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CHARACTER SUMS WITH SMOOTH NUMBERS

IGOR E. SHPARLINSKI

Abstract. We use the large sieve inequality for smooth numbers
due to S. Drappeau, A. Granville and X. Shao (2017), together with
some other arguments, to improve their bounds on the frequency
of pairs pq, χq of moduli q and primitive characters χ modulo q, for
which the corresponding character sums with smooth numbers are
large.

1. Introduction

Let Ψpx, yq be the set of y-smooth integers n ď x, that is,

Ψpx, yq “ tn P Z X r1, xs : P pnq ď yu,

where P pnq is the largest prime divisor of a positive integer n. We also
denote the cardinality of Ψpx, yq by ψpx, yq “ #Ψpx, yq.
Let Xq denote the set of all ϕpqq multiplicative characters modulo

an integer q ě 2 and let X ˚
q be the set of primitive characters χ P Xq,

where ϕpqq denotes the Euler function of q, we refer to [6, Chapter 3]
for a background on characters.
Given a sequence A “ tanu8

n“1 of complex numbers, w now consider
the character sums

Sqpχ;A , x, yq “
ÿ

nPΨpx,yq

anχpnq.

In the case when an “ 1, n “ 1, 2, . . ., we simply write

Sqpχ; x, yq “
ÿ

nPΨpx,yq

χpnq.

Drappeau, Granville and Shao [1] have recently shown that there exist
absolute constants C0, c0 ą 0 such that real x, y and Q satisfy

plog xqC0 ď y ď x and Q ď mintyc0, exppc0 log x{ log log xqu,
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then for any fixed β ě 0 for all but at most

(1.1) E “ O
`
plog xq3β`13

˘

pairs pq, χq with a positive integer q ď Q and χ P X ˚
q , for every t P

rx1{4, xs we have

(1.2) |Sqpχ; t, yq| ă
ψpt, yq

pu loguq4plog xqβ
,

where as usual

u “
log x

log y
.

The result is based on the obtained in [1] large sieve inequality with
smooth numbers. It seems that the same result also holds for the sums
Sqpχ;A , t, yq satisfying the bound (1.2).
Here we modify the scheme of the proof from [1] and obtain a stronger

and more flexible statement with new parameters ∆ controlling the
size of character sums and z controlling the range where these sums
are considered.

Theorem 1.1. There exist absolute constants C0, c0 ą 0 such that for

any fixed κ ą 0 and real x, y, z, Q and ∆ that satisfy

plog xqC0 ď y ď z, Q ď mintyc0, exppc0 log z{ log log zqu

and

∆ ě maxtz´1, y´κu,

and an arbitrary sequence A “ tanu8
n“1 of complex numbers with

|an| ď 1, n “ 1, 2, . . . ,

for all but at most

E “ O
`
∆´2plogp1{∆qq2 log x

˘

pairs pq, χq with a positive integer q ď Q and χ P X ˚
q , for every t P rz, xs

we have

Sqpχ;A , t, yq “ O p∆ψpt, yqq ,

where the implied constants depend only on κ.

For example, using that u “ O plog x{ log log xq, we see from Theo-
rem 1.1 that (1.2) fails for at most

E “ O
`
plog xq2β`8plog log xq2

˘

pairs pq, χq under consideration, improving the bound (1.1) and holding
in a broader range of parameters.
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Finally, in Section 4 we also present an argument due to Adam
Harper which shows that his results [2] allow a more direct approach
to the sums Sqpχ; x, yq

2. Preliminaries

As usual, we use the expressions F ! G, G " F and F “ OpGq to
mean |F | ď cG for some constant c ą 0 which throughout the paper
may depend on the real parameter κ ą 0.
First we recall the following result of Hildebrand [3, Corollary 2]:

Lemma 2.1. For any fixed κ ą 0, if 1 ě ∆ ą mintx´1, y´κu then

ψpx ` ∆x, yq ´ ψpx, yq ! ∆ψpx, yq.

We use the following version of the classical large sieve inequality,
which has been given by Drappeau, Granville and Shao [1]:

Lemma 2.2. There exist absolute constants C0, c0 ą 0 such that for

any real x, y and Q with

plog xqC0 ď y ď x and Q ď mintyc0, exppc0 log x{ log log xqu

and an arbitrary sequence B “ tbnu8
n“1 of complex numbers, we have

ÿ

qďQ

ÿ

χPX˚
q

|Sqpχ;B, x, yq|2 ! ψpx, yq
ÿ

nPΨpx,yq

|bn|2,

Let Fξpuq be the periodic function with period one for which

(2.1) Fξpuq “

"
1 if 0 ă u ď ξ;
0 if ξ ă u ď 1.

We now recall the following classical result of Vinogradov (see [8,
Chapter I, Lemma 12]):

Lemma 2.3. For any ∆ such that

0 ă ∆ ă
1

8
and ∆ ď

1

2
mintξ, 1 ´ ξu,

there is a real-valued function f∆,ξpuq with the following properties:

‚ f∆,ξpuq is periodic with period one;

‚ 0 ď f∆,ξpuq ď 1 for all u P R;

‚ f∆,ξpuq “ Fξpuq if ∆ ď u ď ξ ´ ∆ or ξ ` ∆ ď u ď 1 ´ ∆;

‚ f∆,ξpuq can be represented as a Fourier series

f∆,ξpuq “ ξ `
8ÿ

j“1

p gj epjuq ` hj ep´juqq ,
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where epuq “ expp2πiuq and the coefficients gj , hj satisfy the

uniform bound

maxt|gj|, |hj |u ! mintj´1, j´2∆´1u, j “ 1, 2, . . . .

3. Proof of Theorem 1.1

We cover the interval rz, xs by M “ Oplogxq (possibly overlapping)
dyadic intervals of the form rm, 2ms Ď rz, xs with an integer m.
We now fix one of these intervals and estimate the number Em of

pairs pq, χq with a positive integer q ď Q and χ P X ˚
q such that there

exists t P rm, 2ms for which we have

(3.1) |Sqpχ;A , t, yq| ą cκ∆ψpt, yq,

where cκ ą 0 is some constant, which may depend on κ, to be chosen
later.
First, we note that by Lemma 2.1 we have

(3.2) ψpm, yq ď ψpt, yq ď ψp2m, yq ! ψpm, yq

which we use throughout the proof.
We also note that for the number E1,m of such pairs pq, χq for which

|Sqpχ;A , m, yq| ą ∆ψpm, yq,

by Lemma 2.1 we have

E1,m p∆ψpm, yqq2 ! ψpx, yq2.

Hence

(3.3) E1,m ď ∆´2.

Similarly for the number E2,m of pairs pq, χq for which

|Sqpχ;A , 2m, yq| ą ∆ψp2m, yq,

we have

(3.4) E2,m ď ∆´2.

So, removing these pairs pq, χq, we can now assume that

(3.5) |Sqpχ;A , m, yq| , |Sqpχ;A , 2m, yq| ď ∆ψpm, yq,

holds.
Let ξ “ t{m. Using the function Fξ as in (2.1), we write

Sqpχ;A , t, yq “
ÿ

nPΨpm,yq

anχpnq

`
ÿ

kě1
m`kPΨp2m,yq

am`kχpm` kqFξpk{mq.
(3.6)
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We can certainly assume that ∆ ă 1{8 as otherwise the result is
trivial.
If

(3.7) ∆ ď
1

2
mintξ, 1 ´ ξu

then obviously either

|Sqpχ;A , t, yq ´ Sqpχ;A , m, yq| ď ψpm ` 2∆m, yq ´ ψpm, yq

or

|Sqpχ;A , 2m, yq ´ Sqpχ;A , t, yq| ď ψp2m, yq ´ ψp2m´ 2∆m, yq.

Hence, applying Lemma 2.1, which is possible due to the condition on
∆, and recalling (3.5), we obtain that in this case

Sqpχ;A , t, yq ! ∆ψpt, yq.

Therefore we can assume that (3.7) holds and thus Lemma 2.3 applies
with this ξ and ∆.
Considering the contribution to the above sum from k with

k{m P r0,∆s Y rξ ´ ∆, ξ ` ∆s Y r1 ´ ∆, 1s

(that is, with k{m in one of the intervals where Fξpuq and f∆,ξpuq may
disagree), and recalling that |an| ď 1, we obtain
ˇ̌ ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kqFξpk{mq

´
ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kqf∆,ξpk{mq
ˇ̌
ˇ|

ď pψpm ` ∆m, yq ´ ψpm, yqq

` pψpt` ∆m, yq ´ ψpt´ ∆m, yqq

` pψp2m, yq ´ ψp2m´ ∆m, yqq .

Hence, applying Lemma 2.1 and recalling (3.2), we obtain
ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kqFξpk{mq

´
ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kqf∆,ξpk{mq

! ∆ψp2m, yq ! ∆ψpm, yq ď ∆ψpt, yq,
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which together with (3.5) and (3.6) implies

Sqpχ;A , t, yq “
ÿ

kě1
m`kPΨp2m,yq

am`kχpm` kqf∆,ξpk{mq

` Op∆ψpt, yqq.

(3.8)

Furthermore, defining J “ r∆´2s, we see from the properties of the
coefficients of f∆,ξpuq that we can approximate it as

f∆,ξpuq “ rf∆,ξpuq ` Op∆´1q

by a finite trigonometric polynomial

rf∆,ξpuq “
Jÿ

j“0

p gj epjuq ` hj ep´juqq ,

where for convenience we have also defined g0 “ h0 “ ξ{2. Hence,
using (3.2), we can rewrite (3.8) as
(3.9)

Sqpχ;A , t, yq “
ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kq rf∆,ξpk{mq ` Op∆ψpt, yqq.

Expanding the function rf∆,ξpuq and changing the order of summa-
tion, we obtain

ÿ

kě1
m`kPΨp2m,yq

am`kχpm` kq rf∆,ξpk{mq

“
Jÿ

j“0

ˆ
gj

ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kq epjk{mq

` hj
ÿ

kě1
m`kPΨp2m,yq

am`kχpm` kq ep´jk{mq

˙
.

Since gj , hj ! j´1 we obtain

(3.10)
ÿ

kě1
m`kPΨp2m,yq

am`kχpm` kq rf∆,ξpk{mq ! Sq,jpχ,mq,

where

Sqpχ,mq “
Jÿ

j“0

1

j
|Tq,jpχ,mq|
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with

Tq,jpA , χ,mq “
ÿ

kě1
m`kPΨp2m,yq

am`kχpm ` kq epjk{mq

“
ÿ

nąm
nPΨp2m,yq

anχpnq epjpn´ mq{mq.

Combining (3.9) and (3.10) together, we see that for some constant cκ,
depending only on κ, we have

(3.11) Sqpχ;A , t, yq ď
1

2
cκ pSq,jpχ,mq ` ∆ψpt, yqq ,

which is the same constant which we also use in (3.1).
We note the most crucial for our argument point that the sums

Tq,jpA , χ,mq and thus SqpA , χ,mq do not depend on t. In particular,
it is enough to estimate the number E0,m of pairs pq, χq with a positive
integer q ď Q and χ P X ˚

q with

(3.12) SqpA , χ,mq ě ∆ψpm, yq.

Writing j´1 “ j´1{2 ¨j´1{2 and using the Cauchy inequality, we obtain

SqpA , χ,mq2 !
Jÿ

j“0

1

j
|Tq,jpA , χ,mq|2 log J.

We now apply Lemma 2.2 for every j “ 0, . . . , J , with the sequence
B “ tbnu8

n“1 supported only on y-smooth integers n P rm ` 1, 2ms in
which case we set bn “ an epjpn´ mq{mq. This yields the bound

ÿ

qďQ

ÿ

χPX˚
q

Sq,jpA , χ,mq2

!
Jÿ

j“0

1

j

ÿ

qďQ

ÿ

χPX˚
q

|Tq,jpA , χ,mq|2 log J ! ψp2m, yq2plog Jq2,

which implies that

E0,m ď ∆´2plog Jq2 ! ∆´2plogp1{∆qq2.

Therefore, recalling (3.3) and (3.4) and using (3.11), we obtain

Em ď E0,m ` E1,m ` E2,m ! ∆´2plogp1{∆qq2

for each of M ! log x relevant values of m. The result now follows.
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4. Comments

Here we show that the sums Sqpχ; x, yq without weights admit a more
efficient treatement directly from a result of Harper [2, Proposition 1].
First we note that, without loss of generality, in the hypotheses of

Theorem 1.1, we can assume that κ is sufficiently small (since otherwise,
adjusting the value of the constant c0, we can use the trivial bound Q2

for the number of “bad” pairs pq, χq).
We now set

D “ ∆´1 log x, H “ D50, ε “
C

log y
`

4 logD

log z
,

where C is the absolute constant of [2, Proposition 1].
It is easy to check that all the assumptions of [2, Proposition 1], used

with t in place of x, are satisfied for any such character and any t with
z ď t ď x. Indeed, we first note that by [4, Lemma 2] the parameter
αpt, yq satisfies αpt, yq “ 1`op1q. Hence, for a sufficiently large C0 and
a sufficiently small κ we have

C

log y
ă ε ď

C

log y
`

4 logp1{∆q ` 4 log log x

log z

ď
C

log y
`

4κ log y ` 4 log log x

log z

ď
C

log y
` 4κ`

4

C0

ă αpt, yq{2,

(4.1)

(provided that x is large enough). We also note that

yε “ C exp

ˆ
4 logD log y

log z

˙
! D4.

We now assume that C0 is sufficiently large and κ is sufficiently small,
so that we have

κ ` 1{C0 ă d{50,

where d is the absolute constant of [2, Proposition 1]. Hence, recalling
the inequalities plog xqC0 ď y ď z, we also have

y0.9εplog tq2 ď D3.6plog xq2 ď D5.6 ď H

ď ∆´50plog xq50 ď y50κ`50{C0 ď zd ď td.
(4.2)

Finally, we also verify that for q ď Q and an appropriate choice of the
constants c0, C0 and κ we have

(4.3) pHqqA ď
`
Qp∆´1 log xq50

˘A
ď pyc0`50κ`50{C0qA ď y.

Thus the inequalities (4.1), (4.2) and (4.3) ensure that [2, Proposi-
tion 1] applies and implies that for any modulus q ď Q and a primitive
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character χ modulo q, such that the L-function Lps, χq has no zeros in
the region

ℜpsq ą 1 ´ ε and |ℑpsq| ď H,

we have

Ψpt, y;χq ! Ψpt, yq
a
log t log ypt´0.3ε logH ` H´0.02q

ď Ψpt, yq
a
log t log ypD´1.2 logH ` D´1q

! ∆Ψpt, yq

for all z ď t ď x.
It only remains to see how many pairs pq, χq do not have such a

zero-free region. By the zero-density estimates of Huxley [5] and Ju-
tila [7] (see also [2, Section 2], where such results are conveniently
summarised), this number is at most pQ2Hqp12{5`op1qqε. First we note
that D ď yκ`1{C0, which implies

Hε “ exp

ˆ
200plogDq2

log z
` O

ˆ
logD

log y

˙˙
! exp

ˆ
200plogDq2

log z

˙
.

It is also useful to note that since Q ď yc0, we have

Qε “ Q4 logD{ log z`Op1{ log yq ! Q4 logD{ log z.

Recalling that Q is at most a small power of y we now derive the
number E of “bad” pairs pq, χq is at most

E ! Qp96{5`op1qq logD{ log z exp

˜
p480 ` op1qq

plogDq2

log z

¸
.

with the above choice of D. In particular, if

(4.4) ∆ ě exp
´

´c1
a

log z
¯

and z ě exp
`
c2plog log xq2

˘

for some absolute constants c1, c2 ą 0, then, using the condition Q ď
exppc0 log z{ log log zq we obtain

QlogD{ log z ď exppc0 logD{ log log zq “ DOp1{ log log zq

and

exp

˜
plogDq2

log z

¸
“ exp

˜
O

˜
plogp1{∆q ` log log xq2

log z

¸¸
“ Op1q.

Hence
E ! DOp1{ log log zq.

Thus, if in instead of (4.4) we impose more stringent conditions

∆ ě
c1

log z
and z ě exp pplog xqc2q
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then we see that E “ Op1q.
Finally, we note that [2, Theorem 3] can also be used to estimate the

sums Sqpχ; x, yq. Furthermore, the sums Sqpχ;A , x, yq with weights
given by multiplicative functions, such as the Möbius function, can be
treated within the same technique. However, this approach does not
seem to apply to the sums Sqpχ;A , x, yq with arbitrary weights.
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