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Abstract For a Riemannian covering M| — My of connected Riemannian manifolds with
respective fundamental groups I'1 € I'p, we show that the bottoms of the spectra of My and
M coincide if the right action of I'g on I'{\I'p is amenable.
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1 Introduction

In this article, we study the behaviour under coverings of the bottom of the spectrum of
Schrodinger operators on Riemannian manifolds.

Let M be a connected Riemannian manifold, not necessarily complete, and V: M — R
be a smooth potential with associated Schridinger operator A 4+ V. We consider A + V as
an unbounded symmetric operator in the space L*(M) of square integrable functions on M
with domain C2°(M), the space of smooth functions on M with compact support.
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For a non-vanishing Lipschitz continuous function on M with compact support in M, we
call

JuVIP+VE
R(f)y =" —F——F—"— 1.1
) i (1.1)
the Rayleigh quotient of f. We let
(M, V) = inf R(f), (1.2)

where f runs through all non-vanishing Lipschitz continuous functions on M with compact
support in M. If Ag(M, V) > —oo, then A + V is bounded from below on C2°(M) and
Ao(M, V) is equal to the bottom of the spectrum of the Friedrichs extension of A + V. If
ro(M, V) = —o0, then the spectrum of any self-adjoint extension of A + V is not bounded
from below.

Recall that A+ V is essentially self-adjoint on C2° (M) if M is complete and inf V > —o0.
Then the unique self-adjoint extension of A + V is its closure. In the case where M is the
interior of a complete Riemannian manifold N with smooth boundary and where V extends
smoothly to the boundary of N, Lo(M, V) is equal to the bottom of the Dirichlet spectrum
of A+ VonN.

In the case of the Laplacian, that is, V = 0, we also write Ao(M) and call it the bottom
of the spectrum of M. It is well known that Ao(M) is the supremum over all A € R such
that there is a positive smooth A-eigenfunction f: M — R (see, e.g., [3, Theorem 7],
[4, Theorem 1], or [5, Theorem 2.1]). It is crucial that these eigenfunctions are not required
to be square-integrable. In fact, Ao (M) is exactly the border between the positive and the L?
spectrum of A (see, e.g., [5, Theorem 2.2]).

Suppose now that M is simply connected and let 7o: M — Mo and 71: M — M, be
Riemannian subcovers of M. Let I’y and I'; be the groups of covering transformations of
1o and 71, respectively, and assume that 'y € I'g. Then the resulting Riemannian covering
w: My — My satisfies w o w1 = mp. Let Vo: My — R be a smooth potential and set
Vi=VWyom.

Since the lift of a positive A-eigenfunction of A on M to M| is a positive A-eigenfunction
of A, we always have Lo(Mp) < Ao(M1) by the above characterization of the bottom of the
spectrum of A by positive eigenfunctions. In Sect. 4, we present a short and elementary proof
of the inequality which does not rely on the characterization of A by positive eigenfunctions:

Theorem 1.1 For any Riemannian covering w: My — My as above,
Ao (Mo, Vo) < ho(My, V7).

Brooks showed in [2, Theorem 1] that Ag(Mp) = Ao(M) in the case where M is complete,
has finite topological type, and 1 is normal with amenable group I'1\I'g of covering transfor-
mations. Bérard and Castillon extended this in [1, Theorem 1.1] to Ag(Mg, Vo) = Ao(M1, V1)
in the case where M is complete, 71 (Mp) is finitely generated [this assumption occurs in
point (1) of their Section 3.1], and the right action of I'g on I'j\I'g is amenable. We generalize
these results as follows:

Theorem 1.2 [f the right action of T'g on I'1\T'g is amenable, then

ro(Mo, Vo) = Ao(M1, V1).

Here a right action of a countable group I" on a countable set X is said to be amenable if
there exists a ['-invariant mean on L°°(X). This holds if and only if the action satisfies the
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Folner condition: For any finite subset G C I' and ¢ > 0, there exists a non-empty, finite
subset F' C X, a Fglner set, such that

|[F\Fg| < ¢|F| (1.3)

for all g € G. By definition, I is amenable if the right action of I" on itself is amenable, and
then any action of I" is amenable.

In comparison with the results of Brooks, Bérard, and Castillon, the main point of
Theorem 1.2 is that we do not need any assumptions on metric and topology of My. A
main new point of our arguments is that we adopt our constructions more carefully to the
different competitors for A separately.

2 Fundamental domains and partitions of unity

Choose a complete Riemannian metric 2 on My. In what follows, geodesics, distances, and
metric balls in My, M1, and M are taken with respect to i and its lifts to M| and M,
respectively.

Fix a point x in M. For any y € 7~ !(x), let

Dy={zeM;|d(z y) <d(z, y)forally € ) 2.1

be the fundamental domain of w centered at y. Then Dy, is closed in M1, the boundary 9D,
of Dy has measure zero in My, and 7: Dy,\0Dy, — Mo\C is an isometry, where C is a
subset of the cut locus Cut(x) of x in M. Recall that Cut(x) is of measure zero. Moreover,
My =Uyer-1()Dy, y € 71 (x).

Lemma 2.1 For any p > 0, there is an integer N(p) such that any z in M| is contained in
at most N (p) metric balls B(y, p), y € 77 ().

Proof Let z € B(y1, p) N B(y2, p) with y; # yp in 7~ (x) and v, v2: [0, 1] — M,
be minimal geodesics from y; to z and y, to z, respectively. Then oy = m o y; and
0y = 7 o Y, are geodesic segments from x to m(z). Since y; # y»2, o1 and o, are not
homotopic relative to {0, 1}. Hence, if z lies in in the intersection of n pairwise different balls
B(vi, p) with yi, ..., y, € 7~ !(x), then the concatenations afl * 0; represent n pairwise
different homotopy classes of loops at x of length at most 2p. Hence 7 is at most equal to the
number N (p) of homotopy classes of loops at x with representatives of length at most 2. O

Lemma 22 If K C My is compact, then =~ (K) N D,y is compact. More precisely, if
K C B(x,r), then =" (K) N Dy € B(y,r).

Proof Choose r > 0 such that K € B(x,r). Let z € H(K)N Dy and yp be a minimal
geodesic from 7 (z) € K to x. Let y be the lift of 3 to M starting in z. Then y is a minimal
geodesic from z to some point y' € 7w~ (x). Since z € D, this implies
d(z,y) <d(z,y) < L(y) = L(yo) <r.
Hence 7~ 1(K) N Dy C B(y,r). ]
Let K € Mybe acompactsubsetand chooser > Osuchthat K € B(x,r).Letyy: R - R
be the function which is equal to 1 on (—oo,r],tot +1—rforr <t <r+1,and to 0

on [r + 1,00]. For y € n7'(x), let ¥ = ¥y(z2) = ¥(d(z,y)). Note that ¥, = 1 on
7 ~1(K) N Dy and that supp ¥, = B(y, r + 1).
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Lemma 2.3 Any z in M, is contained in the support of at most N (r + 1) of the functions
Yy, y € (x).

Proof This is clear from Lemma 2.1 since supp ¥y is contained in the ball B(y,r +1). O

In particular, each point of M| lies in the support of only finitely many of the functions
¥y Therefore the function 1 = max{1 —Y_ v, 0} is well defined. By Lemma 2.2, we have
supp Y1 N7~ (K) = . Together with v, the functions ¥y lead to a partition of unity on
M with functions ¢; and ¢y, y € 7~ (x), given by

Y1 vy

= and ¢, = . 2.2)
Y1+ Zzen*l(x) [ ! Y1+ Zzen*l(x) [

¥1

Note that supp ¢ = supp ¥y and supp ¢, = supp ¥y, forall y € 77 (x).

Lemma 2.4 The functions ¢y, y € 771 (x), are Lipschitz continuous with Lipschitz constant
3N(r +1).

Proof The functions ¥, y € 771 (x), are Lipschitz continuous with Lipschitz constant 1 and
take values in [0, 1]. Hence /1 is Lipschitz continuous with Lipschitz constant N = N (r+1),
by Lemma 2.3, and takes values in [0, 1]. Therefore the denominator x = ¥1+ cen—1(n) Yz
in the fraction defining the ¢, is Lipschitz continuous and takes values in [1, N]. Hence

[(x (z2) = x@)¥y(z1) + x (@) Wy (z1) — ¥y(22)]
x (1) x(z2)
<3Nd(z1, 22).

loy(z1) — @y(z2)] <

- (2N + N)d(z1, z2)
x (1) x(z2)

m}

As a consequence of Lemma 2.4, we get that ¢; = 1 — ) ¢, is also Lipschitz continuous
with Lipschitz constant 6N (r + 1)2.

3 Pulling up

Let f be a non-vanishing Lipschitz continuous function on My with compact support and let
f1 = f om. We will construct a cutoff function y on M; such that R(y f1) is close to R(f).

Let g be the given Riemannian metric on My and % be a complete background Riemannian
metric on My as in Sect. 2. Then there is a constant A > 1 such that

A_lg <h < Ag (3.1

on the support of f. We continue to take distances and metric balls in My, M, and M with
respect to & and its respective lifts to M| and M.

Fix apoint x in M. With K = supp f andr > Osuchthat K C B(x, r), we get a partition
of unity with functions ¢; and ¢y, y € 77 1(x), as above.

Fix preimages u € M and y = mj(u) € M of x under mp and 7, respectively. Write
Ty !(x) = Iou as the union of I'; -orbits T'; gu, where g runs through a set R of representatives
of the right cosets of I'y in g, that is, of the elements of I'i\I'g. Then 7! (x) = {m(gu) |
g € R}. Let
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S={seR|dy,m(su) <2r+2}

={seR|du,tsu) <2r+2forsomer e I'},
T={tel|d(u,tsu) <2r +2forsomes € S},
G=TS§CTy.

Since the fibres of 7 and 7 are discrete, S and T are finite subsets of I'g, hence also G.
Lete > Oand F € I'1\I'p be a Fglner set for G and ¢ satisfying (1.3). Let

P={geR|Tige F}CR

X = Z Pri(gu)-

geP

and set

Since | P| = |F| < oo, supp yx is compact. Hence, by Lemma 2.4, y f] is compactly supported
and Lipschitz continuous on M. Let

Q={yen'(x)| (x1)() # 0 for some z € D,}.

To estimate the Rayleigh quotient of x f1, it suffices to consider x f on the union of the Dy,
y € Q. We first observe that

Py ={m(gu)| g€ P} C Q.

To show this, let y = 1 (gu) and observe that f; does not vanish identically on “L(KH)n D,
and that ¢, is positive on a1 (K)N D, . Since R is a set of representatives of the right cosets
of I'y in T, there exists a one-to-one correspondence between P and Py, and hence

[P|=|Pi| =10l
The problematic subset of Q is
Q- ={ye0|0<x(z) < 1forsomezenx '(K)N Dy}

Letnow y € O_ and z € KN Dy, with 0 < x(z) < 1. Since m1(gu), g € R,
runs through all points of 7~ 1(x), we have de R Pmgw)(@) = 1. Hence there are
g1, ---, 8k € R\ P such that ¢ (g,4)(z) # 0 and

X+ bmgun (@) = 1.

Furthermore, there hastobe a g € P with ¢, (gu)(z) # 0. Then the supports of the functions
®r1(gu) and @r, (g;u) intersect and we get d (i (gu), wi(giu)) < 2r + 2. That is, we have
d(gu, hijgiu) < 2r + 2 for some h; € I'1. We conclude that

d(u, g " higiu) = d(gu, higiu) < 2r + 2.

Since 7y is distance non-increasing, we get that there are s; € S and #; € T such that
g_lh,-g,- = t;s;, and then h;g; = gt;s;. Since g; ¢ P, we conclude that "1 gt;5; ¢ F,i.e.,
I'g e F\F(tl-s,')’l. Since (7;s;)~! € G, there are at most g|F||G]| such elements g € P.
Since d(y,z) < r and d(z, m1(gu)) < r + 1, we conclude with Lemma 2.1 that for fixed
g € P there are at most N(2r 4+ 1) such y € Q. We conclude that

|Q-| < el FI[GIN@2r + 1)

(3.2)
=¢|Pl|GINQr+ 1) < ¢|Ql|IGIN@2r + 1).
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We now estimate the Rayleigh quotient of x fi. Forany y € Q04 = Q\Q_, we have x = 1
ont N (K)N Dy and therefore

/D{IV(xf1)|2+V1(xf1)2}=fD{IVf1|2+V1f12}

= [ (VfP+Vorf?
Mo

[ ea-f a=] »

where, here and below, integrals, gradients, and norms are taken with respect to the original
Riemannian metric g on M.
For any y € Q_, we have

fxszff 2 and / |V1|X2f12§Co/ 2,
D, Mo D, Mo

where Cp is the maximum of |Vy| on supp f = K. By Lemma 2.3, Lemma 2.4, and (3.1),
we have |V x|?> < 9N(r + 1)*A on the support of f. Therefore

and

/DIV(Xf1)|2§2/D{IVX|2f2+X2|Vfo7TI2I}

518N(r+1)4A/ f2+2/ IV £12.
My My

In conclusion,
[ avasor+wi s = c
Dy

forany y € Q_, where C > 0 is an appropriate constant, which depends on f, but not on y
or the choice of ¢ and F. With D = |G|N (2r + 1), we obtain from (3.2) that
eD

<
2-1=7"%p

1Q+1,

and conclude that
JUVOADI? + Vi £
Jef?

> veo ny{|vfl|2 + Vi fE}

ZyeQ ny f12
_ Loeo, o, IV fi> + Vi f7} +£CDIQ1/(1 — eD)
- Zy€Q+ ny fl2
I IVIP 4+ Vof?) +eCD/(1 — eD)

Juo 17
eCD

(1 —e?D)fM0 f2
For ¢ — 0, the right hand side converges to R(f).

R(xf1) =

= R(f) +

@ Springer



On the bottom of spectra under coverings 1035

Proof of Theorem 1.2 By Theorem 1.1, we have Ag(Mo, Vo) < ro(M7, V). By (1.2), the
bottom of the spectrum of Schrodinger operators is given by the infimum of correspond-
ing Rayleigh quotients R(f) of Lipschitz continuous functions with compact support. The
arguments above show that, for any such function f on My and any § > O, there is a
Lipschitz continuous function y f1 on M| with compact support and Rayleigh quotient at
most R(f) + 8. Therefore we also have Ag(My, Vo) > ro(M1, V7). O

4 Pushing down

Let f be a Lipschitz continuous function on M; with compact support. Define the push down

fo: My — Rof f by
1/2

oo =1 > fo»7?

yer~1(x)

Since supp f is compact, the sum on the right hand side is finite for all x € My, and hence fj
is well defined. We have supp fo = 7 (supp f), and hence supp fy is compact. Furthermore,
fo is differentiable at each point x, where f is differentiable at all y € 7! (x) and f(y) # 0
for some y € 7~ !(x), and then

1

Vfo(x) = 7000

Y FOTVEG).

yer~1(x)

For the norm of the differential of fj at x, we get

2

S OV L)

yer~1(x)

1
S ATE oWt Y VP

yer~l(x) yer~1(x)

> IVIOIE

yer~l(x)

1
2
Vo = s

Furthermore, fy is differentiable with vanishing differential at almost any point of { fo = 0}.
Therefore fy is Lipschitz continuous and

N f02=fM] 2, fMO vof&szl Vif?, /M0|Vf0|2 S/Ml Vs

In particular, we have R(fo) < R(f).

Proof of Theorem 1.1 For any non-vanishing Lipschitz continuous function f on M with
compact support, the push down fj as above is a Lipschitz continuous function on Mg with
compact support and Rayleigh quotient R( fo) < R(f). The asserted inequality follows now
from the characterization of the bottom of the spectrum by Rayleigh quotients as in (1.2). O
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5 Final remarks

Itis well-known that any countable group is the fundamental group of a smooth four-manifold.
(A variant of the usual argument for finitely presented groups, taking connected sums of
S' x §3 and performing surgeries, can be used to produce five-manifolds with fundamental
group any countable group.) In particular, for a non-finitely generated, amenable group G,
eg.,G = @%N Z or G = Q, there is a smooth manifold M with 71 (M) = G. In contrast
to the results in [1,2], our main result also applies to such examples.

Moreover, we do not assume Ag(Mop, Vo) > —oo. Given any non-compact manifold My,
it is indeed easy to construct a smooth potential Vj such that 1o(Mo, Vp) = —oo. In fact, it
suffices that Vp(x) tends to —oo sufficiently fast as x — oo.
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