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On the mod p kernel of the theta operator and

Eisenstein series

Shoyu Nagaoka and Sho Takemori

Abstract

Siegel modular forms in the space of the mod p kernel of the theta op-

erator are constructed by the Eisenstein series in some odd-degree cases.

Additionally, a similar result in the case of Hermitian modular forms is

given.

1 Introduction

The theta operator is a kind of differential operator operating on modular forms.
Let F be a Siegel modular form with the generalized q-expansion F =

∑
a(T )qT ,

qT := exp(2πitr(TZ))). The theta operator Θ is defined as

Θ : F =
∑

a(T )qT 7−→ Θ(F ) :=
∑

a(T ) · det(T )qT ,

which is a generalization of the classical Ramanujan’s θ-operator. It is known
that the notion of singular modular form F is characterized by Θ(F ) = 0.

For a prime number p, the mod p kernel of the theta operator is defined as
the set of modular form F such that Θ(F ) ≡ 0 (mod p). Namely, the element
in the kernel of the theta operator can be interpreted as a mod p analogue of
the singular modular form.

In the case of Siegel modular forms of even degree, several examples are
known (cf. Remark 2.3). In [16], the first author constructed such a form by
using Siegel Eisenstein series in the case of even degree. However little is known
about the existence of such a modular form in the case of odd degree.

In this paper, we shall show that some odd-degree Siegel Eisenstein series
give examples of modular forms in the mod p kernel of the theta operator
(see Theorem 2.4). Our proof is based on Katsurada’s functional equation of
Kitaoka’s polynomial appearing as the main factor of the Siegel series.

For a Siegel modular form F ∈ Mk(Spn(Z))Z(p)
(here the subscript Z(p)

means every Fourier coefficient of F belongs to Z(p)), we denote by ω(F ) the
filtration of F mod p, that is, minimum weight l such that there exists G ∈
Ml(Spn(Z))Z(p)

and F ≡ G mod p (congruence between q-expansions). Our
ultimate aim is that, for a given weight k, list all F ∈ Mk(Spn(Z))Z(p)

and
Θ(F ) ≡ 0 mod p such that ω(F ) = k. In elliptic modular form case, this
problem was already solved (cf. [19], [12]) and there is a simple description.
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Assume p ≥ 5 and let f ∈ Mk(SL2(Z))Z(p)
with Θ(f) ≡ 0 mod p and ω(f) = k,

then k is divisible by p and there exists g ∈ Mk/p(SL2(Z))Z(p)
such that f ≡ gp

mod p and ω(g) = k/p.
There are a several methods to construct F ∈ Mk(Spn(Z))Z(p)

with Θ(F ) ≡ 0
mod p other than by using Eisenstein series.

1. By theta series (with harmonic polynomials) associated to quadratic forms
with discriminant divisible by p.

2. By the operator A(p).

Böcherer, Kodama and the first author argue the first method in [3]. In several
cases, it gives F ∈ Mk(Spn(Z))Z(p)

with Θ(F ) ≡ 0 mod p and ω(F ) = k. As
for the second method, the operator A(p) is defined by

F |A(p) ≡ F −Θ(p−1)F mod p.

This operator was introduced in [6] and [8]. If Θ(F ) ≡ 0 mod p, then we have
F |A(p) ≡ F mod p. Therefore for any F ∈ Mk(Spn(Z))Z(p)

with Θ(F ) ≡ 0
mod p, there exists l ∈ Z≥0 and G ∈ Ml(Spn(Z))Z(p)

such that F ≡ G|A(p)
mod p. However it seems difficult to compute ω(F |A(p)) in terms of ω(F ), and
the filtration ω(F |A(p)) can be large compared to ω(F ) (cf. [2, §4, §6]).

Additionally, we give a similar result in the case of Hermitian modular forms
(Theorem 3.3). In this case, we use Ikeda’s functional equation which is the
corresponding result of Katsurada’s one.

2 Siegel modular case

2.1 Siegel modular forms

Let Γ(n) = Spn(Z) be the Siegel modular group of degree n and Mk(Γ
(n)) be the

space of Siegel modular forms of weight k for Γ(n). Any element F in Mk(Γ
(n))

has a Fourier expansion of the form

F (Z) =
∑

0≤T∈Λn

a(T ;F )qT , qT := exp(2πitr(TZ)), Z ∈ Hn,

where

Hn = {Z ∈ Symn(C) | Im(Z) > 0 } (the Siegel upper half space),

Λn := {T = (tjl) ∈ Symn(Q) | tjj ∈ Z, 2tjl ∈ Z }.

We also denote by Sk(Γ
(n)) the space of Mk(Γ

(n)) consisting of cusp forms.
For a subring R ⊂ C, Mk(Γ

(n))R (resp. Sk(Γ
(n))R) consists of an element F

in Mk(Γ
(n)) (resp. Sk(Γ

(n))) whose Fourier coefficients a(T ;F ) lie in R.
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2.2 Theta operator

For an element F in Mk(Γ
(n)), we define

Θ : F =
∑

a(F ;T )qT 7−→ Θ(F ) :=
∑

a(F ;T ) · det(T )qT

and call it the theta operator. It should be noted that Θ(F ) is not necessarily a
Siegel modular form. However, we have the following result.

Theorem 2.1. (Böcherer-Nagaoka [4]) Let p be a prime number with p ≥ n+3
and Z(p) be the ring of p-integral rational numbers. If F ∈ Mk(Γ

(n))Z(p)
, then

there exists a cusp form G ∈ Sk+p+1(Γ
(n))Z(p)

such that

Θ(F ) ≡ G (mod p),

where the congruence means the Fourier coefficient-wise one.

In some cases, it happens that G ≡ 0 (mod p), namely,

Θ(F ) ≡ 0 (mod p).

In such a case, we say that the modular form F is an element of the mod p

kernel of the theta operator Θ.
A Siegel modular form F with p-integral Fourier coefficients is called mod p

singular if it satisfies
a(T ;F ) ≡ 0 (mod p)

for all T ∈ Λn with T > 0. Of course, a mod p singular modular form F satisfies
Θ(F ) ≡ 0 (mod p).

If an element F of the mod p kernel of the theta operator is not mod p
singular, we call it here essential.

The main purpose of this paper is to construct essential forms by using
Eisenstein series.

2.3 Siegel Eisenstein series

Let

Γ(n)
∞ :=

{(
A B
C D

)

∈ Γ(n)
∣
∣
∣C = 0n

}

.

For an even integer k > n+1, the Siegel Eisenstein series of weight k is defined
by

E
(n)
k (Z) :=

∑

( ∗ ∗

C D)∈Γ
(n)
∞ \Γ(n)

det(CZ +D)−k.

We set Λ+
n = {T ∈ Λn | T > 0 }. For T ∈ Λ+

n , we define D(T ) = 22[n/2]det(T )
and, if n is even, then χT denotes the primitive Dirichlet character corresponding
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to the extension KT = Q(
√

(−1)n/2det(2T ) )/Q. We define a positive integer
C(T ) by

C(T ) =

{

D(T )/dT n : even,

D(T ) n : odd.

Here dT is the absolute value of the discriminant of KT /Q.

It is known that the Fourier coefficient a(T ;E
(n)
k ) (T ∈ Λ+

n ) can be expressed
as follows (cf. [20], [21], [11], [9], and [22]).

a(T ;E
(n)
k ) =ζ(1 − k)−1

[n2 ]
∏

i=1

ζ(1 + 2i− 2k)−1 ·
∏

q|C(T )
q:prime

Fq(T, q
k−n−1)

×
{

2n/2L(1 + n
2 − k;χT ) (n: even)

2(n+1)/2 (n: odd),

(2.1)

where ζ(s) is the Riemann zeta function and L(s;χ) is the Dirichlet L-function
with character χ, and Fq(T,X) ∈ Z[X ] is a polynomial with constant term 1.
The polynomial Fq(T,X) is defined by the polynomial gT (X) in [21, Theorem
13.6] for K = F = Qq, ε

′ = 1 and r = n.
First we assume that n is even.

Theorem 2.2. (Nagaoka [16]) Let n be an even integer and p be a prime
number with p > n + 3 and p ≡ (−1)n/2 (mod 4). Then, for any odd integer
t ≥ 1, there exists a modular form F ∈ Mn

2 +
p−1
2 ·t

(Γ(n))Z(p)
satisfying

Θ(F ) ≡ 0 (mod p).

Moreover F is essential.

Remark 2.3. (1) The modular form F is realized by a constant multiple of
Eisenstein series.
(2) In the case that n = 2, t = 1, and p = 23, we obtain

Θ(E
(2)
12 ) ≡ 0 (mod 23).

(3) There are several modular forms in M12(Γ
(2)) satisfying a congruence rela-

tion similar to that given in (2). For example,

Θ(ϑ
(2)
LLeech

) ≡ 0 (mod 23),

where ϑ
(2)
LLeech

is the degree 2 Siegel theta series attached to the Leech lattice
LLeech (cf. [17]). Moreover,

Θ([∆12]) ≡ 0 (mod 23),
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where [∆12] is the Klingen-Eisenstein series attached to the degree one cusp
form ∆12 ∈ S12(Γ

(1)) with a(1;∆12) = 1 (cf. [1]).
(4) Let χ35 be the Igusa cusp form of degree 2 and weight 35. It is known that

Θ(χ35) ≡ 0 (mod 23),

(cf. [13]).

In the rest of this section, we treat the case that n is odd. We recall the
formula given in (2.1). In this case, for T ∈ Λ+

n , we have

a(T ;E
(n)
k ) = An,k ·

∏

q|D(T )
q:prime

Fq(T, q
k−n−1),

An,k := 2(n+1)/2 · ζ(1 − k)−1

(n−1)/2
∏

i=1

ζ(1 + 2i− 2k)−1.

Our first result is as follows.

Theorem 2.4. Let n be a positive integer such that n ≡ 3 (mod 8). Assume
that p is a prime number such that p > n. For any positive integer t, We define

a constant multiple of Siege-Eisenstein series F
(n)
k by

F
(n)
k := p−αp(n,k) ·E(n)

k .

Here

k :=
n+ 1

2
+ (p− 1) · t,

αp(n, k) := ordp(An,k) = ordp



ζ(1− k)−1

(n−1)/2
∏

i=1

ζ(1 + 2i− 2k)−1



 .

Then for any positive integer t, the modular form F
(n)
k has Z(p) integral Fourier

coefficients and satisfies

Θ(F
(n)
k ) ≡ 0 (mod p).

Moreover, F
(n)
k is essential.

Remark 2.5. By Theorem 3.5 in [2], if k = n+1
2 + (p − 1), then we have

ω(F
(n)
k ) = k, where ω(F

(n)
k ) is the filtration of F

(n)
k mod p.

Proof. Using the theorem of von Staudt-Clausen and the fact p > n, we see that
all values ζ(1− k) and ζ(1 + 2i− k) (1 ≤ i ≤ n−1

2 ) are p-integral. Therefore we

have αp(n, k) ≤ 0. We prove that F
(n)
k satisfies the required properties:

(i) F
(n)
k has p-integral Fourier coefficients,
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(ii) Θ(F
(n)
k ) ≡ 0 (mod p),

(iii) F
(n)
k is essential, i.e., a(T ;F

(n)
k ) 6≡ 0 (mod p) for some T ∈ Λ+

n .

First we prove (i). The proof is reduced to show that p−αp(n,k) · a(T ;E(n)
k ) is

p-integral for any T ∈ Λn.
For T ∈ Λn with rank(T ) = r ≤ n, we have

T [U ] =

(
T1 0
0 0n−r

)

T1 ∈ Λ+
r , and U ∈ GLn(Z).

We denote by Ar,k(T ) the zeta-L factor of a(T ;E
(n)
k ), i.e.,

Ar,k(T ) =ζ(1 − k)−1

[ r2 ]∏

i=1

ζ(1 + 2i− 2k)−1

×
{

2r/2L(1 + r
2 − k;χT1) (r: even)

2(r+1)/2 (r: odd).

When r is odd, p−αp(n,k) · Ar,k(T ) = p−αp(n,k) · Ar,k is p-integral because

ordp(Ar,k(T )) = ordp(Ar,k) ≥ αp(n, k). Hence p
−αp(n,k) ·a(T ;E(n)

k ) is p-integral
for T ∈ Λn with odd rank.

In the case that r is even, the L-factor L(1+ r
2 − k;χT1) appears in Ar,k(T ).

We prove that L(1 + r
2 − k;χT1) is p-integral for even r (2 ≤ r ≤ n− 1).

The following result is known regarding the L-value L(1 − m;χ) (m ∈ N,
χ: quadratic).

For a prime number p > 2, the value L(1−m;χ) is p-integral except for the
case that the conductor of χ is equal to p and m is an odd multiple of (p− 1)/2.
Moreover, if we exclude this exceptional case, L(1 −m;χ) is a rational integer
(cf. [5], Theorem 3).

We shall show that the integer k− r
2 (2 ≤ r ≤ n− 1, r : even) cannot be an

odd multiple of (p − 1)/2. If we assume that k − r
2 = n+1

2 + (p − 1) · t − r
2 is

a multiple of (p − 1)/2, then we have n + 1 − r is a multiple of p − 1. By the
assumption p > n, this is impossible. Therefore, L(1 + r

2 − k;χT1) is a rational

integer. This implies that p−αp(n,k) ·Ar,k(T ) is p-integral. Consequently, we see

that p−αp(n,k) · a(T ;E(n)
k ) is p-integral for any T ∈ Λn with even rank.

Secondly we prove (ii), namely,

Θ(F
(n)
k ) ≡ 0 (mod p).

To do this, it suffices to show that, if T ∈ Λ+
n satisfies det(T ) 6≡ 0 (mod p), then

the corresponding Fourier coefficient a(T ;F
(n)
k ) satisfies

a(T ;F
(n)
k ) ≡ 0 (mod p). (2.2)

Our proof is based on Katsurada’s functional equation for Fq(T,X).
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Theorem 2.6. (Katsurada [11]) We assume that n ∈ Z>0 is odd, q is a prime
number, and T ∈ Λ+

n . Then we have

Fq(T, q
−n−1X−1) = ηq(T )(q

(n+1)/2X)−ordq(D(T ))Fq(T,X), (2.3)

where

ηq(T ) = hq(T )(det(T ), (−1)
n−1
2 det(T ))q(−1,−1)

n2−1
8

q ,

hq(T ) is the Hasse invariant, and (a, b)q is the Hilbert symbol.

The following is a key lemma of our proof.

Lemma 2.7. We assume that n ≡ ±3 (mod 8) and T ∈ Λ+
n . Then there is a

prime divisor q of D(T ) satisfying

Fq(T, q
−

n+1
2 ) = 0.

Proof of the lemma. By the assumption n ≡ ±3 (mod 8), we have

(−1,−1)
n2−1

8
∞ = −1.

This implies η∞(T ) = −1. By the product formula of Hilbert symbol (i.e.,
∏

q≤∞ ηq(T ) = 1), we see that there is a prime q such that ηq(T ) = −1. For this

q, we substitute q−
n+1
2 for X in (2.3). This shows Fq(T, q

−
n+1
2 ) = 0, which

completes the proof of the lemma.

�

Example 2.8. We give a short table of
∏

Fq(T,X) in the case that n = 3.

Table 1: Example of
∏

Fq(T,X) in the case n = 3 and D(T ) ≤ 12

D(T )
∏

Fq(T,X) D(T )
∏

Fq(T,X)
2 1− 22X 9 1− 34X2

3 1− 32X 101 (1− 22X)(1 + 52X)
4 1− 24X2 102 (1 + 22X)(1− 52X)
5 1− 52X 11 1− 112X
61 (1 + 22X)(1− 32X) 121 (1− 22X + 24X2)(1− 32X)
62 (1− 22X)(1 + 32X) 122 (1 + 22X + 24X2)(1− 32X)
7 1− 72X 123 (1 + 24X2)(1− 32X)
81 (1− 22X)(1 + 24X2) 124 (1 − 24X2)(1 + 32X)
82 1− 26X3 13 1− 132X

Here we used a suffix notation D(T )i when the T has multiple genera. The
index is distinguished by their 2-adic types (cf. [18]).
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We return to the proof of the theorem 2.4. We assume that n ≡ 3 (mod 8)

and prove a(T ;F
(n)
k ) ≡ 0 (mod p) under the condition det(T ) 6≡ 0 (mod p).

(We need to exclude the case n ≡ −3 (mod 8) because the weight k must be
even.) The condition det(T ) 6≡ 0 (mod p) implies that D(T ) 6≡ 0 (mod p).
Hence, by Lemma 2.7, we have

∏

q|D(T )

Fq(T, q
k−n−1) =

∏

q|D(T )

Fq(T, q
−

n+1
2 +(p−1)·t)

≡
∏

q|D(T )

Fq(T, q
−

n+1
2 ) = 0 (mod p).

Since p−αp(n,k) · An,k(T ) is a p-integral (in particular p-adic unit), we obtain

a(T ;F
(n)
k ) ≡ 0 (mod p).

Finally we shall prove that F
(n)
k is essential.

For this purpose, it suffices to show that there is a matrix T ∈ Λ+
n such that

D(T ) = p because we can prove a(T ;F
(n)
k ) 6≡ 0 (mod p) for such T (note that

p−αp(n,k) · An,k(T ) is p-adic unit).
We set n = 8s + 3. In the ternary case, it is known that there is a matrix

T1 ∈ Λ+
3 satisfying D(T1) = 22det(T1) = p for any prime number p (cf. Remark

2.9, (2)). We set
T = T1 ⊥ 1

2U ⊥ · · · ⊥ 1
2U

︸ ︷︷ ︸

s times

∈ Λ+
n ,

where U is a positive-definite even unimodular symmetric matrix of rank 8.
Then the matrix T satisfies the required property D(T ) = p. This shows that

F
(n)
k is essential and completes the proof of Theorem 2.4.

Remark 2.9. (1) We consider the Eisenstein series

E
(n)
k (Z, s) =

∑

( ∗ ∗

C D)∈Γ
(n)
∞ \Γ(n)

det(CZ +D)−k|det(CZ +D)|−s, (Z, s) ∈ Hn ×C.

The analytic properties of this series were studied by Weissauer, Shimura, and
others. Weissauer proved the following (cf. [23], § 14):

If n+1
2 ≡ 2 (mod 4), then E

(n)
n+1
2

(Z, s) is holomorphic at s = 0; moreover,

E
(n)
n+1
2

(Z, 0) ≡ 0 (identically vanishes). (2.4)

Since the condition n+1
2 ≡ 2 (mod 4) is equivalent to n ≡ 3 (mod 8), our

Lemma 2.7 shows that E
(n)
n+1
2

(Z, 0) is a singular modular form, and thus it

identically vanishes (note that (n + 1)/2 is not a singular weight). Namely,
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Lemma 2.7 gives another proof of (2.4).
(2) In the proof of Theorem 2.4, we used the fact that there is an element
T1 ∈ Λ+

3 such that D(T1) = p for any prime number p. In fact, we may take T1

as follows:

T1 =





1 1
2

1
2

1
2 1 0
1
2 0 1



 for p = 2, T1 =





1 0 0
0 1 1

2

0 1
2

p+1
4



 for p with p ≡ −1 (mod 4).

In the case p ≡ 5 (mod 8), we may set T1 =





1 0 1
2

0 2 1
2

1
2

1
2

p+3
8 .



. Finally we

consider the case p ≡ 1 (mod 8). The following is due to Schulze-Pillot:

Choose a prime q with q ≡ 3 (mod 4),
(

p
q

)

=
(

q
p

)

= −1, and a ∈ Z with

a2 ≡ −p (mod q). Set

T1 =






a2q+a2+p
q −a −a(q+1)

2

−a 1 q
2

−a(q+1)
2

q
2

q(q+1)
4




 .

Then T1 is positive definite and D(T1) = p.

3 Hermitian modular case

Let m be a positive integer and K = Q(
√
−DK) an imaginary quadratic field

with discriminant −DK < 0. We denote by OK the ring of integers of K. Let
χK be the quadratic Dirichlet character of conductor DK corresponding to the
extension K/Q by the global class field theory. Denote by χ

K
=
∏

v χK,v
the

idele class character which corresponds to χK .

3.1 Hermitian modular forms

For a Q-algebra R, the group SU(m,m)(R) is given as

SU(m,m)(R) =

{

g ∈ SL2m(R ⊗Q K)
∣
∣
∣ g∗

(
0m −1m
1m 0m

)

g =

(
0m −1m
1m 0m

)}

,

where g∗ = tg.
We set

Γ
(m)
K = SU(m,m)(Q) ∩ SL2m(OK).

We denote by Mk(Γ
(m)
K ) the space of Hermitian modular forms of weight k for

Γ
(m)
K . Any modular form F in Mk(Γ

(m)
K ) has a Fourier expansion of the form

F (Z) =
∑

0≤H∈Λm(OK)

a(H ;F )qH , qH = exp(2πitr(HZ)), Z ∈ Hm,

9



where

Hm = {Z ∈ Mm(C) | 1
2i (Z − Z∗) > 0 } (the Hermitian upper half space),

Λm(OK) = {H = (hjl) ∈ Mm(K) | H∗ = H, hjj ∈ Z,
√

−DK hjl ∈ OK }.
We also set Λ+

m(OK) = {H ∈ Λm(OK) | H > 0 }.

We can also define the theta operator as in the case of Siegel modular forms:

Θ : F =
∑

a(H ;F )qH 7−→ Θ(F ) :=
∑

a(H ;F ) · det(H)qH .

3.2 Hermitian Eisenstein series

We set

Γ
(m)
K,∞ =

{(
A B
C D

)

∈ Γ
(m)
K

∣
∣
∣C = 0m

}

.

For a positive even integer k > 2m, we define Eisenstein series of weight k by

E(m)
k (Z) =

∑

M=( ∗ ∗

C D)∈Γ
(m)
K,∞

\Γ
(m)
K

det(CZ +D)−k, Z ∈ Hm.

For a prime number q, we set OK,q = OK ⊗Z Zq and set

Λm(OK,q)

=
{

H = (hjl) ∈ Mm(K ⊗Q Qq)
∣
∣ H∗ = H, hjj ∈ Zq,

√

−DK hjl ∈ OK,q

}

.

Let H ∈ Λm(OK) with H ≥ 0 and set r = rankKH . For each prime number q,
take Uq ∈ GLm(OK,q) so that

H [Uq] =

(
H ′

q 0
0 0

)

(3.1)

with H ′
q ∈ Λr(OK,q). Here, for A,B ∈ ResK/QMn, we define

A[B] := B∗AB.

For H ∈ Λr(OK,q) with detH 6= 0, we denote by Fq(H,X) ∈ Z[X ] the poly-
nomial given in [10], § 2 (Ikeda denotes it by Fp(H ;X)). Then the polynomial
Fq(H

′
q, X) does not depend on the choice of Uq. Therefore, we denote it by

Fq(H,X). For H ∈ Λr(OK) (resp. ∈ Λr(OK,q)) with detH 6= 0, we define

γ(H) = (−DK)[r/2]det(H) ∈ Z (resp. ∈ Zq).

Theorem 3.1. Let H ∈ Λm(OK) with H ≥ 0 and set r = rankKH . Then

the Hth Fourier coefficient a(H ; E(m)
k ) of the Hermitian Eisenstein series E(m)

k

is given as follows:

2r

(
r∏

i=1

L(i− k, χi−1
K )−1

)


∏

q:prime

Fq(H ; qk−2r)



 . (3.2)

Here we understand that L(i− k, χi−1
K ) = ζ(i − k) if i is odd.
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Remark 3.2. (1) The product over all primes q is actually a finite product.
The polynomial Fq(H ;X) is a Z-coefficient polynomial of degree ordq

(
γ(H ′

q))
)

with the constant term 1 (see Theorem 3.4). Here H ′
q is the matrix in (3.1).

(2) This formula is also stated in [10] for the case detH 6= 0.

We shall prove Theorem 3.1 in §3.3. The second main result is as follows.

Theorem 3.3. Let m be a positive integer such that m ≡ 2 (mod 4). Assume
that p > m+1 is a prime number such that DK 6≡ 0 (mod p). For any positive
integer t, We define a constant multiple of Eisenstein series by

G
(m)
k := p−βp(m,k) · E(m)

k .

Here

k := m+ (p− 1) · t

βp(m, k) := ordp

(
m∏

i=1

L(i− k, χi−1
K )−1

)

,

where L(i − k, χi−1
K ) = ζ(i − k) if i is odd as in Theorem 3.2. Then for any

positive integer t, the modular form G
(m)
k has Z(p) integral Fourier coefficients

and satisfies
Θ(G

(m)
k ) ≡ 0 (mod p).

Moreover G
(m)
k is essential.

Proof. Since p > m + 1, we see that the weight k = m + (p − 1) · t is greater

than 2m, so the condition on the convergence of E(m)
k is fulfilled.

By the assumptions on p and k, we see that the each factor L(i− k, χi−1
K ) is

p-integral, so βp(m, k) ≤ 0.

First we prove the p-integrality of G
(m)
k . We set

Br,k :=
r∏

i=1

L(i− k, χi−1
K )−1,

which is the L-facor appearing in the Fourier coefficient a(H ; E(m)
k ) for H for

r = rank(H). Since each factor L(i−k, χi−1
K ) is p-integal, we see that p−βp(m,k) ·

Br,k is p-integral. Consequently, p−βp(m,k) · a(H ; E(m)
k ) is p-integral for any

H ∈ Λm(OK).

Next we show that Θ(G
(m)
k ) ≡ 0 (mod p). As in the case of Siegel modular

forms, it is sufficient to show the following:
If H ∈ Λ+

m(OK) satisfies det(H) 6≡ 0 (mod p), then

a(H ;G
(m)
k ) ≡ 0 (mod p). (3.3)

For the proof, we use the functional equation for Fq(H,X) due to Ikeda.
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Theorem 3.4. (Ikeda [10]) For H ∈ Λm(OK,q) with det(H) 6= 0, the polyno-
mial Fq(H,X) has the functional equation

Fq(H, q−2mX−1) = χ
K,q

(γ(H))m−1(qmX)−ordq(γ(H))Fq(H,X). (3.4)

The following is a key lemma in the case of Hermitian modular forms.

Lemma 3.5. Assume that m ≡ 2 (mod 4) and H ∈ Λ+
m(OK). Then there is a

prime divisor q of γ(H) such that

Fq(H, q−m) = 0. (3.5)

Proof of the lemma. By m ≡ 2 (mod 4), we see that γ(H) < 0, and so
χ
K,∞

(γ(H)) = −1. By the product formula of the idele class character, there

is a prime number q such that χ
K,q

(γ(H)) = −1. In view of the functional

equation (3.4), we obtain Fq(H, q−m) = 0.

�

We return to the proof of (3.3). Since det(H) 6≡ 0 (mod p), we see that γ(H) 6≡ 0
(mod p). (It should be noted that DK 6≡ 0 (mod p).) This implies that

∏

q|γ(H)

Fq(H, qk−2m) =
∏

q|γ(H)

Fq(H, q−m+(p−1)·t)

≡
∏

q|γ(H)

Fq(H, q−m) = 0 (mod p).

Therefore,

a(H ;G
(m)
k ) = (a p-adic integerC)×

∏

q|γ(H)

Fq(H, qk−2m)

≡ C × 0 = 0 (mod p).

Finally we prove that G
(m)
k is essential. It is enough to show the existence of

H ∈ Λ+
m(OK) with γ(H) = −p because we have a(H ;G

(m)
k ) 6≡ 0 (mod p) for

such H . Namely we can prove that p−βp(m,k) · Bm,k is p-adic unit and

∏

q|γ(H)

Fq(H, qk−2m) 6≡ 0 (mod p)

for such H .
We set m = 4s+2. First we take a matrix H1 ∈ Λ+

2 (OK) with γ(H1) = −p
(for the existence of H1, see, e.g., [15], Lemma 3.1).

Next we take a positive-definite even unimodular Hermitian matrix W of
rank 4 such that det(W ) = (2/

√
DK)4. An explicit formula of such a matrix is

given in [7], Lemma 1. Then the matrix

H = H1 ⊥ 1
2W ⊥ · · · ⊥ 1

2W
︸ ︷︷ ︸

s times

∈ Λ+
m(OK),
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satisfies γ(H) = −p. This shows that G
(m)
k is essential and completes the

proof.

Remark 3.6. (1) As in the case of Siegel modular forms, we consider the
Eisenstein series

E(m)
k (Z, s) =

∑

M=( ∗ ∗

C D)∈Γ
(m)
K,∞

\Γ
(m)
K

det(CZ +D)−k|det(CZ +D)|−s,

(Z, s) ∈ Hm × C.

We assume that m ≡ 2 (mod 4). In this case, it is known that E(m)
m (Z, s) is

holomorphic in s (e.g., cf. Shimura [20]). Moreover, by Lemma 3.5, we have

E(m)
m (Z, 0) ≡ 0 (identically vanishes).

(2) For the case that m = 2, the mod p vanishing property of Θ(E(2)
k ) has

previously been studied (Kikuta-Nagaoka [14]).

3.3 Proof of Theorem 3.1

In this proof, we denote SU(m,m) by Gm. For g ∈ Gm, we define ag, bg, cg, dg ∈
Mm, such that g =

(
ag bg
cg dg

)

. For each place v of Q, we set Kv = K ⊗Q Qv.

For a Q-algebra R, we set

Sm(R) =
{

g ∈ Mm(R⊗Q K)
∣
∣
∣ g∗ = g

}

.

For x ∈ Sm, we set

νm(x) =

(
1m x
0m 1m

)

∈ Gm.

For α ∈ ResK/QGLm with detα = detα, we set

µm(α) =

(
α 0m
0m (α∗)

−1

)

∈ Gm.

We define the Siegel parabolic subgroup Pm of Gm as follows.

Pm =
{

g ∈ Gm

∣
∣
∣cg = 0m

}

.

For a place v of Q, we define a maximal compact subgroup Cv as follows:

Cv =

{{
g ∈ Gm(R)

∣
∣ g · i = g

}
if v = ∞,

G(Qv) ∩GL2m(OK,q) if v < ∞.

Then the Iwasawa decomposition Gm(Qv) = Pm(Qv)Cv for each place v of Q
holds. For each place v of Q, we define a function φn,v on Gm(Qv) as follows.

φn,v(yw) = |det ay|kv ,

13



where y ∈ Pm(Qv) and w ∈ Cv. We note that det ay ∈ Q×
v by [20], Lemma

1.1. Here we take the norm | · |v so that |·|∞ is the usual Euclidean norm of R
and |q|v = q−1 if v = q is a finite place. For each place v of Q, we take a Haar
measure µv(x) on Sm(Qv) as in [20] § 3, (3. 19). Further, for each place v of Q,
we take an additive character ev of Qv by e∞(x) = e(x) for x ∈ R. If v = q is
a finite place, then we take eq so that eq(x) = e(−x) for x ∈ Z[q−1].

Let H ∈ Λm(OK) with H ≥ 0 and set r = rankH . We take U ∈ SLm(K)
such that

H [U ] =

(
H ′ 0
0 0m−r

)

.

For each place v of Q, we take matrices Uv and H ′
v as follows. For each prime

number q, we take Uq ∈ SLm(OK,q) so that

H [Uq] =

(
H ′

q 0
0 0m−r

)

.

We take U∞ ∈ SUm(C) so that

H [U∞] =

(
H ′

∞ 0
0 0m−r

)

.

Then for each place v of Q, by the choice of Uv, there exists αv ∈ GLr(Kv) and
βv ∈ GLm−r(Kv) such that

U−1Uv =

(
αv 0
∗ βv

)

.

Then by a similar argument to that in [20], [22, Proposition 4.2], (though
there is a missing factor in [22, Proposition 4.2]), we have the following.

a(H ; E(m)
k )e(itrHY ) = cµa∞(H,Y, k)

∏

q: prime

aq(H, k).

Here we set Y = Z−Z∗

2i . The factor cµ is given as

cµ = 2r(r−1)/2D
−r(r−1)/4
K .

The factor a∞(H,Y, k) is given as follows.

(detY )
−k/2 ×

∫

Sr(R)

φ∞

(

wm,rνmdiag(x, 0m−r)µm(U−1Y 1/2)
)

e∞(−trH ′x)dµ∞(x).

The factor aq(H, k) is given as follows.

∫

Sr(Qq)

φq

(
wm,rνm(diag(x, 0m−r))µm(U)−1

)
eq (−trH ′x) dµq(x).
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Here wm,r is given by






0r −1r
1m−r 0m−r

1r 0r
0m−r 1m−r







.

For a place v of Q, we have tr(xy) ∈ Qv for x, y ∈ Sr(Qv). We note that
we can consider ev(−trH ′x) for x ∈ Sr(Qv). Let v = q be a finite place.
By replacing x by x[α∗

v] and noting that there exists γ ∈ Pm(Qv) such that
det aγ = (detαvαv)

−1 and

wm,rνm (diag (x[α∗
v], 0))µm(U−1) = γwm,rνm (diag(x, 0))µm(U−1

v ),

we have

aq(H, k) = |det(αvα
∗
v)|

r−k
v

∫

Sr(Qv)

φq (wm,rνm (diag(x, 0))) eq(−trH ′
qx)dµq(x)

= |det(αvα
∗
v)|r−k

v

∫

Sr(Qv)

φq (wrνr(x)) eq(−trH ′
qx)dµq(x),

where wr = wr,r ∈ Gr. As is well known, this can be written as follows (cf. [20],
[10]):

aq(H, k) = |det(αvα
∗
v)|r−k

v Lr,q(k)Fq(H
′
q, q

−k),

where

Lr,q(k) =

r−1∏

i=0

(1− χi
K(q)qi−k).

Here we understand χi
K(q) = 1 if i is even. By a similar computation at the

infinite place, we have the following.

a∞(H,Y, k) = |det(αvα
∗
v)|r−k

v

∫

Sr(R)

|det(x+ ηi)|−k
∞ e∞(−trH ′

∞x)dµ∞(x).

Here η is the r × r upper left block of Y [Uv]. By using the notation and the
result of Shimura [20], (7.12), we have

ξ(η,H ′
v, k, 0) =

∫

Sr(R)

|det(x+ ηi)|−k
∞ e∞(−trH ′

∞x)dµ∞(x),

= 2(1−r)ri−rk(2π)rkΓr(k)
−1 (detH ′

v)
k−r

e(itrH ′
vη).

Here

Γm(s) = πm(m−1)/2
m−1∏

i=0

Γ(s− i).

In the rest of the proof, we assume that r is even for simplicity. We omit
the proof for an odd r since the proof is the same. We set

Lr(k) =
∏

q: prime

Lr,q(k) =

r−1∏

i=0

L(k − i, χi
K)−1,
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and set r = 2r′ with r′ ∈ Z≥1. Then by functional equations of Dirichlet
L-functions, we have

Lr(k) = (−1)r
′

2r (2π)
r(r−1)/2−kr

×D
(k+1/2)r′−r′(r′+1)
K

r−1∏

i=0

Γ(k − i)

r∏

i=1

L(i− k, χi−1
K )−1.

Thus we have

cµLr(k)ξ(η,H
′
v, k, 0) = (−1)r

′

2rD
r′(k−r)
K (detH ′

∞)
k−r

×
r∏

i=1

L(i− k, χi−1
K )−1e(itrHY ).

Let H ∈ Λr(OK,q) with detH 6= 0. By Theorem 3.4, we have

Fq(H, q−k) = |γ(H)|k−r
q χ

K,q
(γ(H))Fq(H, qk−2r).

Therefore, we have

cµLr(k)ξ(η,H
′
v, k, 0)

∏

q:prime

Fq(H
′
q, q

−k) =

2r
∏

v:place of Q

|γ(H ′
v)|

r−k
v

∏

q:prime

Fq(H
′
q, q

k−2r)
r∏

i=1

L(i− k, χi−1
K )−1e(itrHY ).

Since H ′
v[α

−1
v ] = H ′ ∈ Sr(Q), we have the assertion of Theorem 3.1.
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