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CHARACTER SUMS WITH SMOOTH NUMBERS
IGOR E. SHPARLINSKI

ABSTRACT. We use the large sieve inequality for smooth numbers
due to S. Drappeau, A. Granville and X. Shao (2017), together with
some other arguments, to improve their bounds on the frequency
of pairs (g, x) of moduli ¢ and primitive characters y modulo ¢, for
which the corresponding character sums with smooth numbers are
large.

1. INTRODUCTION

Let W(z,y) be the set of y-smooth integers n < x, that is,
U(z,y) ={neZn|[lz] : P(n) <y},

where P(n) is the largest prime divisor of a positive integer n. We also
denote the cardinality of U (z,y) by ¥(x,y) = #V(z,y).

Let X, denote the set of all p(¢) multiplicative characters modulo
an integer ¢ > 2 and let X" be the set of primitive characters x € A&,
where ¢(q) denotes the Euler function of ¢, we refer to [6, Chapter 3]
for a background on characters.

Given a sequence &7 = {a,},°_; of complex numbers, w now consider
the character sums

Sq(X;'Q{#an): Z anx(n).

nev(z,y)
In the case when a,, =1, n =1,2,..., we simply write
SeOcay) = > x(n).
nev(z,y)

Drappeau, Granville and Shao [1] have recently shown that there exist
absolute constants Cy, g > 0 such that real z, y and @) satisfy

(logz) <y <=z and Q) < min{y®, exp(cologz/loglog )},
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then for any fixed S > 0 for all but at most
(1.1) E =0 ((logz)*"'%)

pairs (g, x) with a positive integer ¢ < @ and x € A", for every ¢ €
[2'/4, 2] we have

U(t,y)
1.2 :t
( ) |SQ(X7 7y)| < (UlOgU)‘l(lOgSL’)B,
where as usual
log x
= )
log y

The result is based on the obtained in [1] large sieve inequality with
smooth numbers. It seems that the same result also holds for the sums
Sq(x: 7, t,y) satisfying the bound (1.2).

Here we modify the scheme of the proof from [1] and obtain a stronger
and more flexible statement with new parameters A controlling the
size of character sums and z controlling the range where these sums
are considered.

Theorem 1.1. There exist absolute constants Cy, co > 0 such that for
any fized k > 0 and real x, y, z, Q and A that satisfy

(logz)® <y <z Q<min{y®,exp(cylogz/loglog )}
and
A = max{z ',y "},
and an arbitrary sequence o = {a,}*_, of complex numbers with
la,| <1, n=12...,
for all but at most
E =0 (A *(log(1/A))* log )

pairs (q, x) with a positive integer ¢ < Q and x € X, for everyt € [z, z]
we have

Sq0 @ ty) = O (AY(t,y)),

where the implied constants depend only on k.

For example, using that u = O (logz/loglog ), we see from Theo-
rem 1.1 that (1.2) fails for at most

E =0 ((log z)*"*%(log log )?)

pairs (g, x) under consideration, improving the bound (1.1) and holding
in a broader range of parameters.
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Finally, in Section 4 we also present an argument due to Adam
Harper which shows that his results [2] allow a more direct approach
to the sums S,(x; ,y)

2. PRELIMINARIES

As usual, we use the expressions F' « G, G » F and F = O(G) to
mean |F| < ¢G for some constant ¢ > 0 which throughout the paper
may depend on the real parameter £ > 0.

First we recall the following result of Hildebrand [3, Corollary 2]:

Lemma 2.1. For any fived k > 0, if 1 > A > min{x~!, y=~} then
(@ + Az, y) = d(z,y) < Ad(z,y).

We use the following version of the classical large sieve inequality,
which has been given by Drappeau, Granville and Shao [1]:

Lemma 2.2. There exist absolute constants Cy,cq > 0 such that for
any real x, y and Q with

(logzx)® <y<z and Q < min{yg, exp(colog z/loglog )}
and an arbitrary sequence B = {b,}_, of complex numbers, we have

D0 2 1806 By < dlay) Y, bl

a<Q xeX} nev(z,y)
Let F¢(u) be the periodic function with period one for which

1 ifo<u<e
(2.1) fﬂ”‘{o ife<u<l,

We now recall the following classical result of Vinogradov (see [8,
Chapter I, Lemma 12]):

Lemma 2.3. For any A such that

1 1
0<A<§ and A<§min{§,1—§}a

there is a real-valued function fa ¢(u) with the following properties:

o fae(u) is periodic with period one;

¢ 0< fae(u) <1 forallueR;

o facu)=Fe(u) if A<u<é—Aoré+A<u<l—A,
o fage(u) can be represented as a Fourier series

faelu) =€+ (g5 e(ju) + by e(—ju)),

j=1
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where e(u) = exp(2miu) and the coefficients g;, h; satisfy the
uniform bound

max{|g;|,|h;|} « min{j~",jPA7Y}, =12,
3. PROOF OF THEOREM 1.1

We cover the interval [z, z] by M = O(logx) (possibly overlapping)
dyadic intervals of the form [m,2m]| < [z, 2] with an integer m.

We now fix one of these intervals and estimate the number FE,, of
pairs (¢, x) with a positive integer ¢ < @ and x € & such that there
exists ¢ € [m, 2m] for which we have

(31) |SQ(X7 %at>y)| > CHA¢(t>?/)>

where ¢, > 0 is some constant, which may depend on &, to be chosen
later.
First, we note that by Lemma 2.1 we have

(3.2) (m,y) < ¥(ty) < Y(2m,y) < P(m,y)
which we use throughout the proof.
We also note that for the number E} ,, of such pairs (¢, x) for which

|SQ<X7 "Q{v m7 y)| > Aw<m7 y)7
by Lemma 2.1 we have
El,m (A,lvb(ma y)>2 « ¢($a y>2
Hence
(3.3) By < A2
Similarly for the number E,,, of pairs (¢, x) for which

we have
(3.4) By < A72

So, removing these pairs (g, x), we can now assume that
(3.5) 1Sq(x; 7, m, y)|, 1S40 o, 2m, y)| < Av(m,y),
holds.

Let £ = t/m. Using the function F¢ as in (2.1), we write
Se0G ty) = >, anx(n)

ne¥(m,y)

+ Z X (M + k) Fe(k/m).
k>1
m+keW(2m,y)

(3.6)
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We can certainly assume that A < 1/8 as otherwise the result is
trivial.

If

(3.7) A < = min{¢, 1 — ¢}

N | —

then obviously either
1Sq(0 <t y) — Sq(x; &, m,y)| < b(m + 2Am,y) —(m,y)
or
1S,0 2, 2m,y) — Se(x; &, t,y)| < (2m,y) —¥(2m — 2Am, y).

Hence, applying Lemma 2.1, which is possible due to the condition on
A, and recalling (3.5), we obtain that in this case

S0\t y) <« AY(t,y).

Therefore we can assume that (3.7) holds and thus Lemma 2.3 applies
with this £ and A.
Considering the contribution to the above sum from k with

k/mel0,A] v — A+ A]u[l—A1]

(that is, with k/m in one of the intervals where F¢(u) and fa ¢(u) may
disagree), and recalling that |a,| < 1, we obtain

S e+ Rk /m)
k=1
m+ke¥ (2m,y)

_ 2 X (M + k) fae(k/m)||

k=1
m+keV(2m,y)

< (w<m + Amv y) - w<m7 y))
+ (,lvb(t + Ama y) - ,lvb(t - Ama y))
+ (¢(2m7 y) - ¢(2m - Am? y)) :

Hence, applying Lemma 2.1 and recalling (3.2), we obtain
S anx(m + B Fe(k/m)

k=1
m+keW(2m,y)

— D amerx(m+ k) fae(k/m)

k=1
m+ke¥ (2m,y)

< Ap(2m,y) « Ap(m,y) < Ap(t,y),



6 IGOR E. SHPARLINSKI
which together with (3.5) and (3.6) implies
SeOG ty) = Y amerx(m+ k) fae(k/m)

(38) m+k§§(12m,y)

+O(Ay(t,y)).

Furthermore, defining J = [A™?], we see from the properties of the
coeflicients of fa ¢(u) that we can approximate it as

faeu) = fae(u) + O(A™Y)

by a finite trigonometric polynomial

Jaglu Z e(ju) + h; e(—ju)),

where for convenience we have also defined gy = hg = £/2. Hence,
using (3.2), we can rewrite (3.8) as

(3.9) N
Se0G ty) = DL amerx(m+ k) fae(k/m) + O(A(t,y).
m+k§§(12m,y)

Expanding the function J?A,g(u) and changing the order of summa-
tion, we obtain

Z X (M + K) fae (k/m)

k=1
m+keV(2m,y)

J
_ Z(gj > amrx(m+ k) e(ik/m)

Jj=0 k=1

m+ke¥ (2m,y)
+ h, Z X (M + k) e(—jk/m)).
k>1
m+keW(2m,y)
Since g;, h; < j~! we obtain
(3.10) D merx(m+ k) fae(k/m) < &g (x,m),
m+k§§(12m,y)

where

T
Gq(x,m)=zj|Ty(x, m)|
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with

Toi( xom) = > dmerx(m + k) e(jk/m)
m+k£\1%(12m,y)

= 3 anx(m)elj(n— m)/m).

n>m
nev(2m,y)

Combining (3.9) and (3.10) together, we see that for some constant c,,
depending only on k, we have

BID) S0 1) < gee (4,00m) + Av(t,y)),

which is the same constant which we also use in (3.1).

We note the most crucial for our argument point that the sums
T,;(, x,m) and thus &,(7, x, m) do not depend on ¢. In particular,
it is enough to estimate the number Ey ,, of pairs (¢, x) with a positive
integer ¢ < () and x € X with

(3.12) S,(e, x,m) = Av(m,y).

Writing 5! = j7%2.571/2 and using the Cauchy inequality, we obtain

S,(e, x,m <<Z T, X, )|2logJ.

We now apply Lemma 2.2 for every j = 0,...,.J, with the sequence
PB = {b,}_, supported only on y-smooth integers n € [m + 1,2m] in
which case we set b, = a, e(j(n —m)/m). This yields the bound

Z Z Gq,j(d>Xam)2

q<Q XeX*
< Z Z Z T, (<7, x,m)|*log J « 1(2m,y)*(log J)?,
7 4<q xeXy
which implies that
Eom < A7%(log J)* « A *(log(1/A))>.
Therefore, recalling (3.3) and (3.4) and using (3.11), we obtain
Ep < By + Evpn + Boy < A% (log(1/A))?

for each of M « log z relevant values of m. The result now follows.
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4. COMMENTS

Here we show that the sums S, (x; z, y) without weights admit a more
efficient treatement directly from a result of Harper [2, Proposition 1].
First we note that, without loss of generality, in the hypotheses of
Theorem 1.1, we can assume that « is sufficiently small (since otherwise,
adjusting the value of the constant ¢y, we can use the trivial bound Q>
for the number of “bad” pairs (g, x)).
We now set
D—Alogs, H-pD® o—_¢  4leD

~logy  logz

where C'is the absolute constant of [2, Proposition 1].

It is easy to check that all the assumptions of [2, Proposition 1], used
with t in place of x, are satisfied for any such character and any ¢ with
z <t < x. Indeed, we first note that by [4, Lemma 2] the parameter
a(t,y) satisfies a(t,y) = 1+0(1). Hence, for a sufficiently large Cyy and
a sufficiently small x we have

C e C N 4log(1/A) + 4loglog
logy logy log z
C +4/<alogy—i—llloglog:z:

(4.1)

“logy log 2z

C 4
< Ik 4 — < alt.y)/2,
logy+ /<L+CO <a(t,y)/

(provided that z is large enough). We also note that
y = Cexp (M) « D'

log z
We now assume that Cj is sufficiently large and & is sufficiently small,
so that we have
K+ 1/Cy < d/50,
where d is the absolute constant of [2, Proposition 1]. Hence, recalling
the inequalities (logz)® < y < 2, we also have
y"%(logt)* < D*%(logz)* < D** < H

(4.2) < A0 (log )% < yPOF+0/Co < d 4

Finally, we also verify that for ¢ < ) and an appropriate choice of the
constants ¢y, Cy and xk we have

(43) (Hq)A < (Q(A_l lOgZL')SO)A < (y00+505+50/Co)A < Y.

Thus the inequalities (4.1), (4.2) and (4.3) ensure that [2, Proposi-
tion 1] applies and implies that for any modulus ¢ < @ and a primitive
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character y modulo ¢, such that the L-function L(s, x) has no zeros in
the region
R(s) >1—¢ and IS(s)| < H,

we have

\I](tv Y; X) < \I](t7 y) 10g t lOg y(t70.35 log H + H*0.02)

< U(t,y)\/logtlogy(D*?log H + D)

< AU(t,y)
for all z <t <=

It only remains to see how many pairs (¢, y) do not have such a

zero-free region. By the zero-density estimates of Huxley [5] and Ju-
tila [7] (see also [2, Section 2|, where such results are conveniently
summarised), this number is at most (Q*H)"?/5+°(M)=  First we note
that D < y**t1/¢0_ which implies

2 2
H* = exp (M L0 (bgD)) « exp (M) |

log z logy log z
It is also useful to note that since @) <y, we have
Qe _ Q4logD/logz+O(1/logy) « Q4logD/logz.

Recalling that @ is at most a small power of y we now derive the
number E of “bad” pairs (g, x) is at most

1)) log D/1 (logD)2
F « Q(96/5+0( ))log D/log 2 exp (480 + O(l))F .
V4

with the above choice of D. In particular, if

(4.4) A =exp (—cm/log z) and z = exp (e2(loglog 2)?)

for some absolute constants ¢, co > 0, then, using the condition @) <
exp(co log z/log log z) we obtain

QlogD/logz < exp(co lOg D/lOglOg Z) _ DO(l/loglogz)

and
o (B0 oy o (13 b g,
og 2 0g =z
Hence

E « DO(l/loglogz).
Thus, if in instead of (4.4) we impose more stringent conditions

Az
~ logz

and z = exp ((log x)*)
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then we see that £ = O(1).

Finally, we note that [2, Theorem 3| can also be used to estimate the
sums S,(x;x,y). Furthermore, the sums S,(x; <7, z,y) with weights
given by multiplicative functions, such as the Mobius function, can be
treated within the same technique. However, this approach does not
seem to apply to the sums S,(y; 7, x,y) with arbitrary weights.
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