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On the mod p kernel of the theta operator and
Eisenstein series

Shoyu Nagaoka and Sho Takemori

Abstract

Siegel modular forms in the space of the mod p kernel of the theta op-
erator are constructed by the Eisenstein series in some odd-degree cases.
Additionally, a similar result in the case of Hermitian modular forms is
given.

1 Introduction

The theta operator is a kind of differential operator operating on modular forms.
Let F be a Siegel modular form with the generalized g-expansion F' = > a(T)q”,
qT = exp(2mitr(TZ))). The theta operator © is defined as

6:F=> a(T)q" +— O(F) =Y a(T)-det(T)q",

which is a generalization of the classical Ramanujan’s #-operator. It is known
that the notion of singular modular form F is characterized by @(F) = 0.

For a prime number p, the mod p kernel of the theta operator is defined as
the set of modular form F such that ©(F) = 0 (mod p). Namely, the element
in the kernel of the theta operator can be interpreted as a mod p analogue of
the singular modular form.

In the case of Siegel modular forms of even degree, several examples are
known (cf. Remark 23). In [I6], the first author constructed such a form by
using Siegel Eisenstein series in the case of even degree. However little is known
about the existence of such a modular form in the case of odd degree.

In this paper, we shall show that some odd-degree Siegel Eisenstein series
give examples of modular forms in the mod p kernel of the theta operator
(see Theorem 24]). Our proof is based on Katsurada’s functional equation of
Kitaoka’s polynomial appearing as the main factor of the Siegel series.

For a Siegel modular form F' € M (Sp,(Z))z,, (here the subscript Z,)
means every Fourier coefficient of F' belongs to Z,)), we denote by w(F) the
filtration of F' mod p, that is, minimum weight [ such that there exists G €
M(Sp,,(Z))z,, and F' = G mod p (congruence between g-expansions). Our
ultimate aim is that, for a given weight k, list all F' € My(Sp,(Z))z,, and
O(F) = 0 mod p such that w(F) = k. In elliptic modular form case, this
problem was already solved (cf. [19], [12]) and there is a simple description.
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Assume p > 5 and let f € My(SL2(Z))z,, with ©(f) =0 mod p and w(f) = &,
then k is divisible by p and there exists g € My/,(SL2(Z))z,,, such that f = gP
mod p and w(g) = k/p.

There are a several methods to construct F' € My (Sp,,(Z))
mod p other than by using Eisenstein series.

Z(p with @(F) =0

1. By theta series (with harmonic polynomials) associated to quadratic forms
with discriminant divisible by p.

2. By the operator A(p).

Bocherer, Kodama and the first author argue the first method in [3]. In several
cases, it gives F' € My(Sp,,(Z))z,, with ©(F) =0 mod p and w(F) = k. As
for the second method, the operator A(p) is defined by

FlA(p) = F —0P"YF mod p.

This operator was introduced in [6] and [8]. If ©(F) =0 mod p, then we have
F|A(p) = F mod p. Therefore for any F' € My(Sp,(Z))z,, with O(F) =0
mod p, there exists | € Z>o and G € M;(Sp,,(Z))z,, such that F' = G|A(p)
mod p. However it seems difficult to compute w(F|A(p)) in terms of w(F'), and
the filtration w(F|A(p)) can be large compared to w(F) (cf. [2], §4, §6]).

Additionally, we give a similar result in the case of Hermitian modular forms
(Theorem [B3). In this case, we use Ikeda’s functional equation which is the
corresponding result of Katsurada’s one.

2 Siegel modular case

2.1 Siegel modular forms

Let T(™) = Sp, (Z) be the Siegel modular group of degree n and My (I'™) be the
space of Siegel modular forms of weight & for ™. Any element F in M;,(T())
has a Fourier expansion of the form

F(Z)= Z a(T; F)q", ¢" = exp2nitr(TZ)), Z€H,,
0<TEA,

where

H, ={Z € Sym,(C) | Im(Z) > 0} (the Siegel upper half space),
A, = {T = (tjl) S Symn(Q) | tjj € 7, 2tjl S Z}
We also denote by Si(I'(™) the space of M (I'(™) consisting of cusp forms.

For a subring R C C, My (™) (vesp. Sk(T'™)r) consists of an element F
in My(T™) (vesp. Si(I'™)) whose Fourier coefficients a(T'; F) lie in R.



2.2 Theta operator
For an element F in My (T'(™), we define

O:F= Za(F;T)qT — O(F) := ZCL(F;T) ~det(T)q"

and call it the theta operator. It should be noted that ©(F') is not necessarily a
Siegel modular form. However, we have the following result.

Theorem 2.1. (Bocherer-Nagaoka [4]) Let p be a prime number with p > n+3
and Z,) be the ring of p-integral rational numbers. If F' € My (F("))Z(p), then

there exists a cusp form G € Sk+p+1(F(”))Z(m such that
O(F) =G (mod p),
where the congruence means the Fourier coefficient-wise one.

In some cases, it happens that G =0 (mod p), namely,
O(F)=0 (mod p).

In such a case, we say that the modular form F' is an element of the mod p
kernel of the theta operator ©.
A Siegel modular form F' with p-integral Fourier coefficients is called mod p

singular if it satisfies
a(T; F) =0 (mod p)

forall T' € A,, with T' > 0. Of course, a mod p singular modular form F satisfies
O(F) =0 (mod p).

If an element F' of the mod p kernel of the theta operator is not mod p
singular, we call it here essential.

The main purpose of this paper is to construct essential forms by using
Eisenstein series.

2.3 Siegel Eisenstein series

INORE {(g g) er™ C:on}.

For an even integer k > n+ 1, the Siegel Fisenstein series of weight k is defined
by

Let

E"(Z) = > det(CZ+ D).

(& p)ertre

We set At ={T €A, | T >0} For T € A, we define D(T) = 22"/2ldet(T)

no

and, if n is even, then xr denotes the primitive Dirichlet character corresponding



to the extension K1 = Q(1/(—1)"/2det(2T))/Q. We define a positive integer
C(T) by

) D(T)/or n:even,
e = {D(T) n : odd.

Here 07 is the absolute value of the discriminant of Kr/Q.

It is known that the Fourier coefficient a(T’; E](C")) (T € A}}) can be expressed
as follows (cf. [20], [21], [IT], [@], and [22]).

(5]
o) =¢ = w2207 [T AT

i=1 |C(T)
g:primc (21)

22 L(14 % —k;xr) (n: even)

2(nt+1)/2 (n: odd),

where ((s) is the Riemann zeta function and L(s; x) is the Dirichlet L-function
with character x, and F,(T, X) € Z[X] is a polynomial with constant term 1.
The polynomial F, (T, X) is defined by the polynomial g7 (X) in [2I, Theorem
13.6] for K =F = Qq, ¢’ =1 and r = n.

First we assume that n is even.

Theorem 2.2. (Nagaoka [I6]) Let n be an even integer and p be a prime
number with p > n 4+ 3 and p = (—=1)™? (mod 4). Then, for any odd integer
t > 1, there exists a modular form F' € M2+E t(l"("))z(p) satisfying
2t 2
O(F)=0 (mod p).
Moreover F' is essential.

Remark 2.3. (1) The modular form F' is realized by a constant multiple of
Eisenstein series.
(2) In the case that n =2, ¢t =1, and p = 23, we obtain

O(EX)=0 (mod 23).

(3) There are several modular forms in M;5(I'(?)) satisfying a congruence rela-
tion similar to that given in (2). For example,

9(19(2) )=0 (mod 23),

LlLeech

where ﬂ(ﬁzgccch is the degree 2 Siegel theta series attached to the Leech lattice
Lleech (cf. [17]). Moreover,

O([A12]) =0 (mod 23),



where [Aq3] is the Klingen-Eisenstein series attached to the degree one cusp
form Aqg € 512(1—‘(1)) with a(l; Alg) =1 (Cf [1])
(4) Let x35 be the Igusa cusp form of degree 2 and weight 35. It is known that

O(x35) =0 (mod 23),
(cf. [13]).

In the rest of this section, we treat the case that n is odd. We recall the
formula given in (2.]). In this case, for T' € A}, we have

T EY) = Ani - [ Fa(T.g 7Y,

q|D(T)
q:prime
(n=1)/2
A =200 ca—k)7t ] c+2i—2k)7
=1

Our first result is as follows.

Theorem 2.4. Let n be a positive integer such that n = 3 (mod 8). Assume
that p is a prime number such that p > n. For any positive integer ¢, We define

a constant multiple of Siege-Eisenstein series F] ,5") by
F]gn) — pfap(n,k) . E]E;n)

Here

1
p= -1,

(n—1)/2
ap(n, k) = ordy(An ) = ord, | C(1—k)"" ] ¢ +2i—2k)7"
=1

Then for any positive integer ¢, the modular form F; ,5") has Z ) integral Fourier
coefficients and satisfies

Q(F,En)) =0 (mod p).

)

n . .
Moreover, F,g is essential.

Remark 2.5. By Theorem 3.5 in [2], if & = 2 + (p — 1), then we have

w(Fén)) = k, where w(Fén)) is the filtration of F,g") mod p.

Proof. Using the theorem of von Staudt-Clausen and the fact p > n, we see that
all values (1 — k) and (1 + 2i — k) (1 < i < 251) are p-integral. Therefore we
have a,(n, k) < 0. We prove that F,En) satisfies the required properties:

(i) F ,En) has p-integral Fourier coefficients,



(ii) Q(F,En)) =0 (mod p),
(iii) F,g") is essential, i.e., a(T} F]gn)) # 0 (mod p) for some T' € A}f.
First we prove (i). The proof is reduced to show that p=» (") . (T E,(Cn)) is
p-integral for any T € A,,.
For T € A,, with rank(T") = r < n, we have

(U] = <7(;1 Ono_r) Ty € AY, and U € GL,(Z).

We denote by A, (1) the zeta-L factor of a(T; E,(cn)), ie.,

(5]
Ak (T) =¢C(1 = k) ] ¢ +2i — 2k) "
i=1
27/2L(1+ %5 —kyxr,) (r: even)
2(r+1)/2 (r: odd).

When r is odd, p—@r(mk) . Ak (T) = par(nk) . A, is p-integral because
ordy (A, 1 (T)) = ord, (A1) > ap(n, k). Hence p~@» (k) . q(T; E,(Cn)) is p-integral
for T € A,, with odd rank.

In the case that r is even, the L-factor L(1+ § —k; x1,) appears in A, x(T).
We prove that L(1+ § — k; x1,) is p-integral for even r (2 <r <n —1).

The following result is known regarding the L-value L(1 — m;x) (m € N,
X: quadratic).

For a prime number p > 2, the value L(1 —m; x) is p-integral except for the
case that the conductor of x is equal to p and m is an odd multiple of (p —1)/2.
Moreover, if we exclude this exceptional case, L(1 — m;x) is a rational integer
(cf. [5], Theorem 3).

We shall show that the integer k — § (2 <7 <n—1,r: even) cannot be an
odd multiple of (p — 1)/2. If we assume that k — 5 = 2 4 (p—1) -t — L is
a multiple of (p — 1)/2, then we have n + 1 — r is a multiple of p — 1. By the
assumption p > n, this is impossible. Therefore, L(1 4 § — k; x1,) is a rational
integer. This implies that p~» (™). A, ; (T) is p-integral. Consequently, we see
that p=» (k) . o(T; E](C")) is p-integral for any T' € A,, with even rank.

Secondly we prove (ii), namely,

Q(F,En)) =0 (mod p).

To do this, it suffices to show that, if T € A} satisfies det(T") # 0 (mod p), then
the corresponding Fourier coefficient a(T'; F]gn)) satisfies

a(T; F™) =0 (mod p). (2.2)

Our proof is based on Katsurada’s functional equation for F, (T, X).



Theorem 2.6. (Katsurada [11]) We assume that n € Z~¢ is odd, ¢ is a prime
number, and 7' € A", Then we have

Fy(T,q " X1 = ng(T) (" D2 X) ~orde PV E(T, X)), (2.3)

where

n?—1

n=1 =
Ng(T) = he(T)(det(T), (—1) 2 det(T)),(—1,-1)q 8 ,
he(T') is the Hasse invariant, and (a, b), is the Hilbert symbol.
The following is a key lemma of our proof.

Lemma 2.7. We assume that n = +3 (mod 8) and 7' € A;}}. Then there is a
prime divisor ¢ of D(T') satisfying

F‘I(TvqiT) =0.

Proof of the lemma. By the assumption n = +3 (mod 8), we have

n?—1
(—1,-1)® =-1.
This implies 7,(T) = —1. By the product formula of Hilbert symbol (i.e.,

[ <00 14(T) = 1), we see that there is a prime ¢ such that 7,(7) = —1. For this

ntl ntl
q, we substitute ¢~ 2 for X in (Z3)). This shows Fy(T,q" 2 ) = 0, which
completes the proof of the lemma.

O
Example 2.8. We give a short table of [[ F,(7T, X) in the case that n = 3.

Table 1: Example of [] Fy (T, X) in the case n = 3 and D(T") < 12

D(T) [1F(T, X) D(T) [[F(T, X)
2 1-22X 9 1-31x2
3 1-3%2X 104 (1—22X)(1+5%X)
4 1—24X? 10, (1+22X)(1 - 5%X)
5 1-52X 11 1-112X

61 (1+22X)(1 - 32X) 127 | (1-22X+21X?)(1 - 3%X)
6 (1-22X)(1+3%X) 125 | (1+22X +24X?)(1 - 32X)

7 1-7°X 123 (1+24X?)(1 - 3%2X)
81 | (1—22X)(1+24X2) || 124 (1-22X2)(1 + 32X)
82 1-20x3 13 1-132X

Here we used a suffix notation D(T'); when the T has multiple genera. The
index is distinguished by their 2-adic types (cf. [18]).



We return to the proof of the theorem 2.4l We assume that n = 3 (mod 8)
and prove a(T;F,gn)) = 0 (mod p) under the condition det(T) #Z 0 (mod p).
(We need to exclude the case n = —3 (mod 8) because the weight & must be
even.) The condition det(T) # 0 (mod p) implies that D(T) # 0 (mod p).
Hence, by Lemma 2.7 we have

HFqunl HF "+1+(p1))

q|D(T) q|D(T)
= H Fy( ) =0 (mod p).
q|D(T)

Since p~@» (k) . A, 1 (T) is a p-integral (in particular p-adic unit), we obtain
a(T; F,S")) =0 (mod p).

Finally we shall prove that F; ,5") is essential.
For this purpose, it suffices to show that there is a matrix 7' € A} such that
D(T) = p because we can prove a(T}; F,g")) # 0 (mod p) for such T (note that
po (k) - A 1 (T) is p-adic unit).

We set n = 8s + 3. In the ternary case, it is known that there is a matrix
Ty € AT satisfying D(T}) = 22det(T}) = p for any prime number p (cf. Remark
29 (2)). We set

T=T 13U L---13Uc€A},
| S ——

s times

where U is a positive-definite even unimodular symmetric matrix of rank 8.
Then the matrix T satisfies the required property D(T) = p. This shows that

F ,5") is essential and completes the proof of Theorem 2.4] O

Remark 2.9. (1) We consider the Eisenstein series

E"(Z,5) = ST det(CZ+D)7F|det(CZ + D)%, (Z.s) € H, x C.
(& p)erse\re

The analytic properties of this series were studied by Weissauer, Shimura, and
others. Weissauer proved the following (cf. [23], § 14):

If "+1 =2 (mod 4), then Eglnll (Z, s) is holomorphic at s = 0; moreover,
T2
E& (Z,0) =0 (identically vanishes). (2.4)
2
Since the condition 2L = 2 (mod 4) is equivalent to n = 3 (mod 8), our

Lemma [27 shows that E& (Z,0) is a singular modular form, and thus it

2
identically vanishes (note that (n + 1)/2 is not a singular weight). Namely,



Lemma [277] gives another proof of (2.4]).

(2) In the proof of Theorem 24 we used the fact that there is an element
Ty € A3 such that D(T}) = p for any prime number p. In fact, we may take T}
as follows:

111 10 0
2 2
Tv=|% 1 0] forp=2, Th=10 1 % for pwithp= -1 (mod 4).
1 1 phl
I o1 0 L e

In the case p = 5 (mod 8), we may set T} = Finally we

= O =
V= N O
MEENIE

pt3

=
consider the case p =1 (mod 8). The following is due to Schulze-Pillot:
Choose a prime ¢ with ¢ = 3 (mod 4), (%) = (%) = —1, and a € Z with
a? = —p (mod q). Set

a’q+a’+p
q
I = —a 1 1
—alg+l) g a(g+1)
2 2 2

_ —a(g+1)
a 2

Then T is positive definite and D(Ty) = p.

3 Hermitian modular case

Let m be a positive integer and K = Q(v/—Dx) an imaginary quadratic field
with discriminant —Dg < 0. We denote by Ok the ring of integers of K. Let
Xk be the quadratic Dirichlet character of conductor D corresponding to the
extension K /Q by the global class field theory. Denote by x K= IT, x K. the

idele class character which corresponds to x k.

3.1 Hermitian modular forms

For a Q-algebra R, the group SU(m, m)(R) is given as

sUGm () = {g €Stan(rao k) o (Y7 ) o= (0 )
where g* = 3.
We set
I = SU(m,m)(Q) N SLam (Ok ).
We denote by Mk(l"y(n)) the space of Hermitian modular forms of weight &k for
I‘E;(n). Any modular form F' in My, (F(;{n)) has a Fourier expansion of the form

F(Z)= Z a(H; F)q, " = exp2ritr(HZ)), Z € Hp,
0<HEA,, (OK)



where

Hp ={Z € My,(C) | 5(Z—Z*) >0} (the Hermitian upper half space),
Am(OK) = {H = (hj[) S Mm(K) | H" = H, hjj eZ,\/—Dg hj[ € Ok }
We also set A} (Orx)={H € A,(Ok) | H>0}.
We can also define the theta operator as in the case of Siegel modular forms:

©:F =Y a(H;F)g" — O(F) = a(H;F)-det(H)q".
3.2 Hermitian Eisenstein series

rggg,o:{(g g)erg@\czom}.

For a positive even integer k > 2m, we define Eisenstein series of weight k by

&§"(2) = > det(CZ + D)%, Z eH,,.

M=(55)erg\ry”

We set

For a prime number ¢, we set Ok ; = O ®yz Z, and set
Am(OK,q)
= {H = (hjl) S Mm(K 030) Qq) | H* = H, hjj S Zq, v —Dg hjl € Oqu}.

Let H € A (Ok) with H > 0 and set r = rankg H. For each prime number g,
take U, € GL,,,(Ok 4) so that

H 0
— (*q
aw, = (7 ) (3.1)
with H; € A.(Ok ). Here, for A, B € Resg oMy, we define
A[B] := B*AB.

For H € A (Ok ) with det H # 0, we denote by Fy,(H,X) € Z[X] the poly-
nomial given in [I0], § 2 (Ikeda denotes it by F,(H; X)). Then the polynomial
Fy(Hy, X) does not depend on the choice of U,. Therefore, we denote it by
Fy(H,X). For H € A, (Ok) (resp. € Ar(Ok,q)) with det H # 0, we define

Y(H) = (~Dg)"?det(H) € Z  (vesp. € Zg).

Theorem 3.1. Let H € A,,,(Ok) with H > 0 and set » = rankg H. Then

the Hth Fourier coefficient a(H; S,Em)) of the Hermitian Eisenstein series Eém)
is given as follows:

2 (HL@—k,xigl)—l) [ 7uE:d=) ). (3.2)

g:prime

Here we understand that L(i — k, X% ') = ¢(i — k) if i is odd.

10



Remark 3.2. (1) The product over all primes ¢ is actually a finite product.

The polynomial F,(H; X) is a Z-coefficient polynomial of degree ord, (v(H, (’1)))

with the constant term 1 (see Theorem [3.4). Here H, is the matrix in (Z.1]).
(2) This formula is also stated in [I0] for the case det H # 0.

We shall prove Theorem Bl in §3.31 The second main result is as follows.

Theorem 3.3. Let m be a positive integer such that m =2 (mod 4). Assume
that p > m+ 1 is a prime number such that Dg Z 0 (mod p). For any positive
integer t, We define a constant multiple of Eisenstein series by

Gl(cm) = p_ﬂp(mvk) . glgm)
Here

ki=m+(p—1)-t
Bp(m, k) := ord, <H L(i — iji{l)—1> 7
i=1

where L(i — k,x%") = (i — k) if i is odd as in Theorem Then for any

positive integer ¢, the modular form chm) has Z,) integral Fourier coefficients

and satisfies
Q(G,(cm)) =0 (mod p).

Moreover Gém) is essential.

Proof. Since p > m + 1, we see that the weight k = m + (p — 1) - t is greater

than 2m, so the condition on the convergence of 8lgm) is fulfilled.

By the assumptions on p and k, we see that the each factor L(i — k, Xigl) is
p-integral, so 8,(m, k) < 0.

First we prove the p-integrality of G](Cm). We set

Br,k = HL(Z - ka X};l)ilv
1=1

which is the L-facor appearing in the Fourier coefficient a(H; gém)) for H for
r = rank(H). Since each factor L(i —k, X' ') is p-integal, we see that p~ (k).
B, is p-integral. Consequently, pPr(mik) a(H;é'lgm)) is p-integral for any
H e Am(OK)

Next we show that Q(G,(cm)) =0 (mod p). As in the case of Siegel modular
forms, it is sufficient to show the following:

If H € A}, (Ok) satisfies det(H) # 0 (mod p), then

a(H; G,(Cm)) =0 (mod p). (3.3)

For the proof, we use the functional equation for F,(H, X) due to Ikeda.

11



Theorem 3.4. (Ikeda [I0]) For H € A,,(OKk,q) with det(H) # 0, the polyno-
mial F,(H, X) has the functional equation

Fy(H,q "X ") = xp ()™ (qmX) O F (LX) (3.4)

The following is a key lemma in the case of Hermitian modular forms.

Lemma 3.5. Assume that m =2 (mod 4) and H € A} (Ok). Then there is a
prime divisor ¢ of v(H) such that

Fqy(H,q7™) =0. (3.5)

Proof of the lemma. By m = 2 (mod 4), we see that y(H) < 0, and so

Xp o (7(H)) = —1. By the product formula of the idele class character, there

is a prime number ¢ such that x q(”y(H)) = —1. In view of the functional
equation ([34), we obtain Fy(H,qg~ ™) =0.

O

We return to the proof of (8.3). Since det(H) £ 0 (mod p), we see that y(H) Z£ 0
(mod p). (It should be noted that Dg £ 0 (mod p).) This implies that

[T 7tg =2y = [ Foti. gm0
qlv(H) alv(H)
= H Fo(H,g7™) =0 (mod p).
aly(H)

Therefore,

a(H; GI(C’”)) = (ap-adic integer C') x H F,(H, qk—zm)
alv(H)
=C0x0=0 (mod p).

Finally we prove that G,(cm) is essential. It is enough to show the existence of
H € A} (Ok) with v(H) = —p because we have a(H;G,(Cm)) # 0 (mod p) for
such H. Namely we can prove that p=P»(m:k) . B, 1 is p-adic unit and

I 7(H.d" ™) 20 (mod p)
qlvy(H)

for such H.

We set m = 4s + 2. First we take a matrix H; € A (Ok) with v(H;) = —p
(for the existence of Hy, see, e.g., [15], Lemma 3.1).

Next we take a positive-definite even unimodular Hermitian matrix W of
rank 4 such that det(W) = (2/v/Dx)*. An explicit formula of such a matrix is
given in [7], Lemma 1. Then the matrix

H=H, LiW 1. LIWeA}(Ok),
N———

s times

12



satisfies 7(H) = —p. This shows that G,(cm) is essential and completes the
proof. O

Remark 3.6. (1) As in the case of Siegel modular forms, we consider the
Eisenstein series

(7, s) = 3 det(CZ + D) *|det(CZ + D)|~*,
M=(&p)erie i\

(Z,s) € Hm x C.

We assume that m = 2 (mod 4). In this case, it is known that E,SLm)(Z, s) is
holomorphic in s (e.g., cf. Shimura [20]). Moreover, by Lemma [B.5 we have

EM(Z,0)=0 (identically vanishes).

(2) For the case that m = 2, the mod p vanishing property of 9(5,&2)) has
previously been studied (Kikuta-Nagaoka [14]).

3.3 Proof of Theorem [3.1]
In this proof, we denote SU(m, m) by G,,,. For g € G, we define agy, by, cq,dy €

M, such that g = (Zg Z‘q) . For each place v of Q, we set K, = K ®q Q,.
g Qg

For a Q-algebra R, we set
S (R) = {g € My (R®g K) ‘ g = g}.

For z € S,,, we set

U () = <(1): 1‘1) € G-

For a € Resg /oGL,, with det a = det @, we set

(@) = (g7 (7)€ Gon
We define the Siegel parabolic subgroup P,, of G, as follows.
cg = Om} .
For a place v of Q, we define a maximal compact subgroup C, as follows:

o _J{9€eCGn®) |g-i=g} ifv=00,
" G(Qy) NGl (0K ) if v < .

Pm:{geGm

Then the Iwasawa decomposition G,,(Q,) = P, (Q,)C, for each place v of Q
holds. For each place v of Q, we define a function ¢, , on G,,,(Q,) as follows.

k
¢n,v(yw) = |det ay|v )
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where y € P,,(Q,) and w € C,. We note that deta, € QX by [20], Lemma
1.1. Here we take the norm |- |, so that |-|_ is the usual Euclidean norm of R
and |q|, = ¢~ ' if v = ¢ is a finite place. For each place v of Q, we take a Haar
measure fi,(x) on Sp,(Q,) as in [20] § 3, (3. 19). Further, for each place v of Q,
we take an additive character e, of Q, by ex(z) = e(z) for z € R. If v = ¢ is
a finite place, then we take e, so that e,(z) = e(—xz) for z € Z[g™].

Let H € A, (Ok) with H > 0 and set » = rank H. We take U € SL,,,(K)

such that ,
H 0
HU| - ( ! ow) |

For each place v of Q, we take matrices U, and H] as follows. For each prime
number ¢, we take Uy € SL,,,(Ok 4) so that

H[Uq]=<HO‘II 0 )

Om—r

We take Us € SU,,(C) so that

H[Uoo]z(f%o 0 )

Omfr

Then for each place v of @, by the choice of U, there exists , € GL,.(K,) and
By € GLy—(K,) such that
-1 [y 0
Uu—u, = < . 5v> )

Then by a similar argument to that in [20], [22, Proposition 4.2], (though
there is a missing factor in [22, Proposition 4.2]), we have the following.

a(H; ™ )e(itrHY ) = cpace(H,Y.K) [] aq(H, k).
q: prime

Z-Z*

Here we set Y = o

. The factor ¢, is given as
Cp = 2r(r—l)/2D;{T(T*1)/4'
The factor ao(H,Y, k) is given as follows.
(detY) "2 x

/ Doo (wmml/mdiag(x, Om,r),um(U_lYlm)) €oo(—trH'x)dpioo ().
Sr(R)
The factor aq(H, k) is given as follows.

| 0 (a0 ) (0) ) g (') o).
Sr(Qq)
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Here w,y, . is given by

0, -1,
1m7’r‘ Omf'r‘
1, 0,
Om—r jp—
For a place v of Q, we have tr(zy) € Q, for xz,y € S,(Q,). We note that

we can consider e,(—trH'z) for x € S,.(Q,). Let v = ¢ be a finite place.
By replacing = by z[a}] and noting that there exists v € P, (Q,) such that

det a, = (det@,a,) ! and
WiV (diag (z[ay],0)) Mm(U_l) = YWm,rVm (diag(z,0)) Nm(Uv_l)v

we have

(1) = det(a,0); ™ [ o om0 (e Hi2)d 0

= ldet(a,a); ™ [ o o e @) e H ) ),

where w, = w,, € G,. As is well known, this can be written as follows (cf. [20],
[10]): »
aq(H, k) = |det(0<va$)|2 LT,q(k)fq(H;aqik)v

where
r—1

Lrg(k) = [0 = Xk (@ ).

i=0
Here we understand X% (g) = 1 if i is even. By a similar computation at the
infinite place, we have the following.

oo (H, Y, k) = |det(avyas)]/ " / |det(z + 7i)| " eco (—tr Hl ) dpin ().
S,.(R)

Here n is the r x r upper left block of Y[U,]. By using the notation and the
result of Shimura [20], (7.12), we have

&(n, H. K, 0) = /5 . |det (2 + 1) eco (—tr H. 2)dpno (),
(R

= 20—k ()R, (k) (det H)* " e(itrH. ).

Here
m—1

T (s) = 7mm=D/2 TT (s — ).
i=0
In the rest of the proof, we assume that r is even for simplicity. We omit
the proof for an odd r since the proof is the same. We set

L= JI Znal®) =[] B0 i)™
=0

q: prime
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and set r = 21’ with ' € Z>;. Then by functional equations of Dirichlet
L-functions, we have

Ly (k) = (=1)7' 2" (2m)"(r=D/2=kr

r—1
~ D%+1/2)7" —r'(r'41) H F(k . ’L) HL(l . kaxijzl)il'
=0 =1

Thus we have

e Lo (K)E(, H. K, 0) = (1) 27 D3 (detHZ )"

X H L(i — k, X ) " te(itrHY).

Let H € A (Ok 4) with det H # 0. By Theorem [3.4] we have

— k—r —2r
FolH,q ™) = () X (V(H)) Fy(H.q").
Therefore, we have

Ly (R)E(n, Hy b, 0) T Fal

g:prime

r r—k —or . . i—1y\— .

2r I @)L I FaHpd" ) T LG - kX ) e(iteHY).
v:place of Q q:prime i=1

Since H)[a; ] = H' € S,(Q), we have the assertion of Theorem 3.1l
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