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ON THE RELATION BETWEEN K- AND L-THEORY OF C∗-ALGEBRAS

MARKUS LAND AND THOMAS NIKOLAUS

Abstract. We prove the existence of a map of spectra τA : kA → ℓA between connective
topological K-theory and connective algebraic L-theory of a complex C∗-algebra A which is
natural in A and compatible with multiplicative structures. We determine its effect on homotopy

groups and as a consequence obtain a natural equivalence KA[ 1
2

]
≃

−→ LA[ 1
2

] of periodic K- and
L-theory spectra after inverting 2. We show that this equivalence extends to K- and L-theory
of real C∗-algebras. Using this we give a comparison between the real Baum-Connes conjecture
and the L-theoretic Farrell-Jones conjecture. We conclude that these conjectures are equivalent
after inverting 2 if and only if a certain completion conjecture in L-theory is true.
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1. Introduction

1.1. Motivation. One of the main motivations of this article is to give a precise comparison
between the Baum-Connes conjecture in real topologicalK-theory and the Farrell-Jones conjecture
in algebraic L-theory. We briefly recall the setup of these conjectures. For this, letG be a countable
discrete group. We then consider the integral group ring ZG with its canonical involution induced
by g 7→ g−1. Similarly we can consider the reduced group C∗-algebra C∗

rG which is a specific
completion of the complex group ring CG or its real counterpart C∗

r (G;R) which is a completion
of RG. The Baum-Connes conjecture then predicts that a certain assembly map

KOG
∗ (EG)

BC // KO∗(C
∗
r (G;R))

is an isomorphism. Here, the left hand side denotes the G-equivariant KO-homology of the
classifying space for finite subgroups of G. Similarly the L-theoretic Farrell-Jones conjecture
predicts that the assembly map

(LqZ)G∗ (EG)
FJ // Lq

∗(ZG)

is an isomorphism. Here the left hand side is the equivariant homology theory associated to qua-
dratic L-theory of the integers evaluated on the classifying space for virtually cyclic subgroups. We
suppress the decoration in L-theory, but implicitly mean the decoration 〈−∞〉 in the introduction.
See [DL98] for details.
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Both these conjectures have been studied extensively due to their intimate relation to other
prominent conjectures, such as the Borel conjecture, the Novikov conjecture, the Kadison con-
jecture and the stable Gromov-Lawson-Rosenberg conjecture. For details about the construction,
status and relation to these other conjectures we recommend the survey [LR05]. We recall from
[DL98] that these assembly maps are constructed using the fact that the K- resp. the L-groups
are homotopy groups of K- resp. L-theory spectra.

When trying to relate these two conjectures a first step is to relate the codomains of the assembly
maps, i.e the two groups KO∗(C

∗
r (G;R)) and Lq

∗(ZG). The canonical inclusion ZG ⊆ C∗
r (G;R)

induces a map in quadratic L-theory, so that one is naturally led to try to relate the real K-theory
group of the group C∗-algebra to its L-theory. Indeed, the relation between K- and L-groups
of C∗-algebras in general has been greatly studied, see e.g. [Mil98, Kar80, Ros95]: for complex
C∗-algebras these two groups are naturally isomorphic. Over the real numbers the precise relation
is more complicated, but it turns out that after inverting 2, the KO- and L-groups are still
isomorphic, see for instance [Ros95, Theorem 1.11] or Theorem C in Section 1.2.

Unfortunately, this is not enough to deduce that the assembly maps in question are isomorphic.
Indeed by the construction of the assembly maps as in [DL98], one needs to understand the relation
between the two spectrum valued functors KO and L and not just their homotopy groups.

Our main contribution to this is that we show that the two functors KO and L become equiv-
alent after inverting 2. In particular we obtain a commutative diagram relating the BC-assembly
map and the FJ-assembly map after inverting 2. In fact we also study the complex case and even
integral results before inverting 2. We will give precise statements of our results in Section 1.2.
But let us first comment on the relation to previous work.

Our strategy of relating the assembly maps is taken from [LR05, Proposition 3.19] and we
thank Wolfgang Lück for sharing his ideas with us. For the key input, namely the equivalence
of spectrum valued K- and L-theory functors after inverting 2, the authors refer to a result of
Rosenberg, [Ros95, Theorem 1.11 and Theorem 2.1]. Indeed, in [Ros95, Theorem 2.7] Rosenberg
also considers a diagram relating the Farrell-Jones conjecture to the Baum-Connes conjecture. See
also [Ros16, Page 12] for a similar statement.

However we believe that Rosenberg’s proof of the natural equivalence KO[ 12 ] ≃ L[ 12 ] is not
sufficient. The starting point of his argument is to show that there is an equivalence of homotopy
ring spectra KO[ 12 ] ≃ LR[ 12 ]. This is essentially concluded from a known equivalence of underlying
spaces due to Sullivan (see [MM79, Theorem 4.28]) but we think the arguments given by Rosenberg
are not enough to upgrade this to an equivalence of homotopy ring spectra. However it was known
by work of Taylor and Williams [TW79] that they are equivalent as spectra. Lurie gives a proof
that they are equivalent as homotopy ring spectra in Lecture 25 of [Lur11].

Taking this for granted, Rosenberg then views both LA[ 12 ] and KO(A)[ 12 ] as module spectra

overKO[ 12 ]. Using the classification of such module spectra due to Bousfield [Bou90, Theorem 9.6]
one can lift the isomorphism of homotopy groups to an equivalence of spectra. It turns out that
this lift is in general not unique, the ambiguity is given by an Ext-group which will generically not
vanish. Thus this gives an equivalence LA[ 12 ] ≃ KO(A)[ 12 ] for every real C∗-algebra A individually

but there is no reason why one can find an equivalence KO(A)[ 12 ] ≃ LA[ 12 ] which is natural in A,
not even in the homotopy category of spectra, let alone in a more structured setting as needed for
the comparison of assembly maps.

1.2. Statement of results. Throughout this paper we will freely use the language of∞-categories
as developed by Joyal [Joy08] and Lurie [Lur09, Lur14]. We follow Lurie’s notational conventions.
Essentially all of the results are also expressible in other frameworks of abstract homotopy theory,
e.g. Quillen model categories.

We study the space of maps between K and L viewed as functors between the ∞-category
NC∗Alg associated to the 1-category C∗Alg of complex, separable C∗-algebras and the ∞-category
Sp of spectra. See Section 2 and the appendix for details about these functors, in particular the
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fact that they admit lax symmetric monoidal structures. For the first statement we consider their
connective covers, by which mean the functors k, ℓ : NC∗Alg → Sp≥0 obtained by post composing
K and L with the connective cover functor τ≥0 : Sp → Sp≥0.

Theorem A. For every n ∈ Z there exists a natural transformation τ(n) : k → ℓ, unique up to
homotopy, characterized by the property that τ(n)C : π0(ku) → π0(ℓC) is given by multiplication
with n. More precisely the map

π0

(
MapFun(NC∗Alg,Sp≥0)

(k, ℓ)
)

// Z

[η] ✤ // π0(ηC)(1)

is a bijection. Moreover, there is an essentially unique lax symmetric monoidal transformation
τ : k → ℓ. Its underlying transformation is τ(1).

We continue by calculating the effect on homotopy of the multiplicative transformation τ just
considered.

Theorem B. For i ∈ {0, 1}, all k ≥ 0, and all A ∈ C∗Alg there is an exact sequence

0 // π2k+i(kA)2k // π2k+i(kA)
τA // π2k+i(ℓA) // π2k+i(ℓA)

2k·π2k+i(ℓA)
// 0 .

As a consequence one can also deduce results about the periodic versions of these functors if
one inverts 2. For the real statement we consider KO and L as functors from the ∞-category
NR∗Alg associated to the 1-category R∗Alg of real C∗-algebras.

Theorem C. The functors K[ 12 ], L[
1
2 ] : NC

∗Alg → Sp are equivalent as lax symmetric monoidal

functors. Also the two functors KO[ 12 ], L[
1
2 ] : NR

∗Alg → Sp are equivalent as lax symmetric
monoidal functors.

So far we are not able to produce an integral transformation for real C∗-algebras as in the
complex case (Theorem A). But we can still use the equivalence after inverting 2 to relate the
L-theoretic Farrell-Jones conjecture to the real Baum-Connes conjecture. The following theorem
makes this precise.

Theorem D. Let G be a countable discrete group. Then there is a commutative diagram in
which the horizontal arrows are the respective assembly maps appearing in the Baum-Connes and
the Farrell-Jones conjecture:

KOG
∗ (EG)[ 12 ]

BC[
1
2 ] //

∼=

��

KO∗(C
∗
r (G;R))[ 12 ]

∼=

��
LRG

∗ (EG)[ 12 ]
FJ[

1
2 ] // L∗(RG)[ 12 ]

// L∗(C
∗
r (G;R))[ 12 ]

LqZG
∗ (EG)[ 12 ]

∼=

OO

FJ[
1
2 ]

// Lq
∗(ZG)[ 12 ]

OO

We end with a theorem which implies that the integral map, which we construct in Theorem A,
is the only non-trivial integral map between the variants of the functors K and L that is possible.
Indeed we prove a stronger statement about the spectra LC and KU = KC.

Theorem E. We have that

[LC,KU ] = [KU,LC] = [ℓC, ku] = 0

where [−,−] denotes the groups of morphisms in the homotopy category of spectra.
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1.3. Organisation of the paper. In Section 2 we deal with the necessary preliminaries. We
first recall K-theory of C∗-algebras in Section 2.1 and then move on to L-theory of general rings
in Section 2.2 and L-theory of C∗-algebras in Section 2.3. Section 3 is devoted to the proof of
Theorem A. In Section 3.1 we introduce a stable ∞-category KK∞ which is a key player for
all constructions. We prove the first part of Theorem A in Section 3.2 and continue to discuss
multiplicative properties in Section 3.3 to finish the proof of Theorem A. Section 4 is devoted to
a proof of Theorem B. As preliminaries we need to discuss excision properties of L-theory, which
we deal with in Theorem 4.2. In Section 5 we first prove Theorem C in Section 5.1 and use this to
establish Theorem D in Section 5.2. Finally in Section 6 we prove Theorem E and in Appendix A
we extend the lax symmetric monoidal structure of L-theory to non-unital C∗-algebras.

Acknowledgements. We would like to thank Wolfang Lück for sharing with us his ideas and
insights about K- and L-theory. We are pleased to thank Christian Wimmer for several fruitful
discussions. The first author would like to thank the GRK 1150 - Cohomology and Homotopy
for the support during his time as Phd student at the university of Bonn. Furthermore he was
supported by Wolfgang Lücks ERC Advanced Grant “KL2MG-interactions” (no.662400) granted
by the European Research Council.

2. Preliminaries about K- and L-theory

In this section we first develop all necessary tools to construct the transformation between
K-theory and L-theory. We start by recalling basic definitions and properties of K-theory and
L-theory.

2.1. C∗-algebras and K-theory. Throughout this paper we work in the category of complex,
separable1, not necessarily unital C∗-algebras with not necessarily unital ∗-homomorphisms as
morphisms. We denote this category by C∗Alg.

To be more specific we recall that a C∗-algebra is a complex Banach algebra A equipped with
a complex antilinear involution x 7→ x∗ that satisfies the C∗-identity

‖x∗x‖ = ‖x‖2 for all x ∈ A.

Obviously there is a forgetful functor

C∗Algunit
U // Ringinv

from the category of unital C∗-algebras and unital morphisms to the category of involutive rings,
by forgetting the topology on A. It is well known that this functor is fully faithful when viewed as
a functor to involutive C-algebras, see [Tak02, Chapter I, section 5], and that one can reconstruct
the norm on A from the involutive ring UA, [Tak02, Chapter I, Prop. 4.2].

Examples of C∗-algebras are continuous functions (vanishing at infinity) of a (locally) compact
Hausdorff space X , denoted by C(X). Indeed, the theorem of Gelfand and Naimark states that
any commutative C∗-algebra is of this kind, see [Tak02, Theorem 4.4.]. Further examples are
B(H), the bounded operators on a Hilbert space, and thus also any norm-closed sub-∗-algebra
of B(H). It is a theorem of Gelfand, Naimark, and Segal that any C∗-algebra admits a faithful
representation on a Hilbert space and is thus a norm-closed subalgebra of B(H) for some Hilbert
space H, see [Tak02, Theorem 9.18].

Lemma 2.1. The inclusion functor C∗Algunit → C∗Alg admits a left adjoint, called the unital-
ization

C∗Alg // C∗Algunit

A ✤ // A+

which comes with a natural split short exact sequence

0 // A // A+ πA // C // 0 .

1This is needed in order to turn C∗-algebras with the Kasparov product into a category.
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If A is unital, then A+ ∼= A× C.

Proof. First one observes that if A is unital then the algebra A× C is unital as well and satisfies
the universal property needed. Thus the furthermore part is easy. If A does not have a unit one
considers the embedding

A ⊆ B(A)

by left-multiplication. It is injective, hence isometric and the image does not contain the unit (by
the assumption that A does not have a unit element). The smallest subalgebra containing both A
and the identity of B(A) is the C∗-algebra A+. Notice that as a C-vector space A+ is of the form
A⊕ C but the multiplication is twisted:

(a, λ) · (b, µ) = (ab+ λb + µa, λµ)

from which it follows that A is an ideal in A+ whose quotient is C. See also [Tak02, Proposition
1.5]. �

We want to remark that this is the minimal way to embedd A as an ideal in a unital C∗-algebra.
In general there is a whole family of unitalizations one can consider. If A is commutative, and
thus of the form C0(X) for a locally compact Hausdorff space X these unitalizations correspond
precisely to compactifications of X . For example, the unitalization we discussed above corresponds
to the one-point compactification.

Another important technical tool is the tensor product of C∗-algebras. Let A and B be C∗-
algebras. Then we denote the maximal tensor product by A ⊗ B. It is a C∗-completion of the
algebraic tensor product A ⊗C B. In general there are also other completions but we will only
need the maximal one in this article.

Proposition 2.2. The maximal tensor product is exact, i.e. given a short exact sequence

0 // J // A // B // 0

and any other C∗-algebra D, then the induced sequence

0 // J ⊗D // A⊗D // B ⊗D // 0

is exact as well.

Proof. This is the content of [Bla06, II.9.6.6]. �

Remark. There is a notion of fibrations between C∗-algebras called Schochet fibrations, cf. [Uuy13,
Definition 2.14]. With this notion Proposition 2.2 has the addendum that for a Schochet fibration
A → B and any C∗-algebra D, the induced map A⊗D → B ⊗D is also a Schochet fibration, see
[Uuy13, Lemma 2.17].

Classical and powerful invariants of a C∗-algebra A are the topological K-theory groups K∗(A).
For a compact Hausdorff space X the groups K∗(C(X)) coincide with the usual topological K-
theory groupK−∗(X) defined via vector bundles overX . For all C∗-algebras, topologicalK-theory
is 2-periodic, thanks to Bott periodicity. See [RLL00], [Bla98], [WO93] for a treatment of the basics
of K-theory for operator algebras.

The topologicalK-groups of a C∗-algebra can be obtained as the homotopy groups of aK-theory
spectrum KA, see for instance [MEKD11] or [Joa04]. More precisely, the group valued K-functor
factors through (any of) the 1-categories of spectra like symmetric or orthogonal spectra. An
important feature of topological K-theory is that it is excisive, in other words if

0 // J // A // B // 0

is a short exact sequence of C∗-algebras, then the sequence

KJ // KA // KB

is a fiber sequence of spectra. The long exact sequence it induces in homotopy groups is the usual
long exact sequence of topological K-groups associated to the short exact sequence as above.
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The spectrum valued topological K-theory functor admits the structure of a lax symmetric
monoidal functor, i.e. for A,B ∈ C∗Alg there is a map of spectra

KA⊗KB → K(A⊗B)

satisfying the usual axioms of lax symmetric monoidal functors. Here we denote the smash product
of spectra by⊗. In [Joa04] Joachim gave a point-set level description of this structure in orthogonal
spectra.

Remark. From Joachim’s point-set model, it follows that the induced functor

NC∗Alg → Sp

of ∞-categories also admits a lax symmetric monoidal refinement which is all we will actually use
in this article. Recall that Sp denotes the ∞-category of spectra. For the notion of lax symmetric
monoidal functors between ∞-categories, see Section 3.3 and [Lur14, chapter 2]. We will give an
independent (equivalent) construction of the K-theory functor in Proposition 3.7. The fact that
K-theory admits a lax symmetric monoidal refinement is then a formal consequence of [Nik16,
Corollary 6.8].

Kasparov’s KK-groups are of particular importance in the theory of operator algebras and their
K-theory and the relation to index theory. KK-theory and its applications to index theory (e.g.
the Novikov conjecture) have been studied in [Kas75], [Kas95], [Kas88], and [Kas80] and play a
prominent role in the analytical aspects of the Baum-Connes conjecture. The most important
feature for us is the following theorem due to Kasparov.

Theorem 2.3. There is a category KK with the following properties, see e.g. [Bla98] and [Uuy13,
Thm. 2.29 & Rmk. 2.30]:

(1) Ob(KK) = Ob(C∗Alg) and there is a functor C∗Alg → KK, which we denote by f 7→ [f ]
on morphisms,

(2) This functor is a homotopy functor, i.e. if f and g are homotopic, then [f ] = [g].
(3) The category KK is triangulated and symmetric monoidal via the maximal tensor product.

Exact sequences are short exact sequences of C∗-algebras in which the epimorphism is a
Schochet fibration. The loop functor is the C∗-algebraic suspension functor.

(4) The abelian group valued K-functor K : C∗Alg → Ab factors through the functor C∗Alg →
KK and the induced functor KK → Ab is corepresentable by the tensor unit object C, i.e.
there is an isomorphism of functors K(−) ∼= HomKK(C,−).

(5) The abelian groups KK(A,B) can be described as equivalence classes of triples (E , π, F ),
where E is a Hilbert-B-module, π : A → L(E) is a representation and F ∈ L(E) satisfying
certain compactness conditions.

The property of K-theory described in (4) is very useful to understand natural transformations
τ : K → F for some functor F : KK → Ab by virtue of the Yoneda lemma. It will be the main
objective of Section 3.1 to obtain a similar property for the spectrum valued K-functor.

Definition 2.4. A morphism f : A → B in C∗Alg is called a KK-equivalence if its image in
HomKK(A,B) is an isomorphism.

We want to conclude by stating a universal property of KK.

Theorem 2.5. The functor C∗Alg → KK is a localization along the KK-equivalences. In other
words, a functor F : C∗Alg → Ab factors (necessarily uniquely) through KK if and only if F has
the property of sending KK-equivalences to isomorphisms. These functors are characterized by the
property of being split exact and stable.

Proof. Almost all of this is proven in [Hig87]. The only thing missing is the fact that split exact
and stable functors are automatically homotopy invariant. This was done in [Hig88]. We remark
that more is known. In [Uuy13, Theorem 2.29] it was proven that C∗Alg admits the structure of
a fibration category, where the equivalences are the KK-equivalences and the fibrations are the
Schochet fibrations. Indeed, KK is the homotopy category of this fibration category. �
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Remark. More precisely we have that the induced functor

Fun(KK,Ab) → Fun(C∗Alg,Ab)

is fully faithful and the image consists of those functors that are split exact and stable.

2.2. L-theory of involutive rings. In this section we want to recall basic notions from algebraic
L-theory. L-theory has its origins in surgery theory, where L-groups appear as obstruction groups
to deciding whether a given degree 1 normal map between manifolds is bordant to a homotopy
equivalence, see for instance [Wal99], [Ran79], and [CLM16]. Moreover there are connections to
the algebraic theory of forms, relating L-groups to Witt groups of forms. Algebraic L-theory has
been developed by Ranicki in the series of papers [Ran73a], [Ran73b], [Ran73c], [Ran74] and the
two books [Ran81] and [Ran92].

For our purposes it is appropriate to view L-theory as a functor

NRinginv
L // Sp

R
✤ // LR

whose construction is again due to Ranicki, see e.g. [Ran92, chapter 13]. To be precise, Ranicki
constructs a functor of 1-categories

Ringinv
L // Sp1 .

Applying the nerve to this functor and composing the result with the canonical map NSp1 → Sp
one obtains the desired L-theory functor. If we want to be precise about the involution on R
(e.g. if there is more than one canonical involution) we will write L(R, τ). To be more specific,
LR is the projective symmetric algebraic L-theory spectrum associated to the ring R. We will
usually not encounter the quadratic counterpart and thus simply write LR for this spectrum. The
spectrum LR is constructed in a way such that its homotopy groups πn(LR) are the algebraic
bordism groups of n-dimensional symmetric algebraic Poincaré complexes over R.

Remark. If P is a finitely generated projective module over R and ϕ : P
∼=
−→ P ∗ is a non-degenerate

hermitian (respectively skew hermitian) form on P then it gives rise to an element [P, ϕ] ∈ L0(R, τ)
respectively in L2(R, τ). It is a theorem of Ranicki that if 2 is invertible in the ring R all elements
in the algebraic L-groups π2∗(LR) are of this form.

More precisely if R ∈ Ringinv such that 2 ∈ R×, then every 2n-dimensional symmetric complex
(C,ϕ) over R is bordant to a chain complex that is concentrated in degree n and every 2n + 1-
dimensional symmetric complex (C,ϕ) is bordant to one that is concentrated in degrees n and
n+ 1. Moreover the L-groups π∗(LR) are isomorphic to the classical L-groups defined via forms
and formations.

As indicated above there is a version called quadratic L-theory built on quadratic forms as
opposed to hermitian forms. The previously mentioned result can be formulated in quadratic
L-theory and is then true in full generality. The assumption that 2 ∈ R× is used to ensure that
symmetric and quadratic L-theory are equivalent.

Proposition 2.6. L-theory satisfies the following properties.

(1) Algebraic L-theory is naturally 4-periodic, i.e. Σ4(LR) ≃ LR for all involutive rings R.
(2) If −1 has a square root α in (R, τ) which satisfies τ(α) = −α, then L-theory becomes

2-periodic. As an example LC = L(C, x 7→ x) is 2-periodic, but L(C, id) is not 2-periodic.
To be specific we have that π∗(LC) = Z[b±1] with |b| = 2 and π∗(L(C, id)) = F2[t

±1] with
|t| = 4.

(3) L-theory commutes with finite products of involutive rings.
(4) Ranicki showed that L-theory admits external products LS⊗LT → L(S⊗T ), more precisely

the functor L : Ringinv → SHC admits a lax symmetric monoidal refinement, where SHC
denotes the stable homotopy category. In particular for every commutative ring S the
spectrum LS is a ring spectrum, and for every S-algebra T , the spectrum LT is a module
spectrum over LS. In particular every spectrum LR is a module over LZ.
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(5) Using the notion of ad-theories, in [LM14] and [LM13] the authors establish a lax symmet-
ric monoidal refinement of L-theory with values in the 1-category of symmetric spectra.
This implies that the induced functor

L : NRinginv → Sp

of ∞-categories also admits a lax symmetric monoidal refinement. In particular it follows
that the above monoidal properties not only hold in the homotopy category of spectra,
but indeed in the ∞-category of spectra. Again for details on the notion and theory of
symmetric monoidal ∞-categories we refer to Section 3.3 and [Lur14, chapter 2].

2.3. L-theory of C∗-algebras. Algebraic L-theory for C∗-algebras is defined by the composite

NC∗Algunit // NRinginv
L // Sp .

This means that we will always take the involution coming from the C∗-algebra as input for L-
theory. In particular LC is taken by using the complex conjugation as involution, not the identity.

Notice that so far we have not defined algebraic L-theory for non-unital C∗-algebras, which is
what we will do next. Recall from Lemma 2.1 that for a C∗-algebra A we have the associated split
short exact sequence

0 // A // A+ // C // 0 .

Definition 2.7. Let A ∈ C∗Alg. We define its L-theory spectrum by the formula

LA = fib
(
L(A+) → LC

)
.

Remark. If A was unital then we have not changed the definition of the L-spectrum up to
canonical equivalence since L-theory commutes with finite products. This property remains true
on C∗Alg, i.e. on non-unital C∗-algebras, see Corollary 4.4 and Appendix A. It is worthwhile to
compare the definition of non-unital L-theory to the remark after the proof of Proposition A.1.

The following theorem is one of the crucial facts about the L-groups of unital C∗-algebras.

Theorem 2.8. Let A ∈ C∗Alg. Then there is a natural isomorphism

τA : Kn(A)
∼=
−→ Ln(A)

for all n ∈ Z.

Proof. This is for instance proven in [Mil98]. Also [Ros95, Theorem 1.8] provides a proof. We
recall briefly what we will use later. The first thing to notice is that it suffices to prove this for
unital A. Furthermore both K- and L-theory are naturally 2-periodic, so it suffices to prove the
claim for n = 0, 1. We will outline the n = 0 case only. The idea is as follows. Since K0(A) is the
Grothendieck group of finitely generated projective modules over A in order to construct a map

τA : K0(A) → L0(A)

it suffices to explain where to map the class of a finitely generated projective module P . It is a
lemma of Karoubi, see [Kar80, Lemma 2.9], that any finitely generated projective A-module P has
a positive definite hermitian form σP on it. Furthermore this form is unique up to isomorphism
and this isomorphism may even be chosen to be homotopic to the identity. One way to construct
σP is to notice that any embedding P ⊆ An gives P the structure of a Hilbert-A-module by
restricting the scalar product of An to P . The association [P ] 7→ [P, σP ] is obviously compatible
with taking direct sums and thus gives a map

K0(A) // L0(A)

as claimed. One can use spectral theory in C∗-algebras to prove that any hermitian non-degenerate
form is equivalent to the sum of a positive definite and a negative definite form. Using the
uniqueness part of Karoubi’s lemma one deduces that this construction is an inverse to the above
map. �
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Corollary 2.9. L-theory is KK-invariant, i.e. if f : A → B is a KK-equivalence, then the
induced morphism

Lf : LA → LB

is an equivalence of spectra. It follows that the L-groups may be viewed as a functor KK → Ab.

2.4. KK-theory. The idea of this section is to understand the natural transformation τ : K0 → L0

of Theorem 2.8 in terms of a universal property which will have a direct analogue in the case where
we study the spectrum valued functors.

Lemma 2.10. The canonical map

HomFun(KK,Ab)(K0, L0)
∼= // HomFun(C∗Alg,Ab)(K0, L0)

is a bijection.

Proof. This follows immediately from the remark after Theorem 2.5 and Corollary 2.9. �

Since K-theory becomes corepresentable on KK, see Theorem 2.3 part (4), we obtain the
following.

Corollary 2.11. From the enriched Yoneda lemma we see that

HomFun(KK,Ab)(K0, L0) ∼= HomFun(KK,Ab)(KK(C,−), L0) ∼= L0(C) ∼= Z.

In particular the transformation τ : K0 → L0 as given in Theorem 2.8 corresponds to an element
of Z. Under this isomorphism τ is sent to 1 ∈ Z.

Proof. We only need to check the image of τ in Z under the above chain of isomorphisms. By
definition the isomorphism

HomFun(KK,Ab)(K0, L0) ∼= L0(C)

maps τ to τC(id) where
τC : KK(C,C) ∼= K0(C) → L0(C).

Under the isomorphism KK(C,C) ∼= K0(C) the element [id] is mapped to the projective module
C. The isomorphism of Theorem 2.8 takes this module to C equipped with the standard hermitian
form over it. Furthermore the isomorphism L0(C) ∼= Z takes the signature of this hermitian form
which is clearly 1. �

3. Construction of the map

In this section we introduce the symmetric monoidal ∞-category KK∞ and use this ∞-category
to construct the natural map kA → ℓA.

3.1. The ∞-category KK∞. We have argued how we can view the transformation from K0 to
L0 using the universal property of the KK category. The main idea now is to mimic the universal
properties we used, namely that K-theory is corepresentable on KK. The following proposition is
an important construction in (∞)-categories, which we will use to define KK∞.

Proposition 3.1. Suppose C is an ∞-category and W is a collection of morphisms in C. Then
there is an ∞-category C[W−1] and a functor of ∞-categories

i : C → C[W−1]

that is a Dwyer-Kan localization along the morphisms in W , i.e. for every ∞-category D the
functor

Fun(C[W−1],D)
i∗ // Fun(C,D)

is fully-faithful and the image consists of those functors that send morphisms in W to equivalences
in D.

Proof. This essentially goes back to [DK80]. An argument in the language of ∞-categories is given
for instance in [Lur14, Def. 1.3.4.1 and Rmk. 1.3.4.2]. One can define the localization to be a
fibrant replacement of the object (C,W ) in the cartesian model structure on marked simplicial
sets Set+∆. �
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Remark. This universal property characterizes the ∞-category C[W−1] up to equivalence.

Definition 3.2. We define the ∞-category KK∞ to be the ∞-category obtained from the
category C∗Alg by inverting the KK-equivalences. In formulas we have that KK∞ = NC∗Alg[W−1]
where W denotes the collection of KK-equivalences.

Remark. The ∞-category KK∞ is a full subcategory of the (presentable) ∞-category associated
to the (combinatorial) model category of pro-C∗-algebras, see [BJM17]. The homotopy category
of KK∞ is equivalent to the category KK of Theorem 2.3.

The following proposition is well known and has been established in various different situations.
For completeness we give an argument as well. For the notion and theory of stable ∞-categories,
see [Lur14, chapter 1].

Proposition 3.3. The ∞-category KK∞ is a small stable ∞-category.

To prove this we prove the following preliminary lemma. A similar statement in the case where
C is the ∞-category associated to a fibration category has also been made in [Cis10, section 3].

Lemma 3.4. Let C be an ∞-category.

(1) If C admits all finite limits then C is pointed if its homotopy category hC is.
(2) Let F : C → D be a limit-preserving functor between pointed ∞-categories that admit all

finite limits. Then F is an equivalence if and only if hF : hC → hD is.

Proof. To show the first part let ∗ ∈ C be a terminal object. We need to show that MapC(∗, X) is
contractible for all objectsX ∈ C. The condition that hC is pointed implies that π0(MapC(∗, X)) =
{∗} for all X ∈ C. Moreover, the diagram

ΩX //

��

∗

��
∗ // X

is a pullback in the ∞-category C. Thus we obtain that

MapC(∗,ΩX) ≃ ΩMapC(∗, X)

and hence for all objects X ∈ C we get that

πn(MapC(∗, X)) ∼= π0(MapC(∗,Ω
nX)) = {∗}

so part (1) follows.
To see the second part we recall that a functor is an equivalence if and only if it is essentially

surjective and fully-faithful (meaning the induced map on mapping spaces is an equivalence).
Essential surjectivity follows from the fact that hF is an equivalence. Now we consider the induced
map

MapC(X,Y ) // MapD(FX,FY ).

which is a bijection on π0 for all objects X,Y ∈ C by the assumption that hF is an equivalence.
Using that F preserves limits one shows that it also induces a bijection on πn for all n ≥ 0 and
all objects X,Y ∈ C. �

Proof of Proposition 3.3. First we notice that the category C∗Alg is small and thus the∞-category
NC∗Alg is also small. It follows that the localization KK∞ is small as well. Thus it remains to
show that KK∞ is stable. Following [Lur14, Corollary 1.4.2.27] we will show that KK∞ admits
all finite limits, is pointed and that the loop functor Ω: KK∞ → KK∞ is an equivalence.

Since C∗Alg is a fibration category, see [Uuy13, Theorem 2.29], it follows by [Cis10, section
3] that the simplicial localization admits a homotopy terminal object and homotopy pullbacks.
Using [Lur09, Theorem 4.2.4.1] one deduces that KK∞ admits a terminal object and pullbacks.
It follows from the dual statement of [Lur09, Corollary 4.4.2.4] that KK∞ thus admits all finite
limits. Also consult [Szu14] for a discussion of the relation between (co)fibration categories and
∞-categories.
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To see that KK∞ is pointed we apply Lemma 3.4, using that KK is pointed. Since Ω preserves
all limits it follows that Ω: KK∞ → KK∞ is an equivalence if it induces an equivalence on KK,
again recall Lemma 3.4. This follows since KK is known to be triangulated with shift functor
induced by Ω, see e.g. [Uuy13, Theorem 2.29] or Theorem 2.3 part (3). �

Definition 3.5. Recall that we denote by S the ∞-category of spaces, by Sp the ∞-category of
spectra and by Sp≥0 ⊆ Sp the full subcategory of connective spectra. There are canonical maps

Sp
τ≥0 // Sp≥0

Ω∞

// S

which are all right adjoints. For two ∞-categories C,C′ that admit finite products we denote the
functor category of product preserving functors by FunΠ(C,C′), and if C,C′ admit all finite limits

we denote the functor category of limit-preserving functors by FunLex(C,C′).

We need the following general lemma about ∞-categories.

Lemma 3.6. Let D be a stable resp. additive ∞-category. Then the Yoneda embedding admits
an essentially unique refinement as indicated in the following diagram.

D //

))

✴

✼

❇

▼

FunLex(Dop, S) resp. D //

((

✵

✽

❈

◆

FunΠ(Dop, S)

FunLex(Dop, Sp)

Ω∞≃

OO

FunΠ(Dop, Sp≥0)

Ω∞≃

OO

We will write X for the image of an object X ∈ D under these functors. Given any object X ∈ D

and any functor F ∈ FunLex(D, Sp), resp. F ′ ∈ FunΠ(D, Sp≥0), there are equivalences

MapFun(D,Sp)(X,F )
≃ // Ω∞FX

MapFun(D,Sp≥0)
(X,F ′)

≃ // Ω∞F ′X

of spaces.

Proof. The first part follows from the fact that the maps

FunLex(D, Sp)
Ω∞

// FunLex(D, S)

FunΠ(D, Sp≥0)
Ω∞

// FunΠ(D, S)

are equivalences, which follows from [Lur14, Corollary 1.4.2.23] in the stable case and from
[GGN15, Corollary 2.10] in the additive case. Notice that there is an equivalence GrpE∞

(S) ≃
Sp≥0. For the second part we recall from [Lur09, Lemma 5.5.2.1] that for all G ∈ Fun(D, S), there
is an equivalence

MapFun(D,S)(X,G) // GX

which by the above equivalences finish the proof of the lemma. �

Remark. In an informal way this encodes that a stable (additive) ∞-category is enriched in the
stable ∞-category of spectra (the additive ∞-category of connective spectra).

Since we know that both K and L-theory can be viewed as functors NC∗Alg → Sp we want to
argue that we can view them as functors on KK∞.

Proposition 3.7. The following statements hold true.

(1) The corepresented functor mapKK∞
(C,−) : KK∞ → Sp is equivalent to K-theory,

(2) The functor L : NC∗Alg → Sp factors through KK∞.
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Proof. We prove the first statement first. Obviously the functor

K : NC∗Alg → Sp

sends KK-equivalences to equivalences. Thus by the universal property of the localization functor
NC∗Alg → KK∞ it follows that K-theory factors through KK∞. We want to argue that K-theory
can be viewed as an object of FunLex(KK∞, Sp). This is because a functor preserves finite limits
if and only if it preserves pullbacks and the terminal object, see [Lur09, Corollary 4.4.2.5]. Clearly
K-theory preserves the terminal object and pullbacks because it preserves fiber sequences. Thus
from Lemma 3.6 we obtain an equivalence

MapFun(KK∞,Sp)(mapKK∞
(C,−),K) ≃ Ω∞(KC).

We may thus consider the commutative diagram

π0

(
MapFun(KK∞,Sp)(mapKK∞

(C,−),K)
)

//

π0

��

π0 (Ω
∞(KC))

π0

��
HomFun(KK,Ab)(KK(C,−),K0) // K0(C)

where both horizontal arrows are isomorphisms by the corresponding Yoneda lemma. We have al-
ready argued that the element 1 ∈ K0(C) comes from some isomorphism between the corepresented
functor and the K0-theory functor on KK. By the fact that the right vertical arrow and top hori-
zontal arrow are isomorphisms it follows that there exists a transformation η : mapKK∞

(C,−) → K
that induces an isomorphism

ηA : π0(mapKK∞
(C, A))

∼=
−→ π0(KA)

for all C∗-algebras A. Since η is a transformation between exact functors it follows that the
diagram

πn(mapKK∞
(C, A)) //

∼=

��

πn(KA)

∼=

��
π0(mapKK∞

(C, SnA)) ∼=
// π0(K(SnA))

commutes. The lower horizontal map is an isomorphism by the previous argument, and both
vertical maps are isomorphisms since the functors are exact. Thus η is an equivalence as claimed.

In order to prove (2) we need to see that L-theory sends KK-equivalences to weak equivalences
of spectra. This was established in Corollary 2.9. �

3.2. The construction of the natural map. We are now in the position to prove the following
theorem.

Theorem 3.8. For every n ∈ Z there exists a natural transformation τ(n) : k → ℓ, unique up to
homotopy, characterized by the property that τ(n)C : π0(ku) → π0(ℓC) is given by multiplication
by n. More precisely the map

π0

(
MapFun(NC∗Alg,Sp≥0)

(k, ℓ)
)

// Z

[η] ✤ // π0(ηC)(1)

is a bijection.

Proof. We have seen that L-theory factors over KK∞ and thus want to appeal to the Yoneda lemma
to calculate transformations from K-theory to L-theory. Thus to obtain a natural transformation
between K- and L-theory (viewed as connective spectra-valued functors) we need that the functor
ℓ : KK∞ → Sp≥0 commutes with finite products, see Lemma 3.6. Recall form Proposition 3.1 that

Fun(KK∞, Sp) → Fun(NC∗Alg, Sp)
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is fully faithful. Since the map NC∗Alg → KK∞ preserves products also FunΠ(KK∞, Sp) is a full

subcategory of FunΠ(NC∗Alg, Sp). Thus it suffices to see that L : NC∗Alg → Sp preserves finite
products. Recall that this is well known for unital C∗-algebras. In Corollary 4.4 we show that it
also holds for non unital C∗-algebras.

Hence we have the following chain of equivalences

MapFun(C∗Alg,Sp≥0)
(k, ℓ) MapFun(KK∞,Sp≥0)

(k, ℓ)
≃oo ≃ // Ω∞(ℓC)

where the first equivalence follows from Proposition 3.1 and the second equivalence is precisely
Lemma 3.6. We get that

π0

(
MapFun(KK∞,Sp≥0)

(k, ℓ)
) ∼=
−→ π0(ℓC) ∼= Z.

Furthermore the diagram

π0

(
MapFun(KK∞,Sp≥0)

(k, ℓ)
)

//

��

π0(ℓC)

��

// Z

��
HomFun(KK,Ab)(K0, L0) // L0(C) // Z

commutes. This proves the theorem. �

We remark that the proof implies that

τ = τ(1) ∈ MapFun(KK∞,Sp≥0)
(k, ℓ),

is a transformation whose effect on π0 is the transformation described in Theorem 2.8.

3.3. Multiplicative properties. In this section we want to investigate the multiplicative prop-
erties of the two functors K- and L-theory and how the natural map between them respects
multiplicative structures. We recall the definition of a symmetric monoidal structure on an ∞-
category, see [Lur14, chapter 2].

Definition 3.9. A symmetric monoidal ∞-category is a coCartesian fibration C⊗ p
−→ NFin∗ such

that the Segal maps induce equivalences

C
⊗
〈n〉

≃ // ∏
n
C
⊗
〈1〉

for all 〈n〉 ∈ NFin∗. The fiber C⊗
〈1〉 over 〈1〉 will be denoted by C and referred to as the underlying

∞-category. For two symmetric monoidal ∞-categories C⊗ → NFin∗ and D⊗ → NFin∗ we write
Fun⊗(C,D) for the ∞-category of symmetric monoidal functors from C to D. Those are just
functors C⊗ → D⊗ over NFin∗ such that all coCartesian lifts are carried to coCartesian lifts. We
write Funlax(C,D) for the ∞-category of lax symmetric monoidal functors from C to D. Those
are the functors C⊗ → D⊗ over NFin∗ such that coCartesian lifts of inert morphisms in NFin∗ are
carried to coCartesian lifts.

As discussed in Section 2.1 the category C∗Alg admits a symmetric monoidal structure given
by the maximal tensor product of C∗-algebras. It follows that the ∞-category NC∗Alg admits a
symmetric monoidal structure in the above sense, cf. [Lur14, Remark 2.0.0.6]. We want to argue
that this extends to a symmetric monoidal structure on KK∞. For this we invoke the general
theory of [Hin16, Section 3]. For convenience we recall the setup.

Definition 3.10. Let C⊗ p
−→ NFin∗ be a symmetric monoidal ∞-category. Suppose that W ⊆ C

is a collection of morphisms in the underlying ∞-category C. We define a collection W⊗ ⊆ C⊗ of
morphisms as follows. We say f is in W⊗ if

(1) we have that p(f) = id〈n〉 for some 〈n〉 ∈ NFin∗ and

(2) under the equivalence C⊗
〈n〉 ≃

∏
n
C the morphism f corresponds to a tuple (f1, . . . , fn) such

that all fi belong to W .
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We say that the collection W of morphisms in C is compatible with the monoidal structure if the
tensor bifunctor (which is essentially uniquely determined by C⊗ → NFin∗)

⊗ : C× C → C

preserves morphisms in W in both variables separately.

Remark. Recall that the tensor bifunctor is given by

µ! : C
2 ≃ C

⊗
〈2〉 → C

⊗
〈1〉 = C

where µ : 〈2〉 → 〈1〉 is the unique active morphism. Now suppose that W is a collection of
morphisms compatible with the monoidal structure in C so that µ! preserves morphisms in W⊗.
Then it follows formally that the same is true for any active morphism: if α : 〈n〉 → 〈m〉 is active,
then the induced functor

α! : C
⊗
〈n〉 → C

⊗
〈m〉

preserves morphisms in W⊗. We notice that for an inert morphism β : 〈k〉 → 〈l〉 ∈ NFin∗ the
induced functor

β! : C
⊗
〈k〉 → C

⊗
〈l〉

preserves morphisms in W⊗ by definition of W⊗. Thus W is compatible with the monoidal
structure in the sense of Definition 3.10 if and only if for every morphism α ∈ NFin∗ the induced
functor α! preserves morphisms in W⊗.

Let C⊗ → NFin∗ be a symmetric monoidal ∞-category and let W ⊆ C be a collection of
morphisms in the underlying ∞-category which is compatible with the monoidal structure in the
sense of Definition 3.10. We will denote the ∞-category C⊗[(W⊗)−1] by C[W−1]⊗. By definition
it comes with a canonical map C[W−1]⊗ → NFin∗. The following result is due to Hinich [Hin16],
more specifically see Proposition 3.2.2 and the remark after Definition 3.3.1 therein.

Proposition 3.11. C[W−1]⊗ → NFin∗ is a symmetric monoidal ∞-category and the localization
map i : C⊗ → C[W−1]⊗ is symmetric monoidal. Moreover the underlying ∞-category of C[W−1]⊗

is equivalent to C[W−1]. Given any symmetric monoidal ∞-category D⊗ → NFin∗ we have that
the restriction map

Fun⊗(C[W
−1],D)

i∗
−→ FunW⊗ (C,D)

is an equivalence. Here the superscript W refers to functors whose induced functor on underlying
∞-categories sends W to equivalences. Similarly we also have that

Funlax(C[W
−1],D)

i∗
−→ FunWlax(C,D)

is an equivalence.

We apply this construction to the category C∗Alg with the maximal tensor product as symmetric
monoidal structure and obtain

Corollary 3.12. There is a symmetric monoidal structure KK⊗
∞ on KK∞ such that the localiza-

tion map i : NC∗Alg → KK∞ admits a symmetric monoidal refinement. Moreover, for any other
symmetric monoidal ∞-category D⊗ → NFin∗ we have that the functor

Funlax(KK∞,D)
i∗
−→ FunWlax(NC

∗Alg,D)

is an equivalence where the superscript W refers to functors whose underlying functor sends KK-
equivalences to equivalences.

Recall from [Nik16, Definition 4.1] that a stable and symmetric monoidal ∞-category is called
stably symmetric monoidal if the tensor bifunctor is exact in both variables.

Lemma 3.13. The symmetric monoidal ∞-category KK⊗
∞ is stably symmetric monoidal.
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Proof. It suffices to prove that the tensor bifunctor preserves finite sums and fiber sequences
separately in both variables. For finite sums this is clear since tensoring with a sum of algebras
is a sum of the tensor products. To get the result for fiber sequences we use that the existence of
the fibration category structure on C∗Alg whose fibrations are the Schochet fibrations implies that

every fiber sequence in KK∞ is equivalent to one induced by a short exact sequence I → A
p
−→ B

where p is Schochet fibration. Thus if we tensor with some D we obtain a sequence which is still
short exact by Proposition 2.2 and the map D⊗ p is still a Schochet fibration by the remark after
Proposition 2.2. Thus it follows that it is still a fiber sequence in KK∞. �

Corollary 3.14. K-theory K ∈ Fun(KK∞, Sp) has a canonical lax symmetric monoidal refine-

ment. With this structure it is initial in FunLexlax (KK∞, Sp). Similarly, connective K-theory is

initial in FunΠlax(KK∞, Sp≥0).

Proof. This is [Nik16, Corollary 6.8] using that K-theory is equivalent to the functor corepresented
by the tensor unit object C, recall Proposition 3.7, and the fact that KK⊗

∞ is stably symmetric
monoidal as shown in Lemma 3.13. �

The following statement has been studied in different contexts, see [Lur11] and [LM14] in the
case of unital rings. We refer to Appendix A, more specifically Proposition A.4, where we argue
how to deduce the following proposition from the the results of [LM13].

Proposition 3.15. The functors L ∈ Fun(NC∗Alg, Sp) and ℓ ∈ Fun(NC∗Alg, Sp≥0) admit lax
symmetric monoidal refinements.

Remark. In the appendix we prove the statement about the non-connective L-theory functor.
Since the functor τ≥0 : Sp → Sp≥0 is itself lax symmetric monoidal this implies the second part of
Proposition 3.15.

Corollary 3.16. The functors L ∈ Fun(KK∞, Sp) and ℓ ∈ Fun(KK∞, Sp≥0) admit lax symmetric
monoidal refinements.

Proof. This follows by Proposition 3.15 and Proposition 3.11. �

Theorem 3.17. There is an essentially unique multiplicative transformation τ : k → ℓ. Its
underlying transformation is equivalent to τ(1) as constructed in Theorem 3.8.

Proof. Since k ∈ Funlax(KK∞, Sp≥0) is initial we see that there is an essentially unique element

τ ∈ MapFunlax(KK∞,Sp≥0)
(k, ℓ).

The canonical map

MapFunlax(KK∞,Sp≥0)
(k, ℓ) // MapFun(KK∞,Sp≥0)

(k, ℓ)

takes this to the natural transformation τ(n) for some n, see Theorem 3.8. The number n is
determined by its effect on

Z ∼= π0(ku) −→ π0(ℓC) ∼= Z,

namely τ(n) induces multiplication with n. Since τ is multiplicative it follows that τ(n) is a map
of rings and thus that n = 1. �

Corollary 3.18. The map τC : ku → ℓC is a map of E∞-ring spectra.

Remark. Composing the map τC with the complex orientation MU → ku yields a complex
orientation of ℓC and thus also of LC. This orientation is very different from the one obtained
through the Sullivan-Ranicki orientation MU → MSO → LZ → LC. Using the computation of
the map τC in the next section one can deduce that the formal group law of the new orientation
is given by x+ y+2xy. The other orientation leads to a more complicated formal group law (e.g.
it is a non finite power series) but of course the two are related by a change of coordinates. It is
immediately clear that the formal group law x+y+2xy is isomorphic to the multiplicative formal
group law when localized away from 2. Writing down the logarithm shows that after localizing
at 2 this group law is isomorphic to the additive formal group law. This algebraic observation
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is compatible with the fact that at the prime 2 the spectrum LC is a generalized Eilenberg-Mac
Lane spectrum and away from 2 it is equivalent to K-theory. Notice that this implies in particular
that the spectrum LC is not Landweber exact.

4. The effect on homotopy groups

The main goal of this section is to calculate the effect of the multiplicative transformation
τ : k → ℓ constructed in Theorem 3.17 on homotopy groups. If M is an abelian group and n ≥ 0
we denote by Mn the subgroup of n-torsion elements. We will prove the following theorem.

Theorem 4.1. For i ∈ {0, 1}, all k ≥ 0, and all A ∈ C∗Alg there is an exact sequence

0 // π2k+i(kA)2k // π2k+i(kA)
τA // π2k+i(ℓA) // π2k+i(ℓA)

2k·π2k+i(ℓA)
// 0 .

The other maps τ(n) : k → ℓ constructed in Theorem 3.8 are given by n · τ , thus it is easy to
deduce similar results for those.

The main method for the calculations we need is to understand how close the canonical map

ΘA : ΣL(SA) → LA

is from being an equivalence.

4.1. Excision in L-theory. Assume we have a diagram of rings

R //

��

S

p

��
T

q
// U

which is a pullback and in which either p or q is surjective. In [Mil71, Theorem 3.3] it is shown that
a pullback square as above induces a long exact Mayer-Vietoris sequence in algebraic K-theory
connecting degree 1 to degree 0, i.e. that there is an exact sequence

Kalg
1 (R) → Kalg

1 (S)⊕Kalg
1 (T ) → Kalg

1 (U) → Kalg
0 (R) → Kalg

0 (S)⊕Kalg
0 (T ) → Kalg

0 (U).

Using Bass’ definition of negative K-groups it follows formally that this sequence can be extended
to the right by negative K-groups, see [Wei13, III Theorem 4.3].

A crucial property of L-theory is that it does not admit such Mayer-Vietoris sequences in
general. But there is a formula calculating the defect. This is the content of the following discussion
which in similar forms has been investigated by Ranicki [Ran81, Chapter 6] and Weiss-Williams
[WW98]. The setup is as follows. Let

R //

��

S

p

��
T q

// U

be a pullback square of involutive not necessarily unital rings where again, say, p is surjective. We
define the algebraic K-theory of a non-unital ring R to be

Kalg
0 (R) = ker

(
Kalg

0 (R+) → Kalg
0 (Z)

)
∼= coker

(
Kalg

0 (Z) → Kalg
0 (R+)

)
.

and let

X = coker
(
Kalg

0 (S)⊕Kalg
0 (T ) → Kalg

0 (U)
)
.

We can now consider the commutative square of spectra

LR //

��

LS

��
LT // LU
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which produces an essentially unique map

LS ⊕LR LT // LU

where the left hand side denotes the pushout of the above diagram.

Theorem 4.2. In the situation of above, suppose that in addition 2 is invertible in all rings.
Then there is a fiber sequence

LS ⊕LR LT // LU // (HX)tC2

of spectra, where HX denotes the Eilenberg-MacLane spectrum on X.

Remark. First we notice that there is a natural C2-action on the algebraic K-theory of an
involutive ring. This action is induced by sending a projective left-module P to its dual module,
HomR(P,R) which one can view as a left-module via the involution on R. Since we declared
the above square to be one of involutive rings it follows that there is an induced action of C2

on the group X . The superscript tC2 in (HX)tC2 refers to the Tate construction of this group
action. This is a spectrum with the property that the homotopy groups are given by classical Tate
cohomology:

π∗((HX)tC2) ∼= Ĥ−∗(C2;X).

Proof of Theorem 4.2. First we show how to reduce the theorem to the case where all rings in
question are unital. For that we look at the diagram obtained by unitalizing all rings. After
applying L-theory we then obtain a commutative diagram of spectra

LR //

��

!!❉
❉

❉

❉

❉

❉

❉

❉

LR+ //

��✤
✤

✤

✤

✤

✤

✤

##●
●

●

●

●

●

●

●

●

LZ

��✤
✤

✤

✤

✤

✤

✤

!!❈
❈

❈

❈

❈

❈

❈

❈

LS //

��

LS+ //

��

LZ

��

LT //❴❴❴❴❴❴❴

!!❉
❉

❉

❉

❉

❉

❉

❉

LT+ //❴❴❴❴❴❴❴❴

##●
●

●

●

●

LZ

!!❈
❈

❈

❈

LU // LU+ // LZ

Since the horizontal composites are all fiber sequences and the most right vertical square is a
pullback it follows that the most left vertical square is a pullback if and only if the middle vertical
square is a pullback. More precisely, comparing cofibers carefully one can see that the diagram

LS ⊕LR LT //

��

LS+ ⊕LR+ LT+

��
LU // LU+

is a pullback diagram. Thus if we assume the theorem in the case where all rings are unital we
obtain a fiber sequence

LS ⊕LR LT // LU // (HX)tC2

where

X = coker
(
Kalg

0 (S+)⊕Kalg
0 (T+) → Kalg

0 (U+)
)

But by our definition of K-groups for non-unital rings it follows that

X ∼= coker
(
Kalg

0 (S)⊕Kalg
0 (T ) → Kalg

0 (U)
)
.

Thus it remains to prove the theorem in the case where all rings are unital.
One can then be more specific and even give a concrete description of the pushout LS ⊕LR LT

in terms of L-theory. For an involutive ring and every C2-invariant subgroup Z ⊆ Kalg
0 (R) there

is a spectrum LZ(R) called L-theory with control in Z. Roughly speaking classes are represented
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by symmetric Poincaré complexes (C,ϕ) whose underlying K-theory class [C] ∈ Kalg
0 (R) lies in

Z, see e.g. [Wil05] for details. It is proven in [Ran81, 6.3.1] that in the situation of the theorem,
with

Z = ker
(
Kalg

0 (U) → X
)

there is a pullback diagram

LR //

��

LS

��
LT // LZU

and thus LS ⊕LR LT ≃ LZU . For this one needs to show that the diagram

Kalg
0 (R) //

��

Kalg
0 (S)

��
Kalg

0 (T ) // Z

is cartesian in the sense of [Ran81, page 498], which is clear from the definition of Z. Notice
that cartesian in Ranicki’s sense does not mean that it is a cartesian square in abelian groups but
rather that it is a cocartesian square of abelian groups.

We have now seen that the map LS ⊕LR LT → LU is equivalent to the map

LZU // LU

whose cofiber is equivalent to H(Kalg
0 (U)/Z)tC2 ≃ (HX)tC2 by the spectral Rothenberg sequence

as described in [Wil05, page 27]. Thus the theorem follows. �

Corollary 4.3. Consider a diagram of involutive rings in which 2 is invertible

R //

��

S

��
T // U

^^

which is a pullback and where the right vertical map admits a multiplicative section. Then the
associated square of L-theory spectra is a pullback square.

Proof. If the map p admits a multiplicative split it follows that the map Kalg
0 (S) → Kalg

0 (U) is
surjective. Thus X = 0 and then Theorem 4.2 directly implies the claim. �

Corollary 4.4. L-theory commutes with products in C∗Alg.

Proof. Recall from Proposition 2.6 that L-theory commutes with products of unital rings and thus
with products in C∗Algunit. To show the general situation, we consider the diagram

(A×B)+ //

��

A+ ×B+

��
C

∆
// C× C

\\

which is a pullback diagram as in Corollary 4.3. Thus the associated square of L-theory spectra
is a pullback square and hence the canonical map of vertical fibers

L(A×B) // LA⊕ LB

is an equivalence as claimed. �



ON THE RELATION BETWEEN K- AND L-THEORY OF C∗-ALGEBRAS 19

Corollary 4.5. Suppose that

R //

��

S

p

��
T

q
// U

is a pullback square of involutive rings where p is surjective. Then the square

LR[ 12 ]
//

��

LS[ 12 ]

��
LT [ 12 ]

// LU [ 12 ]

is a pullback diagram.

Proof. This follows from the fact that Tate cohomology of C2 is 2-torsion and thus (HX)tC2 [ 12 ] ≃ 0.
The condition that 2 is invertible in the rings is not needed. The reason is that Theorem 4.2 holds
without the assumption that 2 is invertible if we work in quadratic L-theory Lq. But for every
ring R the canonical map

LqR[ 12 ] → LR[ 12 ]

is an equivalence, thus the statement also holds in symmetric L-theory after inverting 2. �

Let A be a C∗-algebra. We can then consider the diagram

SA //

��

CA

p

��
0 // A

which is a pullback diagram in which the map p is surjective. The algebra CA is contractible as
a C∗-algebra and thus KK-equivalent to 0. Since L-theory sends KK-equivalences to equivalences
it follows that L(CA) ≃ 0. Hence we get that

0⊕L(SA) L(CA) ≃ 0⊕L(SA) 0 ≃ ΣL(SA)

and obtain a canonical map

ΣL(SA)
ΘA // LA .

Proposition 4.6. Let A be a C∗-algebra. Then there is a fiber sequence

ΣL(SA) // LA // H(K0(A))
tC2 .

The associated long exact sequence decomposes into two parts: an exact sequence

0 // Ĥ−2k−1(C2;K0(A)) // π2k−1(L(SA)) // π2k(LA) // Ĥ−2k(C2;K0(A)) // 0

and an isomorphism

π2k(L(SA))
∼= // π2k+1(LA).

Proof. The fiber sequence is a direct consequence of Theorem 4.2 using that for a C∗-algebra A we

have K0(A) ∼= Kalg
0 (A). To prove the second part we consider the following commutative square

LA //

��

H(K0(A))
tC2

∼=
��

LA+ // H(K̃0(A
+))tC2

where K̃0(B) denotes reduced K-theory of a ring B. The upper horizontal fiber is ΣL(SA) by
the first part. The lower horizontal fiber is what is called free L-theory of A+ and denoted by
L〈h〉(A+) following conventions from geometric topology. The associated long exact sequence is
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the classical Rothenberg exact sequence relating free and projective L-groups, see e.g. [Ran81,
Proposition 1.10.1]. Then we obtain an induced diagram

ΣL(SA) //

��

LA //

��

H(K0(A))
tC2

∼=
��

L〈h〉(A+) // LA+ // H(K̃0(A
+))tC2

(1)

Notice that since the middle vertical map splits it follows that also the most left vertical map
splits. It is proven in [Ros95, Remark 1.7] that the classical Rothenberg sequence decomposes as
described in the statement of the proposition. This proof given in [Ros95] relies on the statement

that π0(KA) ∼= π0(LA), see Theorem 2.8, and a similar analysis of the free L-group L
〈h〉
0 (A) in

terms of K-groups. Using that the vertical maps in (1) split, a diagram chase then finishes the
proof of the proposition. �

Corollary 4.7. For the algebra A = C we have a short exact sequence

0 // L1(SC) // L2(C) // Z/2 // 0

Proof. By Proposition 4.6 we only need to argue why Ĥ−3(C2,K0(C)) = 0 and Ĥ−2(C2,K0(C)) =
Z/2. Both facts follow since K0(C) ∼= Z carries the trivial C2-action and the computation of Tate
cohomology in this case. �

Remark. The triviality of the C2-action on K0(C) holds in greater generality: For a C∗-algebra
A, all elements in K0(A) can be represented by (formal differences) of self-adjoint idempotents.
Thus the action of C2 on K0(A) is always trivial.

4.2. The proof of Theorem 4.1. The strategy will be to first prove Theorem 4.1 in the case
A = C and then prove the general case using that the map kA → ℓA is a module map over
ku → ℓC and explicit low dimensional calculations. For this we need some preparatory lemmas.

Lemma 4.8. The transformation τ satisfies that the map

τA : πi(kA)
∼=
−→ πi(ℓA)

is an isomorphism for all A ∈ KK∞ and i ∈ {0, 1}.

Proof. The case i = 0 follows since τ was chosen to lift the isomorphism of Theorem 2.8 on
π0, compare the remark after the proof of Theorem 3.8. For the case i = 1 we consider the
commutative diagram

π0(k(SA))
∼= //

∼=

��

π1(kA)

��
π0(ℓ(SA)) ∼=

// π1(ℓA)

where the horizontal maps come from the canonical maps of spectra

Σk(SA) → kA and Σℓ(SA) → ℓA

which is an isomorphism on π0 for (topological) K-theory (as K-theory is excisive) and it is the
content of Proposition 4.6 that it also an isomorphism for L-theory. Thus we deduce the claim
from the case i = 0. �

Using that both π2(ku) and π2(ℓC) are infinite cyclic groups we now obtain the following

Lemma 4.9. There is a generator b ∈ π2(ℓC) such that the map τC : ku → ℓC satisfies

π2(ku) // π2(ℓC)

β ✤ // 2b
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Proof. We consider the commutative diagram

π1(k(SC))
∼= //

∼=

��

π2(ku)

��
π1(ℓ(SC))

·2
// π2(ℓC)

The left vertical map is an isomorphism by Lemma 4.8. The upper horizontal map is an isomor-
phism since K-theory is excisive and the fact that the lower horizontal map is given by multipli-
cation by 2 follows from Corollary 4.7. �

Proof of Theorem 4.1. Recall from Corollary 3.18 that since τ is multiplicative it follows that the
map τC : ku → ℓC is a map of E∞-ring spectra. Thus Lemma 4.9 and the fact that ku∗ = Z[β]
and ℓC∗ = Z[b] imply that

τC(β
k) = 2k · bk.(2)

For i ∈ {0, 1} and k ≥ 0 we consider the diagram

πi(kA)⊗ π2k(ku)
∼= //

τA⊗τC

��

π2k+i(kA)

τA

��
πi(ℓA)⊗ π2k(ℓC) ∼=

// π2k+i(ℓA)

which commutes because τ is lax symmetric monoidal (see Theorem 3.17). Here the horizontal
arrows come from the module structures of kA and ℓA over ku and ℓC respectively and are
isomorphisms by the respective periodicities. The proposition now follows from Lemma 4.8 and
Equation (2). �

5. Applications

Corollary 5.1. The two functors K[ 12 ], L[
1
2 ] : C

∗Alg → Sp are equivalent as lax symmetric
monoidal functors.

Proof. We will use that

KA ≃ kA[β−1] and LA ≃ ℓA[b−1]

which follows from periodicity. From Lemma 4.9 we see that the transformation τC sends β to 2b.
If we want to extend this map periodically we thus have to invert 2 in the target. The fact that
the kernel and cokernel of τA are 2-torsion as shown in Theorem 4.1 then implies that we get the
desired equivalence after inverting 2. �

Remark. The fact that there is a natural equivalence KA[ 12 ] → LA[ 12 ] can also be proven without
the explicit computation of the map τA on homotopy. We will do this in the real case in Theo-
rem 5.2 below. The key ingredient is to see that L[ 12 ] ∈ FunLex

lax (KK∞, Sp) so that one can appeal
to the stable Yoneda lemma.

5.1. Real version. Let R∗Alg be the category of separable real C∗-algebras. It still has a forgetful
functor to the category of non-unital involutive rings. Thus we may consider the functors

KO,L : NR∗Alg → Sp

just as we have done before by replacing complex by real C∗-algebras throughout. The main
theorem we want to prove in this section is the following.

Theorem 5.2. The two functors KO[ 12 ], L[
1
2 ] : NR

∗Alg → Sp are equivalent as lax symmetric
monoidal functors.
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This builds on two things. Firstly there is a version of the KK-category for real C∗-algebras,
denoted by KKR, with the same properties as in the complex case, i.e. it is a localization of
R∗Alg along KK-equivalences and KO0(−) becomes corepresentable on KKR by the tensor unit
R. Indeed, R∗Alg admits the structure of a fibration category such that the associated∞-category
KKR

∞ is stable with the same proof as in the complex case, cf. Proposition 3.3. It is also symmetric
monoidal with respect to the maximal tensor product cf. Corollary 3.12. Furthermore the functor
mapKKR

∞
(R,−) is as a lax symmetric monoidal functor equivalent to KO : KKR

∞ → Sp.
The second thing is that we need L-theory to factor through the real KK-category. Recall that

we deduced this in the complex case from the fact that the L-groups and K-groups are naturally
isomorphic, see Theorem 2.8. The corresponding statement is not true for real C∗-algebras as
for example KO1(R) ∼= Z/2 but L1(R) = 0 shows. So we cannot conclude KK-invariance for
L-theory of real C∗-algebras as easily. But after inverting 2 it is still true that K and L-groups
are isomorphic as for example claimed in [Ros95, Theorem 1.11]. We will give an independent
argument for KK-invariance after inverting 2.

Let A ∈ R∗Alg. We denote by AC = A⊗RC its complexification which is a complex C∗-algebra.
From the inclusion A → AC we obtain a natural map LA → L(AC).

Proposition 5.3. After inverting 2 this map admits a natural retraction. It follows that the
functor A 7→ LA[ 12 ] is KK-invariant.

Proof. Recall that the L-theory of a ring R is given by considering perfect complexes over R with
a symmetric structure. We claim that the inclusion map A → AC induces a map L(AC) → LA by
restriction. Alternatively this map can be described as the composite

L(AC) → L(M2(A)) ≃ LA

using the canonical embedding

C ∋ (x+ iy) 7→

(
x −y
y x

)
∈ M2(R).

and the fact that L-theory is Morita invariant. The composite

LA → L(AC) → LA

obtained this way can be identified with multiplication by 2. Thus the composite

LA[ 12 ] → L(AC)[
1
2 ] → LA[ 12 ]

is an equivalence.
For the second part we observe that if f : A → B is a real KK-equivalence then by the first part

the map

Lf [ 12 ] : LA[
1
2 ] → LB[ 12 ]

is a retract of the map

L(AC)[
1
2 ]

L(fC)[
1
2 ] // L(BC)[

1
2 ]

which is an equivalence since fC : AC → BC is a complex KK-equivalence. �

Proof of Theorem 5.2. By Proposition 5.3 we see that L theory induces a functor

L[ 12 ] ∈ Fun(KK∞, Sp).

We thus want to argue that L[ 12 ] admits a lift along the map

FunLexlax (KK∞, Sp) → Fun(KK∞, Sp).

To show that L[ 12 ] is (left) exact we need to show that it commutes with finite limits. By [Lur09,

Corollary 4.4.2.5] it suffices to show that L[ 12 ] preserves the terminal object and pullbacks. It

is clear that L[ 12 ] preserves the terminal object and Corollary 4.5 shows that L[ 12 ] commutes
with pullbacks. As in Proposition 3.15 we see that L-theory admits a lax symmetric monoidal
refinement.
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Thus it follows as in Theorem 3.17 that there is an essentially unique lax symmetric monoidal
transformation τ : KO → L[ 12 ]. For the real C∗-algebra R this map induces on π0 the unique ring
map

Z ∼= π0(KO) → π0(LR[
1
2 ])

∼= Z[ 12 ].

As in the proof of Theorem 2.8 one can show that there is a natural isomorphismKO0(A) → L0(A)

for all real C∗-algebras. The Yoneda lemma for KKR implies that the effect on R determines a
natural transformation KO0 → L0 uniquely. Thus after inverting 2 this natural isomorphism has
to agree with τ because they agree on R. This shows that the map

τA : π0(KO(A)[ 12 ]) → π0(LA[
1
2 ])

is an isomorphism for all A. Finally it follows from excisiveness of both sides and the π0-case that
the induced transformation

τ : KO[ 12 ] → L[ 12 ]

is an equivalence as claimed. �

Corollary 5.4. The map

τR : KO[ 12 ] → LR[ 12 ]

is a map of E∞-ring spectra and an equivalence, thus an equivalence of E∞-ring spectra.

Remark. The fact that these two spectra are equivalent as homotopy ring spectra was already
observed in [Lur11, Lecture 25] by comparing the formal groups associated to these spectra. The
equivalence of underlying spaces Ω∞KO[ 12 ] ≃ Ω∞LR[ 12 ] has been known for a long time and is
due to Sullivan.

Notice that the canonical map LZ[ 12 ] → LR[ 12 ] is an equivalence of E∞-ring spectra as well.

Thus as a consequence of our corollary we get an equivalence of E∞-ring spectra KO[ 12 ] ≃ LZ[ 12 ].

5.2. Applications to assembly maps. The equivalence of the two functors KO[ 12 ] and L[ 12 ]
has the following application to the Baum-Connes and Farrell-Jones conjectures.

By Gpdω
2 we denote the (2, 1)-category of small groupoids with at most countable many mor-

phisms, here 2-morphisms are natural transformations. To any such groupoid one can associate
a separable C∗-algebra called the maximal full groupoid C∗-algebra, see [DL98, Remark 2.3],
[LNS17, Definition 6], or [Del12, 3.16] together with [Joa03, section 3]. As observed in [DL98],
this association is not functorial for all morphisms of groupoids, just for functors that are injective
on the set of objects. In [LNS17, Corollary 8] we prove the following proposition in the case of
complex C∗-algebras. The proof for the real case is verbatim the same.

Proposition 5.5. There is a functor

Gpdω
2 → KKR

∞

which on objects sends a groupoid to its real full groupoid C∗-algebra.

It follows from Theorem 5.2 that the compositions KO[ 12 ], L[
1
2 ] : Grpω2 → KKR

∞ → Sp are also
equivalent. Since Sp is the ∞-category associated to a combinatorial model category we obtain
that these restrictions can be identified with functors

KO[ 12 ], L[
1
2 ] : Gpdω → Sp1

that have the property that they send equivalences of groupoids to equivalences of spectra [Lur09,
Proposition 4.2.4.4]. Furthermore it follows that these functors are related through a zig-zag of
natural weak equivalences. It follows from the work of Davis and Lück [DL98] that their associated
assembly maps are equivalent. For the further discussion we adopt the terminology from [DL98].

It is well-known that the Baum-Connes assembly map (using the reduced group C∗-algebra)
factors through the version with the full group C∗-algebra. We obtain for every countable discrete
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group G a commutative diagram (the commutativity being ensured by the fact that the two
functors are equivalent)

KOG
∗ (EG)[ 12 ]

//

∼= τ

��

KO∗(C
∗(G;R))[ 12 ]

∼=τ

��
LRG

∗ (EG)[ 12 ]
FJ[

1
2 ] // L∗(RG)[ 12 ]

// L∗(C
∗(G;R))[ 12 ]

where the assembly map FJ[ 12 ] is isomorphic to the 2-inverted version of the map which is conjec-
tured to be an isomorphism in the Farrell-Jones conjecture. This follows from the fact that the
equivariant L-theory groups of the classifying space for virtually cyclic subgroups of G and the
equivariant L-theory groups of the classifying space for finite subgroups of G are isomorphic after
inverting 2, see [LR05, Proposition 2.18].

Furthermore the two squares

LRG
∗ (EG)[ 12 ]

// L∗(RG)[ 12 ] KO∗(C
∗(G;R))[ 12 ]

∼=τ

��

// KO∗(C
∗
r (G;R))[ 12 ]

∼=τ

��
LqZG

∗ (EG)[ 12 ]

∼=

OO

// Lq
∗(ZG)[ 12 ]

OO

L∗(C
∗(G;R))[ 12 ]

// L∗(C
∗
r (G;R))[ 12 ]

commute as well where LqZ is quadratic L-theory of the integers. Thus we can paste these
diagrams together to obtain the following theorem.

Theorem 5.6. Let G be a countable discrete group. Then the following diagram is commutative.

KOG
∗ (EG)[ 12 ]

BC[
1
2 ] //

∼= τ

��

KO∗(C
∗
r (G;R))[ 12 ]

∼=τ

��
LRG

∗ (EG)[ 12 ]
FJ[

1
2 ] // L∗(RG)[ 12 ]

// L∗(C
∗
r (G;R))[ 12 ]

LqZG
∗ (EG)[ 12 ]

∼=

OO

FJ[
1
2 ]

// Lq
∗(ZG)[ 12 ]

OO

Note that the upper horizontal map BC[ 12 ] in this diagram is the 2-inverted version of the
map which is conjectured to be an isomorphism in the Baum-Connes conjecture. We obtain the
following direct consequence.

Corollary 5.7. Let G be a countable discrete group. Suppose the real Baum-Connes map is
injective after inverting 2. Then so is the Farrell-Jones map in quadratic L-theory for the ring Z.

Remark. Recall that the real Baum-Connes assembly map is injective in all degrees after inverting
2 if and only if the complex Baum-Connes assembly map is injective in all degrees after inverting
2, [Sch04, Corollary 2.13]. Thus the above corollary remains true if the real Baum-Connes map
is replaced by the complex one provided one deals with all degrees at once. In the above version
injectivity is inherited for each single degree separately.

We now formulate the completion conjecture in L-theory.

Conjecture. The map induced by the completion

L∗(RG)[ 12 ] → L∗(C
∗
r (G;R))[ 12 ]

is an isomorphism.

Remark. We observe that the map

L0(RG) → L0(C
∗
r (G;R))
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is in general not an isomorphism. To see this we considerG = Zn. We use the Shaneson splitting to
calculate L0(RZ

n) and see that it is torsion free. Then we observe that Theorem 2.8 remains valid
in degree 0 for R∗-algebras. We can then use the Baum-Connes conjecture (which is confirmed
for free abelian groups) to calculate that

L0(C
∗
r (Z

n;R)) ∼= KO0(C
∗
r (Z

n;R)) ∼= KO0(BZn))

and notice that since T n ≃ BZn splits stably we see 2-torsion in these groups coming from the
2-torsion of π∗(KO) as soon as n is big enough. Thus the completion conjecture without inverting
2 is not valid.

We conclude with the observation that from the commutative diagram of Theorem 5.6 we see
that there is a 3-for-2 property for the following statements:

(i) The Baum-Connes conjecture holds after inverting 2 for the discrete group G,
(ii) The Farrell-Jones conjecture over R holds after inverting 2 for the discrete group G,
(iii) The completion conjecture in L-theory holds for the discrete group G.

6. Integral maps between KU and LC

We have shown that there exists a natural map τ : k → ℓ which induces an equivalence between
the periodic versions after inverting 2. One could hope that there also exists an integral map
between the periodic versions which becomes an equivalence after inverting 2 or a map in the
other direction. It turns out that this is not the case. This is a consequence of the following
theorem.

Theorem 6.1. We have that

[LC,KU ] = [KU,LC] = [ℓC,KU ] = [ℓC, ku] = 0

i.e. any such map is null homotopic.

The proof of this theorem will proceed in several steps. We need a couple of lemmas to get
started. A first observation is the following general

Proposition 6.2. Let R be a ring spectrum and M be an R-module spectrum. If R is admits
the structure of an HZ-module then so does M .

Proof. We first notice that it is equivalent for a spectrum X to admit the structure of an HZ-
module and to be equivalent to the generalized Eilenberg-MacLane spectrum on its homotopy
groups. The module multiplication map and the unit of the ring spectrum give a factorization of
the identity of M

M // R⊗M // M

which shows that M is a retract of R⊗M . Since R is an HZ-module, so is R⊗M . By the above
this implies that R⊗M is a generalized Eilenberg-MacLane spectrum. So the proposition follows
if we show that the category of generalized Eilenberg-MacLane spectra is closed under retracts. It
follows from the functoriality of homotopy groups that if Y is a retract of X then π∗(Y ) is a retract
of π∗(X) and it is easy to see that the map Y → X → Hπ∗(X) → Hπ∗(Y ) is an equivalence. �

Corollary 6.3. For all A ∈ C∗Alg, the spectrum LA(2) admits the structure of an HZ-module.

Proof. First we need to recall that LZ is an algebra over MSO due to the Sullivan-Ranicki ori-

entation MSO
σ
−→ LZ. In particular for any A ∈ C∗Alg the spectrum LA is a module over MSO

und thus LA(2) is a module over MSO(2) which admits the structure of an HZ-module, see e.g.
[TW79, Theorem A]. �

Remark. The HZ-module structure on LA(2) is not canonical, but for our purposes it suffices to
choose some HZ-module structure for each algebra A.

Corollary 6.4. The spectra KU and LC are not equivalent, although their homotopy groups are
naturally isomorphic.

Proof. It is well known that KU(2) does not admit the structure of an HZ module. �
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Definition 6.5. We call a spectrum X even if all its odd homotopy groups vanish. We remark
that any such spectrum is complex orientable as the obstructions to being complex oriented lie in
odd homotopy groups of X .

Lemma 6.6. If E and F are even homotopy ring spectra and E is Landweber exact, then E⊗F
is even. In particular KU ⊗ LC and KU ⊗ ℓC are even.

Proof. Since E is assumed to be Landweber exact we have

E∗F ≃ MU∗F ⊗MU∗
E∗

and since MU∗ and E∗ are even it thus suffices to prove that MU∗F is even. For this we see that

MU∗F = F∗MU ∼= F∗(BU)

by the Thom-isomorphism for F . But since F is even and BU has even homology the Atiyah
Hirzebruch spectral sequence implies that F∗(BU) is even. �

Lemma 6.7. Suppose R is a torsion free commutative ring such that the additive and the
multiplicative formal group law are isomorphic. Then R is a Q-algebra.

Proof. We can formally write down the logarithm of the multiplicative formal group law and see
that this forces all primes to act invertibly on R. �

Corollary 6.8. The spectrum KU ⊗HZ is rational.

Proof. This is a classical fact, see [AH68] for a more general statement. A nice proof using formal
groups goes as follows. The spectrum KU ⊗ HZ has two complex orientations, one coming from
KU and one coming from HZ. Thus on π∗(KU ⊗HZ) the additive and the multiplicative formal
group law are isomorphic: This is a general fact, see [Rez07, pages 3,4]. Since by Lemma 6.6
the spectrum KU ⊗ HZ is even periodic one can shift the coefficients of the formal group law to
degree 0. We then obtain that π0(KU ⊗HZ) is a ring on which the additive and the multiplicative
formal group law are isomorphic and hence is a Q-algebra. Since π∗(KU ⊗HZ) is a module over
π0(KU ⊗ HZ) the corollary follows. �

Lemma 6.9. Let S be the sphere spectrum and p be a prime. Then the diagram

S //

��

S[ 1p ]

��
S(p) // SQ

is a pullback diagram of spectra.

Proof. This follows from the equivalence of the horizontal cofibers which are the Moore spectra
M(Z[ 1p ]/Z) ≃ M(Q/Z(p)). �

We apply this observation as follows.

Lemma 6.10. The canonical map

LC⊗KU // LC⊗KU ⊗ S[ 12 ] = (LC⊗KU)[ 12 ]

is an equivalence of LC⊗KU -modules.

Proof. The map is clearly a module map. So it suffices to argue that it is an equivalence of spectra.
For this we consider the pullback diagram

LC⊗KU //

��

(LC⊗KU)[ 12 ]

��
(LC⊗KU)(2) // (LC⊗KU)Q
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wich is obtained by smashing the pullback diagram of Lemma 6.9 with the spectrum KU ⊗ HZ.
Since pullbacks are pushouts, smashing a pullback diagram with a spectrum gives again a pullback
diagram. Now we observe that (LC⊗KU)(2) is an HZ⊗KU module since LC(2) is an HZ-module.
By Corollary 6.8 the spectrum HZ ⊗KU is rational. Hence also all modules over this spectrum
are rational. But this implies that in the above pullback diagram the lower horizontal arrow is an
equivalence, thus also the upper horizontal one is. �

Remark. The same is true if we replace LC by ℓC.

Corollary 6.11. There is an equivalence of mapping spaces

(1) Map(LC,KU) ≃ Map(LC[ 12 ],KU), and

(2) Map(KU,LC) ≃ Map(KU [ 12 ], LC), and

(3) Map(ℓC, ku) ≃ Map(ℓC,KU) ≃ Map(ℓC[ 12 ],KU).

Proof. Lemma 6.10 implies that LC ⊗ KU ≃ LC[ 12 ] ⊗ KU as KU -modules and LC ⊗ KU ≃

LC⊗KU [ 12 ] as LC-modules. Thus we obtain

Map(LC,KU) ≃ MapKU (LC⊗KU,KU)

≃ MapKU (LC[
1
2 ]⊗KU,KU)

≃ Map(LC[ 12 ],KU)

Statement (2) follows similarly and statement (3) from the fact that Lemma 6.10 is true for ℓC
instead of LC and the universal property of connective covers. �

Proposition 6.12. There are short exact sequences

0 // Ext1Z(KU−1(LC[
1
2 ]),Z)

// KU0(LC[ 12 ])
// HomZ(KU0(LC[

1
2 ]),Z)

// 0

0 // Ext1Z(KU−1(ℓC[
1
2 ]),Z)

// KU0(ℓC[ 12 ])
// HomZ(KU0(ℓC[

1
2 ]),Z)

// 0

0 // Ext1Z(LC−1(KU [ 12 ]),Z)
// LC0(KU [ 12 ])

// HomZ(LC0(KU [ 12 ]),Z)
// 0

Proof. The exact sequences follow from the general UCT sequence relating a spectrum and its
Anderson dual, see [And70], using that both KU and LC are Anderson self-dual (see [SH14,
below Prop. 2.2]). �

Proof of Theorem 6.1. The Ext-terms of Proposition 6.12 vanish due to Lemma 6.6, and certainly

KU0(LC[
1
2 ])

∼= LC0(KU [ 12 ]) and KU0(ℓC[
1
2 ])

are Z[ 12 ]-modules. For all Z[ 12 ]-modules M we have that Hom(M,Z) = 0. Thus the theorem
follows. �

Appendix A. L-theory of non-unital rings

The goal of this section is to prove that the L-theory functor for non-unital C∗-algebras inherits
a lax symmetric monoidal structure from the lax symmetric monoidal structure on the L-theory
functor for unital, involutive rings, see Proposition A.4. We will prove such a result in a more
general framework.

First let C be an ∞-category which has an initial object, finite products and split pullbacks.
By split pullback we mean a pullback in which one of the morphisms admits a section. Since we
will need these limits repeatedly we introduce some terminology: we consider the collection K of
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simplicial sets consisting of all finite discrete simplicial sets and the nerve of the category depicted
as

•

p

��

ps = id

• // •

s

OO

which indexes split pullbacks.
In this situation, where C admits K-shaped limits and an initial object ∅, we can form a new ∞-

category C/∅ consisting of objects of C together with a morphism to the initial object ∅. There is
a canonical functor R : C → C/∅ which is right adjoint to the canonical forgetful functor C/∅ → C

and which sends c ∈ C to (c×∅ → ∅) ∈ C/∅. For the next statement, recall that an ∞-category
is called pointed if it admits an object which is both initial and terminal.

Proposition A.1. Suppose D is an ∞-category which admits K-shaped limits and is pointed.
Then the functor

R∗ : FunK(C/∅,D)
≃ // FunK(C,D)

is an equivalence of ∞-categories.

Proof. Consider the category I := NFin≤1
∗ of finite pointed sets of cardinality less or equal to 1.

An I-shaped diagram in C is given by a morphism c1 → c0 with a chosen split. We consider the
full subcategory C/∅ ⊆ Fun(I,C) consisting of those morphisms c1 → c0 where c0 is initial in C.
Since the section is essentially unique in this case, it follows that this ∞-category is equivalent to
the usual slice category considered above. The inclusion C/∅ ⊆ Fun(I,C) admits a right adjoint
given on objects as

R : Fun(I,C) → C/∅ (c1 → c0) 7→ (c1 ×c0 ∅ → ∅).

The functor R exhibits C/∅ as a colocalization of Fun(I,C). It is in particular a Dwyer-Kan
localization at those morphisms in Fun(I,C) which get mapped to equivalences by R. Assume
now that we have another ∞-category D which also admits an initial object and K-shaped limits
and a functor F : C → D. By postcomposition we obtain a functor F∗ : Fun(I,C) → Fun(I,D). If
F preserves K-shaped limits then we claim that the functor F∗ : Fun(I,C) → Fun(I,D) descends
to a functor F ′ : C/∅ → D/∅. To verify this it suffices to check that F∗ sends local equivalences
to local equivalences, which precisely follows from the fact that the functor F preserves K-shaped
limits. By the same reasoning one can also check that F ′ again has the property of preserving
K-shaped limits.

Thus we get a commutative diagram

C
F //

��

D

��
Fun(I,C)

F∗ //

��

Fun(I,D)

��
C/∅

F ′

// D/∅.

Here the left upper vertical map is the right adjoint to the functor Fun(I,C) → C given by
evaluation at 〈1〉 ∈ I. This adjoint is given on objects by

C → Fun(I,C) c 7→ (c× c
pr1−−→ c).

Similar for the right upper vertical map. The right vertical composition is the cofree functor, in
particular it is an equivalence if D is pointed. We thus obtain a functor

FunK(C,D) // FunK(C/∅,D/∅)
≃ // FunK(C/∅,D).

This comes by construction as an inverse to the functor R∗. �
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Remark. Assume we are given a functor F : C → D that preserves K-shaped limits. Then
the proof shows that the extension F : C/∅ → D is informally given by sending (c → ∅) to
(F (c)×F (∅) ∅ → ∅).

Again consider an ∞-category C that admits K-shaped limits and an initial object ∅ ∈ C.
Suppose furthermore that C is equipped with a symmetric monoidal structure which has the
property that the tensor bifunctor preserves K-shaped limits in each variable separately.

Proposition A.2. There exists a symmetric monoidal structure on the slice category C/∅ such
that the canonical functor C → C/∅ admits a symmetric monoidal refinement.

Proof. We will prove the dual statement, which reads as follows: let C be a symmetric monoidal∞-
category C which admits K-shaped colimits and such that the tensor product preserves K-shaped
colimits. If C admits a terminal object ∗ then C∗ := C∗/ admits a symmetric monoidal structure
such that the functor C → C∗ which adds a disjoint basepoint can be refined to a symmetric
monoidal functor.

Before we prove this statement let us comment on how it implies the proposition. This fol-
lows from the general fact that the opposite of a symmetric monoidal ∞-category admits also
the structure of a symmetric monoidal ∞-category. This is done by straightening the fibration
C⊗ → NFin∗, postcomposing with the opposite functor, and then unstraightening again. This
construction is functorial in symmetric monoidal functors. For a more detailed discussion see
[Knu16, BGN14].

Now to the proof of the above statement. Recall the ∞-category I := NFin≤1
∗ considered

in the proof of Proposition A.1 . This admits a symmetric monoidal structure given by smash
product. Thus the functor category Fun(I,C) admits a refinement to an ∞-operad Fun(I,C)⊗

given by Day convolution. For details see [Gla16] and more specifically [Nik16, Proposition 3.3].
We claim that in this situation the Day convolution is symmetric monoidal and the canonical
functor Fun(I,C)⊗ → C⊗ admits an operadic left adjoint which is symmetric monoidal (for the
terminology operadic left adjoint we refer to [Nik16, Definition 2.9]). The proof is essentially the
same proof as in [Gla16, Lemma 2.5] except that we only have to make sure that the all the
colimits in the left Kan extension describing the tensor product exists in C. To see this first notice
that the Day convolution tensor product is, if it exists, pointwise given by the pushout-product
in the functor category. Since all morphisms have chosen splits one easily checks that this only
requires split pushouts in C which exist by assumption.

As a next step we claim that the symmetric monoidal structure on Fun(I,C) descends to a
symmetric monoidal structure along the localization Fun(I,C) → C∗. To see this we need to
prove that local equivalences are preserved by tensoring with any object of Fun(I,C) (see [Nik16,
Example 2.12.] for a precise statement of this well known criterion). Again this can now be directly
verified using the pushout product axiom and the fact that the tensor product of C preserves K-
shaped colimits. �

Remark. Proposition A.2 also admits a different proof using the methods developed in [GGN15].

To do that one has to consider the tensor product on the ∞-category CatK∞ consisting of all ∞-
categories that admit K-shaped colimits and functors that preserve those. Then it follows from
Proposition A.1 that the construction C 7→ C∗ is a smashing localization of CatK∞.

We keep the assumption that C is a symmetric monoidal ∞-category that admits K-shaped
limits, an initial object ∅ ∈ C and such that the tensor bifunctor preserves K-shaped limits in
each variable separately. Now assume that C/∅ is equipped with a symmetric monoidal structure
and that the functor C → C/∅ admits a refinement to a symmetric monoidal functor. This can
always be done by Proposition A.2. But it could also be done by other means (as will be the
case in our application) and the next statement will be true in such a potentially more general
situation. Recall that a presentably symmetric monoidal ∞-category is a symmetric monoidal
∞-category which is presentable as an ∞-category and such that the tensor bifunctor preserves
colimits separately in both variables.
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Proposition A.3. Suppose D is a presentably symmetric monoidal ∞-category which is pointed.
Then the restriction along the above functor induces an equivalence

FunK
lax(C/∅,D)

≃ // FunK
lax(C,D)

where the superscript K denotes functors that preserve K-shaped limits.

Proof. The functor categories Fun(C,D) and Fun(C/∅,D) are equipped with symmetric monoidal

structures Fun(C,D)⊗ and Fun(C/∅,D)⊗ via the Day convolution, just as in [Nik16, Proposition
3.3]. By functoriality of the Day convolution the functor C → C/∅ induces a lax symmetric
monoidal functor

Fun(C/∅,D) // Fun(C,D)

i.e. a map of ∞-operads Fun(C/∅,D)⊗ → Fun(C,D)⊗. This map fits into a commutative square
of lax symmetric monoidal functors

(3) Fun(C/∅,D) // Fun(C,D)

FunK(C/∅,D) //

OO

FunK(C,D)

OO

where the vertical maps are full inclusions and the bottom map is defined by restriction of the
upper one. This makes sense since C → C/∅ preserves K-shaped limits.

We claim that all maps in this square admit operadic left adjoints which are strong sym-
metric monoidal. For the upper horizontal arrow this is [Nik16, Corollary 3.8]. The inclusion

FunK(C,D) ⊆ Fun(C,D) of ∞-categories admits a left adjoint and thus is a reflective subcategory.
To show the existence of a symmetric monoidal left adjoint we invoke the criterion given in [Nik16,
Example 2.12(3)]: we need to argue that if G : C → D preserves K-shaped limits, then for every
other functor F : C → D, the internal hom from F to G in Fun(C,D)⊗ preserves K-shaped limits
as well. For the internal hom functor we have the formula

map
Fun(C,D)

(F,G)(X) =

∫

Y ∈C

map
D

(
F (Y ), G(X ⊗ Y )

)
,

this is proven in [Nik16, Proposition 3.11]. The tensor bifunctor of C preserves by assumption
K-shaped limits in each variable separately, the functor G preserves K-shaped limits as well as the
internal hom and the end. Thus the internal hom does preserve K-shaped limits in X .

Hence we have shown that in Diagram (3) above the right vertical functor admits a symmetric
monoidal left adjoint. The same argument works for the left vertical functor. Finally the left
adjoint of the lower horizontal morphism is then obtained as the localization of the left adjoint
to the upper one using the symmetric monoidal universal property of the localization functor
Fun(C,D) → FunK(C,D).

Thus the lax symmetric monoidal functor

i∗ : FunK(C/∅,D) → FunK(C,D)

is an equivalence of underlying ∞-categories and admits a symmetric monoidal left adjoint. It
follows that the left adjoint is an equivalence of symmetric monoidal ∞-categories which follows
from the fact that it is an underlying equivalence and symmetric monoidal. Thus the operadic
right adjoint i∗ is an equivalence of symmetric monoidal ∞-categories as well and in particular a
symmetric monoidal functor (not only lax). As a result we obtain an equivalence

AlgE∞
(i∗) : AlgE∞

(FunK(C/∅,D))
≃ // AlgE∞

(FunK(C,D)) .

Since the inclusions FunK(C,D) ⊆ Fun(C,D) (and likewise for C/∅) are operadically fully faithful
we deduce from [Gla16] that we have equivalences

AlgE∞
(FunK(C,D)) ≃ FunKlax(C,D)

and
AlgE∞

(FunK(C/∅,D)) ≃ FunK
lax(C/∅,D).
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Putting everything together proves the proposition. �

Remark. One can show that the last proposition is true for more general D, namely for ∞-
operads which admit K-shaped operadic limits and are operadically pointed. The last proposition
never used anything about the symmetric monoidal structure on C/∅ other than the existence of
a symmetric monoidal refinement of the canonical map C → C/∅. This shows that the symmetric
monoidal structure on C/∅ is essentially unique in the appropriate sense.

We now want to apply this abstract criterion to the case C = NC∗Algunit. Then we have
an equivalence NC∗Alg ≃ C/∅ given by sending a non-unital C∗-algebra A to its unitalization

A+ → C. Under this equivalence the symmetric monoidal structure C/∅ corresponds to the usual
tensor product of non-unital C∗-algebras. This follows either by directly comparing the definitions
(these are ordinary categories) or using the uniqueness assertion made in the last remark. Now
we recall the results of [LM13] and [LM14] saying that L-theory for unital rings with involution
admits a symmetric monoidal structure. There it is shown that the functor

Ringinv
L // SpΣ

1

has a lax symmetric monoidal refinement, where SpΣ1 denotes the symmetric monoidal model
category of symmetric spectra. It thus follows that the induced functor

NC∗Algunit // NRinginv
L // Sp

of ∞-categories also admits a lax symmetric monoidal refinement because the functor

NC∗Algunit // NRinginv

is lax symmetric monoidal as well.

Proposition A.4. The L-theory functor L ∈ FunK
lax(NC

∗Algunit, Sp) admits an essentially

unique refinement to a functor L ∈ FunK
lax(NC

∗Alg, Sp).

Proof. This follows immediately from the observation made above that for C = NC∗Algunit the
slice category C/∅ is equivalent to NC∗Alg and Proposition A.3, where we use that the category
Sp is a presentably symmetric monoidal ∞-category. �
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