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PRESERVATION OF SEMISTABILITY UNDER FOURIER-MUKAI

TRANSFORMS

JASON LO AND ZIYU ZHANG

Abstract. For a trivial elliptic fibration X = C × S with C an elliptic curve and S a projec-
tive K3 surface of Picard rank 1, we study how various notions of stability behave under the
Fourier-Mukai autoequivalence Φ on Db(X), where Φ is induced by the classical Fourier-Mukai
autoequivalence on Db(C). We show that, under some restrictions on Chern classes, Gieseker
semistability on coherent sheaves is preserved under Φ when the polarisation is ‘fiber-like’.
Moreover, for more general choices of Chern classes, Gieseker semistability under a ‘fiber-like’
polarisation corresponds to a notion of µ∗-semistability defined by a ‘slope-like’ function µ∗.

1. Introduction

This article is a continuation of the first author’s study of elliptic fibrations. In the predecessor
to this article [Lo2], the first author studied t-structures that arise naturally on the derived
category of coherent sheaves on an elliptic fibration. In this article, we consider different notions
of stability that can be paired with these t-structures, and describe how these notions of stability
correspond to one another under Fourier-Mukai transforms.

In general, given an exact equivalence Φ : Db(X)
∼
→ Db(Y ) between two derived categories and

an object E ∈ Db(X) that is stable with respect a notion of stability σ on X, we can ask: under
what notion of stability σ′ on Y (depending only on the geometry of Y ) is Φ(E) stable?

The preservation of semistability for sheaves under Fourier-Mukai transforms has been studied
by various authors before. For example, in the case of sheaves, isomorphisms between moduli
spaces of torsion-free sheaves were constructed by Yoshioka on K3 surfaces and Abelian surfaces
[Yos2, Yos3], by Bernardara-Hein on elliptic surfaces [BH] and by Bridgeland-Maciocia on elliptic
threefolds [BM04]. On the other hand, isomorphisms between moduli spaces of torsion sheaves
and torsion-free sheaves were constructed by Yoshioka on elliptic surfaces [Yos1, Yos3] and
Bridgeland on Abelian surfaces [Bri]. And more recently, on elliptic threefolds, isomorphisms
between moduli spaces of torsion sheaves were established by Diaconescu [Dia].

On elliptic surfaces, Yoshioka showed that, with respect to polarisations that approach the
fiber direction, moduli spaces of semistable sheaves supported in dimension 1 are isomorphic
to moduli spaces of semistable torsion-free (i.e. 2-dimensional) sheaves via a Fourier-Mukai
transform [Yos1, Yos3]. In this article, we generalise Yoshioka’s result to the threefoldX = C×S,
where C is an elliptic curve and S a K3 surface of Picard rank 1. The main reason for focusing on
the product case in this article is to keep the computations involving Chern classes as tractable
as possible.

We consider X as a (trivial) elliptic fibration via the second projection π : C × S → S. The
classical Fourier-Mukai transform Db(C) → Db(C) on a smooth elliptic curve C, with the
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Poincaré line bundle as the kernel, pulls back via π to a Fourier-Mukai transform Φ : Db(X) →
Db(X) on X. Suppose the Picard group of S is generated by the ample divisor class HS. Writing
D = π∗HS, H for the zero section of π, and ω = H + nD, we have the following two theorems:

Theorem 5.18. For any fixed ch = (ch0, ch1, ch2, ch3) ∈ H∗
alg(X,Z) satsifying

ch0 = 0, ch1 ·H ·D = 0, ch1 ·D
2 6= 0, ch2 ·H = 0,

there is an isomorphism between the following moduli spaces:

(a) The moduli space of ω-semistable sheaves F on X with ch(F ) = ch;

(b) The moduli space of ω-semistable sheaves E for n ≫ 0 on X with ch(E) = ΦH(ch).

Here, ΦH denotes the cohomological Fourier-Mukai transform induced by Φ. The moduli space
in (a) parametrises torsion sheaves (supported in dimension 2), while the moduli space in (b)
parametrises torsion-free sheaves (supported in dimension 3).

The constraints on the Chern character in Theorem 5.18 can be relaxed, in which case we have:

Theorem 5.21. There is an equivalence of categories induced by Φ

{E ∈ {Coh60}↑ : ch1(E) 6= 0, E is µ∗-semistable}
∼
→ {E ∈ Φ({Coh60}↑) : ch0(E) 6= 0, E is µω-semistable for n ≫ 0}.

Here, the category {Coh60}↑ comprises coherent sheaves E on X satisfying the following prop-
erty: for any closed point s ∈ S, the restriction E|s of E to the fiber over s has 0-dimensional
support. This category includes, for instance, sheaves supported on ‘spectral covers’, which
were used by Friedman-Morgan-Witten to construct stable sheaves on elliptic fibrations [FMW].
Also, the notion of µ∗-semistability is given by the ‘slope-like’ function µ∗, which is defined using
components of the first and the second Chern characters (see Section 3.2 for the definition of a
slope-like function).

In essence, Theorem 5.18 says that µω-semistability for n ≫ 0 corresponds to the notion of
µ∗-semistability under the Fourier-Mukai transform Φ.

In Section 2 of this article, we fix our notations and give reminders on the basics of Fourier-Mukai
transforms and torsion classes.

In Section 3, we consider an arbitrary elliptic fibration π : X → S with a dual, and describe
a filtration for coherent sheaves on X that replaces the relative Harder-Narasimhan filtration
with respect to the morphism π (Proposition 3.3). The advantage of this filtration is that it
makes no explicit reference to stability. Then, we introduce the notion of a slope-like function.
A slope-like function yields a notion of semistability that has the Harder-Narasimhan property,
and is closely related to the concept of a weak stability condition introduced by Toda [Tod11]
and the notion of a weak central charge defined by Brown-Shipman [BS].

In Section 4, we restrict our attention to the product threefold X = C×S, where C is an elliptic
curve and S a K3 surface of Picard rank 1. We describe the Fourier-Mukai transform Db(X)

∼
→

Db(Y ) that we will use in proving Theorems 5.18 and 5.21, and describe the corresponding
cohomological Fourier-Mukai transform.

In Section 5, we prove our main results, Theorems 5.18 and 5.21. And in the Appendix, we
demonstrate that our approach recovers Yoshioka’s result [Yos1, Theorem 3.15] in the case of
the product C × T , where C is an elliptic curve and T is an arbitrary smooth projective curve.
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2. Preliminaries on elliptic fibrations and torsion classes

In this section we collect some notions and results that we will use in later discussions.

2.1. Elliptic fibrations. In this paper, an elliptic fibration is a flat morphism of smooth pro-
jective varieties π : X → S whose fibers are Gorenstein curves of arithmetic genus 1. We are
mainly interested in the case that dimX = 3, although we will also consider the case dimX = 2
in the final section.

We mention a few examples of elliptic threefolds. The simplest example is the trivial fibration,
namely, X = C × S for some elliptic curve C and surface S, and π is the projection to the
second factor. This is the example that we will focus on in this paper. Indeed, as we will study
derived categories of the elliptic threefold X, which has abundant structures, it helps to keep
the structure of the elliptic fibration itself simple. In fact, even in the case of trivial fibrations,
we can already discover lots of interesting features of the derived category of X.

We will also use the following notations throughout our discussion.

• For any smooth projective variety X, we will write D(X) = Db(Coh(X)) to denote the
bounded derived category of coherent sheaves on X unless otherwise stated.

• For any smooth projective variety X and any integer d > 0, we will write Coh6d(X)
to denote the category of coherent sheaves on X supported in dimension at most d,
write Coh=d(X) to denote the category of pure d-dimensional coherent sheaves, and

write Coh>d(X) to denote the category of coherent sheaves with no nonzero subsheaves
supported in dimension d− 1 or lower.

• For any smooth projective variety X of dimension d, we will sometimes write FX instead
of Coh=d(X) to denote the category of torsion-free sheaves on X.

• Assume π : X → S is an elliptic fibration as above. For any closed point s ∈ S, we will
write ιs to denote the closed immersion of the fiber Xs → X of π over s. When E is
a coherent sheaf on X, we will write E|s to denote the underived restriction ι∗sE, and
write E|Ls to denote the derived restriction Lι∗sE.

• If a coherent sheaf E on X is supported on a finite number of fibers of π, then we will
refer to it as a fiber sheaf.

• We write Coh(π)6d to denote the category of coherent sheaves E on X such that the
dimension of π(Supp(E)) is at most d.

• We write {Coh60(Xs)}
↑ to denote the category of coherent sheaves E on X such that

the restriction E|s to the fiber over any closed point s ∈ S is supported in dimension 0.
When X is understood from the context, we also write {Coh60}↑ for simplicity.
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2.2. Fourier-Mukai transforms. Our main tool to study the derived category of X is (rela-
tive) Fourier-Mukai transforms. The theory of Fourier-Mukai transforms on elliptic fibrations
has been developed by many authors. One of the general results that we found most inspiring
is the following theorem due to Bridgeland and Maciocia. Notice that their original statement
is slightly more general than the following statement.

Theorem 2.1. [BM04, Theorem 1.2] Let π : X → S be an elliptic fibration and ℓ a polarisation
on X. Let Y be an irreducible component of the relative moduli space of ℓ-stable sheaves on fibers
of π. Assume that Y is fine and of the same dimension as X, and that the morphism π̂ : Y → S
is equidimensional. Then π̂ : Y → S is also an elliptic fibration. Moreover, the following integral
functor induced by the universal sheaf P on X × Y is a Fourier-Mukai transform:

Φ = ΦP
Y→X : Db(Y ) → Db(X); (2.1)

E 7→ RπX,∗(P ⊗ π∗
Y (E)),

where πX and πY are projections from X × Y to the two factors.

In the above theorem, the two elliptic fibrations π : X → S and π̂ : Y → S are called dual
fibrations of each other. The Fourier-Mukai transform Φ = ΦP

Y→X has a quasi-inverse, which is
given by

Ψ = ΦQ
X→Y : Db(X) → Db(Y ),

where Q is the object

Q = RHomOX×Y
(P, π∗

XωX)[dimX].

Notice that if the Fourier-Mukai kernel P is a line bundle, then Q is also a (shifted) line bundle.

With some extra assumption on the elliptic fibration π : X → S, the above result can be made
more explicit. We say an elliptic fibration π : X → S is a Weierstrass fibration if the fibers of π
are integral and there exists a section σ : S → X of π whose image does not contain any singular
point of the fibers. When π : X → S is a Weierstrass fibration, we can make a particular choice
of Y and P so that Φ becomes an automorphism of Db(X).

Theorem 2.2. [BBR, Theorem 6.18] Let π : X → S be a Weierstrass fibration and P be the
relative Poincaré sheaf on X ×X, then the integral functor Φ = ΦP

X→X defined as in (2.1) is a
Fourier-Mukai transform.

The advantage of having a Fourier-Mukai type automorphism Φ on Db(X) is that we can use
it to study how various subcategories change under Φ. It would be nice to see that different
structures on Db(X) are related by this automorphism. The case that we are mostly interested
in, namely the trivial fibration, is clearly a Weierstrass fibration. Understanding the action of
the automorphism Φ induced by the relative Poincaré bundle P on Db(X) will be our major
goal in this paper.

A key property that often comes up in the study of Fourier-Mukai transforms is the so-called
WIT property. Let Φ : Db(Y ) → Db(X) be any Fourier-Mukai transform. A complex E ∈ Db(Y )
is said to be Φ-WITi if Φ(E) = F [−i] ∈ Db(X) for some F ∈ Coh(X) and i ∈ Z; in other words,
the image of E under the Fourier-Mukai transform Φ is a sheaf sitting at degree i. When

E ∈ Db(Y ) is a Φ-WITi complex, we write Ê to denote the coherent sheaf F = Φ(E)[i], i.e.

Φ(E) ∼= Ê[−i]. As every object in Db(Y ) is a finite extension of coherent sheaves and their
shifts, understanding lots of examples of sheaves in Coh(Y ) satisfying WIT properties in various
degrees can usually help us determine the image of a subcategory of Db(Y ) under Φ.

We introduce the following extra notations that will be used later.



PRESERVATION OF SEMISTABILITY UNDER FOURIER-MUKAI TRANSFORMS 5

• For any object E ∈ Db(Y ), we write Φi(E) for the cohomology sheaf H i(Φ(E)) with
respect to the standard t-structure.

• We write Wi,X to denote the category of Ψ-WITi sheaves.

• We writeW ′
i,X to denote the category of coherent sheaves E on X such that, for a general

closed point s ∈ S, the image of E|s under Ψs (the base change of Ψ under the closed
immersion {s} →֒ S) is a sheaf sitting at degree i.

• We write TX to denote the extension closure 〈W ′
0,X ,Φ({Coh60(Ys)}

↑〉.

• We write T′
X to denote the extension closure 〈W ′

0,X ,Φ(W0,Y ∩ Coh6n−1(Y ))〉 where n

equals dimX (which equal dimY ).

2.3. Torsion classes. Another important notion that shows up quite often in our discussion is a
torsion pair. For any abelian category A, a torsion pair (T ,F) in A is a pair of full subcategories
of A, satisfying the following two conditions

(1) Every object E ∈ A fits in a short exact sequence 0 → T → E → F → 0 in A where
T ∈ T and F ∈ F ;

(2) For any T ∈ T and F ∈ F , we have Hom(T, F ) = 0.

For such a torsion pair (T ,F) in A, we refer to T as the torsion class of the pair, and F as
the torsion-free class of the pair. We say a full subcategory C of A is a torsion class if it is
the torsion class of a torsion pair in A. We will need the following useful criterion to recognize
torsion classes:

Lemma 2.3. [Pol, Lemma 1.1.3] Let A be a noetherian abelian category. If a full subcategory
T is closed under quotients and extensions, then T is a torsion class.

Under the same assumption, we write

C◦ := {E ∈ A | HomA(C,E) = 0 for all C ∈ C}.

Then the torsion pair in Lemma 2.3 is given by (C, C◦).

Whenever we have a torsion pair (T ,F) in an abelian category A, there is a corresponding
t-structure (D60,D>0) on the derived category D(A) given by

D60 := {E ∈ D(A) | H0(E) ∈ T ,H i(E) = 0 for all i > 0},

D>0 := {E ∈ D(A) | H−1(E) ∈ F ,H i(E) = 0 for all i < −1 }.

The heart of this t-structure is given by

A# = {E ∈ D(A) | H−1(E) ∈ F ,H0(E) ∈ T ,H i(E) = 0 for all i 6= −1, 0},

It is called the tilted heart with respect to the torsion pair (T ,F).

3. Slope-like functions

3.1. An alternative to the relative HN filtration. In this section, we consider a pair of
dual elliptic fibrations π : X → S and π̂ : Y → S, and introduce a filtration for coherent sheaves
on X that replaces the use of relative HN filtrations with respect to π. We assume that, for any
closed point x on a general (smooth) fiber of π, the sheaf Ψ(Ox) is a line bundle of degree zero
on the fiber of π̂ over π(x), and similarly for Φ.
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In [Lo2], we defined TX as

TX := 〈W ′
0,X ,Φ({Coh60(Ys)}

↑〉.

We now modify the definition of TX a little, and set (where d := dimX)

T
′
X := 〈W ′

0,X ,Φ(W0,Y ∩ Coh6d−1(Y ))〉. (3.1)

Remark 3.1. Note that, the torsion sheaves on Y (i.e. objects in Coh6d−1(Y ) when Y is smooth
projective) of dimension d are precisely the coherent sheaves E on Y such that F |s is a 0-
dimensional sheaf for a general closed point s ∈ S.

Lemma 3.2. We have

(i) T′
X is a torsion class in Coh(X).

(ii) When X is an elliptic surface, the categories TX and T′
X coincide.

(iii) T′
X is also the category of all coherent sheaves E on X such that, for a general closed

point s ∈ S, all the HN factors of E|s have µ > 0.

Proof. (i) This follows from the same argument as in the proof of [Lo2, Lemma 3.19(iii)], by
replacing the category {Coh60(Ys)}

↑ with W0,Y ∩Coh62(Y ).

(ii) Suppose X,Y are dual elliptic surfaces. By [Lo2, Lemma 3.15], any F ∈ W0,Y ∩ Coh61(Y )
fits in a short exact sequence in Coh(Y ) of the form

0 → F ′ → F → F ′′ → 0

where F ′ ∈ {Coh60(Ys)}
↑ and F ′′ is a Φ-WIT0 fiber sheaf, which implies T′

X ⊆ TX . That

TX ⊆ T′
X follows from {Coh60(Ys)}

↑ ⊆ W0,Y [Lo2, Remark 3.14], thus proving (ii).

(iii) Given any object F ∈ T′
X , we know from [BBR, Corollary 3.29] that, for a general closed

point s ∈ S, all the HN factors of F |s have µ > 0.

On the other hand, take any coherent sheaf F such that all the HN factors of F |s have µ > 0 for
a general closed point s ∈ S. By the existence of the relative HN filtration of F with respect to
π [HL10, Theorem 2.3.2], we can find a (possibly zero) subsheaf G ⊆ F satisfying the following
properties:

(a) all the HN factors of G|s have µ > 0 for a general closed point s ∈ S (and so G ∈ W ′
0,X);

(b) F/G is torsion-free;

(c) (F/G)|s is µ-semistable with µ = 0 for a general closed point s ∈ S.

Since F/G lies in W ′
1,X and is torsion-free, it lies in W1,X by [Lo2, Lemma 3.18(ii)]. Property

(c) now implies that (F̂/G)|s is 0-dimensional for a general closed point s ∈ S [BBR, Corollary

3.29], and so F̂/G ∈ Coh6d−1(Y ), implying F/G ∈ T′
X . This completes the proof of (iii). �

Proposition 3.3. Let π : X → S and π̂ : Y → S be dual elliptic fibrations of dimension d such
that the Fourier-Mukai kernels of Φ and Ψ are both coherent sheaves. Then

(a) Any coherent sheaf E on X has a filtration

G0 ⊆ G1 ⊆ G2 := E (3.2)

in Coh(X) where the subfactors satisfy:
(i) G0 ∈ W ′

0,X ;

(ii) G1/G0 ∈ FX ∩ Φ(W0,Y ∩Coh6d−1(Y )), and so G1 ∈ T′
X ;
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(iii) G2/G1 ∈ (T′
X)◦. In particular, G2/G1 lies in W1,X and is torsion-free.

(b) Suppose, in addition, that π, π̂ are dual elliptic fibrations satisfying the condition laid
out at the start of Section 3.1. With notation as in part (a), we have:
(i) For a general closed point s ∈ S, µ > 0 for any HN factor of G0|s;

(ii) For a general closed point s ∈ S, µ = 0 for any HN factor of (G1/G0)|s;

(iii) For a general closed point s ∈ S, µ < 0 for any HN factor of (G2/G1)|s.

Proof. Take any E ∈ Coh(X), and set G2 := E. First, consider the exact sequence in Coh(X)

0 → G1 → G2 → G2/G1 → 0

where G1 ∈ T′
X and G2/G1 ∈ (T′

X)◦. Then consider the exact sequence in Coh(X)

0 → G0 → G1 → G1/G0 → 0

where G0 ∈ W ′
0,X and G1/G0 ∈ (W ′

0,X)◦.

We now verify that G1/G0 ∈ Φ(W0,Y ∩ Coh6d−1(Y )). Write F := G1/G0; note that F ∈
T′
X ∩ (W ′

0,X)◦. Then F is torsion-free and Ψ-WIT1, since W
′
0,X contains all the Ψ-WIT0 sheaves

and torsion sheaves. Also, from the definition of T′
X , we have that for a general closed point

s ∈ S, all the HN factors of F |s have µ > 0. That F ∈ (W ′
0,X)◦ then implies that for a general

closed point s ∈ S, the restriction F |s is in fact µ-semistable with µ = 0. Hence F̂ |s is 0-

dimensional for a general closed point s ∈ S [BBR, Corollary 3.29], i.e. F̂ ∈ Coh6d−1(Y ). Thus

F ∈ Φ(W0,Y ∩ Coh6d−1(Y )) as claimed. That G2/G1 lies in W1,X and is torsion-free follows
from T′

X containing W0,X and all the torsion sheaves. This completes the proof of part (a).

Parts (b)(i) and (b)(ii) follow immediately from [BBR, Corollary 3.29]. To see part (b)(iii), note
that we have G2/G1 ∈ (T′

X)◦ from part (a)(iii). Lemma 3.2(iii) then forces all the HN factors
of (G2/G1)|s to have µ < 0 for a general closed point s ∈ S, giving us (b)(iii). �

3.2. HN filtrations in abelian categories with slope-like functions. Give a noetherian
abelian category A, we say that A has a slope-like function µ if we have a pair of group homo-
morphisms C0 : K(A) → Z, C1 : K(A) → R satisfying

• C0(E) > 0 for any E ∈ A;

• if an object E ∈ A satisfies C0(E) = 0, then C1(E) > 0.

We then define the function µ : K(A) → R ∪ {+∞} by setting

µ(E) :=

{
C1(E)
C0(E) if C0(E) 6= 0

+∞ if C0(E) = 0,
(3.3)

and refer to µ as a slope-like function. This yields a notion of semistability akin to the usual
notion of slope semistability for coherent sheaves on smooth projective varieties. We can also
define the following subcategories of A,

B0 := {E ∈ A : C0(E) = 0},

B01 := {E ∈ A : C0(E) = 0 = C1(E)}. (3.4)

It is easy to see that B01 ⊆ B0 and both are Serre subcategories of Coh(X) (and, in particular,
are torsion classes in Coh(X) by Lemma 2.3).
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Given a slope-like function µ on a noetherian abelian category A, we define an object E ∈ A to
be µ-semistable if, for any 0 6= F ( E in A, we have µ(F ) 6 µ(E). Note that a µ-semistable
object E ∈ A necessarily lies in (B0)

◦, and so satisfies C0(E) > 0 if E 6= 0.

We define a nonzero object E ∈ A to be µ-stable if, for any 0 6= F ( E in A with 0 < C0(F ) <
C0(E), we have µ(F ) < µ(E). It can be checked easily that µ-stable objects are µ-semistable.

On the other hand, for any object E ∈ K(A), we can associated to it a polynomial

P (E)(m) := C0(E)m+ C1(E),

and an associated ‘reduced’ polynomial

p(E)(m) := P (E)(m)/α(E)

where α(E) is the leading coefficient of P (E)(m). There is a natural ordering 6 on the reduced
polynomials (see [HL, Section 1.2]): for objects F,E ∈ A, we write p(F ) 6 p(E) if p(F )(m) 6
p(E)(m) for m ≫ 0.

We then define an object E ∈ (B0)
◦ to be p-semistable if, for any 0 6= F ( E in A, we have

p(F ) 6 p(E), and define it to be p-stable if we always have strict inequality.

Note that, when E ∈ A satisfies C0(E) 6= 0 (e.g. when 0 6= E ∈ (B0)
◦), we have

p(E)(m) = m+ µ(E). (3.5)

It is then easy to see the following:

(1) For objects in (B0)
◦, being µ-semistable is equivalent to being p-semistable.

(2) If an object E ∈ (B0)
◦ is p-stable, then it is µ-stable.

(3) If an object E ∈ A is µ-stable, then it lies in (B0)
◦ and is p-semistable. An example

to keep in mind for this case is the following: let A = Coh(X) where X is a smooth
projective surface, let C0 be the rank function and C1 be the degree function (with respect
to some polarisation on X) on K(A). For any 0-dimensional subscheme Z ⊂ X, if we
write IZ for the corresponding ideal sheaf then C0(IZ) = C0(OX) and C1(IZ) = C1(OX).
Hence OX is µ-stable but only p-semistable.

Our notion of slope-like functions here is similar to, but not the same as, the notion of a stability
structure on an abelian category as in Gorodentsev-Kuleshov-Rudakov [GKR]. For instance:

• In order to obtain Harder-Narasimhan filtrations, Gorodentsev-Kuleshov-Rudakov re-
quired that the abelian category A be weakly artinian and weakly noetherian (see [GKR,
Theorem 2.2]); in our definition of a slope-like function, we require our abelian category
A to be noetherian.

• Given an abelian category A, we are able to define a slope-like function provided we
have additive functions C0, C1 on K(A) satisfying the properties (3.4). Gorodentsev-
Kuleshov-Rudakov has a similar formulation in [GKR, Definition 2.3], but they require
C0, C1 to be linearly independent, whereas we do not require it here. The result is that a
slope-like function may well give rise to very degenerate Harder-Narasimhan filtrations.
For instance, if A is a noetherian abelian category with C0, C1 satisfying (3.4) and
C0 = C1, then for any E ∈ A with C0(E) 6= 0, we have µ(E) = 1. That is, any object in
(B0)

◦ is µ-semistable, and so its HN filtration has exactly one term.

Proposition 3.4. If a noetherian abelian category A has a slope-like function µ, then every
object in A has a unique Harder-Narasimhan filtration of the form

E01 ⊆ E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Em = E (3.6)
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for some positive integer m where

• E01 ∈ B01,

• E0/E01 ∈ B0 ∩ (B01)
◦,

• for i > 1, each Ei/Ei−1 lies in (B0)
◦, is µ-semistable, and

µ(E1/E0) > µ(E2/E1) > · · · > µ(Em/Em−1).

When E lies in (B0)
◦ and Ei are as in (3.6), we define µmax(E) := µ(E1/E0) and µmin(E) :=

µ(Em/Em−1).

Towards proving Proposition 3.4, we first prove:

Lemma 3.5. Suppose E is an object in (B0)
◦. Then there is a subobject F ⊆ E such that

we have µ(G) 6 µ(F ) for any subobject G of E, with equality only if G ⊆ F . Moreover, F is
uniquely determined and is µ-semistable.

Proposition 3.4 has appeared in various forms including slope stability for coherent sheaves (see
[HL, Theorem 1.6.7]) and tilt stability for complexes (see [BMT14, Lemma 3.2.4]). Although
the proof of [HL, Theorem 1.3.4] applies essentially without change, we still include the proof
here to emphasise the point, once and for all, that the result holds for any noetherian abelian
catgory with a slope-like function.

Proof of Lemma 3.5. We can assume E 6= 0. Proceeding as in the proof of [HL, Lemma 1.3.5],
we consider an ordering 6 on the nonzero subobjects of E, where we define F1 6 F2 whenever

F1 ⊆ F2 and p(F1) 6 p(F2).

(Recall that, for objects A,B with nonzero C0, the condition p(A) 6 p(B) is equivalent to
µ(A) 6 µ(B).) Since A is a noetherian abelian category, every ascending chain of subobjects of
E with respect to 6 in A becomes stationary; among the maximal objects with respect to 6,
fix any one F with minimal C0 (here, we use the assumption that the codomain of the function
C0 is Z).

Suppose that there exists an object G ⊆ E with p(G) > p(F ). We first show that we can then
assume G ⊆ F : consider the short exact sequence in A

0 → F ∩G → F ⊕G → F +G → 0. (3.7)

Note that, since E is nonzero and lies in (B0)
◦, we have C0(E) 6= 0. Since F,G are also nonzero

and lie in (B0)
◦ (by virtue of being subobjects of E), we also have C0(F ), C0(G) 6= 0, and so

p(F ), p(G), p(F +G) are all polynomials of degree 1. Now, if F ∩G = 0, then F +G ∼= F ⊕G,
and from the short exact sequence in A

0 → F → F ⊕G → G → 0

together with p(F ) < p(G), we obtain p(F ) < p(F ⊕G) = p(F +G) while F ( F +G and the
maximality of F is contradicted. So we can assume F ∩G 6= 0. Then C0(F ∩G) > 0, and from
(3.7) we obtain:

C0(F ∩G)(p(G)−p(F ∩G)) = C0(F +G)(p(F +G)−p(F ))+(C0(G)−C0(F ∩G))(p(F )−p(G)).
(3.8)

The maximality of F implies p(F ) > p(F+G). This, together with the assumption p(F ) < p(G),
implies that the right-hand side of (3.8) is non-positive, and so p(F ∩G) > p(G) > p(F ). That
is, we have produced a nonzero subobject F ∩ G of F satisfying p(F ∩ G) > p(F ). Therefore,
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replacing G by F ∩ G, we will assume that G ⊆ F from now on. In addition, we will assume
that G is 6-maximal among all the subobjects G0 of F such that p(G0) > p(F ).

Next, we let G′ be any subobject of E containing G and is 6-maximal. Then p(F ) < p(G) 6
p(G′). By the maximality of G′ and F , we now must have G′ * F . For, if G′ ⊆ F , then
C0(G

′) 6 C0(F ). If equality holds, then C0(F/G
′) = 0, which implies that C1(F/G

′) > 0, and
so p(G′) 6 p(F ), a contradiction. On the other hand, if C0(G

′) < C0(F ), then the minimality
assumption on C0(F ) is contradicted. Hence G′ ⊆ F cannot hold. As a result, we have F (
F +G′, and the 6-maximality of F implies that p(F ) > p(F +G′).

Overall, we now have p(F ) > p(F + G′) and p(F ) < p(G′). Replacing G by G′ in the short
exact sequence (3.7) and in (3.8), we obtain that the right-hand side of (3.8) is strictly negative,
and so, since C0(F ∩G′) > 0 (since F,G′ both contain G as a subobject), we have p(F ∩G′) >
p(G′) > p(G). However, the object F ∩G′ then contradicts the maximality of G.

Therefore, we have proved that for any nonzero G ⊆ E, we have p(G) 6 p(F ), i.e. µ(G) 6 µ(F ).

Next, we show that if G ⊆ E is such that p(F ) = p(G), then it must follow that G ⊆ F : for
any such G, if we have G * F , then F ( F +G, and by the 6-maximality of F , we must have
p(F ) > p(F +G). Now, F ∩G cannot be zero, or else F +G ∼= F ⊕G, and then we would have
F ( F +G ⊆ E while p(F ) = p(F +G), contradicting the 6-maximality of F . Thus F ∩G 6= 0,
and the inequality p(G) = p(F ) > p(F +G) implies, from (3.7),

p(F ∩G) > p(F ⊕G) = p(F ),

contradicting the conclusion in the previous paragraph. Therefore, any G ⊆ E with p(F ) = p(G)
must satisfy G ⊆ F .

The rest of the lemma is clear. �

The standard argument (see [HL, Proposition 1.2.7], for instance) gives us the following property
of µ-semistable objects in A:

Lemma 3.6. Given µ-semistable objects F,G ∈ (B0)
◦ with µ(F ) > µ(G), we have

HomA(F,G) = 0.

Proof of Proposition 3.4. Take any E ∈ A. Set E0 to be the maximal subobject of E in the
torsion class B0, and set E01 to be the maximal subobject of E0 in the torsion class B01. Then
E0/E01 ∈ (B0)∩(B01)

◦, and E/E0 ∈ (B0)
◦. The rest of the proof uses Lemma 3.6 and follows the

same argument as that for Gieseker stability for coherent sheaves - see [HL, Theorem 1.3.4]. �

Example 3.7. Let X be a smooth projective variety of dimension n, and let ω be a fixed ample
divisor class on X. If we take A := Coh(X) and

C0(−) := rank(−),

C1(−) := c1(−) · ωn−1,

then the resulting slope-like function µ := C1(−)/C0(−) coincides with the usual slope function
µω(−) that gives rise to the notion of slope semistability for coherent sheaves on X.

More generally, if n := dimX and 0 6 d 6 n is any integer, then the functions

C0(−) := chn−d(−) · ωd

C1(−) = chn−d+1(−) · ωd−1

give a slope-like function on the noetherian abelian subcategory A := Coh6d(X) of Coh(X).
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Example 3.8. Let π : X → S be any flat morphism of relative dimension 1, where X,S are
both smooth projective varieties. Let f denote the fiber class for the morphism π. Then we can
take A := Coh(X), and

C0(−) := rank(−),

C1(−) := c1(−) · f, i.e. the ‘fiber degree’,

together give a slope-like function µf (−) := C1(−)/C0(−) on Coh(X).

The Harder-Narasimhan filtration for coherent sheaves associated to the slope-like function µf

was formulated earlier by Yoshioka [Yos3, Section 3.3], and was called the ‘relative Harder-
Narasimhan filtration’. It is a slightly different formulation of the relative Harder-Narasimhan
filtration for coherent sheaves with respect to a projective morphism found in [HL10, Theorem
2.3.2], for example.

Remark 3.9. Our notion of a slope-like function is very close to the notion of a ‘weak central
charge’ introduced in Brown-Shipman [BS], in the following sense: given a noetherian abelian
category A, suppose C0 : K(A) → Z and C1 : K(A) → R are two functions that satisfying the
positivity properties above and give rise to a slope-like function µ(−) := C1(−)/C0(−). Then
the group homomorphism

Z : K(A) −→ C,

E 7−→ C1(E) + iC0(E)

is a weak central charge in the sense of [BS].

Note that, in the definition of a weak central charge, the function C1 (the real part of Z) is
allowed to take values in R, whereas we require it to take values in Z in the definition of a
slope-like function.

We finish this section with a re-interpretation of the torsion class T′
X in terms of the slope-like

function µf .

Lemma 3.10. Let π : X → S and π̂ : Y → S be dual elliptic fibrations. Suppose E ∈ Coh(X)
is torsion-free and µf -semistable. Then E|s is slope semistable for a general closed point s ∈ S,
and

• if µf (E) > 0, then E ∈ W ′
0,X ;

• if µf (E) = 0, then E ∈ FX ∩ Φ(W0,Y ∩ Coh6d−1);

• if µf (E) < 0, then E ∈ W1,X .

Proof. We claim that the restriction E|s is slope semistable for a general point s ∈ S. For, if
not, then from the relative HN filtration for F with respect to slope stability and with respect
to the fibration π : X → S, we have a dense open subset U ⊆ S and a subsheaf G ⊆ E|U on
Coh(U) such that µ(G|s) > µ(E|s) for all s ∈ U . Then we can extend the inclusion G ⊆ E|U in
Coh(U) to an inclusion G ⊆ E in Coh(X), and now we have µf (G) > µf (E), contradicting the
µf -semistability of E. Thus E|s is slope semistable for a general point s ∈ S.

Let G0 ⊆ G1 ⊆ G2 := E be the filtration of E as in (3.2). By Proposition 3.3(b), we know that
only one of the subfactors G0, G1/G0, G2/G1 can be nonzero. �

We now have the following alternative description of T′
X , which was defined in (3.1):

Lemma 3.11. T′
X = {E ∈ Coh(X) : µf,min(E) > 0}.
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Proof. Let T denote the category of coherent sheaves E on X satisfying µf,min(E) > 0. The
inclusion T ⊆ T′

X follows from the existence of the µf -HN filtration in Proposition 3.4 and
Lemma 3.10.

To see the other inclusion, take any E ∈ T′
X . We can assume that E is torsion-free. By

Proposition 3.3(b), for a general closed point s ∈ S, all the HN factors of E|s have µ > 0.
Now, if µf,min(E) < 0, then we can find a nonzero surjection α : E ։ E′ in Coh(X) where
E′ is µf -semistable, hence torsion-free, and with µf (E

′) < 0. Besides, we know E′|s is µ-
semistable for a general closed point s ∈ S from Lemma 3.10. However, this implies that the
restriction α|s vanishes for a general closed point s ∈ S, contradicting E′ being torsion-free.
Thus µf,min(E) > 0, i.e. E ∈ T . �

Remark 3.12. Lemma 3.11 means that, when X is an elliptic surface, T′
X coincides with the

category T defined in [Yos3, Definition 3.3.1].

4. A Fourier-Mukai transform on the trivial elliptic fibration

From this section on, we restrict our discussion to a particularly simple case – the trivial elliptic
fibration over a projective K3 surface. There are many advantages of looking at this simple
case. First of all, the action of the Fourier-Mukai transform on the cohomology classes obeys a
clean formula which is easy to determine. Secondly, even in this simple example, we can already
see how different it is between the Fourier-Mukai transform on a single abelian variety and that
on a family. We will show later a few interesting results identifying different semistabilities via
Fourier-Mukai transforms on trivial families. Before doing that, we first describe how Chern
classes change under the Fourier-Mukai transform.

4.1. Fourier-Mukai transforms on trivial families. We introduce our notations. Let C be
an elliptic curve principally polarized by L; that is, L is a degree 1 line bundle on C. Let S be
a K3 surface of Picard number 1 with Pic(S) = Z[HS]. We write the product X = C × S.

A Fourier-Mukai transform onX can be considered as a trivial family of Fourier-Mukai transform
on C parametrised by S. We briefly recall the theory on a single elliptic curve C. We have an
integral functor

ΦEC : Db(C) −→ Db(C), (4.1)

whose kernel is given by EC = π∗
1L

−1 ⊗ π∗
2L

−1 ⊗m∗L where m is the addition on C. ΦEC has
some properties which are summarised in the following lemma.

Lemma 4.1. The integral functor ΦEC satisfies the following

(1) The functor (4.1) is an equivalence of categories, hence a Fourier-Mukai transform;

(2) For any E ∈ Db(C), we have

(ΦEC ◦ ΦEC )(E) = ι∗E[−1],

where ι is the “inverse” operation with respect to the group structure on C;

(3) The cohomological Fourier-Mukai transform

ΦH
EC

: H∗
alg(C,Z) −→ H∗

alg(C,Z)

is given by the formula

ΦH
EC

(a0, a1) = (a1,−a0),

considered as elements in H0(C,Z)⊕H2(C,Z).
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Proof. The first two statements can be found in [Huy06, Proposition 9.19]. The third statement
is [Huy06, Lemma 9.23]. �

Now we consider the relative version. Note that we have the following fiber diagram

C × C × S
π23

//

π13

��

C × S

πS

��

C × S πS

// S.

(4.2)

Similarly we write π12 : C × C × S −→ C × C for the projection to the first two factors, and
write E = π∗

12EC . Then E defines a relative integral functor

ΦE : Db(C × S) −→ Db(C × S). (4.3)

It is not difficult to see that ΦE is an equivalence.

Proposition 4.2. The integral functor ΦE satisfies the following

(1) The functor (4.3) is an equivalence of categories, hence a Fourier-Mukai transform;

(2) For any E ∈ Db(C × S), we have

(ΦE ◦ ΦE)(E) = ι∗E[−1],

where ι is the “inverse” operation on C and identity on S.

Proof. It suffices to prove the second statement. By Lemma 4.1, we know that ΦEC ◦ ΦEC is
in fact given by ΦO∆C

[−1] where ∆C = {(x,−x) : x ∈ C} ⊂ C × C is the antidiagonal of the

product. By pulling back to the triple product C ×C × S, we similarly have

ΦE ◦ ΦE = ΦO∆
[−1]

where ∆ = ∆C × S ⊂ C × C × S is the relative antidiagonal in the diagram (4.2). This proves
the statement. �

4.2. Cohomological Fourier-Mukai tranforms. Now we turn to understanding how Chern
classes change under the Fourier-Mukai transform ΦE . We denote the projections fromX = C×S
to the two factors by πC and πS . Then by the Künneth formula, the algebraic cohomology of
X can be given by

H∗
alg(X,Z) = H∗

alg(C,Z)⊗H∗
alg(S,Z).

We note that

H∗
alg(C,Z) = H0(C,Z)⊕H2(C,Z)

H∗
alg(S,Z) = H0(S,Z)⊕ Z[HS ]⊕H4(S,Z)

are both direct sums of 1-dimensional sublattices. Let e0, e1 and respectively f0, f1, f2 be the
generators of these 1-dmensional lattices, then ei ⊗ fj form an integral basis of H∗

alg(X,Z). For
any F ∈ Db(C × S), its Chern character will be given by 6 integers under this basis, say

ch(F ) =
∑

i,j

aijei ⊗ fj. (4.4)

And for the convenience of visualisation, we organize them in a matrix. By abuse of notation,
we write

ch(F ) =

(
a00 a01 a02
a10 a11 a12

)
. (4.5)
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Note that aij contributes the class aij(ei ⊗ fj) to the (i + j)-th component of ch(F ). The
following two observations will help us determine the image of ch(F ) under the cohomological
Fourier-Mukai transform ΦH

E .

Lemma 4.3. For any FC ∈ Db(C) and FS ∈ Db(S), we have

ΦE(π
∗
CFC ⊗ π∗

SFS) = π∗
CΦEC (FC)⊗ π∗

SFS .

Proof. We first show the case when FS = OS is trivial. This is straightforward, since π∗
CFC is a

trivial family of sheaves FC parametrized by S. The relative Fourier-Mukai transform ΦE takes
it to a trivial family of sheaves ΦEC (FC) parametrized by the same base S. That is

ΦE(π
∗
CFC) = π∗

CΦEC (FC).

To show the general case, we first observe that

π∗
13π

∗
SFS = π∗

3FS = π∗
23π

∗
SFS .

Together with the projection formula, we have

ΦE(π
∗
CFC ⊗ π∗

SFS)

= π23∗(E ⊗ π∗
13π

∗
CFC ⊗ π∗

13π
∗
SFS)

= π23∗(E ⊗ π∗
13π

∗
CFC ⊗ π∗

23π
∗
SFS)

= π23∗(E ⊗ π∗
13π

∗
CFC)⊗ π∗

SFS

= ΦE(π
∗
CFC)⊗ π∗

SFS

= π∗
CΦEC (FC)⊗ π∗

SFS .

This finishes the proof. �

Lemma 4.4. For any FC ∈ Db(C) and FS ∈ Db(S), we have

ch(π∗
CFC ⊗ π∗

SFS) = π∗
C ch(FC)⊗ π∗

S ch(FS).

Proof. This is clear since taking Chern characters commutes with tensor products and pullbacks.
�

Finally, we are ready to compute the cohomological Fourier-Mukai transform

ΦH
E : H∗

alg(X,Z) −→ H∗
alg(X,Z).

Note that ΦH
E is a linear map. Therefore it suffices to determine the images of classes in a basis

of H∗
alg(X,Z), which can be achieved by making appropriate choices of FC and FS .

Proposition 4.5. For any F ∈ Db(X), following the notation in (4.5) we write

ch(F ) =

(
a00 a01 a02
a10 a11 a12

)
.

Then the Chern character of ΦE(F ) is given by

ch(ΦE(F )) =

(
a10 a11 a12
−a00 −a01 −a02

)
.

Proof. To apply the above lemma to deduce the formula, we choose candidates for FC and FS

as follows.

• Let F 0
C = OC be the structure sheaf, then ch(F 0

C) = (1, 0);
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• Let F 1
C = Oy be a skyscraper sheaf of any closed point y ∈ C, then ch(F 1

S) = (0, 1);

• Let F 0
S = OS be the structure sheaf, then ch(F 0

S) = (1, 0, 0);

• Pick a smooth curve in the linear system D ∈ |HS |, and let F 1
S be a line bundle on D of

degree H2

2 , then it is easy to find that ch(F 1
S) = (0, 1, 0);

• Let F 2
S = Ox be a skyscraper sheaf of any closed point x ∈ S, then ch(F 2

S) = (0, 0, 1).

By applying Lemma 4.4, it is straightforward to check that the following is true:

ch(π∗
CF

i
C ⊗ π∗

SF
j
S) = ei ⊗ fj

under the notation in (4.4). That is, one entry is “1” and all the other entries are “0” in the
matrix form of the Chern character in (4.5).

Now we look at the Chern characters after applying the Fourier-Mukai transform ΦE . First of
all, by Lemma 4.1, we have that ch(ΦEC (F

0
C)) = (0,−1) and ch(ΦEC (F

1
C)) = (1, 0).

We can also combine Lemma 4.3 and Lemma 4.4 to get

ch(ΦE (π
∗
CFC ⊗ π∗

SFS)) = ch(π∗
CΦEC (FC)⊗ π∗

SFS)

= π∗
C ch(ΦEC (FC))⊗ π∗

S ch(FS).

Applying this formula, it is straightforward to check that the following is true:

ch(ΦE(π
∗
CF

i
C ⊗ π∗

SF
j
S)) = (−1)i+1e1−i ⊗ fj

under the notation in (4.4). In the matrix form, this verifies the formula in the statement for

objects π∗
CF

i
C ⊗ π∗

SF
j
S ∈ Db(X). Since their Chern characters form a basis of H∗

alg(X,Z), this
shows that

ΦH
E (

(
a00 a01 a02
a10 a11 a12

)
) =

(
a10 a11 a12
−a00 −a01 −a02

)
,

as desired. �

We remind the reader again that the degrees of various components are slightly mixed up. For
instance, a01 moves from ch1 to ch0 after the Fourier-Mukai transform, while a10 moves from
ch1 to ch2, etc. This can be easily seen from the matrix form, as entries lying on the same
antidiagonal represent classes in the same degree.

4.3. Product of cohomology classes. For later convenience we compute the cup products of
cohomology classes on X = C×S. We will also give a formula for computing slopes with respect
to any ample class on X. We follow the notations in the previous subsection. In particular, we
will use alternatingly the two ways for writing the Chern classes in (4.4) and (4.5).

We have seen that ei ⊗ fj for 0 6 i 6 1, 0 6 j 6 2 form an integral basis of H∗
alg(X,Z). To

compute arbitrary cup products of classes in mixed degrees, it suffices to compute intersections
of classes in this basis, which is given by the following lemma.

Lemma 4.6. Following the above notations, we have

(ei1 ⊗ fj1) ∪ (ei2 ⊗ fj2) = (ei1 ∪ ei2)⊗ (fj1 ∪ fj2),

where the cup products on the right hand side are the usual cup products on C and S, respectively.
In particular, the above product is always an integral multiple of ei1+i2 ⊗ fj1+j2.

Proof. This is immediate since the Künneth formula gives a ring isomorphism. �
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We can write the product more explicitly in the following way. Note that the degree 2 and
degree 4 components of H∗

alg(X,Z) are given by

NS(X) = H2
alg(X,Z) = Z(e0 ⊗ f1)⊕ Z(e1 ⊗ f0),

H4
alg(X,Z) = Z(e0 ⊗ f2)⊕ Z(e1 ⊗ f1),

respectively. For simplicity, we further assume that H2
S = 2d (as an intersection of divisor classes

on the K3 surface S).

The intersections of two divisor classes are given by

(e0 ⊗ f1) ∪ (e0 ⊗ f1) = 2d · (e0 ⊗ f2),

(e0 ⊗ f1) ∪ (e1 ⊗ f0) = e1 ⊗ f1,

(e1 ⊗ f0) ∪ (e1 ⊗ f0) = 0.

And the intersections of a divisor class and a curve class are given by

(e0 ⊗ f1) ∪ (e0 ⊗ f2) = 0,

(e0 ⊗ f1) ∪ (e1 ⊗ f1) = 2d,

(e1 ⊗ f0) ∪ (e0 ⊗ f2) = 1,

(e1 ⊗ f0) ∪ (e1 ⊗ f1) = 0.

And the only non-trivial triple intersection of divisor classes under the above basis is given by

(e0 ⊗ f1) ∪ (e0 ⊗ f1) ∪ (e1 ⊗ f0) = 2d. (4.6)

Now we determine the ample cone of X.

Lemma 4.7. The ample cone of X is given by

Amp(X) = {α(e0 ⊗ f1) + β(e1 ⊗ f0) | α > 0, β > 0}.

Proof. This is an easy consequence of the Nakai-Moischezon criterion. �

Now we write down a formula for computing the slope with respect to an arbitrary ample class.

Lemma 4.8. Let H = α(e0 ⊗ f1) + β(e1 ⊗ f0) for some α > 0 and β > 0 be an ample class on
X. Let F be a sheaf on X whose Chern class is given by (4.4). Then its slope with respect to
H is given by

µH(F ) = 2d ·

(
a10
a00

· α2 +
a01
a00

· 2αβ

)
.

Proof. By definition we have

µH(F ) =
c1(F ) ·H2

rank(F )

=
1

a00
· (a01(e0 ⊗ f1) + a10(e1 ⊗ f0)) · (α(e0 ⊗ f1) + β(e1 ⊗ f0))

2.

From here one can easily apply (4.6) to get the desired formula. �

We immediately have the following formula for the slope of the image of F under the Fourier-
Mukai transform constructed in Proposition 4.2.
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Corollary 4.9. Assume that Φ(F ) is a sheaf on X, then its slope with respect to an ample line
bundle H ′ = α′(e0 ⊗ f1) + β′(e1 ⊗ f0) for some α′ > 0 and β′ > 0 is given by

µH′(Φ(F )) = 2d ·

(
−a00
a10

· α′2 +
a11
a10

· 2α′β′

)
.

Proof. This is a combination of Proposition 4.5 and Lemma 4.8. �

From Lemma 4.8 and Corollary 4.9, we see that if α ≫ β, then the polarization is “fiber-like”.
That is, the slope it produces will be very close to the slope of the restriction of F on a generic
fiber. However, due to the mixture of the contributions from the base and the fiber, the slopes
of F and Φ(F ) do not follow any simple relation, which makes the Fourier-Mukai transforms on
families more difficult to handle.

5. Preservation of semistability on elliptic threefolds

5.1. Hilbert polynomials of coherent sheaves. In this section, let X = C × S where C is
an elliptic curve and S is a projective K3 surface of Picard rank 1. For a coherent sheaf E on X,
its Hilbert polynomial with respect to the polarisation ω := H + nD (where n is some positive
integer) is given by

χ(E⊗OX(m(H + nD)))

=

∫

X
ch(E) · ch(OX(m(H + nD))) · td(X)

=
m3

6
· rank(E) +

m2

2
(H + nD)2(ch1(E) + rank(E) · td1(X))

m(H + nD)(ch2(E) + ch1(E) · td1(X) + rank(E) + td2(X)) + χ(E).

Therefore, when dimE = 3, the reduced Hilbert polynomial of E is given by

m3

6
(H + nD)3 +

m2

2
(H + nD)2

(
ch1(E)

rank(E)
+ td1(X)

)

+m(H + nD)

(
ch2(E)

rank(E)
+

ch1(E) · td1(X)

rank(E)
+ td2(X)

)
χ(E)

rank(E)
.

Ignoring the terms independent of E and noting that H2 = 0, we see that ω-semistability of E,
for n ≫ 0, is determined by lexicographical ordering with respect to the following vector and
the corresponding vectors for subsheaves of E:

(
ch1(E)

rank(E)
·D2,

ch1(E)

rank(E)
·H ·D,

(
ch1(E)

rank(E)
· td1(X) +

ch2(E)

rank(E)

)
·D,

(
ch1(E)

rank(E)
· td1(X) +

ch2(E)

rank(E)

)
·H,

χ(E)

rank(E)

)
. (5.1)

When dimE = 2, the Hilbert polynomial of E is

m2

2
(H + nD)2 ch1(E) +m(H + nD)(ch2(E) + ch1(E) · td1(X)) + χ(E),

and so the reduced Hibert polynomial is

m2

2
+m

(H + nD)(ch2(E) + ch1(E) · td1(X))

(H + nD)2 ch1(E)
+

χ(E)

(H + nD)2 ch1(E)
. (5.2)
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Ignoring the terms independent of E and using H2 = 0, and since td1(X) = 0, we are left with

m
(H + nD) ch2(E)

(n · 2HD + n2D2) ch1(E)
+

χ(E)

(n · 2HD + n2D2) ch1(E)
.

Therefore, if E is ω-semistable for n ≫ 0, then for any subsheaf 0 6= E′ ⊆ E we must have

(H + nD) ch2(E
′)

(n · 2HD + n2D2) ch1(E′)
6

(H + nD) ch2(E)

(n · 2HD + n2D2) ch1(E)
for n ≫ 0. (5.3)

In the case that the denominators on both sides of (5.3) are nonzero, we have:

• The inequality (5.3) is equivalent to

n3 ·D ch2(E
′) ·D2 ch1(E) + n2 ·

(
D ch2(E

′) · 2HD ch1(E) +H ch2(E
′) ·D2 ch1(E)

)

+ n
(
H ch2(E

′) · 2HD ch1(E)
)

6 n3 ·D ch2(E) ·D2 ch1(E
′) + n2 ·

(
D ch2(E) · 2HD ch1(E

′) +H ch2(E) ·D2 ch1(E
′)
)

+ n
(
H ch2(E) · 2HD ch1(E

′)
)
. (5.4)

Then, a sufficient condition for (5.4) to hold for n ≫ 0 is to have strict inequality for
the leading coefficients on both sides, i.e.

ch2(E
′) ·D

ch1(E′) ·D2
<

ch2(E) ·D

ch1(E) ·D2
. (5.5)

• In the case of equality in (5.5), a sufficient condition for (5.4) to hold for n ≫ 0 is to
have strict inequality for the coefficients of the n2 terms, i.e.

(
D ch2(E

′) · 2HD ch1(E) +H ch2(E
′) ·D2 ch1(E)

)

<
(
D ch2(E) · 2HD ch1(E

′) +H ch2(E) ·D2 ch1(E
′)
)
, (5.6)

which is equivalent to

D2 ch1(E
′)

(
D ch2(E

′)

D2 ch1(E′)
· 2HD ch1(E)−H ch2(E)

)

< D2 ch1(E)

(
D ch2(E)

D2 ch1(E)
2HD ch1(E

′)−H ch2(E
′)

)
.

5.2. Positivity of components of Chern character. Now we turn to proving various positiv-
ity results. To motivate this, note that any torsion-free coherent sheaf F on a smooth projective
variety X must have positive rank. In general, the component of ch(F ) of the lowest degree
always has similar effectivity property. For later convenience, here we collect some results along
this line for any coherent sheaf F on X = C × S.

In the following, we always use the notation given by (4.5). In other words, for any F ∈ Coh(X),
the term containing ei ⊗ fj in ch(F ) is denoted by

chij(F ) = aijei ⊗ fj.

Then we write ch(F ) in the form of a matrix

ch(F ) =

(
a00 a01 a02
a10 a11 a12

)
.

We first of all establish two formulas concerning Chern classes of restrictions of a sheaf F to a
generic section or a generic fiber. They will be useful in the proofs of various positivity results.
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Lemma 5.1. Let X = C × S. For any F ∈ Coh(X), assume ch(F ) is given by (4.5). For a
generic closed point c ∈ C, the Chern character of the restriction F |{c}×S is given by

ch(F |{c}×S) = a00f0 + a01f1 + a02f2 ∈ H∗
alg(S,Z). (5.7)

Similarly, for a generic closed point s ∈ S, the Chern class of the restriction F |C×{s} is given
by

ch(F |C×{s}) = a00e0 + a10e1 ∈ H∗
alg(C,Z). (5.8)

Proof. We prove (5.7) first. Since F ∈ Coh(X), we can also think of F as an OC -module. By
generic flatness [EGA4, Theorem 6.9.1], there exists a non-empty open subset U ⊂ C such that
F |U×S is flat over OU . For any closed point c ∈ U , we have the exact sequence

0 −→ F ⊗OC
OC(−c) −→ F −→ F ⊗OC

Oc −→ 0.

Or we can write it as

0 −→ F ⊗OX
OX(−{c} × S) −→ F −→ F ⊗OX

O{c}×S −→ 0

where i : {c}×S →֒ C×S is the embedding. Now we compute ch(F⊗OX
O{c}×S). By assumption

we have that

ch(F ) =

(
a00 a01 a02
a10 a11 a12

)
,

and it is clear that

ch(O{c}×S) =

(
0 0 0
1 0 0

)
.

Therefore we have

ch(F ⊗OX
O{c}×S) =

(
0 0 0
a00 a01 a02

)
.

Since F ⊗OX
O{c}×S = i∗(F |{c}×S), by Grothendieck-Riemann-Roch theorem, we have

i∗(ch(F |{c}×S) · td(S)) = ch(F ⊗OX
O{c}×S) · td(C × S).

As td(S), hence π∗
S td(S), is invertible, the equation simplifies to

i∗(ch(F |{c}×S)) = ch(F ⊗OX
O{c}×S) · π

∗
C td(C) =

(
a00 a01 a02
a10 a11 a12

)
.

It follows that we have

ch(F |{c}×S) = a00f0 + a01f1 + a02f2 ∈ H∗
alg(S,Z).

The equation (5.8) can be proved in a similar way. �

We start to prove the positivity results. To avoid repetitions, in the rest of the section, we
always assume that X = C × S is the product of an elliptic curve and a K3 surface of Picard
number 1, and F ∈ Coh(X).

Lemma 5.2. If ch(F ) =

(
0 a01 ∗
a10 ∗ ∗

)
, then a01, a10 > 0.

Proof. For any ample line bundle L on X, we consider the Hilbert polynomial

P (m) = χ(F ⊗ Lm).

Since F is a torsion sheaf, the polynomial P (m) has degree at most 2. By Riemann-Roch,
the coefficient of the m2-term is 1

2L
2 · c1(F ). By Serre vanishing, when m ≫ 0, we must have

P (m) > 0 because all higher cohomology groups of F ⊗ Lm vanish. Therefore we must have

L2 · c1(F ) > 0.
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By Lemma 4.7, we can write

L = αe0 ⊗ f1 + βe1 ⊗ f0

for some α, β > 0. With the given assumption on c1(F ), we have

L2 · c1(T ) = 2d(α2a10 + 2αβa01)

where 2d = (e0 ⊗ f1) · (e0 ⊗ f1) · (e1 ⊗ f0) > 0. Therefore we must have

α2a10 + 2αβa01 > 0

for all α, β > 0. If we fix β > 0 and take α ≫ 0, we get a10 > 0. If we fix α > 0 and take β ≫ 0,
we get a01 > 0, as required. �

Lemma 5.3. If ch(F ) =

(
0 0 a02
a10 ∗ ∗

)
, then a02, a10 > 0.

Proof. The inequality a10 > 0 follows from Lemma 5.2.

By formula (5.7), for a generic closed point c ∈ C, we have that

ch(F{c}×S) = a00f0 + a01f1 + a02f2 = a02f2.

This implies that F{c}×S is supported on finitely many points, and a02 = χ(F{c}×S) > 0. �

Lemma 5.4. Let X = C × S. Let F be a sheaf on X with Chern character given by

ch(F ) =

(
0 0 ∗
∗ ∗ ∗

)
, (5.9)

then F |C×{s} has dimension 0 for all closed points s ∈ S except finitely many of them.

We will need the following two results in the proof.

Sublemma 5.5. Let F be a sheaf on X with Chern character given by (5.9), then for every
curve D ⊂ S, F |C×D is a torsion sheaf.

Proof. We write the inclusion

i : C ×D →֒ C × S,

then F |C×D = i∗F . We need to show that rank(i∗F ) = 0.

Since i∗F is the restriction of F on C ×D, we have an exact sequence

0 −→ K −→ F −→ i∗i
∗F −→ 0.

By condition (5.9) we know that F is a torsion sheaf, hence so is K, therefore ch1(K) must be
effective.

We first compute ch(i∗i
∗F ). We apply Grothendieck-Riemann-Roch on the closed immersion i

ch(i∗i
∗F ) = i∗(ch(i

∗F ) · td(N∨
C×D/C×S)),

whereN∨
C×D/C×S is the conormal bundle of C×D in C×S. Notice that both i∗F andN∨

C×D/C×S

are sheaves on C ×D, hence we have

ch(i∗F ) = (rank(i∗F ), ∗, ∗);

td(N∨
C×D/C×S) = (1, ∗, ∗).

Therefore we have

ch(i∗F ) · td(N∨
C×D/C×S) = (rank(i∗F ), a1, a2),
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where a1 ∈ H2(C ×D) and a2 ∈ H4(C ×D). After pushforward, we get

i∗(ch(i
∗F ) · td(N∨

C×D/C×S)) = i∗(rank(i
∗F ), a1, a2).

Notice that we have

i∗(rank(i
∗F )) = rank(i∗F )PD(C ×D) = rank(i∗F ) deg(D) · e0 ⊗ f1,

where PD is the Poincaré dual, and deg(D) is the degree of the curve D in S. Moreover, we
have

i∗(a1) ∈ H4(C × S);

i∗(a1) ∈ H6(C × S).

Therefore in the matrix notation, we have

ch(i∗i
∗F ) = i∗(rank(i

∗F ), a1, a2) =

(
0 rank(i∗F ) deg(D) ∗
0 ∗ ∗

)
.

It follows that

ch(K) = ch(F )− ch(i∗i
∗F ) =

(
0 −rank(i∗F ) deg(D) ∗
∗ ∗ ∗

)
.

If rank(i∗F ) > 0, then since deg(D) > 0, we have −rank(i∗F ) deg(D) < 0, hence ch1(K) is
not effective, which contradicts the fact that K is a torsion sheaf. Therefore we conclude that
rank(i∗F ) > 0, which means that F |C×D is a torsion sheaf. �

Sublemma 5.6. Let F be a sheaf on X such that F |C×D is a torsion sheaf for every curve
D ⊂ S. Then F |C×{s} has dimension 0 for all closed points s ∈ S except finitely many of them.

Proof. Let η be the generic point of C, and write T = πS(Supp(F |η×S)), where πS is the
projection to the second factor. Then for any closed point s ∈ S, F |C×{s} has dimension 0 if
and only if s /∈ T . Therefore it suffices to show that T contains only finitely many closed points
in S.

If not, then dimT > 1, hence T contains a curve D ⊂ T . Now we consider the restriction F |C×D.
By the definition of T , we know that η×T ⊂ Supp(F ). Therefore its closure C×T ⊂ Supp(F ). It
follows that C×D ⊂ Supp(F ) hence F |C×D is not a torsion sheaf, which is a contradiction. �

Proof of Lemma 5.4. The statement follows easily from Sublemmas 5.5 and 5.6. �

Lemma 5.7. If ch(F ) =

(
0 0 0
∗ ∗ ∗

)
, then F |C×{s} is 0-dimensional for all closed points s ∈ S.

Proof. By (5.7), for a generic closed point c ∈ C, the restriction F |{c}×S has the Chern character
ch(F |{c}×S) = 0. It follows that F is supported on a finite number of horizontal sections of the
form {c} × S. Therefore for any closed point s ∈ S, the restriction F |C×{s} is supported on at
most finitely many points, which are the intersections of the above sections with the fiber. �

Lemma 5.8. If ch(F ) =

(
0 ∗ ∗
0 ∗ ∗

)
, then F |C×{s} = 0 for a generic closed point s ∈ S.

Proof. By (5.8), for a generic closed point s ∈ S, the restriction F |C×{s} has the Chern character
ch(F |C×{s}) = 0. It follows that F |C×{s} = 0 for a generic closed point s ∈ S. �

Lemma 5.9. If ch(F ) =

(
0 0 a02
0 a11 ∗

)
, then a02, a11 > 0.
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Proof. By Lemma 4.7, we can write any ample line bundle L on X as

L = αe0 ⊗ f1 + βe1 ⊗ f0

for some α, β > 0. By Serre vanishing, we have that χ(F ⊗ L⊗m) > 0 for m ≫ 0, therefore the
leading coefficient in the expansion of χ(F ⊗ L⊗m) must be non-negative. We find that

χ(F ⊗ L⊗m) =

∫
ch(F ) · ch(L⊗m) · td(X)

=

∫
(0, 0, ch02+ch11, ch12) · ch(L

⊗m) · td(X)

= m(αe0 ⊗ f1 + βe1 ⊗ f0) · (ch02+ch11) + constant term.

Therefore we require

(αe0 ⊗ f1 + βe1 ⊗ f0) · (ch02 +ch11) > 0

or equivalently,

α · a11 + β · a02 > 0

for any α, β > 0. By taking α ≫ 0 and 0 < β ≪ 1, the term α · a11 dominates, hence we get
a11 > 0. Similarly, by taking 0 < α ≪ 1 and β ≫ 0, we get a02 > 0. �

Lemma 5.10. If ch(F ) =

(
0 0 ∗
0 ∗ ∗

)
, then F is supported in dimension at most 1.

Proof. As chi(F ) = 0 for i = 0 and 1, the support of F has at least codimension 2 in X. The
claim follows. �

Lemma 5.11. If ch(F ) =

(
0 0 a02
0 0 a12

)
, then F is supported on a finite number of fibers.

Proof. By Lemma 5.10 we know that F is supported in dimension at most 1. It remains to show
that every 1-dimensional irreducible component in the support of F must be a fiber.

Assume on the contrary that there is some 1-dimensional irreducible component in the support
of F whose projection to S is still 1-dimensional. Then the support of (πS)∗F is 1-dimensional.
Therefore we can write ch((πS)∗F ) = b1f1 + b2f2 where b1 6= 0.

Moreover, R1(πS)∗F is only supported at points s ∈ S such that the entire fiber C × {s} is in
the support of F . Therefore the support of R1(πS)∗F contains only a finite number of points.
It follows that ch(R1(πS)∗F ) = b′2f2.

On the other hand, we realize that td(C) = 1 hence π∗
C td(C) = 1. By Grothendieck-Riemann-

Roch, we have that

ch((πS)∗F )− ch(R1(πS)∗F ) = (πS)∗(ch(F ) · π∗
C td(C))

= (πS)∗

(
0 0 a02
0 0 a12

)
= a12f2.

Comparing the above computations we get

b1f1 + (b2 − b′2)f2 = a12f2,

hence b1 = 0, which is a contradiction. �

Lemma 5.12. If ch(F ) =

(
0 0 0
0 0 a12

)
, then a12 > 0.
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Proof. By assumption, we have chi(F ) = 0 for i = 0, 1 and 2. Therefore the support of F is
0-dimensional hence a finite number of points. It follows that a12 = χ(F ) > 0 as it is the length
of F . �

To summarise the above discussion and give a complete list of positivity results that we can
achieve for the Chern character of any coherent sheaf F on X = C × S, we state the following
proposition. For simplicity, for any closed point s ∈ S, we write F |s to denote F |C×{s}.

Proposition 5.13. Let X = C×S where C is an elliptic curve and S is a K3 surface of Picard
number 1. For any F ∈ Coh(X), we write the Chern character ch(F ) in the form of (4.5).
Then we have

(1) If ch(F ) =

(
0 ∗ ∗
∗ ∗ ∗

)
, then a01, a10 > 0.

(2) If ch0(F ) =

(
0 0 ∗
∗ ∗ ∗

)
, then a02, a10 > 0, and F |s is 0-dimensional for all but a finite

number of closed points s ∈ S.

(3) If ch(F ) =

(
0 0 0
∗ ∗ ∗

)
, then a10 > 0, and F |s is 0-dimensional for all closed points

s ∈ S.

(4) If ch(F ) =

(
0 ∗ ∗
0 ∗ ∗

)
, then a01 > 0, and F |s = 0 for a general closed point s ∈ S.

(5) If ch(F ) =

(
0 0 ∗
0 ∗ ∗

)
, then a02, a11 > 0, and F is supported in dimension at most 1.

(6) If ch(F ) =

(
0 0 ∗
0 0 ∗

)
, then a02 > 0, and F is supported on a finite number of fibers.

(7) If ch(F ) =

(
0 0 0
0 ∗ ∗

)
, then F is supported in dimension at most 1, and F |s is 0-

dimensional for all closed points s ∈ S.

(8) If ch(F ) =

(
0 0 0
0 0 ∗

)
, then F is supported at a finite number of points, and ch3(F ) > 0.

Proof. This is a collection of statements proved in the above series of lemmas. (1) follows from
Lemma 5.2. (2) follows from Lemmas 5.3 and 5.4. (3) follows from Lemmas 5.2 and 5.7. (4)
follows from Lemmas 5.2 and 5.8. (5) follows from Lemmas 5.9 and 5.10. (6) follows from
Lemmas 5.9 and 5.11. (7) follows from Lemmas 5.7 and 5.10. (8) follows from Lemma 5.12. �

Remark 5.14. Note that, by Proposition 5.13(3), any coherent sheaf F on X with ch(F ) =(
0 0 0
∗ ∗ ∗

)
must lie in {Coh60}↑. However, the converse is not true; the following is a coun-

terexample. Indeed, from the proof of Lemma 5.7, we know that a coherent sheaf with its Chern
class given by the above formula must be supported on the union of finitely many horizontal
sections.

Example 5.15. Suppose S is a K3 surface containing an integral nodal curve C ′ ∈ |H| of
geometric genus 1. Let C be the normalization of C ′. Then X := C × S contains the graph Γ
of the composition C ։ C ′ →֒ S as a closed subvariety. Its structure sheaf OΓ has the Chern
character of the form

ch(OΓ) =

(
0 0 1
0 ∗ ∗

)
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since by (5.7) the first row of the matrix represents the Chern character of F |{c}×S for a generic
closed point c ∈ C, which is a skyscraper sheaf.

The following observation will be useful later on:

Lemma 5.16. The categories

Cohsec(X) := {F ∈ Coh(X) : ch(F ) =

(
0 0 0
∗ ∗ ∗

)
}

and

Cohy(X) := {F ∈ Coh(X) : ch(F ) =

(
0 0 ∗
∗ ∗ ∗

)
}

are Serre subcategories of Coh(X). In particular, they are both torsion classes in Coh(X).

Proof. Take any coherent sheaf F with ch(F ) =

(
0 0 0
∗ ∗ ∗

)
, and consider any short exact

sequence 0 → F ′′ → F → F ′ → 0 in Coh(X). We need to show that F ′′, F ′ both have Chern
characters of the same form.

Since F is a torsion sheaf, both F ′′, F ′ are also torsion. Then, by Proposition 5.13 (1), we have
c1(F

′′)·HD > 0 and c1(F
′)·HD > 0. However, that 0 = c1(F )·HD = c1(F

′′)·HD+c1(F
′)·HD

implies that c1(F
′′) · HD = 0 = c1(F

′) ·HD. Similarly, by Proposition 5.13 (2), we have that
ch2(F

′′) · H = 0 = ch2(F
′) · H, thus proving that the first category is a Serre subcategory of

Coh(X). The same argument shows that the second category is also a Serre subcategory. By
Lemma 2.3, these are torsion classes in Coh(X). �

Remark 5.17. Note that, whenever we have a coherent sheaf F in Coh(π)6d (in which case F
has codimension at least c := 3− (d+ 1)) that is Φ-WIT1, we have

ch1,c(F ) ·D3−(c+1) 6 0.

The reason is simply that ch1,c(F ) · D3−(c+1) = ch0,c(F̂ [−1]) = − ch0,c(F̂ ), where ch0,c(F̂ ) is

nonnegative since F̂ is also of codimension at least c. For instance, when F is a Φ-WIT1 sheaf

that lies in Coh(π)1, we have ch(F ) =

(
0 ∗ ∗
0 a ∗

)
for some a 6 0. And when F is a Φ-WIT1

fiber sheaf that is 1-dimensional, we have ch(F ) =

(
0 0 ∗
0 0 a

)
for some a 6 0. Similarly, for

F ∈ Coh(π)6d that is Φ-WIT0, we have

ch1,c(F ) ·D3−(c+1)
> 0.

Another application of Proposition 5.13 is the existence of slope-like functions other than µf

(which was defined in Example 3.8):

• On the abelian category A := Coh(X), we can define the functions

C0(−) := rank(−),

C1(−) := ch01(−) ·H ·D.

For any F ∈ Coh(X), that C1(F ) > 0 when C0(F ) = 0 follows from Proposition 5.13(1).
Therefore, we obtain a slope-like function

µ∗(−) :=
C1(−)

C0(−)
=

ch01(−) ·H ·D

rank(−)

on Coh(X).



PRESERVATION OF SEMISTABILITY UNDER FOURIER-MUKAI TRANSFORMS 25

• On the abelian category A := {Coh60}↑, we can define the functions

C0(−) := ch10(−) ·D2,

C1(−) := ch11(−) ·D.

That C0 is nonnegative on A follows from Proposition 5.13(1). On the other hand, for
any F ∈ A, we know F is Φ-WIT0 from [Lo2, Remark 3.14]. And if C0(F ) = 0, we have
C1(F ) > 0 by Remark 5.17. We thus obtain the following slope-like function

µ∗(−) :=
C1(−)

C0(−)
=

ch11(−) ·D

ch10(−) ·D2

on A = {Coh60}↑.

5.3. Results on preservation of semistability. We now consider the preservation of Gieseker
semistability in the rest of the discussion. Recall that we are writing ω := H + nD.

The first of our theorems on preservation of semistability is the following:

Theorem 5.18. Let ch be a fixed Chern character of the form ch =

(
0 0 0
∗ ∗ ∗

)
where ch10 6= 0.

Then we have an isomorphism between the following moduli spaces:

(a) The moduli space of ω-semistable sheaves F on X with ch(F ) = ch;

(b) The moduli space of ω-semistable sheaves E for n ≫ 0 on X with ch(E) = ΦH(ch).

Notice that the moduli space in (a) is independent of the value of n, because for the given Chern
character ch, H does not play a role in ω-semistability. The only relevant intersection numbers
are ch10 ·D

2, ch11 ·D and ch12.

On an elliptic surfaceX, Yoshioka established an isomorphism between a moduli of 1-dimensional
ω-semistable sheaves and a moduli of 2-dimensional (and torsion-free) ω-semistable sheaves on X
[Yos1, Theorem 3.15] (see also [Yos3, Proposition 3.4.5]). Also, on elliptic Calabi-Yau threefolds
X, one can find similar results for slope semistable sheaves in [BBR, Lemma 6.64].

We break the proof of Theorem 5.18 into Lemma 5.19 and Lemma 5.20.

Lemma 5.19. Suppose F ∈ Coh(X) is a 2-dimensional sheaf that is ω-semistable with ch(F ) =(
0 0 0
∗ ∗ ∗

)
. Then F̂ is ω-semistable for n ≫ 0.

Proof. To begin with, that ch(F ) is of the form described implies F ∈ {Coh60}↑ by Proposition
5.13(3) above. Hence F is Φ-WIT0 [Lo2, Remark 3.14]. The ω-semistability of F means that it

is pure of dimension 2. Hence F̂ is pure of dimension 3 by [Lo2, Lemma 4.3].

Take any short exact sequence

0 → A → F̂ → B → 0

in Coh(X) in which A,B 6= 0. This gives the exact sequence of cohomology in Coh(X)

0 → Φ0B → Â
α
→ F → Φ1B → 0 (5.10)

in which both imα and Φ1B lie in {Coh60}↑.
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Since A is a subsheaf of F̂ , it is Φ-WIT1, which implies c1(A) · D
2 6 0 by Remark 5.17. If

c1(A) ·D
2 < 0, then we have

c1(A) ·D
2

rank(A)
< 0 =

c1(F̂ ) ·D2

rank(F̂ )
, (5.11)

in which case A does not destabilise F̂ with respect to ω-semistability for n ≫ 0. Therefore, we

assume c1(A) ·D
2 = 0 = c1(F̂ ) ·D2 from now on, i.e. ch(A) =

(
∗ ∗ ∗
0 ∗ ∗

)
.

That c1(A) · D
2 = 0 implies rank(Â) = 0, and so Φ0B is a Φ-WIT1 torsion sheaf, implying

Φ0B ∈ Coh(π)61 by [Lo, Lemma 2.6]. Hence ch2(Φ
0B) · D 6 0 by Lemma 5.1 together with

Remark 5.17, giving us ch2(Â) · D 6 ch2(imα) · D. We also have c1(Â) · D2 = c1(imα) · D2.

Therefore, we have µ∗(Â) 6 µ∗(imα). Overall, we now have

µ∗(A) = µ∗(Â)

6 µ∗(imα)

6 µ∗(F ) by the µ∗-semistability of F and Lemma 5.16

= µ∗(F̂ ).

Now, if µ∗(A) < µ∗(F̂ ), then A would not destabilise F̂ with respect to ω-semistability for

n ≫ 0. Hence we will also assume that µ∗(A) = µ∗(F̂ ) from now on.

Note that all the terms in the exact sequence (5.10) are torsion sheaves. In particular, we have

− ch2(A) ·D = c1(Â) ·H ·D

> 0 by Proposition 5.13(1),

and so ch2(A) · D 6 0. If we have ch2(A) · D < 0 = ch2(F̂ ) · D, then A would not destabilise

F̂ with respect to ω-semistability for n ≫ 0. Thus we will also assume that ch2(A) · D = 0

from this point onwards, and we have reduced to the case where ch(A) =

(
∗ ∗ ∗
0 0 ∗

)
, i.e.

ch(Â) =

(
0 0 ∗
∗ ∗ ∗

)
and so Â ∈ Cohy(X). It follows that Φ0B also lies in Cohy(X) by Lemma

5.16. Since Φ0B is Φ-WIT1 and torsion, it lies in Coh(π)61 by [Lo, Lemma 2.6], which means

c1(Φ
0B) · D2 = 0. Hence ch(Φ0B) =

(
0 0 ∗
0 ∗ ∗

)
. We thus see that Φ0B is a Φ-WIT1 sheaf

lying in Coh61(X), which in turn implies Φ0B is a fiber sheaf by [Lo2, Remark 3.24]. Hence

ch(Φ0B) =

(
0 0 ∗
0 0 b

)
, where b 6 0 by Remark 5.17.

From the short exact sequence in Coh(X)

0 → Φ0B → Â → imα → 0, (5.12)

we now have the short exact sequence (by applying Φ)

0 → A → ̂imα → Φ̂0B → 0, (5.13)
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in which rank(A) = rank(̂imα) while

ch2(A) ·H = ch2(̂imα) ·H − ch2(Φ̂0B) ·H

= ch2(̂imα) ·H − (− ch12(Φ
0B))

6 ch2(̂imα) ·H.

That is, we have

ch2(A) ·H

rankA
6

ch2(̂imα) ·H

rank(̂imα)
. (5.14)

Since Φ̂0B is a fiber sheaf, from (5.13) we have µ∗(̂imα) = µ∗(A) = µ∗(F̂ ), which yields

µ∗(imα) = µ∗(Â) = µ∗(F ). Now, Lemma 5.16 says that im (α),Φ1B both have Chern characters

of the form

(
0 0 0
∗ ∗ ∗

)
. The ω-semistability of F now implies

χ(imα)

c1(imα) ·D2
6

χ(F )

c1(F ) ·D2
,

which is equivalent to

ch2(̂imα) ·H

rank(̂imα)
6

ch2(F̂ ) ·H

rank(F̂ )
.

This inequality, together with (5.14), gives

ch2(A) ·H

rankA
6

ch2(F̂ ) ·H

rank(F̂ )
.

If we have strict inequality here, then A would not destabilise F̂ with respect to ω-semistability
with respect to n ≫ 0; therefore, we will assume that we have equality here.

Now, since Â ∈ Cohy, we have ch02(Â) ·H > 0 by Proposition 5.13(2). Hence χ(A) = − ch02(Â) ·
H 6 0. It follows that

χ(A)

rankA
6 0 =

χ(F̂ )

rankF̂
.

This concludes the proof that F̂ is ω-semistable for n ≫ 0. �

Now we prove the converse of Lemma 5.19:

Lemma 5.20. Suppose E ∈ Coh(X) is a coherent sheaf supported in dimension 3 that is ω-

semistable for n ≫ 0 with ch(E) =

(
∗ ∗ ∗
0 0 0

)
. Then E is torsion-free, Φ-WIT1 and Ê is

ω-semistable.

Proof. That E is ω-semistable for n ≫ 0 and that it is supported in dimension 3 together imply
it is torsion-free. The ω-semistability for n ≫ 0 also implies E is µf -semistable. Since µf (E) = 0

by assumption, Lemma 3.10 tells us that E is Φ-WIT1 and Ê is a torsion sheaf. Moreover, since

ch(Ê) =

(
0 0 0
∗ ∗ ∗

)
, we have Ê ∈ {Coh60}↑ by Proposition 5.13(3) above. We will now check

that Ê is indeed ω-semistable.

Take any short exact sequence

0 → M → Ê → N → 0 (5.15)
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in Coh(X). Then the Chern characters of M,N are also of the form

(
0 0 0
∗ ∗ ∗

)
by Lemma 5.16,

and they both lie in {Coh60}↑ by Proposition 5.13(3) above. That is, all the terms in (5.15) are
Φ-WIT0, and (5.15) is taken by Φ to the short exact sequence in Coh(X)

0 → M̂ → E → N̂ → 0.

If c1(M) · D2 = 0, then M ∈ Coh(π)61, and so M̂ is a subsheaf of E lying in Coh(π)61 ⊂
Coh62(X), contradicting the purity of E. Therefore, we can assume that c1(M) ·D2 > 0. Note

that ch(M̂ ) is also of the form

(
∗ ∗ ∗
0 0 0

)
.

Now, if we have

µ∗(M) :=
ch2(M) ·D

ch1(M) ·D2
>

ch2(Ê) ·D

ch1(Ê) ·D2
=: µ∗(Ê),

then we have, equivalently, µ∗(M̂) > µ∗(E), contradicting that E is ω-semistable for n ≫ 0.

Hence we have µ∗(M) 6 µ∗(Ê). (That is, Ê is at least µ∗-semistable.)

Suppose µ∗(M) = µ∗(Ê) but χ(M)
ch1(M)·D2 > χ(Ê)

ch1(Ê)·D2
. This inequality is equivalent to ch2(M̂)·H

rankM̂
>

ch2(E)·H
rankE , which implies that M̂ destabilises E with respect to ω-semistability for n ≫ 0. Hence

we must have χ(M)
ch1(M)·D2 6

χ(Ê)

ch1(Ê)·D2
, concluding the proof that Ê is ω-semistable. �

Proof of Theorem 5.18. Take any coherent sheaf F on X that is ω-semistable with ch(F ) = ch.

By Lemma 5.19 and its proof, we know F is Φ-WIT0 and F̂ is ω-semistable for n ≫ 0. Conversely,
take any coherent sheaf E on X with ch(E) = ΦH(ch). Then by Lemma 5.20, we know E is

Φ-WIT1 and Ê is ω-semistable. Thus the theorem is proved. �

The following is a variant of Theorem 5.18:

Theorem 5.21. Let ω = H + nD. We have an equivalence of categories induced by Φ

{E ∈ {Coh60}↑ : ch1(E) 6= 0, E is µ∗-semistable}
∼
→ {E ∈ Φ({Coh60}↑) : ch0(E) 6= 0, E is µω-semistable for n ≫ 0}. (5.16)

In the statement of Theorem 5.21, it is implicit that a coherent sheaf lying in the category on
the left is a Φ-WIT0 sheaf supported in dimension 2, while a coherent sheaf lying in the category
on the right is a Φ-WIT1 sheaf supported in dimension 3 (and torsion-free).

Also, we can interpret Theorem 5.21 as follows: the notion of semistability for coherent sheaves
in {Coh60}↑ that corresponds, under the FMT Φ, to µω-semistability for n ≫ 0, is precisely the
notion of µ∗-semistability.

Proof. Take any coherent sheaf E lying in the category on the left. That E is µ∗-semistable
implies it is pure 2-dimensional. Also, that E lies in {Coh60}↑ implies E is Φ-WIT0 by [Lo2,

Remark 3.14], and thus Ê is torsion-free by [Lo2, Lemma 4.3]. Now, consider any short exact
sequence in Coh(X)

0 → A → Ê → B → 0

in which A,B 6= 0; it yields the long exact sequence in Coh(X)

0 → Φ0B → Â
α
→ E → Φ1B → 0.
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Since A is Φ-WIT1, we have µf (A) 6 0 by Remark 5.17. Also, that ch0(E) = 0 implies

µf (Ê) = 0, and so µf (A) 6 0 = µf (Ê). If we have µf (A) < µf (Ê), then A does not destabilise

Ê with respect to µω as n ≫ 0. As a result, let us assume that µf (A) = 0 = µf (Ê). Then

c1(A) · D
2 = 0 = c1(Ê) · D2, and so c1(B) · D2 = 0, which implies rank(ΦB) = 0. Since we

already have rank(Φ1B) = 0 (since E is torsion), we must also have rank(Φ0B) = 0. Hence Φ0B
is a Φ-WIT1 torsion sheaf, and hence lies in Coh(π)61 by [Lo, Lemma 2.6].

Note that c1(imα) · D2 must be nonzero, for if it is zero, then c1(Â) · D
2 = 0 as well (since

Φ0B ∈ Coh(π)61), which is equivalent to rank(A) = 0, which is impossible since Ê is torsion-free
and A 6= 0. Thus µ∗(imα) < ∞ and the µ∗-semistability of E gives µ∗(imα) 6 µ∗(E). Then

µ∗(A) =
ch1(A) ·HD

rank(A)
=

ch2(Â) ·D

ch1(Â) ·D2

=
(ch2(Φ

0B) + ch2(imα)) ·D

ch1(Â) ·D2

6
ch2(imα)

ch1(imα) ·D2

= µ∗(imα)

6 µ∗(E) = µ∗(Ê).

Above, the first inequality holds because ch2(Φ
0B) · D 6 0 (from Φ0B being Φ-WIT1 and

Remark 5.17) and ch1(Â) ·D2 = ch1(imα) ·D2 (from Φ0B ∈ Coh(π)61). This shows that Ê is

µω-semistable for n ≫ 0. Hence Ê lies in the category on the right.

For the other direction, take any coherent sheaf E lying in the category on the right. That E
is µω-semistable for n ≫ 0 implies E is torsion-free and is µf -semistable. Also, the assumption

E ∈ Φ({Coh60}↑) implies that E is Φ-WIT1 and c1(E) ·D2 = 0.

Consider any short exact sequence in Coh(X)

0 → M → Ê → N → 0

where M,N 6= 0. Then M,N both lie in {Coh60}↑ and are both Φ-WIT0. This short exact
sequence is taken by Φ to the short exact sequence in Coh(X)

0 → M̂ → E → N̂ → 0

in which all the terms satisfy c1(−) · D2 = 0. Since E is torsion-free and M̂ 6= 0, we have

rank(M̂) > 0. We also have µf (M̂ ) = 0 = µf (E). The µω-semistability of E for n ≫ 0 now
implies

µ∗(M) = µ∗(M̂ ) 6 µ∗(E) = µ∗(Ê)

and so Ê is µ∗-semistable, and lies in the category on the left. �

Remark 5.22. From (5.2), we have the following relations for coherent sheaves F on X supported
in dimension 2 (here ω := H + nD):

• if F is µω-semistable for n ≫ 0, then F is µ∗-semistable;

• if F is µ∗-stable, then F is µω-stable for n ≫ 0.
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Appendix A. Preservation of semistability on elliptic surfaces

In this section, we consider the trivial elliptic surface X = C × T where C is an elliptic curve,
and T is an arbitrary smooth projective curve. We regard X as an elliptic surface via the
second projection π : X = C × T → T . Using the techniques we have developed, we recover
Yoshioka’s result on preservation on Gieseker semistabiilty (i.e. [Yos1, Theorem 3.15]; see also
[Yos3, Proposition 3.4.5]), in the case of the trivial elliptic surface X.

As a reminder, we consider the Fourier-Mukai transform Φ : X → X as defined in Section 4, so

that if E ∈ D(X) has ch(E) =

(
a00 a01
a10 a11

)
, then we have ch(Φ(E)) =

(
a10 a11
−a00 −a01

)
.

A.1. Semistability with respect to fiber-like polarisations. We use f for the class of a
fiber C × {point} and h for the class of a horizontal section {point} × T of the fibration π.
Consider the polarisation ω = th + sf where t, s > 0. Given an object E ∈ D(X), the Hilbert
polynomial of E with respect to the polarisation ω is

Pω(E,m) = m2a00ts+m(a01t+ a10s) + a11.

Setting t = 1, we can arrange the coefficients of Pω(E,m) in an array as follows:

s s0

m2 a00
m a10 a01
m0 a11

From this table, we see that in determining the semistabilty of a coherent sheaf E on X with
respect to ω for s ≫ 0, we can simply compare the following quantities, in the listed order:

• when a00 6= 0, i.e. when E is supported in dimension 2:
a10
a00

→
a01
a00

→
a11
a00

. (A.1)

(Note that a10
a00

, a01a00
are constant multiples of µf (E), µ∗(E), respectively.)

• when a00 = 0, but a10 6= 0 or a01 6= 0, i.e. when E is supported in dimension 1:
a11
a10

→
a11
a01

. (A.2)

This can be stated more precisely in the following manner:

Lemma A.1. [Yos3, Lemma 3.4.1]

(1) Let E be a torsion-free coherent sheaf on X. Then E is ω-semistable for s ≫ 0 iff for
every proper subsheaf E′ of E, one of the following conditions holds:
(a)

c1(E) · f

rank(E)
>

c1(E
′) · f

rankE′
, (A.3)

(b)
c1(E) · f

rankE
=

c1(E
′) · f

rankE′
,
c1(E) · h

rankE
>

c1(E
′) · h

rankE′
, (A.4)

(c)

c1(E) · f

rankE
=

c1(E
′) · f

rankE′
,
c1(E) · h

rankE
=

c1(E
′) · h

rankE′
,
χ(E)

rankE
>

χ(E′)

rankE′
. (A.5)
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(2) Let F be a 1-dimensional coherent sheaf on Y with c1(F ) ·f 6= 0. Then F is ω-semistable
for s ≫ 0 iff for every proper subsheaf F ′ of F , one of the following conditions holds:
(a)

c1(F
′) · f ·

χ(F )

c1(F ) · f
> χ(F ′), (A.6)

(b)

c1(F
′) · f ·

χ(F )

c1(F ) · f
= χ(F ′), c1(F

′) · h ·
χ(F )

c1(F ) · h
> χ(F ′). (A.7)

A.2. Preservation of Gieseker stability on elliptic surfaces (Yoshioka). In this section,
we prove the following:

Theorem A.2. Let X = C × T where C is an elliptic curve and T a smooth projective curve.
Consider X as an elliptic surface via the second projection π : X = C × T → T , and let
Φ : D(X)

∼
→ D(X) be as above. Let ch be a fixed Chern character such that it is the Chern

character of a 1-dimensional sheaf, with c1 ·f > 0 and χ = ch2 > 0. Then we have an equivalence
of categories

{F ∈ Coh(X) : ch(F ) = ch, F is ω-semistable for s ≫ 0}
Φ
→

{E ∈ Coh(X) : ch(E) = ΦH(ch), E is ω-semistable for s ≫ 0}.

We divide the proof of Theorem A.2 into Lemmas A.3 and A.4.

Lemma A.3. Suppose E ∈ Coh(X) satisfies:

(a) E is ω-semistable for s ≫ 0;

(b) ch(Φ(E)[1]) is the Chern character of some coherent sheaf supported in dimension 1,
with χ(Φ(E)[1]) > 0.

Then E lies in FX ∩ Φ(W0,X ∩ Coh61(X)) and is Φ-WIT1, and Ê is ω-semistable for s ≫ 0.

Also, we have c1(Ê) · f > 0.

Note that, since the Chern character is additive on exact triangles, we can extend the definitions
of the functions µf and µ∗ so that they are defined on all of Db(X).

Proof. Take any E ∈ Coh(X) satisfying properties (a) and (b). Note that, for any 1-dimensional
sheaf T on X, the restriction T |s is a 0-dimensional sheaf for a general s ∈ C, and so µf (Φ(T )) =
0. Thus property (b) implies that µf (E) = 0. By (A.1), that E is semistable with respect to ω
for s ≫ 0 implies that it is µf -semistable (and torsion-free). Therefore, by Lemma 3.10, we have

E ∈ FX ∩Φ(W0,X∩Coh61(X)). In particular, we know that E is Φ-WIT1. Since Ê is supported

in dimension 1 but is not a fiber sheaf, we have c1(Ê) · f > 0. Besides, Ê is necessarily pure

1-dimensional, for any 0-dimensional subsheaf E0 ⊆ Ê would be taken by Φ to a fiber subsheaf
of E, contradicting E being torsion-free.

Now, take any nonzero proper subsheaf F ⊂ Ê. Then F is also pure 1-dimensional. The short
exact sequence in Coh(Y )

0 → F → Ê → Ê/F → 0

yields the exact sequence of cohomology in Coh(X)

0 → Φ0F → E
α
→ M → Φ1F → 0
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where M := (̂Ê/F ).

If Φ0F = 0, then F is Φ-WIT1, and is necessarily a fiber sheaf [Lo, Lemma 2.6]. Thus c1(F ) ·f =

0, c1(F )·h > 0, and χ(F ) 6 0. Then the assumption that χ(Ê) > 0 ensures F does not destabilise

Ê for s ≫ 0. From now on, let us suppose Φ0F 6= 0. Then Φ0F is torsion-free.

Since F is a 1-dimensional sheaf, we have c1(Φ
0F ) · f = 0. We also have c1(E) · f = 0, and so

the semistability of E with respect to ω for s ≫ 0 gives us µ∗(Φ0F ) 6 µ∗(E). On the other
hand, since the Φ-WIT1 part of F is a fiber sheaf [Lo, Lemma 2.6], we see that Φ1F is a fiber
sheaf, and so rank(Φ1F ) = 0. Hence

c1(ΦF ) · h = c1(Φ
0F ) · h− c1(Φ

1F ) · h

6 c1(Φ
0F ) · h, (A.8)

with equality iff Φ1F is 0-dimensional.

Suppose we have strict inequality in (A.8). Then, noting that rank(ΦF ) = rank(Φ0F ) since
Φ1F is a fiber sheaf, we have

µ∗(ΦF ) =
c1(ΦF )

rank(ΦF )
<

c1(Φ
0F ) · h

rank(Φ0F )
= µ∗(Φ0F )

< µ∗(E).

On the other hand, from the formula for the cohomological Fourier-Mukai transform in Propo-
sition 4.5, we have

c1(Ê) · f = rank(E) and χ(Ê) = c1(E) · h.

It follows that

χ(Ê)

c1(Ê) · f
= µ∗(E),

and similarly for F . Thus µ∗(ΦF ) < µ∗(E) is equivalent to χ(F )
c1(F )·f < χ(Ê)

c1(Ê)·f
, and so F does not

destabilise Ê with respect to ω for s ≫ 0.

To finish the proof, consider the case when we have equality in (A.8). In this case, Φ1F is
0-dimensional, and c1(ΦF ) · h = c1(Φ

0F ) · h. It follows that

µ∗(ΦF ) = µ∗(Φ0F ) 6 µ∗(E), (A.9)

where the second inequality is from above. The inequality (A.9) corresponds to

χ(F )

c1(F ) · f
6

χ(Ê)

c1(Ê) · f
. (A.10)

If we have strict inequality in (A.10), then we are done. So suppose we have equality in (A.10).
Our aim now is to show

c1(F ) · h ·
χ(Ê)

c1(Ê) · h
> χ(F ). (A.11)

Since c1(F ) · h > 0, we can assume c1(Ê) · h > 0.



PRESERVATION OF SEMISTABILITY UNDER FOURIER-MUKAI TRANSFORMS 33

We now have

c1(F ) · h ·
χ(Ê)

c1(Ê) · h
= c1(F ) · h ·

χ(Ê)

c1(Ê) · f
·
c1(Ê) · f

c1(Ê) · h

= c1(F ) · h ·
χ(F )

c1(F ) · f
·
c1(Ê) · f

c1(Ê) · h
since we have equality in (A.10). (A.12)

Note that, if we consider the short exact sequence 0 → F0 → F → F1 → 0 in Coh(Y ) where Fi

is Φ-WITi, then

c1(F ) · f = c1(F0) · f and (A.13)

c1(F ) · h = c1(F0) · h+ c1(F1) · h (A.14)

> c1(F0) · h. (A.15)

Combining this with the semistability of E for s ≫ 0, and noting we already have c1(Φ
0F ) · f =

0 = c1(E) · f as well as µ∗(Φ0F ) = µ∗(E), we obtain

−
c1(Ê) · h

c1(Ê) · f
=

χ(E)

rank(E)
>

χ(Φ0F )

rank(Φ0F )
= −

c1(F0) · h

c1(F0) · f
,

which in turn gives

c1(F ) · h ·
χ(F )

c1(F ) · f
·
c1(Ê) · f

c1(Ê) · h
> c1(F ) · h ·

χ(F )

c1(F ) · f
·
c1(F0) · f

c1(F0) · h

> χ(F ) by (A.13), (A.15).

Above, we used the fact that c1(G) ·f, c1(G) ·h > 0 for any 1-dimensional sheaf G, since f, h are

effective divisors on X. Also, χ(F ) > 0 by the hypothesis χ(Ê) > 0 and the equality in (A.10).
Along with (A.12), we now have (A.11). �

Lemma A.4. Let F ∈ Coh(Y ) be a 1-dimensional sheaf that is ω-semistable for s ≫ 0 with

c1(F ) · f > 0 and χ(F ) > 0. Then F is Φ-WIT0, and F̂ is torsion-free and ω-semistable for
s ≫ 0.

Proof. First, we show that F is Φ-WIT0: consider the short exact sequence in Coh(Y )

0 → F0 → F → F1 → 0

where Fi is Φ-WITi. Since F1 is Φ-WIT1 and torsion, it is a fiber sheaf [Lo, Lemma 2.6]. Thus
c1(F1) · f = 0 and χ(F1) 6 0 by Remark 5.17, which imply c1(F0) · f = c1(F ) · f > 0 and
χ(F0) > χ(F ) > 0. By the semistability of F , it follows that χ(F0) = χ(F ). If F1 6= 0, then
c1(F1) · h > 0 nd c1(F0) · h < c1(F ) · h, violating (A.7) and hence the semistability of F . Thus
F1 = 0 and F is Φ-WIT0.

Next, we show that F̂ is torsion-free. Consider any torsion subsheaf A of F̂ . Then A is Φ-WIT1,

and so is a fiber sheaf [Lo, Lemma 2.6]. Then the injection A →֒ F̂ is taken by Φ to a morphism

β : Â → F where imβ is a Φ-WIT0 fiber subsheaf of F with χ(imβ) > 0, which violates (A.6).

Thus A must be zero, and F̂ is torsion-free.

Now, we show that F̂ is ω-semistable for s ≫ 0. Consider any short exact sequence

0 → A → F̂ → B → 0

in Coh(X) with 0 6= A ( F̂ , which yields the exact sequence in Coh(Y )

0 → Φ0B → Â
α
→ F → Φ1B → 0.
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Since A is Φ-WIT1 and torsion-free, we have c1(A) · f 6 0 by [Lo, Lemma 2.5]. If c1(A) · f < 0,

then A does not destabilise F̂ (since c1(F̂ ) ·f = 0, which follows from F being torsion). So let us

assume c1(A) · f = 0 from now on. That c1(A) · f = 0 then implies rank(Â) = 0 by Proposition

4.5, i.e. Â is torsion. Then Φ0B is Φ-WIT1 and torsion, and so is a fiber sheaf by [Lo, Lemma

2.6]. Now, if α = 0, then Â ∼= Φ0B is both Φ-WIT0 and Φ-WIT1, forcing Â = 0. So let us
assume that α 6= 0, i.e. imα 6= 0.

If c1(imα) · f = 0, then imα must be a fiber sheaf (since it is torsion) and Φ-WIT0 (being a

quotient of Â). This implies that F̂ has a fiber subsheaf, contradicting its being torsion-free.
By [Lo, Lemma 2.5], we have c1(imα) · f > 0, and so we must have c1(imα) · f > 0. Now we
have, noting that Φ0B is a Φ-WIT1 fiber sheaf,

c1(Â) · f = c1(imα) · f > 0

and

χ(Â) = χ(imα) + χ(Φ0B) 6 χ(imα).

Therefore, we have

χ(Â)

c1(Â) · f
6

χ(imα)

c1(imα) · f
6

χ(F )

c1(F ) · f
, (A.16)

(where the second inequality follows from the semistability of F ), which then implies

c1(A) · h

rank(A)
6

c1(F̂ ) · h

rank(F̂ )
, (A.17)

which is (A.3) for A and F̂ . Assuming that equality holds in (A.17) (which also implies equality
throughout (A.16)), we have

−
c1(Â) · h

c1(Â) · f
6

−c1(imα) · h

c1(imα) · f

= −c1(imα) · h ·
χ(F )

c1(F ) · h
·
c1(F ) · h

χ(F )
·

1

c1(imα) · f

6 −χ(imα) ·
c1(F ) · h

χ(F )
·

1

c1(imα) · f

since c1(imα) · h ·
χ(F )

c1(F ) · h
> χ(imα) by the semistability of F

= −
χ(F )

c1(F ) · f
·
c1(F ) · h

χ(F )

by (A.16)

= −
c1(F ) · h

c1(F ) · f
.

Overall, we have

−
c1(Â) · h

c1(Â) · f
6 −

c1(F ) · h

c1(F ) · f
,

which corresponds to

χ(A)

rank(A)
6

χ(F̂ )

rank(F̂ )
,

which is (A.5) for A and F̂ . We have thus shown that F̂ is ω-semistable for s ≫ 0. �



PRESERVATION OF SEMISTABILITY UNDER FOURIER-MUKAI TRANSFORMS 35

References
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