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Abstract: We investigate the interplay between multiplicative Hecke operators, in-

cluding bad primes, and the characterization of modular forms studied by Hecke. The

operators are applied on periodic functions, which leads to functional equations character-

izing certain eta-quotients. This can be considered as a prototype for functional equations

in the more general context of Borcherds products.
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1 Introduction

Let p be a prime number and let F be the space of holomorphic and periodic functions

f(τ + 1) = f(τ) on the complex upper half plane with Fourier expansion

f(τ) = 1 + a1 q +
∞
∑

n=2

an q
n,

(

q = e2π i τ
)

. (1.1)

Roughly speaking we consider the action of multiplicative Hecke operators (see (4.1) with

respect to the Hecke group Γ0(p) on F . We show that the multiplicative eigenfunctions

often are eta-quotients. Let p > 3 and let a1 ∈ 2 pZ. Then f is a weakly holomorphic

modular forms. These function had been also in the focus of E. Hecke [2], [7] in the

context of additive Hecke operators.

Conversely, let f be a modular form with respect to Γ0(p), p > 3 prime, and Fourier

expansion (1.1). Let f be an multiplicative eigenform for at least one single prime. Let the

weight of f be divisible by p−1 or let all coefficients be integral, then f is an multiplicative

eigenform for all primes and hence an eta-quotient. In the course of the proof we apply

results of Kohnen [11] and Rouse and Webb [15].

The approach in this paper can be considered as a starting point of characterizing

Borcherds products [1] by symmetries [4] for congruence subgroups. We also refer to [3].

Before we present the explicit results, we would like to illustrate them by several

interesting examples. We start with the definition of the Dedekind eta function. The

Dedekind eta function η(τ) is a holomorphic function on the upper half plane

H = {τ ∈ C | Im(τ) > 0}

defined by the infinite product

η(τ) := q
1

24

∞
∏

n=1

(1− qn) . (1.2)

It is a modular form of weight 1
2
for SL2(Z) with a certain multiplier system of order 24.

It is non-vanishing on H and its 24-th power is the discriminant function ∆(τ). For more

details we refer to Koecher, Krieg [8] and Koehler [9].

Let p be a prime and Γ0(p) := {( a b
c d ) ∈ SL2(Z) | c ≡ 0 (mod p)} the Hecke group

of level p. Let k be an integer. We denote by Mk (Γ0(p)) the space of modular forms of

weight k with respect to Γ0(p). We recall the definition of an eta-product and eta-quotient,

following Ono [14], Definition 1.63: Any function f(τ) of the form

f(τ) =
∏

d |N

η(d τ)rd , (1.3)
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where N ∈ N and rd ∈ Z, is known as an eta-quotient. If each rd ≥ 0, then f(τ) is known

as an eta-product. See also [14], Theorem 1.65 and Theorem 1.66. The most important

eta-quotient studied in this paper is

gp(τ) :=
η(τ)p

η(pτ)
. (1.4)

Note, Theorem 1.65 and Theorem 1.66 do not cover the result of Hecke, that gp is a

modular form of weight p−1
2

with respect to Γ0(p) of Nebentypus
(

d
p

)

, i.e.

gp ∈ M p−1

2

(

Γ0(p),

(

d

p

))

.

Note that
η(p τ)p

η(τ)
(1.5)

is the image of gp(τ) with respect to the Fricke involution. Let σ(m) :=
∑

d|m d and

σ(m)p := σ(m)− σ(m/p).

The main theme of this paper are the functional equations

∏

a·d=n,
(a,p)=1

d−1
∏

b=0

f

(

aτ + b

d

)

= f(τ)σ(n)p for all n ∈ N. (∗n)

Due to the well known properties of the underlying Hecke algebra, they are equivalent to

the corresponding functional equations for primes.

Example 1.1. Let f ∈ F with a1 = −2. Let

f
(τ

2

)

f

(

τ + 1

2

)

= f(τ)2 and f(lτ)
l−1
∏

b=0

f

(

τ + b

l

)

= f(τ)l+1 (1.6)

for all odd primes l. Then

f(τ) =
η(τ)2

η(2τ)
=

∞
∑

n=−∞

(−1)n qn
2

.

Example 1.2. Let f ∈ F with a1 = −10. Let

4
∏

b=0

f

(

τ + b

5

)

= f(τ)5 and f(lτ)
l−1
∏

b=0

f

(

τ + b

l

)

= f(τ)l+1 (1.7)

for all primes l different from 5. Then

f(τ) =

(

η(τ)5

η(5τ)

)2

∈ M4(Γ0(5)). (1.8)

Example 1.3. Let f ∈ Mk(Γ0(7)) with constant term equal to one. Let f satisfy the

functional equation for at least one single prime, then 6|k, and

f(τ) = g7(τ)
k
3 . (1.9)
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2 Statement of Results

Let P be the set of prime numbers. In the following we always use p, l ∈ P and different.

Let F be as before. We formulate the functional equation (∗n) in terms of local operators.

Thereby, we start with a uniqueness result, which states that at most one function is

satisfying the functional equations with the same coefficient a1.

Theorem 2.1 (Uniqueness). Let p be any prime number. Let f ∈ F be a holomorphic

function on the complex upper half plane H with Fourier expansion

f(τ) = 1 +
∞
∑

m=1

amq
m. (2.1)

Let f satisfy the functional equations (∗l) for all primes l ∈ P different from p and the

functional equation (∗∗p):

f(lτ)
l−1
∏

b=0

f

(

τ + b

l

)

= f(τ)l+1 (∗l)

p−1
∏

b=0

f

(

τ + b

p

)

= f(τ)p. (∗∗p)

Then, the function f is uniquely determined by a1.

Remark 2.2. Note if we would skip one functional equation of type (∗l) with a prime

l0, then with f also f(l0τ) satisfies all the other functional equations. Hence, all the

functional equations are needed.

Remark 2.3. The left sides of (∗l) and (∗∗p) are multiplicative Hecke operators.

Theorem 2.4 (Existence). Let p be a prime. The function f ∈ F given by

f(τ) :=

(

η(τ)p

η(pτ)

)a

(a ∈ Z) (2.2)

satisfies all the functional equations (∗l) and (∗∗p). Furthermore a1 = −p a holds.

The remarks indicate that we need all prime numbers to recover the unique product

expansion from the Fourier expansion as given in the theorem. Nevertheless assuming

that f is a modular form and non-vanishing at infinity, leads to a much stronger result

(see also [3], for the level one case).

Corollary 2.5. Let p be a prime. Let f ∈ F . Let f satisfy all the functional

equations (∗l) (l ∈ P \ {p}) and (∗∗p). Let p | a1. Then f is an eta-quotient with

f(τ) :=

(

η(τ)p

η(pτ)

)−
a1
p

. (2.3)
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Combining our approach of studying periodic functions via functional equations and

a result of Kohnen ([11], Theorem 2) on weakly holomorphic holomorphic forms, which

are non-vanishing on the upper half plane, leads to

Theorem 2.6 (One prime). Let p > 3. Let f ∈ Mk(Γ0(p)) with Fourier expansion

1 +
∞
∑

n=1

an q
n . (2.4)

Let f satisfy the functional equation (∗l) or (∗∗p) for at least one single prime and let

(a) p− 1 divides the weight k or

(b) all Fourier coefficients of f are integers.

Then f is a integral power of of gp(τ)
2.

Finally, we mention that it is shown in [5] (O(2, 2) split case), that also one functional

equation induced by a prime number is sufficient to determine the modular form. This

is related to modular polynomials and the Andre-Oort conjecture. The general goal is to

characterize Borcherds products and Heegner divisors by this property [1, 4, 3].

3 Modular Forms of Level N

Let us recall some basic definitions and properties of modular forms of level N with respect

to Γ0(N). We follow closely Ono ([14], section 1).

Let N be a natural number. Let Γ = SL2(Z) denote the modular group and

Γ0(N) :=

{(

a b

c d

)

∈ SL2(Z
∣

∣

∣
c ≡ 0 (mod N)

}

.

The groupGL+
2 (R) acts on the complex upper half plane H. Suppose γ = ( a b

c d ) ∈ GL+
2 (R).

Then

γ(τ) :=
aτ + b

cτ + d
. (3.1)

Let k ∈ Z and f be a holomorphic function on H, then we define the Petersson slash

operator by

(f |kγ) (τ) := (cτ + d)−k f(γ(τ)). (3.2)

Definition 3.1. Let N ∈ N and k ∈ Z. Let f be a holomorphic function on H. Then

f is called a weakly holomorphic modular form of weight k and level N if

(f |kγ) (τ) = f(τ) for all γ ∈ Γ0(N) (3.3)
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and if f is meromorphic at all cusps, i.e.

(f |kγ0) (τ) =
∑

n≥nγ0

an,γ0 q
n
N . (3.4)

for all γ0 ∈ Γ, qN := q
1

N , and nγ0 ∈ Z.

We denote the space of weakly holomorphic modular forms by M !
k(Γ0(N)). Weakly

holomorphic modular forms of weight k = 0 are also denoted modular functions. The

space of modular forms Mk(Γ0(N)) are all the forms which are holomorphic at the cusps,

i.e nγ0 ≥ 0.

Definition 3.2. Let N ∈ N and k ∈ Z. Let χ be a Dirichlet character modulo N .

Let f be a holomorphic function on H. Then f is called a weakly holomorphic modular

form of weight k and with Nebentypus character χ if

(f |kγ) (τ) = χ(d) f(τ) for all γ ∈ Γ0(N) (3.5)

and if f is meromorphic a all cusps, i.e.

(f |kγ0) (τ) =
∑

n≥nγ0

an,γ0 q
n
N . (3.6)

for all γ0 ∈ Γ, qN := q
1

N , and nγ0 ∈ Z.

The corresponding spaces are denoted M !
k(Γ0(N), χ) and Mk(Γ0(N), χ). Let µ denote

the index of Γ : Γ0(N). This is given by

µ = n
∏

p |N

(

1 +
1

p

)

. (3.7)

In the following we consider the divisor of a weakly holomorphic modular form on the

compactified Riemann surface

X0(N) := Γ0(N)\H.

Let f ∈ Mk(Γ0(N)). Then the degree of the divisor of f , Div(f), is equal to kµ/12.

We are interested in the case N = p prime. Note that µ = µ(Γ0(p)) = p + 1.

Further X0(p) has two different cusps ∞ and 0. Our focus is on the spaces Mk(Γ0(p))

and Mk(Γ0(p),
(

∗
p

)

). Note that

dimMk(Γ0(p)) = 0, for k < 2 and for k odd.

Hecke [2] constructed very interesting modular forms for Γ0(p). See also the survey

article of Ogg ([13]) and Knapp ([7], chapter IX). We recall the following theorem of

Hecke.
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Theorem 3.3. Let p > 3 be a prime. Let η(τ) be the Dedekind eta function. Then we

have

gp(τ) :=
η(τ)p

η(pτ)
∈ M p−1

2

(

Γ0(p),

(

∗

p

))

. (3.8)

The holomorphy at the cusps 0 and ∞ is easy to see. The non-trivial part is the trans-

formation law. We would mention several properties and applications of this remarkable

function.

Remark 3.4.

a) Let p ≡ −1 (mod 12) then

(η(τ) η(pτ))2 ∈ S2(Γ0(p))

is a cuspform of weight 2. This implies that the genus of X0(p) is at least one.

b) It can also be shown that the genus of X0(p) is zero if and only if p = 2, 3, 5, 7, 13.

Let Fp be the Fricke involution. Then the image of gp with respect the Fricke involution

is given by
η(pτ)p

η(τ)
. (3.9)

It follows from the observations above that Div(Fp(gp)) =
p2−1
12

.

Note that in our uniqeness and existence results also the cases p = 2 and p = 3 are

included. Which are also very interesting. For example:

gp(τ) =
η(τ)2

η(2τ)
=

∞
∑

n=−∞

(−1)n qn
2

. (3.10)

The index µ = |Γ : Γ0(p)| = p+ 1.

4 Proofs of the Results

We assume the reader is familar with the additive Hecke theory on periodic functions.

See for example Koecher-Krieg chapter IV [8]. In this paper we also need results on the

Hecke algebra related to the group Γ0(p). We refer to Miyake [12] and Iwaniec [6], chapter

6. See also Shimura [16] for the general concept. Let V (H) be the C-vector space of all

holomorphic functions f with f(τ) = f(τ + 1) on the upper half plane H bounded at

infinity.

Definition 4.1. Let k, n be integers and let n be positive. Let p be a prime number.

Let f ∈ V (H). We define multiplicative Hecke operators.

TΠ(n)(f) :=
∏

a·d=n
b ( mod d)
(a,p)=1

f

(

aτ + b

d

)

. (4.1)
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Since the underlying Hecke algebra of additive and multiplicative Hecke operators are

the same, we have

TΠ(nm)(f) = TΠ(n) (TΠ(m)(f)) (4.2)

for all coprime n and m. Moreover let t be a prime number. Then the action of TΠ(t
n)

is deduced from TΠ(t). All the operators commute and everything is determined by the

action of TΠ(t).

In this paper we consider functions f ∈ F which are in V (H) and non-vanishing at

infinity (and normalized). Now let f ∈ F be a multiplicative eigenform for all Hecke

operators TΠ(n), (n ∈ N) with eigenvalues λ(n):

TΠ(n)(f) = fλ(n).

Then it follows that λ(n) = σ(n)p. To be an multiplicative eigenform for all Hecke

operators is equivalent to be an multiplicative eigenform for all primes. Note,

σ(l)p = l + 1 and σ(p)p = p.

It is easy to prove by induction that

TΠ(n)(f) = fσ(n)p for all n (4.3)

⇔ TΠ(l)(f) = f l+1 for all l ∈ P\{p} and TΠ(p)(f) = f p.

4.1 Proof of Theorem 2.1

In view of the observation above, it is sufficient to prove the Theorem in the following

form. Let f(τ) = 1 +
∑∞

m=1 amq
m satisfy

TΠ(n)(f) = fσ(n)p for all n ∈ N, (4.4)

then f is uniquely determined by a1. The calculation of the coefficients an follows from

the steps of the proof recursively. We have

∏

a·d=n
b ( mod d)
(a,p)=1

(

1 +
∞
∑

m=1

ame
2πimaτ+b

d

)

=

(

1 +
∞
∑

m=1

amq
m

)σ(n)p

. (4.5)

Then we substitute τ by n τ and exchange d by n
a
and obtain the equation

∏

a·d=n
b ( mod d)
(a,p)=1

(

1 +
∞
∑

m=1

ame
2πi(ma2τ+mab

n )

)

=

(

1 +
∞
∑

m=1

amq
nm

)σ(n)p

. (4.6)

Comparing the coefficients of qn on both sides leads to the recursion formula

nan + Pn (a1, . . . , an−1) = σ(n)p a1. (4.7)

Here, Pn is a polynomial with integer coefficients in n− 1 variables (see also [3]).
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4.2 Proof of Theorem 2.4

Let p be a fixed prime. Then we have

f(τ) =
q

p

24 (
∏∞

n=1 (1− qn))
p

q
p

24

∏∞
n=1 (1− qpn)

= 1− p q +
∞
∑

n=2

an q
n ∈ F . (4.8)

Let E(τ) :=
∏∞

n=1 (1− qn). Then TΠ(l)(E) = El+1(see also [3].) Similar we obtain

TΠ(l) (E(pτ)) = E(pτ)l+1.

Hence, f satisfies the functional equations (∗l). Let us also prove (∗∗p). Let ξp = e2π i/p

be a primitive p-th root of unity. Then

∞
∏

n=1
(n,p)=1

p−1
∏

b=0

(

1− q
n
p ξnbp

)

=
∞
∏

n=1
(n,p)=1

(1− qn) .

We also decompose E(τ) with respect to p:

E(τ) =
∞
∏

n=1
(n,p)=1

(1− qn)
∞
∏

n=1

(1− qpn) . (4.9)

Since TΠ(p) (E(pτ)) = E(τ)p we finally obtain the desired result.

4.3 Proof of Theorem 2.6

Let p > 3 and let

f(τ) = 1 +
∞
∑

n=1

an q
n ∈ Mk(Γ0(p))..

Let t be any prime number. Then

TΠ(t)(f)(τ) = f(τ)σ(t)p (4.10)

implies that f(τ) 6= 0 for all τ ∈ H. Let us assume that this is not the case. Let τ0 ∈ H

such that f(τ0) = 0. Then it is easy to see that tτ0, t
2τ0, · · · have also this property. Since

lim
n→∞

(Im (tnτ0)) = ∞, (4.11)

we obtain a contradiction.

Now we apply a Theorem of Kohnen ([11], Theorem 2), saying that on the upper half-

space non-vanishing weakly holomorphic modular forms are given in a certain product

form. We apply the result of Kohnen to Γ0(p). There exist A,B ∈ C such that

f(τ) = κ qh
∞
∏

n=1

(1− qn)A
∞
∏

n=1

(1− qpn)B , (4.12)
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where κ ∈ C \{0} and h ∈ Z. Since f is a modular form of order 0 at infinity, we obtain

h = 0 and the normalization implies κ = 1. Kohnen’s proof implies that A,B are rational

numbers, since a certain integral power r of f exists, such that

f r(τ) = ∆(τ)C ∆(pτ)D,

with C,D ∈ Z and ∆(τ) the discriminant function. Then h = 0 implies A = −pB. Hence

we obtain

f(τ) =
∞
∏

n=1

(1− qn)−pB
∞
∏

n=1

(1− qpn)B , (4.13)

with Fourier expansion 1 + pB q + . . . . The weight k of f is given by (1− p)B/2.

Putting things together. Assume the weight k is divisible by p− 1. This implies that

B is an even integer. Hence f = g−B
p .

Let all the coefficients of f be integral then by a result of Rouse and Webb ([15],

Theorem 7) f is an eta-quotient. This implies that B is an integer. Since gp is a modular

form with character, we can deduce that B is even. Hence the theorem is proven.
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[9] G. Köhler, Eta Products and Theta Series Identities, Springer Monographs in

Mathematics, Springer, Berlin-Heidelberg-New York (2011).

[10] M. Kontsevich, Product formulas for modular forms on O(2, n), Seminaire Bour-

baki 821 (1996).

[11] W. Kohnen, On A Certain Class Of Modular Functions, Proceedings of the AMS

133, Number 1 (2004), 65–70.

[12] T. Miyake: Modular Forms. Reprint of the 1989 English ed., Springer Monogr.

in Math. Springer Berlin, Heidelberg, New York (2006)

[13] A. Ogg, Survey of modular functions of one variable, Lecture Notes in Math.

Vol. 320, Springer, Berlin, (1973). 1–35.

[14] K. Ono, The web of modulariy: arithmetic of the coefficients of modular forms

and q-series, CBMS Regional Conference Series in Mathematics 102 Amer.

Math. Soc., Providence, RI, (2004).

[15] J. Rouse, J. Webb, On Space Of Modular Forms Spanned By Eta-quotients,

Advances in Mathematics 272 (2015), 200–224.

[16] G. Shimura, Introduction to the arithmetic theory of automorphic functions,

Reprint of the 1971 original. Publications of the Math. Soc. of Japan, 11. Kan

Memorial Lectures, 1. Princeton Univ. Press, Princeton, NJ, 1994.

11


