
March 21, 2017 21:49 WSPC/INSTRUCTION FILE GL-IJNT

International Journal of Number Theory
c⃝ World Scientific Publishing Company

On prime factors of the sum of two k–Fibonacci numbers

Carlos Alexis Gómez Ruiz
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We consider for integers k ≥ 2 the k–generalized Fibonacci sequences F (k) :=

(F
(k)
n )n≥2−k, whose first k terms are 0, . . . , 0, 1 and each term afterwards is the sum

of the preceding k terms. We give a lower bound for the largest prime factor of the sum

of two terms in F (k). As a consequence of our main result, for every fixed finite set of
primes S, there are only finitely many positive integers k and S-integers which are a
non-trivial sum of two k–Fibonacci numbers, and all these are effectively computable.
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1. Introduction

The Fibonacci sequence (Fn)n≥0 starts with F0 = 0, F1 = 1 and satisfies the

recurrence Fn+2 = Fn+1 + Fn for all n ≥ 0.

Bravo and Luca [4] solved the Diophantine equation

Fn + Fm = 2a, with n ≥ m ≥ 2 and a ≥ 1, (1.1)

showing that its solutions are (n,m, a) = (4, 2, 2), (5, 4, 3) and (7, 4, 4). Motivated by

their paper, Pink and Ziegler [19] fixed a non–degenerate binary recurrence sequence

(un)n≥0 and studied the Diophantine equation

un + um = wpz11 · · · pzss , for n ≥ m ≥ 0,

where w is a fixed non–zero integer and p1, p2, . . . , ps are fixed distinct prime num-

bers. The unknowns are the positive integers m and n and the nonnegative expo-
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nents z1, . . . , zs. Under mild technical restrictions they proved an effective finiteness

result for the solutions of the above equation. For the particular case of the Fibonacci

sequence they obtained the following numerical result.

Theorem 1.1. Consider the Diophantine equation

Fn + Fm = 2z1 · 3z2 · · · 199z46

in non-negative integer unknowns n,m, z1, . . . , z46 with n ≥ m. Then there are

exactly 325 solutions (n,m, z1, . . . , z46). All of them have n ≤ 59.

A well–known generalization of the Fibonacci sequence is the k–generalized Fi-

bonacci sequence F (k) := (F
(k)
n )n≥2−k, where k ≥ 2 is a fixed positive integer. This

satisfies the k–th order linear recurrence

F
(k)
n+k = F

(k)
n+k−1 + · · ·+ F (k)

n (n ≥ 2− k),

with the k initial values F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1. Notice

that the “initial values” are indexed in such a way that the last 0 of the string

of k − 1 zeros is at the index n = 0 and all the previous zeros are in the past.

We shall refer to the number F
(k)
n as the nth k−Fibonacci number. Bravo, Gómez

and Luca [5] and Marques [15] investigated independently an equation analogous

to (1.1) when the sequence of Fibonacci numbers is replaced by the sequence of

k–Fibonacci numbers. To be more precise, they studied the Diophantine equation

F (k)
n + F (k)

m = 2a, (1.2)

in positive integers n,m, k and a with k ≥ 3 and n ≥ m. The complete solution of

this equation appears in [5]. Here is that result.

Theorem 1.2. Let (n,m, k, a) be a solution of the Diophantine equation (1.2) in

non-negative integer unknowns. If n = m, then (n,m, a) = (t, t, t − 1) for all 2 ≤
t ≤ k + 1 or (n,m, a) = (1, 1, 1). If n > m and a ̸= n− 2, then the only solution is

(n,m, a) = (2, 1, 1), while if n > m and a = n− 2, then all the solutions are given

by

(n,m, a) = (k + 2ℓ, 2ℓ + ℓ− 1, k + 2ℓ − 2), (1.3)

where ℓ is a positive integer such that 2ℓ+ℓ−2 ≤ k. In particular, we have m ≤ k+1

and n ≤ 2k + 1.

In the present paper, we extend the study of the Diophantine equations (1.1)

and (1.2) to Diophantine equations involving S–integers (instead of powers of two),

which are representable as the sum of two k-Fibonacci numbers with non-negative

subscripts. Our work is inspired by the work of Pink and Ziegler [19].
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2. The Main result

We investigate mainly the largest prime factor of the term on the left–hand side of

(1.2), that is to say, we study the growth of

P (F (k)
n + F (k)

m ), for n ≥ m ≥ 0 and k ≥ 2,

where P (m) is defined, for an integer m ≥ 2, as the maximal prime factor of m

with the convention that P (0) = P (1) = 1.

We have the following result.

Theorem 2.1. The inequality

P (F (k)
n + F (k)

m ) >
1

200

√
log n log log n.

holds for all n ≥ m ≥ 0, n ≥ k + 2 and k ≥ 2 except when k + 2 ≤ n ≤ 2k + 2 and

m ≤ k+ 2 are part of the solutions to (1.2) of the form (1.3) described in Theorem

2 (for some ℓ).

Numerical result. A consequence of Theorem 2.1 is that given a finite set of

primes S = {p1, . . . , ps}, the S–integers which can be written as a sum of two k–

Fibonacci numbers with non-negative subscripts, where k is also unknown, comprise

a finite effectively computable set.

As an example, we found all the sums of two k–Fibonacci numbers whose largest

prime factor is less than or equal to 7. That is, we determined all the solutions of

the Diophantine equation

F (k)
n + F (k)

m = 2a · 3b · 5c · 7d, with n, m, k, a, b, c, d (2.1)

non–negative integers such that n > m ≥ 2, k ≥ 2.

The case k = 2 was treated by Pink and Ziegler, and is a particular case of The-

orem 1. Their result is that all the non-negative integer solutions of the Diophantine

equation

Fn + Fm = 2a · 3b · 5c · 7d satisfy max{n,m, a, b, c, d} ≤ 59.

These solutions are in the bellow table 1.

We complete this picture by proving the following result which deals with all

k ≥ 3.

Theorem 2.2. Let (n,m, k, a, b, c, d) be a solution of Diophantine equation (2.1)

with n > m ≥ 2, k ≥ 3 and bcd ̸= 0. If n ≤ k+1, then n−m ∈ {1, 2, 3}. Otherwise,

k ≤ 320 and max{n,m, a, b, c, d} ≤ 775.

More exactly, the equation has

(i) 34 solutions with m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1;

(ii) 7 solutions with m ≤ k + 1 and n ≥ 2k + 2;

(iii) 14 solutions with k + 2 ≤ m ≤ n.

The actual solutions appear at the end of the paper.
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Table 1. Solutions for Fn + Fm = 2a · 3b · 5c · 7d.

F3 + F2 = 3 F4 + F2 = 22 F5 + F2 = 2 · 3
F6 + F2 = 32 F7 + F2 = 2 · 7 F9 + F2 = 5 · 7
F10 + F2 = 23 · 7 F11 + F2 = 2 · 32 · 5 F14 + F2 = 2 · 33 · 7
F4 + F3 = 5 F5 + F3 = 7 F6 + F3 = 2 · 5
F7 + F3 = 3 · 5 F9 + F3 = 22 · 32 F5 + F4 = 23

F7 + F4 = 24 F8 + F4 = 23 · 3 F12 + F4 = 3 · 72
F17 + F4 = 26 · 52 F5 + F7 = 2 · 32 F10 + F5 = 22 · 3 · 5
F7 + F6 = 3 · 7 F9 + F6 = 2 · 3 · 7 F10 + F6 = 32 · 7
F18 + F6 = 25 · 34 F16 + F7 = 23 · 53 F16 + F8 = 24 · 32 · 7
F11 + F10 = 24 · 32 F13 + F10 = 25 · 32 F14 + F10 = 24 · 33

3. The proof of Theorem 2.1

We begin by assuming that n ≥ m ≥ 2, k ≥ 2 and a1, . . . , as are non–negative

integers satisfying the following equation

F (k)
n + F (k)

m = pa1
1 pa2

2 · · · pas
s . (3.1)

If n = m, then the Diophantine equation (3.1) reduces to

2F (k)
n = pa1

1 pa2
2 · · · pas

s . (3.2)

It is easy to see that the first k + 1 nonzero terms in F (k) are powers of two (see

Cooper and Howard [9]). Some authors even work with a shift of our sequence,

namely the one for which F
(k)
i = 0 for 0 ≤ i ≤ k − 2 and F

(k)
k−1 = 1. However,

we find it more convenient to work with the sequence we defined in the previous

section. For us, we have

F
(k)
1 = 1 and F (k)

n = 2n−2 for all 2 ≤ n ≤ k + 1.

Solutions of Diophantine equations with k−generalized Fibonacci numbers involving

these k + 1 powers of 2 will be called trivial solutions.

Bravo and Luca [2], showed that there are no nontrivial powers of 2 in the k–

generalized Fibonacci sequence F (k) for any k ≥ 3 and that the only nontrivial

power of 2 in the Fibonacci sequence is F
(2)
6 = 8. This completes the analysis of

(3.2), when S = {2}. Otherwise, n ≥ k + 2. Bravo and Luca [3], showed that the

inequality

P (F (k)
n ) ≥ 0.01

√
log n log log n holds for all k ≥ 2.

Using the above inequality, they concluded that (3.2) has only finitely many nontriv-

ial solutions and they are all effectively computable. The case m < n with S = {2}
was studied by Bravo, Gmez and Luca in [5], who obtained the solutions given in

Theorem 1.2.

If m < n ≤ k + 1, then F
(k)
m , F

(k)
n are powers of two and

P (F (k)
n + F (k)

m ) = P (2n−m + 1) ≥ 2(n−m) + 1. (3.3)
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The largest prime factor of 2ℓ + 1 for positive integers ℓ has been studied by many

authors.

Considerations on our Diophantine equation. From now on, we suppose that

(n,m, k, a1, . . . , as) is a solution of (3.1) with n > m ≥ 2, n ≥ k + 2, k ≥ 2

and s ≥ 2. Furthermore, in order to distinguish the problem treated here from the

problem studied in [5], we assume that a2, a3, . . . , as are not all zero. It is easy to

see that

m < n ≤ k + 1 if and only if F (k)
n + F (k)

m = 2n−2 + 2m−2. (3.4)

The if statement is easy and the only if statement follows because F
(k)
n ≤ 2n−2

holds for all n ≥ 1, with equality if and only if n ≤ k + 1.

Let us recall some properties of the k–Fibonacci numbers which are necessary

in order to study the Diophantine equation (3.1). As a linearly recurrence sequence,

it has an associated characteristic polynomial. This is the polynomial Ψk(X) =

Xk−Xk−1−· · ·−X−1. It has only one positive real zero α := α(k) and is located

in the interval [1, 2]. Furthermore, in Lemma 2.3 in [14] and later in [20], it was

shown that the containment α ∈ (2(1 − 2−k), 2) holds for all k ≥ 2. In particular

{α(k)}k≥2 converges to 2 as k tends to infinity. Miles [17] and Miller [18], showed

that Ψk(X) has only simple roots and all roots different from α(k) are inside the

unit circle. In particular, Ψk(X) is an irreducible polynomial over Q[X]. We omit

the dependence on k of α. By induction one can prove that αn−2 ≤ F
(k)
n ≤ αn−1

holds for all n ≥ 1 (see [4]). In fact, F
(k)
n ≤ 2n−2 for all n ≥ 2 (see [2]), a fact

mentioned before.

Bellow, we give an inequality between the exponents ai for i = 1, 2, . . . , s and

the index n. Combining (3.1) with the fact that F
(k)
t ≤ 2t−2 for all t ≥ 2, one gets

2ai ≤
s∏

i=1

pai
i = F (k)

n + F (k)
m ≤ 2n−2 + 2m−2 = 2n−2(1 + 2m−n) < 2n−1.

So,

ai ≤ n− 2, for all i = 1, 2, . . . , s. (3.5)

3.1. An upper bound on n in terms of k and/or s

We study equation (3.1) with n > m ≥ 2, n ≥ k + 2, k ≥ 2 and s ≥ 2. We

distinguish the cases:

m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1;

m ≤ k + 1 and n ≥ 2k + 2;

k + 2 ≤ m < n.

We use some transcendental arguments from the theory of Baker’s linear forms in

logarithms of algebraic numbers to give an upper bound on n in terms of k and/or
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s. Our main tool is the following consequence of a result of Matveev (see [16] or

Theorem 9.4 in [6]).

Lemma 3.1. Let K be a number field of degree D over Q, γ1, . . . , γt be positive

real numbers in K, and b1, . . . , bt be integers. Put

Λ := γb1
1 · · · γbt

t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then, assum-

ing that Λ ̸= 0, we have

|Λ| > exp(−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At).

In the above and in what follows, for an algebraic number η of degree d over Q
and minimal primitive polynomial f(X) := a0

∏d
i=1(X−η(i)) ∈ Z[X], with a0 ∈ Z+,

we write h(η) for its logarithmic height, given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then

h(η) = logmax{|p|, q}.

Case m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1.

We recall a formula for F
(k)
n due to Cooper and Howard [9]:

F (k)
n = 2n−2 +

⌊n+k
k+1 ⌋−1∑
j=1

Cn,j 2
n−(k+1)j−2, for n ≥ k + 2 and k ≥ 2, (3.6)

where

Cn,j = (−1)j
[(

n− jk

j

)
−
(
n− jk − 2

j − 2

)]
.

In the above, we denoted by ⌊x⌋ the greatest integer less than or equal to x and

used the convention that
(
a
b

)
= 0 if either a < b or if one of a or b is negative. Since

k+2 ≤ n ≤ 2k+2 one obtains that ⌊(n+k)/(k+1)⌋ = 2. From the above formula,

one concludes that F
(k)
n = 2n−2 − (n− k)2n−k−3. Hence, in this case equality (3.1)

is equivalent to

2n−2 + 2m−2 − (n− k)2n−k−3 = pa1
1 pa2

2 · · · pas
s , (3.7)

which, after dividing both sides of it by 2n−2, becomes∣∣pa1−n+2
1 · pa2

2 · · · pas
s − 1

∣∣ < 1

2n−m
+

n− k

2k+1
<

2

2γ
(3.8)

with γ := min{k/2, n−m}. For inequality (3.8), we used the fact that

n− k

2k+1
<

k + 1

2k+1
<

1

2k/2
,
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which holds in our range for n versus k when k ≥ 2.

Next, we use a linear form in t := s logarithms (Lemma 3.1) to give a lower bound

of the left–hand side of the above inequality (3.8). We put (γ1, b1) := (p1, a1−n+2)

and (γi, bi) := (pi, ai) for i = 2, . . . , s and

Λ0 := pa1−n+2
1 · pa2

2 · · · pas
s − 1. (3.9)

Note that Λ0 is zero only in the case when 2m−2 = (n − k)2n−k−3. This gives

n = k + 2ℓ, m = 2ℓ + ℓ − 1, which is the excluded situation (1.3). Thus, Λ0 ̸= 0.

We take K := Q, D := 1, Ai := log ps for all i = 1, . . . , t and B := n (according to

(3.5)). We get, from the application of Lemma 3.1, the following inequality

|Λ0| ≥ exp(−1.4 · 30s+3 · s4.5(1 + log n)(log ps)
s)

≥ exp(−75600 s4.5(60 log s)s log n), (3.10)

where we have used the facts that ps < s2 for all s ≥ 2 and 1 + log n < 2 log n. We

combine the above inequality with (3.8) and take logarithms on both sides of the

resulting inequality to obtain

γ < 109068 s4.5(60 log s)s log n. (3.11)

If k/2 < n − m, then γ = k/2. Thus, from the above inequality we deduce that

k < 2.2 · 105s4.5(60 log s)s logn. Since in this case n ≤ 2k + 1, we get

n

log n
< 4.5 · 105s4.5(60 log s)s. (3.12)

We use the following result of [13].

Lemma 3.2. If x and T are real numbers such that for y ≥ 1 we have

T > (4y2)y and
x

(log x)y
< T, then x < 2yT (log T )y.

Putting x := n, y := 1 and T := 4.5·105s4.5(60 log s)s, we conclude, from (3.12),

via Lemma 3.2, that

n < 2× 4.5 · 105s4.5(60 log s)s log
(
4.5 · 105s4.5(60 log s)s

)
. (3.13)

We now estimate log T . It is easy to see that the three inequalities

log(4.5 · 105) < 9.4 s log s, 4.5 log s < 2.3s log s, s log(60 log s) < 5.4 s log s,

hold for all s ≥ 2. Thus, log T < 17.1s log s and from (3.13), we get

n < 1.6 · 107s5.5 log s. (3.14)

If n−m < k/2, then γ = n−m. Hence, from inequality (3.11) we get

n−m < 109068 s4.5(60 log s)s log n. (3.15)

We now return to equality (3.7). Dividing both sides of it by 2n−2+2m−2, we obtain

|(1 + 2m−n)−1 · pa1−n+2
1 · pa2

2 · · · pas
s − 1| <

1

2k/2
. (3.16)
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We use again linear forms in logarithms on inequality (3.16). We take

t := s+ 1, (γ1, b1) := (1 + 2m−n,−1), (γ2, b2) := (p1, a1 − n+ 2),

and

(γi, bi) := (pi−1, ai−1) for i = 3, . . . , t.

Thus,

Λ00 := (1 + 2m−n)−1 · pa1−n+2
1 · pa2

2 · · · pas
s − 1.

Since m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 2, we note, by remark (3.4), that Λ00 ̸= 0.

Indeed, if Λ00 = 0, we first get, by looking at the exponent of p1 = 2, that a1 = n−2,

next that pa2
2 · · · pas

s = 2n−m + 1. Hence,

F (k)
n + F (k)

m = pa1
1 pa2

2 · · · pas
s = 2n−2(1 + 2m−n) = 2n−2 + 2m−2,

and, by (3.4), we know that the above relation is not possible for n ≥ k + 2. As in

the previous application of Matveev’s result to |Λ0|, we take K := Q, D := 1, Ai :=

2 log s for all i = 2, . . . , s (because ps < s2 for all s ≥ 2) and B := n. Furthermore,

since

h(1 + 2m−n) = log(1 + 2n−m) < (n−m) log 3,

we take A1 := (n−m) log 3 > 6.3 · 106s5.5(60 log s)s log k where this last inequality

holds by (3.15). After a new application of Lemma 3.1 to the left–hand side of

(3.16), we get that |Λ00| is bounded below by

exp(−1.4 × 30s+4(s+ 1)4.5(1 + log n)((n−m) log 3)(2 log s)s) (3.17)

≥ exp(−6.7 · 1014s10(60 log s)2s(log k)2).

In the above, we have used the fact that 1+log n < 4.1 log k for all k ≥ 2 which holds

because n ≤ 2k + 2. So, we conclude from inequality (3.17) above and inequality

(3.16) that

(log 2/2)k < 6.7 · 1014s10(60 log s)2s(log k)2,

which implies

k

(log k)2
< 2 · 1015s10(60 log s)2s. (3.18)

Then, by Lemma 3.2, we get

k < 4(2 · 1015s10(60 log s)2s)(log(2 · 1015s10(60 log s)2s))2

< 8 · 1015s10(60 log s)2s(log(2 · 1015) + 10 log s+ 2s log(60 log s)))2

< 5.4 · 1017s12(60 log s)2s(log(60 log s))2.

In the above inequality, we used the fact that

log(2 · 1015) + 10 log s+ 2s log(60 log s) < 8.2s log(60 log s)
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which holds for all s ≥ 2. Hence, since n ≤ 2k + 2, we conclude that

n < 1.1 · 1018s12(60 log s)2s(log(60 log s))2. (3.19)

Cases m ≤ k + 1 and either n ≥ 2k + 2 or k + 2 ≤ m < n.

Dresden and Du proved in [10] that

F (k)
n =

k∑
i=1

fk(αi)α
n−1
i and

∣∣∣F (k)
n − fk(α)α

n−1
∣∣∣ < 1

2
, (3.20)

where fk(z) := (z−1)/ (2 + (k + 1)(z − 2)) and α := α1, α2, . . . , αk are all the zeros

of Ψk(X). The expression on the left–hand side is known as the Binet formula for

F
(k)
n .

We use identity (3.20) to replace F
(k)
n by its approximation fk(α)α

n−1 and

deduce from equation (3.1) the inequality∣∣∣∣∣
s∏

i=1

pai
i − fk(α)α

n−1

∣∣∣∣∣ < 1

2
+ F (k)

m ≤ 1

2
+ αm−1.

The above inequality leads us to the useful inequality∣∣∣∣∣
s∏

i=1

pai
i · α−(n−1) · (fk(α))−1 − 1

∣∣∣∣∣ < 2

ϕn−m
, (3.21)

where ϕ := α(2) = (1 +
√
5)/2. Here, we have used the facts that fk(α) > 1/2 and

α = α(k) ≥ α(2), for all k ≥ 2. We now use Lemma 3.1 with t := s + 2 and the

parameters

(γ1, b1) := (fk(α),−1), (γ2, b2) := (α,−(n− 1)),

(γi, bi) := (pi−2, ai−2) for i = 3, . . . , t,

for which

Λ1 := (fk(α))
−1 · α−(n−1) ·

s∏
i=1

pai
i − 1.

We begin noting that the algebraic number field containing all the numbers γi, for

i = 1, 2, . . . , t, is K := Q(α), so we can take D := k. The left–hand side of (3.21)

is not zero. Indeed, otherwise fk(α) would be an algebraic integer (because α is a

unit in K), so

1 ≤ |NK/Q(fk(α))| =
k∏

i=1

|fk(αi)|. (3.22)

However, a straightforward verification shows that ∂xfk(x) < 0. Indeed,

∂xfk(x) =
1− k

(2 + (k + 2)(x− 2))
2 < 0 for all k ≥ 2.
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10 C. A. Gómez and F. Luca

From this, we conclude that

1

2
= fk(2) < fk(α) < fk

(
2(1− 2−k)

)
=

2k−1 − 1

2k − k − 1
≤ 3/4, for k ≥ 3,

while f2((1+
√
5)/2) =

√
5(1+

√
5)/10 = 0.72360 . . .. On the other hand, as |αi| < 1,

we have |αi − 1| < 2 and |αi − 2| > 1, so

|2 + (k + 1)(αi − 2)| ≥ (k + 1)|αi − 2| − 2 ≥ k − 1,

therefore

|fk(αi)| =
|αi − 1|

|2 + (k + 1)(αi − 2)|
<

2

k − 1
≤ 1 for all k ≥ 3.

For k = 2, we have f2((1 −
√
5)/2) = 0.2763 . . .. Hence, all conjugates fk(αi) of

fk(α), for i = 1, . . . , k, have absolute value smaller than 1 and this is true for all

k ≥ 2. Thus, (3.22) is not possible, and consequently Λ1 ̸= 0.

Now, from [12], we have that h(γ1) < 2 log k, for all k ≥ 2 and by the properties

of the roots of Ψk(x) we obtain

h(γ2) =
logα

k
<

log 2

k
<

0.7

k
.

Furthermore, h(γi) = log ps, for i = 3, . . . , t. Thus, we can take the following values

for our parameters:

A1 := 2k log k, A2 := 0.7, Ai := k log ps for i = 3, . . . , t,

and B := n (by (3.5)). Applying Lemma 3.1, we get

|Λ1| > exp(−1.4 · 30s+5 · (s+ 2)4.5 · k2(1 + log k)

· (1 + log n)(2k log k)(0.7)(k log ps)
s).

Comparing the above inequality with inequality (3.21), we conclude after performing

the respective calculations, that

n−m < 6 · 10830s(s+ 2)4.5ks+3(log k)2 (log ps)
s log n. (3.23)

Assuming that we are in the case m ≤ k + 1 and n ≥ 2k + 2, then n −m > n/2.

So, from inequality (3.23), we get

n < 1.2 · 10930s(s+ 2)4.5ks+3(log k)2 (log ps)
s log n.

Another application of Lemma 3.2, together with the inequalities

ps ≤ s2, s+ 2 ≤ 2s and log k < 0.4k

valid for all s ≥ 2 and all k ≥ 2, allow us to deduce that

n < 2.2 · 1011s5.5ks+5(60 log s)s logmax{s, k}. (3.24)
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We next continue under the assumption that k+1 ≤ m < n. Once again we use

(3.20) to replace both k–Fibonacci numbers appearing in equation (3.1) by their

leading terms in the Binet formula and deduce from the resulting equation that∣∣∣∣∣
s∏

i=1

pai
i · α−(n−1) ·

(
fk(α)(1 + αm−n)

)−1 − 1

∣∣∣∣∣ < 2

ϕn−1
. (3.25)

We apply a second linear form in t := s+ 2 logarithms. We put

(γ1, b1) := (fk(α)(1 + αm−n),−1), (γ2, b2) := (α,−(n− 1)),

(γi, bi) := (pi−2, ai−2) for i = 3, . . . , t,

and

Λ2 :=
(
fk(α)(1 + αm−n)

)−1 · α−(n−1) ·
s∏

i=1

pai
i − 1.

Again, we can take K := Q(α) and D := k. Also, A1 := 4k log k + 0.7(n −m) (see

[5]), A2 := 0.7, Ai := k log ps for i = 3, . . . , t and B := n. In order to apply Lemma

3.1, we need to show that the left–hand side of (3.25) is not zero. Otherwise, we

would get the relation
∏s

i=1 p
ai
i = fk(α)(α

n−1 + αm−1). Conjugating the above

relation by some automorphism of the normal closure of K, which sends α into αj

for some 2 ≤ j ≤ k (so, |αj | < 1), we obtain the relation

s∏
i=1

pai
i = fk(αj)

(
αn−1
j + αm−1

j

)
.

The absolute value of the right hand side above is smaller than 2. But this is not

possible, because n > m ≥ 4 and
∏s

i=1 p
ai
i > 2 from (3.1). Thus, the left–hand side

of inequality (3.25) is nonzero.

By Lemma 3.1, we obtain the following expression as a lower bound to |Λ2|:

exp(−1.4 · 30s+5 · (s+ 2)4.5 · k2(1 + log k)(1 + log n)

· (0.7)(k log ps)s(4k log k + 0.7(n−m))). (3.26)

Using the inequality for n − m given in (3.23) as well as (3.25), we deduce from

(3.26) that

n < 1.3 · 1017302s(s+ 2)9k2s+5(log k)3(log ps)
2s(log n)2. (3.27)

We now use that ps ≤ s2, s+ 2 ≤ 2s for all s ≥ 2 and log k ≤ 0.4k for all k ≥ 2, to

deduce the above inequality (3.27) that

n

(log n)2
< 4.3 · 1018s9k2s+8(60 log s)2s. (3.28)

Using Lemma 3.2 on inequality (3.28) with x := n, y := 2 and T := 4.3 ·
1018s9k2s+8(60 log s)2s, we conclude that
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n < 4
(
4.3 · 1018s9k2s+8(60 log s)2s

) (
log
(
4.3 · 1018s9k2s+8(60 log s)2s

))2
. (3.29)

We now estimate log T :

log T = log(4.3 · 1018) + 9 log s+ (2s+ 8) log k + 2s log(60 log s)

< s

(
43

s
+

9 log s

s
+ 2 log(60 log s) + (2 + 8/s) log k

)
< s(46 log s+ 6 log k)

≤ 52.3s logmax{s, k}.

Thus, from (3.29), we have

n < 4.7 · 1022s11k2s+8(60 log s)2s(logmax{s, k})2. (3.30)

Bellow we record what have just proved in inequalities (3.14), (3.19), (3.24) and

(3.30).

Lemma 3.3. Let (n,m, k, a1, . . . , as) be a solution of (3.1) with n > m ≥ 2, n ≥
k + 2, k ≥ 2 and s ≥ 2, and ai > 0 for some i ≥ 2.

(i) If m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1, then

n < 1.1 · 1018s12(60 log s)2s(log(60 log s))2.

(ii) If m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n, then

n < 4.7 · 1022s11k2s+8(60 log s)2s(logmax{s, k})2.

3.2. Considerations on s and k

In this subsection, we use several times the following inequality

ps > s log s for all s ≥ 1. (3.31)

If m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1, we have from Lemma 3.3(i) that

n < 1.1 · 1018s12(60 log s)2s(log(60 log s))2.

So, taking logarithms on both sides of this last inequality, we get

log n < log(1.1 · 1018) + 12 log s+ 2s log(60 log s) + 2 log(log(60 log s))

< 45s log s.

Hence, if m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1, we conclude from (3.31) that

P (F (k)
n + F (k)

m ) = ps >
1

45
log n. (3.32)
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We continue under the assumptions that m ≤ k+1 and n ≥ 2k+2 or k+2 ≤ m < n.

Taking logarithms on both sides of inequality given by Lemma 3.3(ii), we get

log n < log(4.7 · 1022) + 11 log s+ (2s+ 8) log k

+ 2s log(60 log s) + 2 log logmax{s, k}
< 45s log s+ 6s log k + 2 log logmax{s, k}.

Hence, inequality

logn < 45s log s+ 6s log k + 2 log logmax{s, k} (3.33)

holds for all s ≥ 2 and k ≥ 2.

Case s ≥ k.

From inequality (3.33), one can conclude that logn < 52s log s holds for all

s ≥ 2, so, by (3.31),

P (F (k)
n + F (k)

m ) = ps > s log s >
1

52
log n. (3.34)

Case k > s.

Fom inequality (3.33), we get

log n < 52s log k. (3.35)

We now distinguish two cases according to the size of log k relative to n.

Case log k ≤ 1
4

√
log n log log n.

Then, from (3.35) we have that

s >
1

13

√
log n

log log n
.

Supposing that n > 104000, we get

s log s >
1

13

√
logn

log log n
· log

(
1

13

√
log n

log log n

)
>

1

150

√
log n log log n.

Thus, by (3.31), we have that

P (F (k)
n + F (k)

m ) = ps >
1

150

√
log n log log n. (3.36)

The above inequality also is valid for n ≤ 104000 because in this case

1

150

√
logn log log n < 2.

Case log k > 1
4

√
log n log log n.
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We assume that k > 1700. Thus,

log n <
16

log log n
(log k)2 < 8(log k)2 holds for all n ≥ k + 2.

Furthermore

n < e8(log k)2 < 2k/2, for all k > 1700. (3.37)

By Cooper and Howard’s formula (3.6), we can write

F (k)
n = 2n−2 (1 + ζ(n, k)) ,

where

|ζ(n, k)| ≤
⌊n+k

k+1 ⌋−1∑
j=1

|Cn,j |
2(k+1)j

<
∑
j≥1

2nj

2(k+1)jj!

<
2n

2k+1

∑
j≥1

(n/2k+1)j−1

(j − 1)!
<

n

2k
en/2

k+1

.

Since n < 2k/2 < 2k (by 3.37), we have en/2
k+1

< e1/2 < 2. Thus,

|ζ(n, k)| < 2n

2k
<

2

2k/2
.

We have showed that if n < 2k/2 then

F (k)
n = 2n−2 (1 + ζ(n, k)) , where |ζ(n, k)| < 2

2k/2
. (3.38)

In particular, if m ≤ k + 1, then F
(k)
m = 2m−2 and ζ(m, k) = 0.

We use the above identity (3.38) to get from (3.1) a new inequality. Recall that

we are in one of the cases m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n. In both

situations, the following inequality holds:

|pa1
1 · · · pas

s − (2n−2 + 2m−2)| ≤ 2n−2|ζ(n, k)|+ 2m−2|ζ(m, k)|

<
2n−1 + 2m−1

2k/2
. (3.39)

Dividing both sides of above inequality (3.39) by 2n−2, we obtain

∣∣pa1−n+2
1 · pa2

2 · · · pas
s −

(
1 + 2m−n

)∣∣ < 3

2k/2
.

It follows that ∣∣pa1−n+2
1 · pa2

2 · · · pas
s − 1

∣∣ < 3

2k/2
+

1

2n−m
<

4

2γ
, (3.40)

with γ := min{k/2, n−m}.
According to Theorem 2, in any of the two situations m ≤ k + 1 and either

n ≥ 2k + 2 or k + 2 ≤ m < n, we can conclude that pa1−n+2
1 · pa2

2 · · · pas
s − 1 ̸= 0.
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We note that the expression on the left–hand side of the above inequality (3.40)

is |Λ0| given in (3.9). Hence, from inequalities (3.10), (3.35) and (3.40), we get

exp(−75600 s4.5(60 log s)s log n) <
4

2γ
.

which implies

γ < 5.7 · 106s5.5(60 log s)s log k. (3.41)

If γ = k/2, from inequality (3.41) we get

k

log k
< 1.2 · 107s5.5(60 log s)s. (3.42)

Next, we use Lemma 3.2, with

x := k, y := 1 and T := 1.2 · 107s5.5(60 log s)s.

Note that log T < 16.4+5.5 log s+ s log(60 log s) < 20s log s holds for all s ≥ 2. So,

we get from inequality (3.42) that

k < 4.8 · 108s6.5(60 log s)s log s.

Hence,

log k < log(4.8 · 108) + 6.5 log s+ s log(60 log s) + log log s

< 25s log s. (3.43)

If γ = n−m, then from inequality (3.41) we deduce that

n−m < 5.7 · 106s5.5(60 log s)s log k. (3.44)

Dividing both sides of inequality (3.39) by 2n−2 + 2m−2, we obtain

|(1 + 2m−n)−1 · pa1−n+2
1 · pa2

2 · · · pas
s − 1| <

2

2k/2
. (3.45)

Note that if the term on left–hand side of above inequality is zero, then from equality

(3.1)

F (k)
n + F (k)

m = pa1
1 · pa2

2 · · · pas
s = 2n−2 + 2m−2.

Thus, by remark (3.4), we have that m < n ≤ k + 1, in contradiction to the cases

that we are considering namely m ≤ k+1 and either n ≥ 2k+2 or k+2 ≤ m < n.

Hence, (1 + 2m−n)−1 · pa1−n+2
1 · pa2

2 · · · pas
s − 1 ̸= 0.

We will use the procedure performed for |Λ00|, together with inequalities (3.44)

and (3.35). We get that the left–hand side of (3.45) is bounded below by

exp(−1.4 · 30s+4(s+ 1)4.5(1 + log n)(6.3 · 106s5.5(60 log s)s log k)(2 log s)s)

which in turn is at least as large as

exp(−1.4 · 1016s11(60 log s)2s(log k)2).
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We conclude from the above inequality and inequality (3.45) that

(log 2/2)k < 1.4 · 1016s11(60 log s)2s(log k)2 + log 2,

which implies

k

(log k)2
< 4 · 1016s11(60 log s)2s.

By Lemma 3.2,

k < 4(4 · 1016s11(60 log s)2s)(log(4 · 1016s11(60 log s)2s))2

< 1.6 · 1017s11(60 log s)2s(log(4 · 1016) + 11 log s+ 2s log(60 log s)))2

< 1.1 · 1019s13(60 log s)2s(log(60 log s))2.

In the above inequality, we used the fact that

log(4 · 1016) + 11 log s+ 2s log(60 log s) < 8.2s log(60 log s)

which holds for all s ≥ 2. Finally,

log k < log(1.1 · 1019) + 13 log s+ 2s log(60 log s) + 2 log log(60 log s)

< 50s log s. (3.46)

Recall that we are assuming m ≤ k + 1, either n ≥ 2k + 2 or k + 2 ≤ m < n, and

log k > (1/4)
√
log n log log n. We conclude from inequalities (3.43), (3.46), that

P (F (k)
n + F (k)

m ) = ps >
1

200

√
log n log log n. (3.47)

We note that the above inequality was obtained under the assumption that k >

1700. However, when k ≤ 1700 is easy to see that

1

200

√
logn log log n <

1

50
log k < 2.

Thus, inequality (3.47) holds for all k ≥ 2. Comparing inequalities (3.32), (3.34),

(3.36) and (3.47), we obtain that if (n,m, k, a1, . . . , as) is a solution of Diophantine

equation (3.1) with n > m, n ≥ k + 2, k ≥ 2, s ≥ 2 and ai > 0 for some i ≥ 2,

then

P (F (k)
n + F (k)

m ) >
1

200

√
logn log log n.

This completes the proof of Theorem 3.

4. Numerical result

In this section, we determine all the {2, 3, 5, 7}–integers which are the sum of two

k–Fibonacci numbers. That is, we find all solutions of the Diophantine equation

F (k)
n + F (k)

m = 2a · 3b · 5c · 7d, with n, m, k, a, b, c, d (4.1)
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non–negative integers such that n > m ≥ 2, k ≥ 3 (the solutions for k = 2 were

presented in the Section 2).

Trivial solutions 2 ≤ m < n ≤ k + 1.

From equality (4.1), we get P (2n−m+1) = 7. By Carmichael’s theorem on primitive

divisors of Lucas sequences (see [7], and the newer [1] for the most general case),

we have P (2t + 1) = P (22t − 1) ≥ 2t+ 1 > 7 for all t ≥ 4. Thus, n−m = 1, 2, 3. In

this case, for all k ≥ 3, the solutions are given by

F
(k)
m+1 + F (k)

m = 2m−2 · 3, F
(k)
m+2 + F (k)

m = 2m−2 · 5, F
(k)
m+3 + F (k)

m = 2m−2 · 32.

4.1. Absolute bounds on k and n

We continue under the assumption that n ≥ k+2. Furthermore, we use the inequal-

ities obtained in the previous section with (p1, p2, p3, p4) = (2, 3, 5, 7) (and s = 4),

in order to obtain absolute numerical bounds on the non-negative integer unknowns

of the Diophantine equation (4.1).

Case m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1.

If in (4.1) we have b = c = d = 0, then we arrive at Diophantine equation (1.2),

which has the infinite family of solutions given by (1.3) in Theorem 2.

Continuing with (b, c, d) ̸= (0, 0, 0), we obtain from (3.8) and (3.11) that∣∣2a−n+2 · 3b · 5c · 7d − 1
∣∣ < 2−γ+1 and γ < 2.7 · 1015 log n, (4.2)

with γ := min{k/2, n − m}. If γ = k/2, then n ≤ 2k + 1 < 1.2 · 1016 logn, which
leads to n < 5 · 1017. If γ = n−m, then from (3.16) and (3.18), we get

|(1 + 2m−n)−1 · 2a−n+2 · 3b · 5c · 7d − 1| < 2−k/2, (4.3)

and k/(log k)2 < 5 · 1036, which leads to k < 4.4 · 1040. Thus, in either case, we

obtain that n < 9 · 1040.

Cases m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n.

For these cases, we rewrite (3.21) as∣∣∣2a · 3b · 5c · 7d · α−(n−1) · (fk(α))−1 − 1
∣∣∣ < 2 · ϕ−(n−m). (4.4)

So, by inequality (3.23), we get

n−m < 4 · 1018k7(log k)2 log n. (4.5)

We now use inequalities (3.25), (3.26) and the above inequality (4.5), to obtain∣∣∣2a · 3b · 5c · 7d · α−(n−1) ·
(
fk(α)(1 + αm−n)

)−1 − 1
∣∣∣ < 2 · ϕ−(n−1). (4.6)

and

n < 6.8 · 1017k6 log k log n(4k log k + 0.7(n−m)) (4.7)

< 8.2 · 1035k13(log k)3(log n)2.
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Following arguments similar to those used before based on Lemma 3.2, we get

a bound analogous to (3.30):

n < 4 · 1040k13(log k)5. (4.8)

Assuming that k > 320, it is easy to see using inequality (4.8) that n < 20.8k.

Hence, as in inequalities (3.38), one can show that

F (k)
n = 2n−2 (1 + ζ(n, k)) , with |ζ(n, k)| < 2−0.2k+1.

Using the above identity in equation (3.1), we obtain in a manner similar to (3.40),

that ∣∣2a−n+2 · 3b · 5c · 7d − 1
∣∣ < 2−(γ−2), with γ = min{0.2k, n−m}. (4.9)

By using (3.10) and (4.8), we get γ < 1.3 · 1016 log k. If γ = 0.2k, then we get

k < 2.8 · 1018. If γ = n−m, then

n−m < 1.3 · 1016 log k. (4.10)

As in inequality (3.16), we can rewrite (3.1) as

|(1 + 2m−n)−1 · 2a−n+2 · 3b · 5c · 7d − 1| < 2−0.2k+1, (4.11)

which together with inequalities (3.17), (4.8) and (4.10) leads to the conclusion that

k < 3.7 · 1016(n−m) log n (4.12)

< 3.7 · 1016(1.3 · 1016 log k)(148 log k)
< 7.3 · 1034(log k)2.

This gives k < 6 · 1038. From (4.8), we conclude that n < 3 · 10554.
We record what have just proved.

Lemma 4.1. Let (n,m, k, a, b, c, d) be a solution of Diophantine equation (4.1) with

bcd ̸= 0.

(i) If m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1, then

max{m, k} < n < 9 · 1040. (4.13)

(ii) If m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n, then

k < 6 · 1038 and max{m, k} < n < 3 · 10554. (4.14)

4.2. Reductions on k and n

We need better upper bounds for n and k than the ones given in Lemma 4.1. In order

to reduce the bounds of Lemma 4.1, we use a result of the geometry of numbers on

a lower bound for linear forms with bounded integer coefficients.

Let α1, . . . , αt ∈ R. We consider linear forms in integer variables as follows:

x1α1 + x2α2 + · · ·+ xtαt with |xi| ≤ Xi. (4.15)
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Also, we consider the lattice Ω = ⟨ν1, . . . , νt⟩Z, with vectors νj given by

νj = ej + ⌊Cαj⌉ et for 1 ≤ j ≤ t− 1 and νt = ⌊Cαt⌉ et,

where C is a sufficiently large positive constant. Our main tool at this stage is the

following result (see Proposition 2.3.20 in [8, Sectión 2.3.5]).

Lemma 4.2. Let X1, . . . , Xt be positive integers such that X := max{Xi} and

C > (tX)t is a fixed constant. With the above notation on Ω, we consider a reduced

base {bi} to Ω and its associated Gram–Schmidt base {b∗
i } . We set

c1 = max
1≤i≤t

||b1||
||b∗

i ||
, δ =

||b1||
c1

, Q =

t−1∑
i=1

X2
i and T =

t∑
i=1

Xi/2.

If the integers xi satisfy that |xi| ≤ Xi, for i = 1, . . . , t and δ2 ≥ T 2 + Q, then we

have ∣∣∣∣∣
t∑

i=1

xiαi

∣∣∣∣∣ ≥
√
δ2 −Q− T

C
.

Below we use the arguments cited above on inequalities (3.8), (3.16), (3.21),

(3.25), (3.40) and (3.45). In order to apply the previous Lemma 4.2, we consider

the following argument. For a nonzero real number Γ we have:

if |eΓ − 1| < 1/2, then e|Γ| < 2 and |Γ| < e|Γ||eΓ − 1|. (4.16)

Case m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1.

Fixing

Γ0 := (a− n+ 2) log 2 + b log 3 + c log 5 + d log 7,

we conclude, by (3.8), that |eΓ0 − 1| < 2−γ+2, with γ := max{k/2, n −m}. Thus,
assuming that γ ≥ 3 we obtain by (4.16) that

0 < |(a− n+ 2) log 2 + b log 3 + c log 5 + d log 7| < 2−γ+2. (4.17)

Below we estimate a lower bound for |Γ0| via Lemma 4.2. We take the parameters

(α1, x1) = (log 2, a− n+ 2), (α2, x2) := (log 3, b), (α3, x3) := (log 5, c),

and (α4, x4) := (log 7, d). Further, X := 9 ·1040 as an upper bound to n−a−2, b, c

and d, according to (3.5) and Lemma 4.1 (i). We put C := (4X)4 and consider the

lattice Ω0 generated by

ν1 := (1, 0, 0, ⌊C log 2⌋) , ν2 := (0, 1, 0, ⌊C log 3⌋) ,

ν3 := (0, 0, 1, ⌊C log 5⌋) , ν4 := (0, 0, 0, ⌊C log 7⌋) .

Using Mathematica, we find a reduced base {bi} (LLL algorithm) for Ω0 and its

associated Gram–Schmidt base {b∗
i }. We also calculate

c1 := 1.06959 . . . , δ := 259398.0041, Q := 2.43 · 1010, T := 180001.
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By Lemma 4.2, we have that |Γ0| > 1.6× 10−18 and combining this inequality with

(4.17), we conclude that γ ≤ 61. Hence,

k ≤ 122 or n−m ≤ 61.

Next, we work under the assumption n−m ≤ 61 (this is the case when n−m <

k/2). Updating the bound on n − m and the value of s in inequalities (3.17) and

(4.3), we conclude first that k < 7.7 · 1017(log k)2, and later that k < 1.9 · 1021. So,
we get n ≤ 2k + 1 < 4 · 1021.

We now consider

Γ00 := (a−m+ 2) log 2 + b log 3 + c log 5 + d log 7− log(2n−m + 1).

We note that Γ00 ̸= 0 because Λ00 ̸= 0. Moreover, since we also have P (2n−m+1) ≥
2(n−m) + 1 > 7 for n−m ≥ 4, we take n−m ∈ [4, 61].

We get, by (4.16), that

0 < |(a−m+ 2) log 2 + b log 3 + c log 5

+ d log 7− log(2n−m + 1)| < 2−k/2+1. (4.18)

Applying now Lemma 4.2 to the above inequality (4.18), for n −m ∈ [4, 61], with

the new parameters: X := 4 · 1021 (the best upper bound on n obtained so far),

C := (13X)5 and a suitable lattice, we get

min
n−m∈[4,61]

|Γ00| > 6 · 10−91.

Thus, together with (4.18), we conclude that k ≤ 602. We now have that n ≤
2k + 1 < 1205.

Returning to inequalities (4.17) and (4.18) and using the LLL–algorithm accord-

ing to Lemma 4.2 (making the appropriate choices for X, C, etc. in each case), we

run our reduction cycle, obtaining

k ≤ 102 and n ≤ 205.

Cases m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n.

Returning to (4.9), we assume that γ ≥ 3. Thus, by (4.16),

0 < |(a− n+ 2) log 2 + b log 3 + c log 5 + d log 7| := |Γ1| < 2−γ+3. (4.19)

The linear form in logarithms on the left–hand side of the above inequality is Γ0.

Thus, we do once again the calculations with the new parameters X := 1.5 · 10549,
according to Lemma 4.1 (ii) and C := (4X)4. We obtain that |Γ1| > 1.5× 10−1643,

and together with (4.19), we conclude that γ ≤ 5486. So, k ≤ 27431 or n−m ≤ 5486.

Assuming that γ = n − m, we continue under the assumption n − m ≤ 5486.

From inequality (4.12), we conclude that k < 2.6 · 1023 (using the bound to n given

in Lemma 4.1 (ii)). So, by (4.8), we get n < 4.4 · 10353.
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We now return to (4.11). By (4.16),

0 < |(a−m + 2) log 2 + b log 3 + c log 5

+ d log 7− log(2n−m + 1)| := |Γ2| < 2−0.2k+2. (4.20)

This time Γ2 is Γ00. Applying now Lemma 4.2 to the above inequality (4.20), for

n−m ∈ [4, 5486], with the new parameters: X := 4.4 · 10353 (the best upper bound

on n obtained so far), C := X6 and a suitable lattice, we get

min
n−m∈[3,5234]

|Γ2| > 1.4 · 10−1697.

Thus, together with (4.20), we conclude that k ≤ 28190. Hence, by (4.8), we now

have that n < 3.2 · 10103.
Returning to inequalities (4.19) and (4.20) and using the LLL–algorithm accord-

ing to Lemma 4.2 (making the appropriate choices for X, C, etc. in each case), we

get γ ≤ 983 and finally k < 6496. This last bound on k determines a better upper

bound for n, namely from inequality (4.8) we get n < 3.45 · 1094. Restarting our

reduction cycle on inequalities (4.19) and (4.20), we conclude that

k < 6296 and n < 2.25 · 1094

Hereinafter, we work to reduce the bound on n and k given above. The arguments

used below are similar to those used in reducing the upper bound on k (based on

LLL–algorithm). In order to avoid repetition of the arguments, we present only

what is strictly necessary.

We consider the linear form

Γ3 := a log 2 + b log 3 + c log 5 + d log 7− (n− 1) logα− log(fk(α)).

Assuming n−m > 3, we obtain by (4.4) that

0 < |a log 2 + b log 3 + c log 5 + d log 7

− (n− 1) logα− log(fk(α))| < 4 · α−(n−m). (4.21)

For each k ∈ [3, 6296], we carry out a new application of the LLL–algorithm to

the above inequality (4.21). Here, we set the parameters X := 2.25 · 1094 (the best

upper bound on n so far), C := X40 and the suitable lattice. After several hours of

computation in Mathematica, we obtain

5.9 · 10−3146 < min
k∈[3,6296]

|Γ3| < 4 · α−(n−m).

This inequality leads to n−m ≤ 12941.

Returning to inequality (4.6), we note that

0 < |Γ4| := |a log 2 + b log 3 + c log 5 + d log 7

− (n− 1) logα− log(fk(α)) (4.22)

− log(1 + αm−n))| < 4 · α−n.
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For k ∈ [3, 6296] and n−m ∈ [4, 12941], we find computationally a minimum lower

bound to |Γ4|. For this, we apply again the reduction method of Lemma 4.2 with

the parameters X := 6.5 · 1048 (according to 4.7) and C := X23. After many hours

of computation we have together with inequality (4.22), that

3.59 · 10−1061 < min
k∈[3,6296]

n−m∈[4,12941]

|Γ4| < 4 · α−n

which leads to n < 4363. In summary, we have reduced the bounds on k and n,

given in Lemma 4.1, to the following bounds:

k + 2 ≤ n ≤ 4363.

Finally, we performed another reduction cycle, from inequality (4.19) to (4.22).

One more time, we started in inequality (4.19), where nowX := 4363 and C := 7X4.

This time we obtain from the LLL-algorithm and inequality (4.19) that 1.19·10−14 <

|Γ1| < 2−(γ−1). Thus, γ ≤ 47. Continuing with the assumption γ = n − m ≤ 47,

we return to inequality (4.20) and apply the LLL–algorithm for n − m ∈ [4, 47]

with the parameters X := 4363 and C := (3X)5. By Lemma (4.2) and inequality

(4.20), we conclude that 2.38 · 10−17 < |Γ2| < 2−(k/2−2), so k ≤ 290. However,

we recall that in Section 4.1 have assumed that k > 320. Therefore, we have just

showed that k ∈ [3, 320]. Now, the application of Lemma (4.2) in inequality (4.21),

for k ∈ [3, 320], X := 4363 and C := (5X)46, reveals that

1.67 · 10−191 < min
k∈[3,320]

|Γ3| < 4 · α−(n−m), so n−m ≤ 785.

Given that k ∈ [3, 320], n−m ∈ [4, 785] and n ∈ [k + 2, 4363], we return one last

time to inequality (4.22) and apply Lemma 4.2 with X := 4363 and C := X55. By

Lemma 4.2 and inequality (4.22), we get

2.8 · 10−189 < min
k∈[3,320]

n−m∈[4,785]

|Γ4| < 4 · α−n, so n ≤ 775.

The following result summarizes the final bounds on n and k obtained above.

Lemma 4.3. Let (n,m, k, a, b, c, d) be a solution of Diophantine equation (4.1) with

bcd ̸= 0.

(i) If m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1, then

k ≤ 102 and n ≤ 205.

(ii) If m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n, then

k ≤ 320 and n ≤ 775.
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4.3. Final computations

Case m ≤ k + 1 and k + 2 ≤ n ≤ 2k + 1.

By the Cooper and Howard identity, we have that

F (k)
n + F (k)

m = 2m−2 + 2n−2 − (n− k)2n−k−2.

Further, by Lemma 4.3(i),

k ∈ [3, 102], m ∈ [2, k + 1] and n ∈ [k + 1, 2k + 1]. (4.23)

Bellow, we find the triples (n,m, k) that satisfy (4.23) and

2 < P (2m−2 + 2n−2 − (n− k)2n−k−2) ≤ 7

by finding the factorization of F
(k)
n + F

(k)
m , since the ranges for n and k are small.

A computer search with Mathematica revealed that the solutions to Diophantine

equation (4.1), are the following:

Table 2. Solutions for F
(k)
n +F

(k)
m = 2a·3b·5c·7d with k ∈ [3, 102],m ∈ [2, k+1] and n ∈ [k+1, 2k+1].

F
(3)
6 + F

(3)
2 = 2 · 7 F

(3)
7 + F

(3)
2 = 52 F

(3)
5 + F

(3)
3 = 3 · 2

F
(3)
6 + F

(3)
3 = 3 · 5 F

(3)
7 + F

(3)
4 = 22 · 7 F

(4)
7 + F

(4)
2 = 2 · 3 · 5

F
(4)
8 + F

(4)
4 = 22 · 3 · 5 F

(4)
9 + F

(4)
4 = 24 · 7 F

(5)
7 + F

(5)
4 = 5 · 7

F
(5)
8 + F

(5)
3 = 32 · 7 F

(5)
10 + F

(5)
4 = 24 · 3 · 5 F

(5)
10 + F

(5)
6 = 22 · 32 · 7

F
(5)
11 + F

(5)
6 = 25 · 3 · 5 F

(6)
9 + F

(6)
2 = 2 · 32 · 7 F

(6)
10 + F

(6)
3 = 2 · 53

F
(6)
10 + F

(6)
4 = 22 · 32 · 7 F

(6)
10 + F

(6)
7 = 23 · 5 · 7 F

(6)
11 + F

(6)
5 = 22 · 53

F
(6)
12 + F

(6)
4 = 22 · 5 · 72 F

(6)
12 + F

(6)
7 = 24 · 32 · 7 F

(6)
13 + F

(6)
5 = 23 · 35

F
(7)
9 + F

(7)
5 = 33 · 5 F

(7)
12 + F

(7)
4 = 24 · 32 · 7 F

(7)
13 + F

(7)
6 = 25 · 32 · 7

F
(7)
14 + F

(7)
6 = 25 · 53 F

(7)
15 + F

(7)
3 = 2 · 34 · 72 F

(7)
15 + F

(7)
8 = 26 · 53

F
(8)
11 + F

(8)
6 = 3 · 52 · 7 F

(8)
12 + F

(8)
8 = 23 · 33 · 5 F

(8)
14 + F

(8)
3 = 2 · 34 · 52

F
(8)
17 + F

(8)
8 = 29 · 32 · 7 F

(9)
12 + F

(9)
5 = 3 · 73 F

(9)
15 + F

(9)
10 = 24 · 3 · 52 · 7

F
(10)
16 + F

(10)
9 = 24 · 3 · 73

The Cases m ≤ k + 1 and n ≥ 2k + 2 or k + 2 ≤ m < n.

In this cases, we have from Lemma 4.3(ii) that k ≤ 320 and n ≤ 775. We cannot

use the factorization of F
(k)
n + F

(k)
m , given that this can take a long time. Instead,

we extract the largest power of 2, 3, 5, 7 which divide F
(k)
n +F

(k)
m and check if there

is a cofactor larger than 1 left. Therefore, if the resulting cofactor is greater than 1,

then we conclude that P (F
(k)
n + F

(k)
m ) > 7.

For k ≥ 5, m ∈ [2, k + 1] and n ∈ [2k + 2, 775] we obtained that

P (F (k)
n + F (k)

m ) > 7,

while for k = 3, 4, the only solutions to equation (4.1) are
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Table 3. Solutions for F
(k)
n +F

(k)
m = 2a ·3b ·5c ·7d with k = 2, 4 and k+2 ≤ m < n.

F
(3)
8 + F

(3)
2 = 32 · 5 F

(3)
10 + F

(3)
2 = 2 · 3 · 52 F

(3)
8 + F

(3)
4 = 24 · 3

F
(4)
10 + F

(4)
3 = 2 · 3 · 5 · 7 F

(4)
10 + F

(4)
5 = 23 · 33 F

(4)
7 + F

(4)
2 = 34 · 5

F
(4)
14 + F

(4)
5 = 26 · 32 · 5

For k ∈ [3, 320] and k + 2 ≤ m < n, we obtained that the only solutions to

equation (4.1) are

Table 4. Solutions for F
(k)
n + F

(k)
m = 2a · 3b · 5c · 7d with k ∈ [3, 320] and k + 2 ≤ m < n.

F
(3)
6 + F

(3)
5 = 22 · 5 F

(3)
9 + F

(3)
7 = 3 · 5 · 7 F

(3)
9 + F

(3)
8 = 53 · 3

F
(3)
10 + F

(3)
6 = 2 · 34 F

(3)
13 + F

(3)
9 = 24 · 33 · 7 F

(3)
16 + F

(3)
12 = 27 · 27

F
(4)
25 + F

(4)
8 = 27 · 54 · 72 F

(4)
12 + F

(4)
12 = 36 · 5 F

(5)
11 + F

(5)
8 = 3 · 52 · 7

F
(5)
11 + F

(5)
10 = 22 · 52 · 7 F

(5)
14 + F

(5)
9 = 36 · 5 F

(6)
15 + F

(6)
8 = 29 · 3 · 5

F
(11)
24 + F

(11)
21 = 28 · 3 · 53 · 72 F

(11)
24 + F

(11)
23 = 210 · 53 · 72
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