particular, for every λ ∈ E̺ the
condition pλ(v) = 0 implies λ(y) = 0. Therefore the restriction of y (regarded as an
element of Q⊗Z k) to ZΓ⊗Z k is proportional to ̺, and so

(3.9) eαv = c
∑

µ∈E\E̺

〈̺, µ〉vµ
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for some c ∈ k×. On the other hand, one has

(3.10) eαv =
∑

µ∈E\E̺

cµeαe−αvµ =
∑

µ∈E\E̺

cµ〈α
∨, µ〉vµ.

Comparing (3.9) with (3.10) we obtain the required results. �

Proposition 3.26. Suppose that σ ∈ Φ(Γ) and ̺ ∈ K1(σ). Then the following conditions

are equivalent:

(1) ̺ ∈ P.

(2) σ ∈ Π.

Proof. Let v ∈ V
(Tad)
σ be such that [v] ∈ TS \ {0}. Taking into account Proposition 3.24,

we may assume that pλ(v) = 0 for all λ ∈ E̺.
(1)⇒(2) Thanks to Lemma 3.9 there exists α ∈ Π such that eαv 6= 0. Assume that

σ−α 6= 0. Then Corollary 3.12 implies σ−α ∈ ∆+ and eαv = ce−(σ−α)x0 for some c ∈ k×.
It follows that 〈(σ−α)∨, λ〉 = 0 for all λ ∈ E̺ and 〈(σ−α)∨, µ〉 > 0 for some µ ∈ E \E̺.
Consequently, Supp(σ − α) ⊂ E⊥

̺ and Supp(σ − α) 6⊂ E⊥, which contradicts (1). Thus
σ = α.

(2)⇒(1) Let σ = α ∈ Π and assume that ̺ /∈ P. By Lemma 3.23 there exists δ ∈ Π
such that ι(δ∨) is a positive multiple of ̺. Then 〈δ∨, α〉 > 0 and hence δ = α. Applying
Lemma 3.25(b) we obtain v = c

∑
µ∈E\E̺

e−αvµ = ce−αx0 for some c ∈ k×, hence v ∈ gx0

and [v] = 0, a contradiction. �

3.7. Proof of Theorem 3.1: Step 1. The goal of this subsection is to show that every
weight σ ∈ Φ(Γ) satisfies conditions (Φ1)–(Φ8) along with the following one:

(MF) the multiplicity of σ in TS equals 1.

For the rest of this subsection, we fix a weight σ ∈ Φ(Γ) and a vector v ∈ V
(Tad)
σ

such that [v] ∈ TS \ {0}. Recall the set K1(σ) given by (3.1), which is nonempty by
Corollary 3.22.

Property (Φ1) has already been established in Lemma 3.8(b).

Proof of (Φ7). Suppose that σ ∈ Φ(Γ)\Π and take any ̺ ∈ K1(σ). Then Proposition 3.26
yields ̺ /∈ P. By Lemma 3.23, there exists δ ∈ Π such that ι(δ∨) is a positive multiple
of ̺. Clearly, δ /∈ Γ⊥. �

It remains to establish properties (Φ2)–(Φ6), (Φ8), and (MF). We consider four cases.

3.7.1. Case σ = α ∈ Π. Properties (Φ2) and (Φ3) hold automatically. Property (MF)
follows from Proposition 3.24(a) and Lemma 3.25(b). It remains to prove (Φ8).

Lemma 3.27. Suppose that ̺ ∈ K1(α). Then 〈̺, α〉 = 1.

Proof. By Proposition 3.24(a) we may assume that pλ(v) = 0 for all λ ∈ E̺. Note
that ̺ ∈ P by Proposition 3.26. Then it follows from Corollary 3.15 that the section
s ∈ H0(O,NO)

G given by s(x0) = [v] extends to O∪O̺. Taking into account Lemmas 3.25
and 3.6 along with Proposition 3.18(c), we get 〈̺, α〉 = 1. �

Lemma 3.28. There are inequalities 1 ≤ |K1(α)| ≤ 2.
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Proof. As K1(α) is nonempty, we have |K1(α)| ≥ 1. To prove the second inequality,
assume that ̺1, ̺2, ̺3 ∈ K1(α) are three distinct elements. Since Q+̺i is an extremal
ray of K for each i = 1, 2, 3, the elements ̺1, ̺2, ̺3 are linearly independent in Q. By

Proposition 3.24(a), for each i = 1, 2, 3 there exist vi ∈ V
(Tad)
α and ci ∈ k such that

vi = v − cie−αx0 and pλ(vi) = 0 for all λ ∈ E̺i . In view of Lemma 3.25(b), for each
i = 1, 2, 3 there exists c′i ∈ k× such that eαvi = c′i

∑
µ∈E

〈̺i, µ〉vµ. Obviously, the vectors

eαv1, eαv2, and eαv3 are linearly independent in V , hence so are the vectors v1, v2, and v3.
The latter contradicts the fact that v1, v2, v3 belong to the linear span of the two vectors
v and e−αx0. �

Proof of (Φ8). According to Lemma 3.28, we consider two cases.
Case 1: K1(α) contains a unique element ̺0. Then 〈̺0, α〉 = 1 by Lemma 3.27 and

〈̺, α〉 ≤ 0 for all ̺ ∈ K1 \ {̺0}. Put ̺1 = ̺0 and ̺2 = ι(α∨)− ̺0. Proposition 3.26 yields
̺0 ∈ P, hence ̺0 is not proportional to ι(α∨) and so ̺1 6= ̺2. Further, ̺1, ̺2 obviously
satisfy conditions (Φ8)(a–c). To complete the proof, it suffices to show that ̺2 ∈ K. For
that, take any µ ∈ E\E̺0 . Clearly, there is a unique expression α = τ+bµ where τ ∈ QE̺0

and b ∈ Q. Since 〈̺0, α〉 = 1, one has b = 1/〈̺0, µ〉. Then τ = α− µ/〈̺0, µ〉. One easily
checks that 〈̺, τ〉 ≤ 0 for all ̺ ∈ K1 \ {̺0}, hence there is an expression τ = −

∑
λ∈E̺0

cλλ

with cλ ∈ Q+ for all λ ∈ E̺0 . Consequently,

〈̺2, µ〉 = 〈α∨ − ̺0, µ〉 = 〈̺0, µ〉 · 〈α
∨ − ̺0, α− τ〉 =

〈̺0, µ〉 · (1 + 〈α∨,
∑

λ∈E̺0

cλλ〉) ≥ 〈̺0, µ〉 > 0

and 〈̺2, λ〉 = 〈α∨ − ̺0, λ〉 = 〈α∨, λ〉 ≥ 0 for all λ ∈ E̺0 . Thus ̺2 ∈ K.
Case 2: K1(α) consists of two distinct elements ̺1 and ̺2. We claim that ̺1, ̺2 satisfy

conditions (Φ8)(a–c). By Lemma 3.27 one has 〈̺1, α〉 = 〈̺2, α〉 = 1, hence (Φ8)(a) holds.
Condition (Φ8)(c) holds automatically. It remains to prove (Φ8)(b).

Lemma 3.29. The cone Q+̺1 +Q+̺2 ⊂ Q is a (two-dimensional) face of the cone K.

Proof. Since Q+̺1 is an extremal ray of K, there exists an element ν1 ∈ Q+Γ such that
〈̺1, ν1〉 = 0, 〈̺2, ν1〉 = 1, and 〈̺, ν1〉 > 0 for all ̺ ∈ K1 \ {̺1, ̺2}. Similarly, there
exists an element ν2 ∈ Q+Γ such that 〈̺2, ν2〉 = 0, 〈̺1, ν2〉 = 1, and 〈̺, ν2〉 > 0 for all
̺ ∈ K1 \ {̺1, ̺2}. Put ν = ν1 + ν2 − α. Then 〈̺1, ν〉 = 〈̺2, ν〉 = 0 and 〈̺, ν〉 > 0 for all
̺ ∈ K1 \ {̺1, ̺2}, hence Q+̺1 +Q+̺2 is a face of K. �

It follows from Lemma 3.29 that the space Q(E̺1 ∩ E̺2) has codimension 2 in QΓ.

By Proposition 3.24(a), there exist v1, v2 ∈ V
(Tad)
α such that [v1] = [v2] = [v] and

(3.11) pλ(vi) = 0 for all λ ∈ E̺i , i = 1, 2.

Lemma 3.25 yields v1 6= v2, and so v1 − v2 ∈ gx0 \ {0}, which by Lemma 3.11 implies
v1 − v2 = ce−αx0 for some c ∈ k×. It then follows from (3.11) that 〈α∨, λ〉 = 0 for
all λ ∈ E̺1 ∩ E̺2 , therefore ι(α∨) = a1̺1 + a2̺2 for some a1, a2 ∈ Q+. In view of
Lemma 3.25(a) one has 〈α∨, µ〉 > 0 for all µ ∈ E \ (E̺1 ∩E̺2), whence ai 6= 0 for i = 1, 2,
which proves (Φ8)(b). �
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3.7.2. Case σ ∈ ∆+ \ Π. We need to prove properties (Φ2)–(Φ4) and (MF). In what
follows, we fix an arbitrary element ̺ ∈ K1(σ).

Lemma 3.30. For every δ ∈ Π there exist v′ ∈ V
(Tad)
σ and c ∈ k such that v′ = v−ce−σx0

and eδv
′ = 0.

Proof. Take any δ ∈ Π and assume that eδv 6= 0. Then Corollary 3.12 yields σ − δ ∈ ∆+

and eδv = ce−(σ−δ)x0 for some c ∈ k×. Then the vector v′ = v − cN−1
δ,−σe−σx0 satisfies

eδv
′ = 0. �

Lemma 3.31. The set {δ ∈ Supp σ | σ − δ ∈ ∆+} contains at least two elements.

Proof. Thanks to Lemma 3.9, there exists β ∈ Π such that eβv 6= 0. Then σ − β ∈ ∆+

by Corollary 3.12. Next, by Lemma 3.30 there exists v′ ∈ V
(Tad)
σ such that [v′] = [v] and

eβv
′ = 0. Again, there exists γ ∈ Π such that eγv

′ 6= 0, which implies σ−γ ∈ ∆+. Clearly,
β 6= γ and β, γ ∈ Supp σ. �

Lemma 3.32. One of the following two alternatives holds.

(1) 〈δ∨, σ〉 ≥ 0 for all δ ∈ Supp σ (that is, σ is a dominant root of ∆σ).
(2) Supp σ is of type G2 and σ = α1 + α2.

Proof. In view of Proposition 3.24(a), we may assume that

(3.12) pλ(v) = 0 for all λ ∈ E̺.

Thanks to Lemma 3.9, there exists α ∈ Π such that eαv 6= 0. Then Corollary 3.12
yields σ − α ∈ ∆+ and eαv = ce−(σ−α)x0 for some c ∈ k×. By (3.12) the latter implies
〈(σ−α)∨, λ〉 = 0 for all λ ∈ E̺. Thus for every δ ∈ Supp(σ−α) one has δ ∈ E⊥

̺ , whence
ι(δ∨) is a non-negative multiple of ̺. As 〈̺, σ〉 > 0, it follows that 〈δ∨, σ〉 ≥ 0 for all
δ ∈ Supp(σ−α). Now assume that 〈α∨, σ〉 < 0. Then 〈α∨, σ〉 ≤ −1 and 〈α∨, σ−α〉 ≤ −3.
The latter implies that Supp σ has type G2 with α = α1 and σ = α1 + α2. �

Proof of (Φ2). Applying Lemma 3.31 we find that σ cannot be the highest root of ∆σ

unless the support of σ has type Ar. (The latter can be seen, for instance, by inspecting
the extended Dynkin diagrams.) By the same reason σ cannot be the short dominant
root in type G2. All the other possibilities given by Lemma 3.32 are already contained
in Σ(G). �

Proof of (Φ3). Reasoning as in the proof of Lemma 3.32, we find a simple root α ∈ Π
such that σ − α ∈ ∆+ and ι(δ∨) is a non-negative multiple of ̺ for all δ ∈ Supp(σ − α).
We claim that Πσ ⊂ Supp(σ − α). Indeed, the inclusion (Πσ \ {α}) ⊂ Supp(σ − α) is
obvious and the condition α ∈ Πσ implies α ∈ Supp(σ − α) in view of (3.2). Thus, given
any β ∈ Πσ, the element ι(β∨) is a non-negative multiple of ̺. As β ∈ σ⊥ and 〈̺, σ〉 > 0,
it follows that ι(β∨) = 0, whence β ∈ Γ⊥. �

Proof of (Φ4). Suppose that σ = α1 + . . . + αr with Supp σ of type Br (r ≥ 2). Taking
into account Lemma 3.30 we may assume that eαrv = 0. For 2 ≤ i ≤ r − 1, we have
σ − αi /∈ ∆+, which implies eαi

v = 0 by Corollary 3.12(a). Now assume that αr ∈ Γ⊥.
Since αi ∈ Γ⊥ for 2 ≤ i ≤ r − 1 by (Φ3), it follows that 〈(σ − α1)

∨, λ〉 = 0 for all λ ∈ E,
whence e−(σ−α1)x0 = 0. In view of Lemmas 3.10 and 3.11 the latter implies eα1

v = 0. We
have obtained that eδv = 0 for all δ ∈ Supp σ and hence for all δ ∈ Π, which contradicts
Lemma 3.9 as σ 6= 0. �
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Proof of (MF). Here we use a short argument from the proof of [BVS16, Proposition 3.16].
A case-by-case check of all relevant entries in Table 1 shows that the set

{δ ∈ Π | σ − δ ∈ ∆+}

contains exactly two elements, which will be denoted by β and γ. Let v′ ∈ V
(Tad)
σ be

another vector such that [v′] ∈ TS \ {0}. By Lemma 3.30 we may assume that eβv =
eβv

′ = 0. It follows from Corollary 3.12 that eδv = eδv
′ = 0 for all δ ∈ Π \ {γ}.

Consequently, eγv 6= 0 and eγv
′ 6= 0 in view of Lemma 3.9. Then Corollary 3.12(b) yields

eγv = ce−(σ−γ)x0 and eγv
′ = c′e−(σ−γ)x0 for some c, c′ ∈ k×. It follows that the vector

c′v− cv′ is annihilated by eγ and hence by all eδ with δ ∈ Π. As σ 6= 0, Lemma 3.9 yields
c′v − cv′ = 0. �

3.7.3. Case σ = α + β with α, β ∈ Π and α ⊥ β. Properties (Φ2) and (Φ3) hold auto-
matically. Properties (Φ5) and (MF) follow from the lemma below.

Lemma 3.33. The following assertions hold:

(a) ι(α∨) = ι(β∨);
(b) the vector v is given by

v = c
∑

µ∈E:〈α∨,µ〉>0

1

〈α∨, µ〉
e−αe−βvµ

for some c ∈ k×.

Proof. Take any ̺ ∈ K1(σ). Proposition 3.26 yields ̺ /∈ P. Then by Lemma 3.23 there
exists δ ∈ Π such that ι(δ∨) is a positive multiple of ̺. As 〈δ∨, σ〉 > 0, it follows that
δ ∈ {α, β}. Assume without loss of generality that δ = α. Proposition 3.24(b) yields
pλ(v) = 0 for all λ ∈ E̺. Next, for every µ ∈ E \ E̺ one has

(3.13) pµ(v) = cµe−αe−βvµ = cµe−βe−αvµ

with cµ ∈ k. It follows that

(3.14) eαv =
∑

µ∈E\E̺

cµeαe−αe−βvµ =
∑

µ∈E\E̺

cµ〈α
∨, µ〉e−βvµ.

On the other hand, since v 6= 0, there exists ν ∈ E\E̺ such that pν(v) 6= 0, which implies
cν 6= 0 and e−βvν 6= 0 in view of (3.13). It follows that eαv 6= 0, and Corollary 3.12(b)
yields

(3.15) eαv = ce−βx0 = c
∑

λ∈E

e−βvλ

for some c ∈ k×. Then 〈β∨, λ〉 = 0 for all λ ∈ E̺, whence ι(β∨) and ι(α∨) are propor-
tional. The equalities 〈α∨, σ〉 = 2 = 〈β∨, σ〉 imply ι(α∨) = ι(β∨), which proves (a). Now
comparing (3.14) with (3.15) yields (b). �
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3.7.4. Case σ /∈ ∆+ and σ is not the sum of two orthogonal simple roots. We need to
prove properties (Φ2), (Φ3), (Φ6), and (MF). In what follows, we fix an arbitrary element
̺ ∈ K1(σ).

The following lemma is similar to [BVS16, Proposition 3.9].

Lemma 3.34. There exists a unique β ∈ Π such that σ − β ∈ ∆+.

Proof. By Lemma 3.9 there exists β ∈ Π such that eβv 6= 0. Then Corollary 3.12(a) yields
σ − β ∈ ∆+. The condition σ /∈ ∆+ implies 〈β∨, σ − β〉 ≥ 0, and so 〈β∨, σ〉 ≥ 2. Now
take any γ ∈ Π \ {β} and assume that σ − γ ∈ ∆+. Clearly,

〈β∨, σ − γ〉 = 〈β∨, σ〉 − 〈β∨, γ〉 ≥ 2 > 0,

whence σ − β − γ ∈ ∆+ (note that σ 6= β + γ by our assumptions). Let h ⊂ g be the
standard Levi subalgebra with set of simple roots {β, γ} and regard g as an h-module. As
〈β∨, σ−γ+β〉 ≥ 4, one has σ−γ+β /∈ ∆+. Consequently, eσ−γ is a highest weight vector
for h. Similarly, eσ−β is another highest weight vector for h. Since eσ−β−γ is proportional
to both [e−β, eσ−γ ] and [e−γ, eσ−β ], it follows that eσ−β−γ is contained in two different
simple h-submodules of g, a contradiction. �

Until the end of this case, β stands for the unique simple root such that σ − β ∈ ∆+.

Lemma 3.35. The following assertions hold:

(a) eβv 6= 0;
(b) eβv = ce−(σ−β)x0 for some c ∈ k×;

(c) ι((σ − β)∨) is a positive multiple of ̺.

Proof. By Lemma 3.9 there exists δ ∈ Π such that eδv 6= 0. Corollary 3.12(a) and
Lemma 3.34 then yield δ = β, whence part (a). Part (b) is implied by Corollary 3.12(b).
For every λ ∈ E̺, one has pλ(v) = 0 by Proposition 3.24(b), hence 〈(σ−β)∨, λ〉 = 0. Thus
ι((σ − β)∨) is a non-negative multiple of ̺. As eβv 6= 0, it follows that ι((σ − β)∨) 6= 0,
whence part (c). �

Lemma 3.36. Suppose that γ ∈ Π \ {β} is such that σ − β − γ ∈ ∆+. Then 〈β∨, γ〉 < 0
(that is, β + γ ∈ ∆+).

Proof. By Lemma 3.35(b) one has eβv = ce−(σ−β)x0 for some c ∈ k×. Assume that β
and γ are orthogonal. Then β + γ /∈ ∆+, and so eσ−β−γv = 0 by Corollary 3.12(a). As
β 6= γ, it follows from Lemma 3.34 and Corollary 3.12(a) that eγv = 0. Then eσ−βv =
N−1

γ,σ−β−γeγeσ−β−γv = 0. Hence in view of Lemma 3.35(c) one has

0 = eβeσ−βv = eσ−βeβv = eσ−β(ce−(σ−β)x0) = chσ−βx0 6= 0,

a contradiction. �

Lemma 3.37. For every δ ∈ Supp σ, the element ι(δ∨) is a non-negative multiple of ̺.

Proof. By Lemma 3.35(c), the element ι((σ − β)∨) is a positive multiple of ̺. Since
(σ − β)∨ =

∑
δ∈Supp(σ−β)

cδδ
∨ with all the coefficients cδ being positive, it follows that

〈δ∨, λ〉 = 0 for all δ ∈ Supp(σ − β) and λ ∈ E̺. Consequently, ι(δ∨) is a non-negative
multiple of ̺ for all δ ∈ Supp(σ − β). It remains to show that Supp(σ − β) = Supp σ or,
equivalently, β ∈ Supp(σ − β). Assume the converse and choose γ ∈ Supp(σ − β) such
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that σ − β − γ ∈ ∆+. (The latter is possible because σ − β /∈ Π.) Then 〈β∨, γ〉 < 0
by Lemma 3.36, hence 〈β∨, σ − β〉 < 0. The latter yields σ = β + (σ − β) ∈ ∆+,
a contradiction. �

Proof of (Φ2). The key idea of our proof is to reduce the consideration to the case where
V is a simple G-module, which has already been investigated in [Ja07].

Replacing G with a suitable finite cover, we may assume that G = G0 ×C where G0 is
a simply connected semisimple group and C is a torus. Let L denote the standard Levi
subgroup of G with set of simple roots Supp σ and let L′ be the derived subgroup of L.
Put T ′ = L′ ∩ T , so that T ′ is a maximal torus of L′, and consider the natural restriction
map π : X(T ) → X(T ′).

Lemma 3.35(b) says that eβv = ce−(σ−β)x0 for some c ∈ k×. By Lemma 3.6 there exists
ν ∈ E\E̺ such that 〈̺, ν〉 = 1. It then follows from Lemma 3.35(c) that 〈(σ−β)∨, ν〉 > 0,
whence e−(σ−β)vν 6= 0. Consequently, eβpν(v) 6= 0 and pν(v) 6= 0.

Let W ⊂ V (ν) be the L-submodule generated by vν . Note that W ∩ gvν = l′vν . Since
σ /∈ ∆+ ∪{0}, one has pν(v) /∈ l′vν , therefore the image of pν(v) in W/l′vν is nonzero. We
now show that this image is L′

vν -invariant.
First of all, we prove that

(3.16) eδpν(v) ∈ l′vν for all δ ∈ ∆σ with eδ ∈ l′vν .

Take any such δ. It suffices to show that

(3.17) eδ ∈ gx0
,

because the latter implies eδv ∈ gx0 and eδpν(v) ∈ gvν ∩W = l′vν . If δ ∈ ∆+ then (3.17)
holds automatically. Now assume that δ ∈ ∆−. Then Supp δ ⊂ Supp σ, hence ι(δ∨) is
a multiple of ̺ by Lemma 3.37. Since eδvν = 0, it follows that 〈δ∨, ν〉 = 0. The latter
implies ι(δ∨) = 0, whence (3.17).

Next, we prove that

(3.18) t · pν(v) = pν(v) for all t ∈ T ′
vν .

The latter claim will follow as soon as we prove that T ′
vν ⊂ Tx0

. Since

T ′
vν = {t ∈ T | tλ = 1 for all λ ∈ Ker π + Zν},

it suffices to show that E ⊂ Kerπ + Zν. Observe that the lattice Ker π is generated by
all elements of X(C) and all fundamental weights of G0 corresponding to simple roots
in the set Π \ Supp σ. Since δ ∈ E⊥

̺ for all δ ∈ Supp σ (see Lemma 3.37), we have
E̺ ⊂ Ker π ⊂ Ker π + Zν. Next, for every µ ∈ E \ E̺, there is a unique expression
µ = τ + bν with τ ∈ QE̺ and b ∈ Q. Since 〈̺, ν〉 = 1, we have b = 〈̺, µ〉 ∈ Z and
τ = µ− 〈̺, µ〉ν ∈ ZΓ ∩QE̺ = ZE̺, which implies µ ∈ Kerπ + Zν.

It follows from (3.16) and (3.18) that the image of pν(v) in W/l′vν is a nonzero element
of (W/l′vν)

L′

vν (compare with Lemma 3.7). Now results of [Ja07, § 1.3] (see Proposition 1.6
in loc. cit. and its proof) imply that σ ∈ Σ(G). �

Proof of (Φ3). Let δ ∈ Πσ. Then 〈δ∨, σ〉 = 0 by (3.2). Lemma 3.37 implies that ι(δ∨) is
a non-negative multiple of ̺. As 〈̺, σ〉 > 0, one has ι(δ∨) = 0 and so δ ∈ Γ⊥. �

Proof of (Φ6). Suppose that σ = 2α with α ∈ Π. Proposition 3.26 yields ̺ /∈ P. Hence by
Lemma 3.23 there exist δ ∈ Π and a positive integer n such that ι(δ∨) = n̺. In particular,
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we obtain 〈δ∨, σ〉 > 0, whence δ = α. Note that for every µ ∈ E \ E̺ one has pµ(v) =
cµe−αe−αvµ with cµ ∈ k. Applying Lemma 3.9 we obtain eαv 6= 0. Then Corollary 3.12(b)
yields eαv = ce−αx0 for some c ∈ k×. Consequently, for every µ ∈ E \ E̺ one has
eαpµ(v) 6= 0 and hence pµ(v) 6= 0, which implies e−αe−αvµ 6= 0 and therefore 〈α∨, µ〉 ≥ 2.
In view of Lemma 3.6, the latter yields n ≥ 2. Since 4/n = 〈α∨/n, 2α〉 = 〈̺, σ〉 ∈ Z, it
follows that n ∈ {2, 4}. In both cases we obtain 〈α∨,ZΓ〉 ⊂ 2Z as required. �

Proof of (MF). Here we again use a short argument from the proof of [BVS16, Proposi-

tion 3.16]. Let v′ ∈ V
(Tad)
σ be another vector such that [v′] ∈ TS\{0}. By Corollary 3.12(a)

and Lemma 3.34 one has eδv = eδv
′ = 0 for all δ ∈ Π \ {β}. Next, by Lemma 3.35(b)

we have eβv = ce−(σ−β)x0 and eβv
′ = c′e−(σ−β)x0 for some c, c′ ∈ k×. Then the vector

c′v− cv′ is annihilated by eβ and hence by all eδ with δ ∈ Π. As σ 6= 0, Lemma 3.9 yields
c′v − cv′ = 0. �

3.8. Proof of Theorem 3.1: Step 2. Our goal in this subsection is to prove the fol-
lowing

Proposition 3.38. Suppose that a weight σ ∈ X(Tad) satisfies conditions (Φ1)–(Φ8).
Then σ ∈ Φ(Γ).

In the proof of this proposition we shall need the following lemma.

Lemma 3.39. Suppose that σ ∈ ZΓ, v ∈ V
(Tad)
σ , eδv = 0 for all δ ∈ Γ⊥, and eδv ∈ gx0

for all δ ∈ Π \ Γ⊥. Then [v] ∈ (V/gx0)
Gx0 .

Proof. The claim will follow as soon as we check conditions (1) and (2′) of Lemma 3.7.
As σ ∈ ZΓ, the vector v is Tx0

-invariant, hence so is [v]. In view of the hypothesis it now
suffices to prove that e−δv = 0 for all δ ∈ Γ⊥ = E⊥. But the latter holds because eδv = 0
and 〈δ∨, λ− σ〉 = 0 for all δ ∈ E⊥ and λ ∈ E. �

Proof of Proposition 3.38 for σ ∈ Π. Suppose that σ = α ∈ Π. Then by (Φ8) there exist
two distinct elements ̺1, ̺2 ∈ L satisfying conditions (Φ8)(a–c). It follows from (Φ8)(a, c)
that ∅ 6= K1(α) ⊂ {̺1, ̺2}. Further we consider two cases.

Case 1: |K1(α)| = 1. Assume without loss of generality that K1(α) = {̺1}. Then
condition (Φ8)(b) implies 〈α∨, µ〉 > 0 for all µ ∈ E \ E̺1 , and we put

v =
∑

µ∈E\E̺1

〈̺1, µ〉

〈α∨, µ〉
e−αvµ.

Clearly, v ∈ V
(Tad)
α and eβv = 0 for all β ∈ Π\{α}. As eαv =

∑
µ∈E\E̺1

〈̺1, µ〉vµ ∈ tx0 ⊂ gx0,

we obtain [v] ∈ (V/gx0)
Gx0 by Lemma 3.39. Since ι(α∨) is not proportional to ̺1, one

has [v] 6= 0 (see Lemma 3.11). Applying Proposition 3.18(b, d) and Corollary 3.15 we find
that [v] ∈ TS, whence α ∈ Φ(Γ).

Case 2: |K1(α)| = 2, so that K1(α) = {̺1, ̺2}. According to (Φ8)(b), let b1, b2 ∈
Q+ \ {0} be such that ι(α∨) = b1̺1 + b2̺2. Put

v1 = b1
∑

µ∈E\E̺1

〈̺1, µ〉

〈α∨, µ〉
e−αvµ and v2 = −b2

∑

µ∈E\E̺2

〈̺2, µ〉

〈α∨, µ〉
e−αvµ.
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Clearly, v1, v2 ∈ V
(Tad)
α . As in Case 1, we see that [v1], [v2] ∈ (V/gx0)

Gx0 \ {0}. An easy
check shows that [v1] = [v2]. Applying Proposition 3.18(b, d) and Corollary 3.15 we find
that [v1] = [v2] ∈ TS and so α ∈ Φ(Γ). �

Proof of Proposition 3.38 for σ /∈ Π. Let σ ∈ X(Tad) \ Π and suppose that σ satisfies
conditions (Φ1)–(Φ8).

Lemma 3.40. Suppose that v ∈ V
(Tad)
σ and [v] ∈ (V/gx0)

Gx0 . Then [v] ∈ TS.

Proof. Let s ∈ H0(O,NO)
G be the section defined by s(x0) = [v]. Recall from Corol-

lary 3.15 that [v] ∈ TS if and only if s extends to O ∪O̺ for each ̺ ∈ P. We now fix any
̺ ∈ P and show that s extends to O ∪ O̺. Assume that 〈̺, σ〉 > 0. Then by (Φ7) there
exists δ ∈ Π such that ι(δ∨) is a positive multiple of ̺. It follows that δ ∈ E⊥

̺ \E
⊥, which

contradicts the condition E⊥ = E⊥
̺ . Consequently, 〈̺, σ〉 ≤ 0, which implies [v] ∈ TS by

Proposition 3.18(b). �

To complete the proof, by Lemmas 3.40 and 3.39 it suffices to find a vector v ∈ V
(Tad)
σ

with the following properties:

(V1) v /∈ gx0;
(V2) eδv = 0 for all δ ∈ Γ⊥;
(V3) eδv ∈ gx0 for all δ ∈ Π \ Γ⊥.

In view of condition (Φ2), it is enough to present such a vector v for each of the cases
in Table 1. This is done in the remaining part of the proof. In each case, the explicit
formula for v depends on the signs of the structure constants Nα,β of the Lie algebra [l, l],
where l ⊂ g is the standard Levi subalgebra with set of simple roots Supp σ; we use the
choice of these signs specified in Appendix A.

Case 1: σ ∈ ∆+. By Lemma 3.11 one has V
(Tad)
σ ∩ gx0 = ke−σx0.

Subcase 1.1: σ = α1+ . . .+αr with Supp σ of type Ar (r ≥ 2). Then Supp σ∩σ⊥ = Πσ.
Conditions (Φ1) and (Φ3) yield Supp σ \ Γ⊥ = {α1, αr}, hence there are µ1, µ2 ∈ E such
that e−(σ−αr)vµ1

6= 0 and e−(σ−α1)vµ2
6= 0. Consider the element

f = e−(α2+...+αr)e−α1
+ e−(α3+...+αr)e−(α1+α2) + . . .+ e−αre−(α1+...+αr−1) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα1
fvλ = 〈α∨

1 , λ〉e−(σ−α1)vλ, eα1
e−σvλ = −e−(σ−α1)vλ,

eαrfvλ = (〈α∨
r , λ〉+ r − 1)e−(σ−αr)vλ, eαre−σvλ = e−(σ−αr)vλ;

eδfvλ = 0, eδe−σvλ = 0

for every λ ∈ E and δ ∈ Supp σ \ {α1, αr}. We now put

v =
∑

λ∈E

f + 〈α∨
1 , λ〉e−σ

〈α∨
1 , λ〉+ 〈α∨

r , λ〉+ r − 1
vλ.

Then eα1
v = 0, eαrv = e−(σ−αr)x0, and eδv = 0 for all δ ∈ Supp σ \ {α1, αr}. Clearly,

eδv = 0 for all δ ∈ Π \ Supp σ, and we have proved (V2) and (V3). Since pµ1
(eαrv) =

e−(σ−αr)vµ1
6= 0, we have v 6= 0. As pµ2

(eα1
e−σx0) = −e−(σ−α1)vµ2

6= 0, the vector v is not
proportional to e−σx0, hence (V1).
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Subcase 1.2: σ = α1 + . . . + αr with Supp σ of type Br (r ≥ 2). Then Supp σ ∩ σ⊥ =
Πσ ∪ {αr}. Conditions (Φ1), (Φ3), and (Φ4) yield Supp σ \ Γ⊥ = {α1, αr}, hence there
are µ1, µ2 ∈ E such that e−(σ−αr)vµ1

6= 0 and e−(σ−α1)vµ2
6= 0. Consider the element

f = e−(α2+...+αr)e−α1
+ e−(α3+...+αr)e−(α1+α2) + . . .+ e−αre−(α1+...+αr−1) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα1
fvλ = 〈α∨

1 , λ〉e−(σ−α1)vλ, eα1
e−σvλ = −e−(σ−α1)vλ,

eαrfvλ = (〈α∨
r , λ〉+ 2r − 2)e−(σ−αr)vλ, eαre−σvλ = 2e−(σ−αr)vλ,

eδfvλ = 0, eδe−σvλ = 0

for every λ ∈ E and δ ∈ Supp σ \ {α1, αr}. We now put

v =
∑

λ∈E

f + 〈α∨
1 , λ〉e−σ

2〈α∨
1 , λ〉+ 〈α∨

r , λ〉+ 2r − 2
vλ.

Then eα1
v = 0, eαrv = e−(σ−αr)x0, and eδv = 0 for all δ ∈ Supp σ \ {α1, αr}. Clearly,

eδv = 0 for all δ ∈ Π \ Supp σ, and we have proved (V2) and (V3). Since pµ1
(eαrv) =

e−(σ−αr)vµ1
6= 0, we have v 6= 0. As pµ2

(eα1
e−σx0) = −e−(σ−α1)vµ2

6= 0, the vector v is not
proportional to e−σx0, hence (V1).

Subcase 1.3: σ = α1 + 2α2 + . . . + 2αr−1 + αr with Supp σ of type Cr (r ≥ 3). Then
Supp σ∩σ⊥ = Πσ∪{α1}. Conditions (Φ1) and (Φ3) yield {α2} ⊂ Supp σ\Γ⊥ ⊂ {α1, α2}.
In any case there is µ ∈ E such that e−(σ−α2)vµ 6= 0 and e−(σ−α1)vµ 6= 0. Consider the
element

f = e−(σ−α1)e−α1
+ e−(σ−α1−α2)e−(α1+α2) + . . .+ e−(σ−α1−...−αr−1)e−(α1+...+αr−1)−

e−(σ−α2)e−α2
− e−(σ−α2−α3)e−(α2+α3) − . . .− e−(σ−α2−...−αr−1)e−(α2+...+αr−1) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα1
fvλ = 〈α∨

1 , λ〉e−(σ−α1)vλ, eα1
e−σvλ = −2e−(σ−α1)vλ,

eα2
fvλ = −(〈α∨

2 , λ〉+ r − 1)e−(σ−α2)vλ, eα2
e−σvλ = −e−(σ−α2)vλ,

eδfvλ = 0, eδe−σvλ = 0

for every λ ∈ E and δ ∈ Supp σ \ {α1, α2}. We now put

v =
∑

λ∈E

2f + 〈α∨
1 , λ〉e−σ

〈α∨
1 , λ〉+ 2〈α∨

2 , λ〉+ 2r − 2
vλ.

Then eα1
v = 0, eα2

v = −e−(σ−α2)x0, and eδv = 0 for all δ ∈ Supp σ \ {α1, α2}. Clearly,
eδv = 0 for all δ ∈ Π\Suppσ, and we have proved (V2) and (V3) regardless of whether α1

belongs to Γ⊥ or not. Since pµ(eα2
v) = e−(σ−α2)vµ 6= 0, we have v 6= 0. As pµ(eα1

e−σx0) =
−2e−(σ−α1)vµ 6= 0, the vector v is not proportional to e−σx0, hence (V1).

Subcase 1.4: σ = α1+2α2+3α3+2α4 with Supp σ of type F4. Then Supp σ∩σ⊥ = Πσ.
Conditions (Φ1) and (Φ3) yield Supp σ \ Γ⊥ = {α4}, hence there is µ ∈ E such that
e−(σ−α4)vµ 6= 0 and e−(σ−α3)vµ 6= 0. Consider the element

f = e−(σ−α4)e−α4
− e−(σ−α3−α4)e−(α3+α4) + e−(σ−α2−α3−α4)e−(α2+α3+α4)−

e−(σ−α2−2α3−α4)e−(α2+2α3+α4) ∈ U(g).
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Direct computations taking into account (Φ3) show that

eα3
fvλ = 0, eα3

e−σvλ = −2e−(σ−α3)vλ,

eα4
fvλ = (〈α∨

4 , λ〉+ 5)e−(σ−α4)vλ, eα4
e−σvλ = −e−(σ−α4)vλ,

eα1
fvλ = eα2

fvλ = 0, eα1
e−σvλ = eα2

e−σvλ = 0

for every λ ∈ E. We now put

v =
∑

λ∈E

f

〈α∨
4 , λ〉+ 5

vλ.

Then eα4
v = e−(σ−α4)x0 and eα1

v = eα2
v = eα3

v = 0. Clearly, eδv = 0 for all δ ∈
Π\Supp σ, and we have proved (V2) and (V3). Since pµ(eα4

v) = e−(σ−α4)vµ 6= 0, we have
v 6= 0. As pµ(eα3

e−σx0) = −2e−(σ−α3)vµ 6= 0, the vector v is not proportional to e−σx0,
hence (V1).

Subcase 1.5: σ = α1 + α2 with Supp σ of type G2. Then Supp σ ∩ σ⊥ = ∅. Condition
(Φ1) yields Supp σ \ Γ⊥ = {α1, α2}, hence there are µ1, µ2 ∈ E such that e−(σ−α2)vµ1

6= 0
and e−(σ−α1)vµ2

6= 0. Consider the element

f = e−α2
e−α1

∈ U(g).

Direct computations show that

eα1
fvλ = 〈α∨

1 , λ〉e−(σ−α1)vλ, eα1
e−σvλ = −3e−(σ−α1)vλ,

eα2
fvλ = (〈α∨

2 , λ〉+ 1)e−(σ−α2)vλ, eα2
e−σvλ = e−(σ−α2)vλ

for every λ ∈ E. We now put

v =
∑

λ∈E

3f + 〈α∨
1 , λ〉e−σ

〈α∨
1 , λ〉+ 3〈α∨

2 , λ〉+ 3
vλ.

Then eα1
v = 0 and eα2

v = e−(σ−α2)x0. Clearly, eδv = 0 for all δ ∈ Π \ Supp σ, and
we have proved (V2) and (V3). Since pµ1

(eα2
v) = e−(σ−α2)vµ1

6= 0, we have v 6= 0. As
pµ2

(eα1
e−σx0) = −3e−(σ−α1)vµ2

6= 0, the vector v is not proportional to e−σx0, hence (V1).

Case 2: σ /∈ ∆+. It follows from Lemma 3.11 that V
(Tad)
σ ∩ gx0 = {0}, hence in this

case condition (V1) is equivalent to v 6= 0.
Subcase 2.1: σ = 2α with α ∈ Π. Condition (Φ6) yields 〈α∨, λ〉 ∈ 2Z for all λ ∈ E.

Next, in view of (Φ1) there exists µ ∈ E such that 〈α∨, µ〉 > 0. Then the vector

v =
∑

λ∈E:〈α∨,λ〉>0

1

〈α∨, λ〉 − 1
e−αe−αvλ

evidently has properties (V1)–(V3).
Subcase 2.2: σ = α+β for α, β ∈ Π with α ⊥ β. Condition (Φ5) yields 〈α∨, λ〉 = 〈β∨, λ〉

for all λ ∈ E. Next, in view of (Φ1) there exists µ ∈ E such that 〈α∨, µ〉 > 0. Then the
vector

v =
∑

λ∈E:〈α∨,λ〉>0

1

〈α∨, λ〉
e−αe−βvλ

evidently has properties (V1)–(V3).
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Subcase 2.3: σ = α1 + 2α2 + α3 with Supp σ of type A3. Then Supp σ ∩ σ⊥ = Πσ.
Condition (Φ1) yields Supp σ \Γ⊥ = {α2}, hence there is µ ∈ E such that e−(σ−α2)vµ 6= 0.
Consider the element

f = e−(α1+α2+α3)e−α2
− e−(α1+α2)e−(α2+α3) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα2
fvλ = (〈α∨

2 , λ〉+ 1)e−(σ−α2)vλ and eα1
fvλ = eα3

fvλ = 0

for all λ ∈ E. We now put

v =
∑

λ∈E

f

〈α∨
2 , λ〉+ 1

vλ.

Then eα1
v = eα3

v = 0 and eα2
v = e−(σ−α2)x0. Clearly, eδv = 0 for all δ ∈ Π \ Supp σ,

and we have proved (V2) and (V3). Since pµ(eα2
v) = e−(σ−α2)vµ 6= 0, we have v 6= 0,

hence (V1).
Subcase 2.4: σ = α1 + 2α2 + 3α3 with Supp σ of type B3. Then Supp σ ∩ σ⊥ = Πσ.

Condition (Φ1) yields Supp σ \Γ⊥ = {α3}, hence there is µ ∈ E such that e−(σ−α3)vµ 6= 0.
Consider the element

f = e−(α1+2α2+2α3)e−α3
− e−(α1+α2+2α3)e−(α2+α3) + e−(α1+α2+α3)e−(α2+2α3) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα3
fvλ = (〈α∨

3 , λ〉+ 2)e−(σ−α3)vλ and eα1
fvλ = eα2

fvλ = 0

for all λ ∈ E. We now put

v =
∑

λ∈E

f

〈α∨
3 , λ〉+ 2

vλ.

Then eα3
v = e−(σ−α3)x0 and eα1

v = eα2
v = 0. Clearly, eδv = 0 for all δ ∈ Π \ Supp σ,

and we have proved (V2) and (V3). Since pµ(eα3
v) = e−(σ−α3)vµ 6= 0, we have v 6= 0,

hence (V1).
Subcase 2.5: σ = 2α1+. . .+2αr with Supp σ of type Br (r ≥ 2). Then Supp σ∩σ⊥ = Πσ.

Condition (Φ1) yields Supp σ \Γ⊥ = {α1}, hence there is µ ∈ E such that e−(σ−α1)vµ 6= 0.
Consider the element

f = 4e−σ+α1
e−α1

+ 4e−σ+α1+α2
e−(α1+α2) + . . .+ 4e−σ+α1+...+αr−1

e−(α1+...+αr−1)+

e−(α1+...+αr)e−(α1+...+αr) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα1
fvλ = (4〈α∨

1 , λ〉+ 4r − 6)vλ and eδfvλ = 0

for all λ ∈ E and δ ∈ Supp σ \ {α1}. We now put

v =
∑

λ∈E

f

4〈α∨
1 , λ〉+ 4r − 6

vλ.

Then eα1
v = e−(σ−α1)x0 and eδv = 0 for all δ ∈ Supp σ \ {α1}. Clearly, eδv = 0 for all

δ ∈ Π \ Supp σ, and we have proved (V2) and (V3). Since pµ(eα1
v) = e−(σ−α1)vµ 6= 0, we

have v 6= 0, hence (V1).
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Subcase 2.6: σ = 2α1 + . . .+ 2αr−2 + αr−1 + αr with Supp σ of type Dr (r ≥ 4). Then
Supp σ ∩ σ⊥ = Πσ. Condition (Φ1) yields Supp σ \ Γ⊥ = {α1}, hence there is µ ∈ E such
that e−(σ−α1)vµ 6= 0. Consider the element

f = e−σ+α1
e−α1

+ e−σ+α1+α2
e−(α1+α2) + . . .+ e−σ+α1+...+αr−1

e−(α1+...+αr−1) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα1
fvλ = (〈α∨

1 , λ〉+ r − 2)e−σ+α1
vλ and eδfvλ = 0

for all λ ∈ E and δ ∈ Supp σ \ {α1}. We now put

v =
∑

λ∈E

f

〈α∨
1 , λ〉+ r − 2

vλ.

Then eα1
v = e−(σ−α1)x0 and eδv = 0 for all δ ∈ Supp σ \ {α1}. Clearly, eδv = 0 for all

δ ∈ Π \ Supp σ, and we have proved (V2) and (V3). Since pµ(eα1
v) = e−(σ−α1)vµ 6= 0, we

have v 6= 0, hence (V1).
Subcase 2.7: σ = 4α1+2α2 with Supp σ of type G2. Then Supp σ∩σ⊥ = Πσ. Condition

(Φ1) yields Supp σ \ Γ⊥ = {α1}, hence there is µ ∈ E such that e−(σ−α1)vµ 6= 0. Consider
the element

f = 4e−σ+α1
e−α1

+ 4e−σ+α1+α2
e−(α1+α2) − 3e−(2α1+α2)e−(2α1+α2) ∈ U(g).

Direct computations taking into account (Φ3) show that

eα1
fvλ = (4〈α∨

1 , λ〉+ 18)e−σ+α1
and eα2

fvλ = 0

for all λ ∈ E. We now put

v =
∑

λ∈E

f

4〈α∨
1 , λ〉+ 18

vλ.

Then eα1
v = e−(σ−α1)x0 and eα2

v = 0. Clearly, eδv = 0 for all δ ∈ Π\Suppσ, and we have
proved (V2) and (V3). Since pµ(eα1

v) = e−(σ−α1)vµ 6= 0, we have v 6= 0, hence (V1). �

The proof of Proposition 3.38 is completed.

4. Applications

Given a finitely generated and saturated monoid Γ ⊂ Λ+, recall the set Φ(Γ) and
Theorem 3.1 from § 3.1. All results obtained in this section depend only on the following
parts of Theorem 3.1:

• the Tad-module TX0
MΓ is multiplicity-free;

• every element of Φ(Γ) satisfies conditions (Φ1)–(Φ8).

We point out that the existence part of Theorem 3.1 (see Proposition 3.38) is not used in
this section.
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4.1. Auxiliary results on Φ(Γ). Throughout this subsection, Γ ⊂ Λ+ is an arbitrary
finitely generated and saturated monoid.

Lemma 4.1. The set Φ(Γ) contains no proportional elements.

Proof. Assume that σ, σ′ ∈ Φ(Γ) are two distinct proportional elements. Thanks to (Φ2),
one has σ, σ′ ∈ Σ(G). By inspecting Table 1, we get the only two following possibilities
(up to interchanging σ and σ′).

Case 1: σ = α for some α ∈ Π and σ′ = 2α. Then condition (Φ8) for σ contradicts
condition (Φ7) for σ′.

Case 2: σ = α1 + . . . + αr with Supp σ of type Br (r ≥ 2) and σ′ = 2σ. Then
condition (Φ4) for σ contradicts condition (Φ3) for σ′. �

Lemma 4.2. If α + β ∈ Φ(Γ) for some α, β ∈ Π with α ⊥ β, then Φ(Γ) ∩ {α, β} = ∅.

Proof. Assume without loss of generality that α ∈ Φ(Γ). Then α ∈ ZΓ by (Φ1). On the
other hand, 2 = 〈α∨, α〉 6= 〈β∨, α〉 = 0, which contradicts condition (Φ5) for α + β. �

Lemma 4.3. Suppose that σ ∈ Φ(Γ) \Π, α ∈ Supp σ, and 〈α∨, σ〉 > 0. Then α /∈ Φ(Γ).

Proof. As 〈α∨, σ〉 > 0, by condition (Φ7) for σ there exists ̺ ∈ K1 such that ι(α∨) is a
positive multiple of ̺. Assume α ∈ Φ(Γ). Then conditions (Φ8)(b, c) for α yield ̺ /∈ K1,
a contradiction. �

Corollary 4.4. Suppose that σ ∈ Φ(Γ) \ Π. Then there exists α ∈ Supp σ such that

α /∈ Φ(Γ).

Proof. This follows from Lemmas 4.3 and 3.20. �

Proposition 4.5. Every element of Φ(Γ) is primitive in the lattice ZΦ(Γ).

Proof. Assume there exists an element σ ∈ ZΦ(Γ) such that nσ ∈ Φ(Γ) for some n ≥ 2.
Since Φ(Γ) ⊂ Σ(G) ⊂ Z+Π, it follows that σ ∈ Z+Π. An inspection of Table 1 shows
that n = 2 and one of the three cases below occurs.

Case 1: σ = α ∈ Π. Then 2α ∈ Φ(Γ) and condition (Φ6) yields

(4.1) 〈α∨, τ〉 ∈ 2Z for all τ ∈ Φ(Γ).

Since σ ∈ ZΦ(Γ), there exists σ1 ∈ Φ(Γ) \ {2α} such that α ∈ Supp σ1. Then Πσ1
⊂ α⊥

by (Φ3). A case-by-case check of all entries in Table 1 together with (4.1) and Lemma 4.2
yields only the following two possibilities for σ1 and α:

• σ1 = α1 + α2 with Supp σ1 of type B2 and α = α2;
• σ1 = α1+2α2+2α3+ . . .+2αr−1+αr with Supp σ1 of type Cr (r ≥ 3) and α = α1.

It is easy to see that σ1 is the unique element in Φ(Γ) \ {2α} with α ∈ Supp σ1. The
subsequent consideration is divided into three subcases.

Subcase 1.1: σ1 = α1 + α2 with Supp σ1 of type B2 and α = α2. Then there exists
σ2 ∈ Φ(Γ) \ {2α, σ1} such that α1 ∈ Supp σ2. Recall that α2 /∈ Supp σ2. As 〈α∨

1 , σ1〉 = 1,
one has σ2 6= α1 by Lemma 4.3 and σ2 6= 2α1 by condition (Φ6). Further, σ2 6= α1+β for all
β ∈ Π with α1 ⊥ β; otherwise one would have 〈α∨

1 , σ1〉 > 0 and 〈β∨, σ1〉 ≤ 0, contradicting
condition (Φ5). It follows that Supp σ2 is of type As for some s ≥ 2. Condition (Φ3) for σ2
yields Πσ2

⊂ σ⊥
1 , whence s = 2 and σ2 = α1+β1 for some β1 ∈ Π \ {α1, α2}. Note that σ2

is the unique element in Φ(Γ)\{2α, σ1} with α1 ∈ Supp σ2. Iterating the above argument
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leads to an infinite chain σ3, σ4, . . . ⊂ Φ(Γ) such that for every i ≥ 3 the following
properties hold:

• Supp σi is of type A2;
• σi = βi−2 + βi−1 for some βi−1 ∈ Π \ {α1, α2, β1, . . . , βi−2};
• σi is the unique element in Φ(Γ) \ {2α, σ1, . . . , σi−1} with βi−2 ∈ Supp σi.

As Φ(Γ) is finite, we have got a contradiction.
Subcase 1.2: σ1 = α1+2α2+α3 with Supp σ1 of type C3 and α = α1. Then there exists

σ2 ∈ Φ(Γ) \ {2α, σ1} such that α2 ∈ Supp σ2. Recall that α1 /∈ Supp σ2. As σ2 ∈ ZΓ
by (Φ1) and Πσ1

⊂ Γ⊥ by (Φ3), it follows that α3 ∈ σ⊥
2 , which implies α3 ∈ Supp σ2.

If Supp σ2 = {α2, α3} then σ2 = k(α2 + α3) with k ∈ {1, 2}, hence 〈α∨
3 , σ2〉 6= 0, which

contradicts condition (Φ3) for σ1. Consequently, Supp σ2 6= {α2, α3} and there exists
α4 ∈ Π \ {α1, α2, α3} such that Π \ α⊥

4 = {α3, α4}, the set {α1, α2, α3, α4} is of type F4,
and Supp σ2 = {α2, α3, α4}. It follows that

σ2 ∈ {α2 + α3 + α4, 2α2 + 2α3 + 2α4, 3α2 + 2α3 + α4}.

Condition (4.1) leaves the only possibility σ2 = 2α2 + 2α3 + 2α4. Condition (Φ3) for σ2
then implies α2 ∈ Γ⊥, which is false because 〈α∨

2 , σ1〉 6= 0.
Subcase 1.3: σ1 = α1 + 2α2 + 2α3 + . . . + 2αr−1 + αr with Supp σ1 of type Cr (r ≥ 4);

α = α1. Then there exists σ2 ∈ Φ(Γ) \ {2α, σ1} such that α2 ∈ Supp σ2. Recall that
α1 /∈ Supp σ2. As σ2 ∈ ZΓ by (Φ1) and Πσ1

⊂ Γ⊥ by (Φ3), it follows that α3 ∈ σ⊥
2 , which

implies α3 ∈ Supp σ2. Iterating this argument yields α4, . . . , αr ∈ Supp σ2. It follows that
Supp σ2 = {α2, . . . , αr}, so that Supp σ2 is of type Cr−1 and σ2 = α2+2α3+. . .+2αr−1+αr.
Since α3 ∈ Πσ1

and 〈α∨
3 , σ2〉 6= 0, we obtain a contradiction with condition (Φ3) for σ1.

Case 2: σ = α1+ . . .+αr with Supp σ of type Br (r ≥ 2). Then 2σ = 2α1+ . . .+2αr ∈
Φ(Γ) and hence α2, . . . , αr ∈ Γ⊥ by (Φ3). In view of condition σ ∈ ZΦ(Γ) there exists
τ ∈ Φ(Γ) \ {2σ} such that α1 ∈ Supp τ . As τ ∈ ZΓ by (Φ1), condition α2 ∈ τ⊥ implies
α2 ∈ Supp τ . Iterating this argument yields α3, . . . , αr ∈ Supp τ , therefore Supp σ ⊂
Supp τ . Since Φ(Γ) ⊂ Σ(G), an inspection of Table 1 shows that conditions α1 /∈ Πτ and
αr ∈ τ⊥ cannot hold for an element τ ∈ Φ(Γ) \ {2σ}, a contradiction.

Case 3: σ = 2α1 +α2 with Supp σ of type G2. Then 2σ = 4α1 +2α2 ∈ Φ(Γ) and hence
α2 ∈ Γ⊥ by (Φ3). Since Φ(Γ) ⊂ Σ(G), an inspection of Table 1 yields that there are
no elements τ ∈ Φ(Γ) \ {2σ} such that α2 ∈ Supp τ and α2 ∈ τ⊥, which contradicts the
condition σ ∈ ZΦ(Γ). �

The following proposition is similar to [BVS16, Proposition 5.4].

Proposition 4.6. Every σ ∈ Φ(Γ) satisfies the condition σ /∈ Z+(Φ(Γ) \ {σ}).

Proof. Fix an arbitrary σ ∈ Φ(Γ) and assume that σ ∈ Z+(Φ(Γ) \ {σ}). Fix a subset
Φσ ⊂ Φ(Γ)\{σ} such that σ =

∑
τ∈Φσ

nττ with all the coefficients nτ being positive integers.

Then Lemma 4.1 yields

(4.2) |Φσ| ≥ 2.

Clearly, every τ ∈ Φσ satisfies

(4.3) Supp τ ⊂ Supp σ;
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moreover,

(4.4) Πσ ⊂ τ⊥

by (Φ3). Assume that | Supp σ \ Πσ| = 1. As Πσ ⊂ σ⊥, for each τ ∈ Φσ condition (4.4)
implies that τ is proportional to σ, which is impossible by Lemma 4.1. Thus in what
follows we assume that | Suppσ \ Πσ| ≥ 2. Then an inspection of Table 1 leaves the
following five cases.

Case 1: σ = α1 + α2 with Supp σ of type A2, B2, or G2. Condition (4.2) yields
Φσ = {α1, α2}, which contradicts Corollary 4.4.

Case 2: σ = α + β for some α, β ∈ Π with α ⊥ β. Condition (4.2) yields Φσ = {α, β},
which contradicts Lemma 4.2.

Case 3: σ = α1 + . . .+ αr with Supp σ of type Ar (r ≥ 3). An easy computation based
on conditions (4.3) and (4.4) shows that every element τ ∈ Φσ has the form

(4.5) τ = kα1 + (k + d)α2 + . . .+ (k + (r − 1)d)αr

for some k, d ∈ Z with k ≥ 0, k + (r − 1)d ≥ 0.

Since r ≥ 3 and Φσ ⊂ Σ(G), an inspection of Table 1 yields Φσ = ∅, which contradicts
condition (4.2).

Case 4: σ = α1+ . . .+αr with Supp σ of type Br (r ≥ 3). The same computation as in
Case 3 shows that every element τ ∈ Φσ has the form (4.5). Since r ≥ 3 and Φσ ⊂ Σ(G),
an inspection of Table 1 yields Φσ = ∅ for r ≥ 5 and Φσ ⊂ {αr−2 + 2αr−1 + 3αr} for
r ∈ {3, 4}. In any case we obtain a contradiction with (4.2).

Case 5: σ = α1 + 2α2 + 2α3 + . . . + 2αr−1 + αr with Supp σ of type Cr (r ≥ 3). It
follows from conditions (4.3) and (4.4) that every element τ ∈ Φσ has the form

τ = k1α1 + k2(2α2 + 2α3 + . . .+ 2αr−1 + αr)

for some non-negative integers k1, k2. Since r ≥ 3 and Φσ ⊂ Σ(G), an inspection of
Table 1 yields Φσ ⊂ {α1}, which contradicts condition (4.2). �

Lemma 4.7. Suppose that α ∈ ZΓ ∩ Π and 2α ∈ Φ(Γ). Then α is primitive in ZΓ.

Proof. Property (Φ6) implies that ι(α∨)/2 ∈ L. As 〈α∨/2, α〉 = 1, the claim follows. �

Remark 4.8. Lemma 4.1, Proposition 4.5, and Proposition 4.6 would follow easily if we
knew a priori that the set Φ(Γ) is linearly independent.

The above remark leads to the following natural question.

Question 4.9. Is the set Φ(Γ) linearly independent?

4.2. Applications to affine spherical G-varieties. Let X be an affine spherical G-
variety. Consider the corresponding Tad-orbit closure CX ⊂ MΓX

(see § 2.7) and equip it
with its reduced subscheme structure. Recall the root monoid ΞX from Definition 2.12.

Proposition 4.10. Suppose that σ is an indecomposable element of ΞX . Then

(a) σ ∈ Φ(ΓX);
(b) σ is primitive in the lattice ZΞX .
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Proof. (a) This follows readily from Corollary 2.24 together with the inclusion TX0
CX ⊂

TX0
MΓX

.
(b) Part (a) yields ZΞX ⊂ ZΦ(ΓX), which implies the required result in view of Propo-

sition 4.5. �

Recall the monoid Ξsat
X and the set ΣX defined in § 2.3.

Theorem 4.11. There is an inclusion ΣX ⊂ ΞX . In particular, ΞX = Ξsat
X and the

monoid ΞX is free.

Proof. Take any σ ∈ ΣX . Since Z+ΣX = Ξsat
X and the set ΣX is linearly independent,

there exists a positive integer n such that nσ is an indecomposable element of ΞX . It
follows from Proposition 4.10(b) that n = 1 and hence σ ∈ ΞX . �

Corollary 4.12. There is an inclusion ΣX ⊂ Φ(ΓX).

Proof. This follows from Theorem 4.11 and Proposition 4.10(a). �

Corollary 4.13. The Tad-orbit closure CX ⊂ MΓX
is an affine space of dimension |ΣX |.

Proof. Combining Theorems 2.23 and 4.11 we find that CX is a multiplicity-free affine
Tad-variety whose weight monoid is generated by the linearly independent set ΣX . All the
claims follow readily. �

Corollary 4.14. Let Γ ⊂ Λ+ be a finitely generated and saturated monoid. Then every

Tad-orbit closure in MΓ, equipped with its reduced subscheme structure, is an affine space.

Proof. This follows from Theorem 2.20 and Corollary 4.13. �

Theorem 4.15. Up to a G-isomorphism, every affine spherical G-variety X is uniquely

determined by the pair (ΓX ,ΣX).

Proof. Let X1, X2 be two affine spherical G-varieties with ΓX1
= ΓX2

and ΣX1
= ΣX2

and
assume that X1, X2 are not G-isomorphic. Put Γ = ΓX1

= ΓX2
and Σ = ΣX1

= ΣX2
for

brevity. Consider the closed subsets CX1
, CX2

, and Z = CX1
∪CX2

in MΓ and equip each
of them with its reduced subscheme structure. Thanks to Corollary 4.13,

dimCX1
= dimCX2

= dimZ = |Σ|.

It follows from Theorem 2.20 that CX1
6= CX2

, hence CX1
and CX2

are distinct irreducible
components of Z. Consequently, X0 is a singular point of Z, which implies

(4.6) dim TX0
Z ≥ |Σ|+ 1.

By Theorems 2.23 and 4.11, CX1
and CX2

are isomorphic multiplicity-free affine Tad-
varieties with weight monoid Z+Σ, therefore all Tad-weights of the algebra k[Z] belong
to Z+Σ. In particular,

{τ ∈ X(Tad) | −τ is a Tad-weight of TX0
Z} ⊂ Z+Σ.

Since TX0
Z ⊂ TX0

MΓ and TX0
MΓ is a multiplicity-free Tad-module by Theorem 3.1, in-

equality (4.6) implies that the set Φ(Γ)\Σ contains an element that belongs to Z+Σ. The
latter is impossible by Proposition 4.6. �
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Recall from § 2.3 that to every affine spherical G-variety X one assigns the set ΣX of
spherical roots of X.

The following result, which strengthens Theorem 4.15, was first obtained by Losev
in [Lo09b, Theorem 1.2].

Corollary 4.16. Up to a G-isomorphism, every affine spherical G-variety X is uniquely

determined by the pair (ΓX ,ΣX).

Proof. Thanks to Corollary 4.12 and Proposition 4.5, the set ΣX is uniquely determined by
the pair (ΓX ,ΣX) as the set of primitive elements ν of the lattice ZΦ(ΓX) such that Q+ν
is an extremal ray of the cone Q+ΣX ⊂ ZΓX ⊗ZQ. It remains to apply Theorem 4.15. �

The following corollary is a particular case of Corollary 4.23 below, which was first
obtained in [AB05, Corollary 3.4].

Corollary 4.17. Up to a G-isomorphism, there are only finitely many affine spherical

G-varieties with a prescribed weight monoid.

Proof. Let X be an affine spherical G-variety. Combining Corollary 4.12 with condi-
tion (Φ2) yields ΣX ⊂ Σ(G). As the set Σ(G) is finite, the claim follows from Theo-
rem 4.15. �

Corollary 4.18. Suppose that Γ ⊂ Λ+ is a finitely generated and saturated monoid. Then

every irreducible component of MΓ, equipped with its reduced subscheme structure, is an

affine space.

Proof. It follows from Theorem 2.20 and Corollary 4.17 that every irreducible component
of MΓ is a Tad-orbit closure. Now the claim is implied by Corollary 4.14. �

Let X be an affine spherical G-variety. For every σ ∈ ΣX , let σ denote the unique
element in the set Z+σ ∩ ΣX . The following result is a version of [Lo09a, Theorem 2] for
affine spherical G-varieties.

Theorem 4.19. Under the above assumptions, σ ∈ {σ, 2σ} for every σ ∈ ΣX . Moreover,

σ = 2σ if and only if one of the following cases occurs:

(1) σ /∈ Σ(G);
(2) σ = α ∈ Π and Q+ι(α∨) is an extremal ray of the cone K;

(3) σ = α1 + . . .+ αr with Supp σ of type Br (r ≥ 2) and αr ∈ Γ⊥
X .

Proof. Fix any σ ∈ ΣX . Corollary 4.12 yields σ ∈ Φ(ΓX), which together with Lemma 4.1
implies that σ is the unique element in the set Z+σ ∩ Φ(ΓX). Next, σ ∈ Σ(G) by (Φ2).
Since σ ∈ X(T ), an inspection of Table 1 along with Lemma 4.7 shows that the condition
σ /∈ Σ(G) implies σ = 2σ. Hence in what follows we assume σ ∈ Σ(G). Inspecting again
Table 1, we find that σ = σ except for, possibly, one of the following two cases.

Case 1: σ = α ∈ Π. Then σ ∈ {α, 2α}. Comparing conditions (Φ7) and (Φ8), we find
that σ = 2α if and only if Q+ι(α∨) is an extremal ray of the cone K.

Case 2: σ = α1+. . .+αr with Supp σ of type Br (r ≥ 2). Then σ ∈ {σ, 2σ}. Comparing
conditions (Φ3) and (Φ4), we find that σ = 2σ if and only if αr ∈ Γ⊥

X . �
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4.3. Consequences for multiplicity-free affine G-varieties. In this subsection, using
a simple reduction, we extend some of the results of § 4.2 to arbitrary multiplicity-free
affine G-varieties.

Let X be a multiplicity-free affine G-variety and let X̃ be the normalization of X.

Clearly, X̃ is an affine spherical G-variety and k[X ] is naturally identified with a G-

invariant subalgebra of k[X̃ ].

Proposition 4.20. Up to a G-isomorphism, X is uniquely determined by X̃ and ΓX .

Proof. This follows from the fact that ΓX uniquely determines k[X ] as a G-submodule

and hence as a subspace of k[X̃ ]. �

Proposition 4.21. The following assertions hold:

(a) ΓX̃ = ZΓX ∩Q+ΓX (that is, ΓX̃ is the saturation of ΓX);
(b) ΣX̃ = ΣX .

Proof. (a) Since the algebra k[X̃ ] is integral over k[X ], it follows from [Po86, Corol-

lary 2 of Theorem 4] that the algebra k[X̃ ]U is integral over k[X ]U . Taking into account
Proposition 2.9 and the equality k(X)U = Quot k[X ]U (see [PoV94, Theorem 3.3]), we

conclude that k[X̃ ]U is the integral closure of k[X ]U in Quotk[X ]U . It remains to apply
Proposition 2.7.

(b) Since X and X̃ contain the same open G-orbit, the claim follows from Proposi-
tion B.1 and the definition of the set of spherical roots (see § 2.3). �

Corollary 4.22. Up to a G-isomorphism, every multiplicity-free affine G-variety X is

uniquely determined by the pair (ΓX ,ΣX).

Proof. Combining Proposition 4.21 and Corollary 4.16, we find that the pair (ΓX ,ΣX)

uniquely determines X̃ up to a G-isomorphism. It remains to apply Proposition 4.20. �

The following result was first obtained in [AB05, Corollary 3.4].

Corollary 4.23. Up to a G-isomorphism, there are only finitely many multiplicity-free

affine G-varieties with a prescribed weight monoid.

Proof. This is implied by Proposition 4.21(a), Corollary 4.17, and Proposition 4.20. �

4.4. The uniqueness property for spherical homogeneous spaces. Given a spher-
ical homogeneous space G/H , recall its invariants ΛG/H , Πp

G/H , ΣG/H , and DG/H from

Appendix B. Our goal in this subsection is to give a new proof of the following theorem,
which is a reformulation of [Lo09a, Theorem 1].

Theorem 4.24. Up to a G-isomorphism, every spherical homogeneous space G/H is

uniquely determined by the quadruple HG/H = (ΛG/H ,Π
p
G/H ,ΣG/H ,DG/H).

The main idea of our proof of this theorem is to perform a reduction to the uniqueness
property for affine spherical varieties (Corollary 4.16). The reduction itself uses tools that
go back to [Lu01, § 6]; see also [Br07, § 3.2].

Recall that a subgroup H ⊂ G is said to be spherical if G/H is a spherical homogeneous
space. In the proof of Theorem 4.24 we shall need the following lemma.
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Lemma 4.25. Suppose that H and H ′ are two spherical subgroups of G such that H ⊂
H ′ ⊂ NG(H). Then, modulo the inclusion ΛG/H′ →֒ ΛG/H , the equality Q+ΣG/H′ =
Q+ΣG/H holds.

Proof. Restricting valuations along the chain k(G/H) ⊃ k(G/H ′) ⊃ k(G/NG(H)) yields
a chain of maps

(4.7) VG/H → VG/H′ → VG/NG(H).

As follows from [LuV83, § 3.2, Corollary 1] or [Kn91, Corollary 1.5], all the maps in (4.7)
are surjective, which induces a chain of inclusions

(4.8) Q+ΣG/NG(H) →֒ Q+ΣG/H′ →֒ Q+ΣG/H .

It was shown in [BP87, § 5.4] that the composite map VG/H → VG/NG(H) in (4.7) is the
quotient by the vector subspace VG/H ∩ (−VG/H). It follows that the composite map
Q+ΣG/NG(H) →֒ Q+ΣG/H in (4.8) is bijective hence so are all the maps in (4.8). �

Proof of Theorem 4.24. Without loss of generality, we may assume that G is the product
of a simply connected semisimple group with a torus. Fix a spherical subgroup H ⊂ G.

Let H♯ ⊂ H be the common kernel of all characters of H . Clearly, H♯ is a normal
subgroup of H and the group S = H/H♯ is diagonalizable. Consider the natural map

(4.9) ϕ : H → S, h 7→ hH♯.

The definition of H♯ implies that the induced map ϕ∗ : X(S) → X(H) is an isomorphism.
Consider the homogeneous space G/H♯ and equip it with the natural action of the

group G× S given by ((g, hH♯), xH♯) 7→ gxh−1H♯. One easily sees that the stabilizer in
G× S of the point eH♯ is the subgroup

Ĥ = {(h, hH♯) | h ∈ H} ≃ H.

In what follows, we identify the algebra k[G/H♯] with k[G]H
♯
.

The action of G × S on G/H♯ induces the (G × S)-module structure on the algebra

k[G]H
♯

given by

[(g, hH♯)f ](x) = f(g−1xh),

where g, x ∈ G, h ∈ H , and f ∈ k[G]H
♯
. It follows from [ViK78, Theorem 1] that

the sphericity of H is equivalent to the condition that the (G × S)-module k[G]H
♯

be

multiplicity-free. Let Γ̂G/H be the set of all pairs (λ, χ) ∈ Λ+ ⊕ X(H) such that k[G]H
♯

contains a simple (G×S)-submodule isomorphic to V (λ)⊗kχ, where kχ stands for the one-

dimensional S-module on which S acts via the character χ. The set Γ̂G/H is a submonoid
in Λ+ ⊕ X(H), called the extended weight monoid of G/H ; see [Av15, § 2.2] for details.

The variety G/H♯ is quasi-affine (see, for instance, [Av15, Lemma 2.4]). It is thus

identified with an open (G×S)-stable subset of the affine (G×S)-varietyX = Spec k[G]H
♯
.

By the definitions of Γ̂G/H and X, there is a (G× S)-module isomorphism

(4.10) k[X ] ≃
⊕

(λ,χ)∈Γ̂G/H

V (λ)⊗ kχ.

Now consider the subgroup H0 ⊂ G, which is also spherical. Lemma 4.25 yields

(4.11) Q+ΣG/H = Q+ΣG/H0 .
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By [BP87, Corollary 5.2], the group NG(H
0)/H0 is diagonalizable, hence so is H/H0. It

follows that

(4.12) H0 = ϕ−1(S0),

where the map ϕ is given by (4.9).
Observe that the group G × S0 acts transitively on G/H♯ and that the stabilizer in

G × S0 of the point eH♯ is the subgroup Ĥ0. It follows from the sphericity of H0 that
G/H♯ is a spherical (G× S0)-variety, hence so is X. In particular, the algebra k[X ] is a
multiplicity-free (G× S0)-module. Consequently, the natural map

(4.13) ψ : Γ̂G/H → ΓX , (λ, χ) 7→ (λ, χ|S0),

is injective and hence an isomorphism.

It is easy to see that Ĥ0 ⊂ H0×S0 ⊂ NG×S0(Ĥ0) and (G×S0)/(H0×S0) ≃ G/H0. This
together with Lemma 4.25 implies Q+ΣG/H0 = Q+Σ(G×S0)/Ĥ0 . Combining this equality

with (4.11) yields

(4.14) Q+ΣG/H = Q+ΣX .

We are now ready to recover H from HG/H . As shown in [Av15, § 2.3], the datum HG/H

uniquely determines X(H) as an abstract group and Γ̂G/H as a submonoid of Λ+ ⊕X(H).
Then S is recovered as the diagonalizable group with X(S) = X(H). Next, the weight

monoid ΓX is recovered by the formula ΓX = ψ(Γ̂G/H). Further, equality (4.14) together
with ΓX uniquely determine the set ΣX . According to Corollary 4.16, the pair (ΓX ,ΣX)
uniquely determines X up to a (G×S0)-isomorphism. As the map ψ is injective, the action
of G × S0 on X uniquely extends to an action of G × S satisfying (4.10). Therefore X
is uniquely determined up to (G× S)-equivariant isomorphism. At last, up to conjugacy,
the subgroup H is recovered from X as the projection to G of the stabilizer in G× S of
a point in the open (G× S)-orbit in X. �

Appendix A. The structure constants of Chevalley bases

Computations carried out in § 3.8 require the knowledge of signs of the structure con-
stants of Chevalley bases for the simple Lie algebras of types Ar, Br, Cr, Dr, F4, and G2.
The goal of this appendix is to specify a particular choice of the signs for each of the
above-mentioned Lie algebras.

Let g be a simple Lie algebra and let {hα | α ∈ Π} ∪ {eα | α ∈ ∆} be a Chevalley
basis of g. The following relations for α, β ∈ ∆+ easily follow, for instance, from [Ca89,
Theorem 4.1.2]:

Nα,β = −Nβ,α;

N−α,−β = −Nα,β ;

Nα,−β =

{
−Nβ,α−β

(α−β,α−β)
(α,α)

if α− β ∈ ∆+;

Nβ−α,α
(β−α,β−α)

(β,β)
if β − α ∈ ∆+.

These relations show that the signs of all the structure constants of g are uniquely deter-
mined by the signs of the structure constants Nα,β with α, β ∈ ∆+. In what follows we
specify these signs for all the Lie algebras in question.

For type F4, we use the signs presented in [VaP96, Table II].
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For type G2, we use the signs extracted from [VaP96, Table IV].
For each of the types Ar,Br,Cr,Dr, a specific choice of the signs is presented below. It

can be obtained from explicit matrix realizations of the corresponding simple Lie algebras.
Type Ar, r ≥ 2.
For 1 ≤ i ≤ j ≤ r set αij = αi + . . .+ αj . Then ∆+ = {αij | 1 ≤ i ≤ j ≤ r}.

Condition k = j + 1 i = l + 1
Sign of Nαij ,αkl

+ −

Type Br, r ≥ 2.
For 1 ≤ i ≤ j ≤ r set αij = αi + . . .+ αj .
For 1 ≤ i < j ≤ r set βij = αir + αjr.
Then ∆+ = {αij | 1 ≤ i ≤ j ≤ r} ∪ {βij | 1 ≤ i < j ≤ r}.

Condition k = j + 1 i = l + 1 j = l = r, i < k j = l = r, k < i
Sign of Nαij ,αkl

+ − − +

Condition i = l + 1 j = l + 1, k < i j = l + 1, i < k
Sign of Nβij ,αkl

− + −

Type Cr, r ≥ 3.
For 1 ≤ i ≤ j ≤ r − 1 set αij = αi + . . .+ αj.
For 1 ≤ i ≤ r set βir = αi + . . .+ αr.
For 1 ≤ i ≤ j < r set βij = αi,r−1 + αr + αj,r−1.
Then ∆+ = {αij | 1 ≤ i ≤ j ≤ r − 1} ∪ {βij | 1 ≤ i ≤ j ≤ r}.

Condition k = j + 1 i = l + 1
Sign of Nαij ,αkl

+ −

Condition i = l + 1 j = l + 1
Sign of Nβij ,αkl

− −

Type Dr, r ≥ 4.
For 1 ≤ i ≤ j ≤ r − 1 set αij = αi + . . .+ αj.
For 1 ≤ i ≤ r − 1 set βir = αi,r−1 + (αr − αr−1).
For 1 ≤ i < j ≤ r − 1 set βij = αi,r−1 + (αr − αr−1) + αj,r−1.
Then ∆+ = {αij | 1 ≤ i ≤ j ≤ r − 1} ∪ {βij | 1 ≤ i < j ≤ r}.

Condition k = j + 1 i = l + 1
Sign of Nαij ,αkl

+ −

Condition i = l + 1 j = l + 1, k < i j = l + 1, i < k
Sign of Nβij ,αkl

− + −

Appendix B. Invariants of spherical homogeneous spaces

In this appendix we recall combinatorial invariants of spherical homogeneous spaces and
their equivariant embeddings used in this paper. In what follows, G/H is an arbitrary
spherical homogeneous space.

Let P denote the stabilizer of the open B-orbit in G/H . Clearly, P is a parabolic
subgroup of G containing B. We set

Πp
G/H = {α ∈ Π | e−α ∈ p}.
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The next invariants of G/H are the weight lattice

ΛG/H = {λ ∈ X(T ) | k(G/H)
(B)
λ 6= {0}}

and the corresponding dual Q-vector space

QG/H = HomZ(ΛG/H ,Q).

For every λ ∈ ΛG/H , we fix a nonzero rational function fλ ∈ k(G/H)
(B)
λ . Since G/H

contains an open B-orbit, it follows that k(G/H)
(B)
λ = kfλ for all λ ∈ ΛG/H .

Every discrete Q-valued valuation v of k(G/H) vanishing on k× determines an element
ρv ∈ QG/H such that 〈ρv, λ〉 = v(fλ) for all λ ∈ ΛG/H . It is known (see [LuV83, 7.4]
or [Kn91, Corollary 1.8]) that the restriction of the map v 7→ ρv to the set of G-invariant
Q-valued valuations of k(G/H) vanishing on k× is injective; we denote its image by VG/H .
It was proved in [Br90, § 3] that VG/H is a cosimplicial cone in QG/H . Consequently, there
is a uniquely determined linearly independent set ΣG/H of primitive elements in ΛG/H

such that

VG/H = {q ∈ QG/H | 〈q, σ〉 ≤ 0 for all σ ∈ ΣG/H}.

Elements of ΣG/H are called spherical roots of G/H and VG/H is called the valuation cone

of G/H .
Let DG/H denote the set of B-stable prime divisors in G/H . Elements of DG/H are

called colors of G/H . For every D ∈ DG/H , let vD be the valuation of k(G/H) defined
by D, that is, vD(f) = ordD(f) for every f ∈ k(G/H). Let ρG/H : DG/H → QG/H be
the map given by ρG/H(D) = ρvD for all D ∈ DG/H . We regard DG/H as an abstract set
equipped with the map ρG/H .

For an arbitrary irreducible G-variety X containing G/H as an open G-orbit, one
defines the same invariants Πp

X , ΛX , QX , VX , ΣX , DX , and ρX of X as those of G/H .
For a multiplicity-free affine G-variety X, the set ΣX defined right above coincides

with the set ΣX defined in § 2.3. This follows from the following proposition, which is a
particular case of [Kn96, Lemma 6.6, iii)].

Proposition B.1. Suppose that X is a multiplicity-free affine G-variety. Then the cone

Q+ΞX is dual to −VX .
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de Coxeter et Systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre
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