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Symmetric differentials and
variations of Hodge structures

By Yohan Brunebarbe at Bonn

Abstract. Let D be a simple normal crossing divisor in a smooth complex projective
variety X . We show that the existence on X � D of a non-trivial polarized complex varia-
tion of Hodge structures with integral monodromy implies that the pair .X;D/ has a non-zero
logarithmic symmetric differential (a section of a symmetric power of the logarithmic cotan-
gent bundle). When the corresponding period map is generically immersive, we show more
precisely that the logarithmic cotangent bundle is big.

1. Introduction

In [1], Klingler, Totaro and the author prove the following result:

Theorem 1.1 ([1, Theorem 3.1]). Let X be a compact Kähler manifold which supports
a polarized complex variation of Hodge structures with infinite and discrete monodromy. Then
X possesses a non-zero symmetric holomorphic differential form, i.e. a non-zero element of
some H 0.X; Sk�1X /, k � 1.

From a practical point of view, this result applies a priori to few situations. It is indeed
difficult to construct polarized variations of Hodge structures (PVHS) on compact complex
manifolds. For example, the PVHS constructed from algebraic families of smooth projec-
tive varieties are usually defined on non-compact varieties. The main goal of this work is
to generalize Theorem 1.1 to non-compact manifolds. This gives new restrictions on smooth
quasi-projective varieties supporting a non-trivial integral PVHS (see Theorem 1.2).

We use the formalism of log-pairs (cf. Section 2.1). Iitaka’s philosophy (cf. [27, Chap-
ter 2]) says that any statement about complete smooth complex algebraic varieties involving
the cotangent bundle �1X has its counterpart for complete log-pairs .X;D/, replacing �1X by
the logarithmic cotangent bundle �1X .logD/. Accordingly, we generalize Theorem 1.1 to the
following, which is our main result.

Theorem 1.2. Let U be a smooth complex algebraic variety which supports a polarized
complex variation of Hodge structures with infinite and integral monodromy. Then there exists
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k0 � 1 such that for any log-compactification .X;D/ of U the vector bundle Sk.�1X .logD//
has a non-zero global section for any k � k0. Moreover, the logarithmic cotangent dimension
ofU (cf. Appendix D.2) is at least 2r�dim.U /, where r is the generic rank of the corresponding
period map.

The crucial case is when the period map is generically immersive. The corresponding
result is then true for any polarized complex variation of Hodge structures, provided that the
monodromy at infinity is unipotent:

Theorem 1.3. Let U be a smooth complex algebraic variety which supports a polarized
complex variation of Hodge structures V . Suppose that the corresponding period map is im-
mersive at one point of U . Then, for any log-compactification .X;D/ of U such that the local
monodromy aroundD of the local system underlying V is unipotent, the logarithmic cotangent
bundle �1X .logD/ of the log-pair .X;D/ is big.

Recall that a holomorphic vector bundle on a compact complex manifold is nef, big or
ample if the tautological quotient line bundle OE .1/ on the projective bundle P .E/ of hyper-
planes of E has the corresponding property.

Remark 1.4. Zuo showed in [40] that under the assumptions of Theorem 1.3 the loga-
rithmic canonical bundle KX .D/ is big. Notice that this is a corollary of our result. Indeed it
follows easily from results of Campana and Păun (see [2, Theorem 4.1] or [3, Theorem 1.2])
that a log-pair with big logarithmic cotangent bundle has a big logarithmic canonical bundle.
This can also be directly derived from the proof, see Remark 3.4. But Theorem 1.3 is much
stronger: for example a hypersurface of high degree in a projective space of dimension at least 3
is of general type but does not have any non-zero symmetric differential (cf. [30]).

Remark 1.5. The case of polarized complex variations of Hodge structures (cf. [9, Sec-
tion 1] or [32, Section 4] for the definition) can be reduced to the case of real variations, because
one obtains a real variation by adding a complex variation and its conjugate. The assumptions
on the period map and the monodromy at infinity remain after this procedure. In the sequel we
will thus only be concerned with real variations.

Remark 1.6. As Theorem 1.1 holds for compact Kähler manifolds, we can ask if Theo-
rem 1.2 holds for non-empty Zariski open subsets of compact Kähler manifolds. Unfortunately,
the algebraic assumption is needed in the proof of Theorem 1.8, where the nefness of a vector
bundle is tested through its restrictions to curves. However, as follows from a work in prepa-
ration of the author, it turns out that the proof of Theorem 1.2 in the quasi-Kähler case can be
reduced to the algebraic case.

Theorems 1.2 and 1.3 apply in particular to varieties parameterizing families of polarized
varieties which satisfies an infinitesimal Torelli theorem (e.g. curves, polarized K3 surfaces).
Because any bounded symmetric domain supports a universal variation of Hodge structures,
this gives also the following result.
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Corollary 1.7. Let U be a smooth complex algebraic variety. Suppose that there exists
a generically finite holomorphic map from U to some quotient of a bounded symmetric domain
by a torsion-free lattice. Then, for any log-compactification .X;D/ of U , the logarithmic
cotangent bundle of .X;D/ is big.

The proof of Theorem 1.3 follows by the same scheme as in the proof of [1, Theo-
rem 3.1] and relies ultimately on the curvature properties of the Hodge metric. It is neverthe-
less much more involved because it relies on the study of degenerating polarized variations
of Hodge structures developed by many authors including Griffiths, Schmid [31], Deligne,
Cattani–Kaplan–Schmid [6], Kashiwara [21], Zucker [38].

Here is an idea of the proof. First we prove that �1X .logD/ is almost nef. Namely
we show that, up to a modification of X , there exists a nef vector bundle A_ on X equipped
with a morphism A_ ! �1X .logD/ which is an isomorphism on a non-empty open subset
of X . Using a classical numerical criterion involving Segre classes for showing that a nef
holomorphic vector bundle is big, we then conclude that A_, hence �1X .logD/, is big. Both
steps are achieved using a metric on A constructed from the polarization of the variation of
Hodge structures. The nefness ofA_ is a consequence of the following extension of the Fujita–
Kawamata semi-positivity theorem.

Theorem 1.8. Let .X;D/ be a complete log-pair and V D .V;r;L; F �;Q/ be a real
polarized variation of Hodge structures on X with logarithmic poles along D and unipotent
local monodromy around D. If A is a holomorphic subbundle of the associated system of
Hodge bundles GrF V D

L
p GrpF V which is contained in the kernel of the Higgs field GrFr,

then its dual A_ is nef.

This theorem, although not stated in this form, is due to Zuo (cf. [40, Theorem 1.2]).
However, due to some delicate points in the proof of [40] (see Remark 4.6 below), we provide
a complete proof of Theorem 1.8.

Remark 1.9. With the notations of Theorem 1.8, let p be the biggest integer such that
F pV D V . It follows from Griffiths’ transversality that GrpF V D V=F pC1V is contained in
the kernel of the Higgs field of the associated system of Hodge bundles GrF V . By Theorem 1.8
its dual .GrpF V /

_ is nef. This particular case is due to Fujita [14] and Zucker [39] when X is a
curve, and to Kawamata [23], Fujino–Fujisawa [12] and Fujino–Fujisawa–Saito [13] in higher
dimensions.

In [1], Klingler, Totaro and the author show, using Theorem 1.1, that a compact Kähler
manifold whose fundamental group has a complex linear representation with infinite image
possesses a non-zero symmetric differential. The corresponding statement in the non-compact
case will be the subject of a subsequent paper.

Organization of the paper. In Section 2 we recall the definition of a real polarized vari-
ation of Hodge structures on a log-pair and the associated system of Hodge bundles. We then
recall the definition and some properties of the Hodge metric attached to a system of Hodge
bundle that will be crucial in the proofs. In Section 3 we give the proof of Theorem 1.3 assum-
ing Theorem 1.8. Then we explain how to derive Theorem 1.2 from Theorem 1.3. In Section 4
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we give the proof of a generalization of Theorem 1.8, which rests upon a nearby-cycles type
construction that we describe in a quite elementary way. For the reader’s convenience, we
gather in an appendix some concepts that are often used in the body of the article.

Acknowledgement. It is a great pleasure to thank Bruno Klingler for many enlighten-
ing discussions and his comments on a first version of this paper. I would like also to thank the
referee for his help in improving the readability of the paper.

2. Variations of Hodge structures and systems of Hodge bundles on a log-pair

2.1. Log-pairs. We begin by introducing some definitions and notations that will be
used in the sequel. By definition, a (smooth) log-pair .X;D/ consists in a complex manifold
X together with a normal crossing divisor D � X whose irreducible components are smooth.
A map of log-pairs f W .Y;E/ ! .X;D/ is a holomorphic map f W Y ! X such that
f �1.D/ � E. The logarithmic cotangent sheaf �1X .logD/ is the OX -module whose sections
on an open subset V � X are the holomorphic 1-forms ˛ on V �D such that ˛ and d˛ have
at most a simple pole along D \ V (cf. [7, II.3]). It turns out to be locally free. One denotes
by TX .� logD/ its dual. A map of log-pairs f W .Y;E/ ! .X;D/ induces two morphisms
of OX -modules: f �.�1X .logD// ! �1Y .logE/ and TY .� logE/ ! f �.TX .� logD//. A
log-pair .X;D/ is called complete if X is a complete smooth complex algebraic variety. A
log-compactification of a smooth complex algebraic variety U is a complete log-pair .X;D/
with an identification U D X�D. It follows from Nagata’s compactification theorem [28] and
Hironaka’s desingularization theorem [19] that every smooth complex algebraic variety admits
a log-compactification. The logarithmic canonical bundle of the log-pair .X;D/ is defined as
det.�1X .logD// ' KX .D/.

If .X;D/ is a log-pair, we denote by VClog.X;D/ the abelian category of holomorphic
vector bundles on X equipped with an integrable connection with logarithmic poles along D
and by VCnil

log.X;D/ the full abelian subcategory formed by elements whose residues are nilpo-
tent. Setting U WD X�D, a real (resp. integral) structure on an element .V;r/ 2 VClog.X;D/

is a real (resp. integral) sub-local system L of

V r
jU WD ker.rjU W VjU ! �1U ˝OU

VjU /:

such that
L˝R C D V r

jU .resp. L˝Z C D V r
jU /:

By VCnil
log.X;D/R we denote the category whose elements are triplets L D .V;r;L/

where .V;r/ 2 VCnil
log.X;D/ and L is a real structure on .V;r/. It is an R-linear abelian

category with tensor products. The functor .V;r;L/ 7! L is exact and compatible with the
formation of tensor products, internal hom, dual and pull-back along maps of log-varieties,
and defines an equivalence of categories between VCnil

log.X;D/R and the category of real lo-
cal systems on U with unipotent local monodromy around D. A quasi-inverse is given by
Deligne’s canonical extension (see Theorem A.8 in the appendix). We denote by R the ele-
ment of VCnil

log.X;D/R which corresponds to the real constant local system RU . We refer the
reader to Appendix A for a reminder of these notions.
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2.2. Variations of Hodge structures. The following definition is motivated by Theo-
rem 2.3 below.

Definition 2.1. Let .X;D/ be a log-pair and setU WD X�D. A real polarized variation
of Hodge structures (R-PVHS) of weight n on .X;D/ is the datum of a triplet .L; F �;Q/
where

� L D .V;r;L/ is an element of VCnil
log.X;D/R,

� F � is an exhaustive decreasing filtration indexed by Z on V by holomorphic subvector
bundles (the Hodge filtration),

� Q W L˝ L! R is a .�1/n-symmetric morphism in VCnil
log.X;D/R (the polarization),

satisfying the following conditions:

(i) For each x 2 U the filtration F �.x/ on V.x/ defines a Hodge structure of weight n on
L.x/ polarized by Q.x/.

(ii) The Hodge filtration satisfies Griffiths’ transversality condition:

r.F �/ � �1X .logD/˝OX
F ��1:

Note that by definition an R-PVHS on the log-pair .X;D/ has unipotent local mon-
odromy around D.

Remark 2.2. In the special case where D D ¿ we recover Griffiths’ notion of real
polarized variation of Hodge structures on X (cf. [16]).

Morphisms of R-PVHS are defined in an obvious manner. The R-PVHS on a given
log-pair .X;D/ form an abelian category denoted PVHSnil

log.X;D/R. If .L1; F
�
1 ;Q1/ and

.L2; F
�
2 ;Q2/ are two elements of PVHSnil

log.X;D/R, then L1 ˝ L2 and hom.L1;L2/ inherit
naturally a structure of R-PVHS. Given a map of log-pairs f W .Y;E/ ! .X;D/, there is a
pull-back functor

f � W PVHSnil
log.X;D/R ! PVHSnil

log.Y;E/R:

We leave the precise definitions to the reader.
The following theorem is a reformulation of part of Schmid’s nilpotent orbit theorem.

Theorem 2.3 (Schmid [31]). Let .X;D/ be a log-pair and set U WDX �D. The map
.V;r;L; F �;Q/ ! .VjU ;rjU ;L; F

�
jU
;QjU / defines a functor which is an equivalence be-

tween the category PVHSnil
log.X;D/R and the category of real polarized variation of Hodge

structures on U whose underlying local system has unipotent local monodromy around D.

Proof. Indeed, .VjU ;rjU ;L;QjU / gives back .V;r;L;Q/ thanks to the equivalence
of categories recalled in the previous section (or in Corollary A.9). Then, Schmid’s nilpotent
orbit theorem implies that F �

jU
extends to X as a filtration of V by subvector bundles.



138 Brunebarbe, Symmetric differentials and variations of Hodge structures

2.3. Systems of Hodge bundles.

Definition 2.4. A Higgs bundle on a log-pair .X;D/ is a pair .E; �/ consisting of a
holomorphic vector bundle E on X together with an OX -linear map

� W E ! �1X .logD/˝OX
E

satisfying � ^ � D 0 in �2X .logD/˝OX
End.E/. The map � is called the Higgs field.

We denote by Higgs.X;D/ the category of Higgs bundles on the log-pair .X;D/, with
the obvious morphisms.

For any local holomorphic section s of TX .� logD/, we denote by �s 2 End.E/ the
composition of � with the contraction by s. If t is another local holomorphic section of
TX .� logD/, the property � ^ � D 0 implies that �s and �t , which are local holomorphic
sections of End.E/, commute pointwise.

To any R-PVHS .V;r;L; F �;Q/ (more generally to any C-PVHS, cf. [32]) we can
associate functorially a Higgs bundle .E; �/ by setting

E WD Gr�F V D
M
p

F p=F pC1

and defining � in the following way. For every p, the CX -linear map

F p ! �1X .logD/˝OX
.V=F p/

induced by r is in fact OX -linear because of the Leibniz rule, and gives rise to an OX -linear
map

�p W .F
p=F pC1/! �1X .logD/˝OX

.F p�1=F p/

because of Griffiths’ transversality. Set � WD
L
p �p. The pair .E; �/ is called the system of

Hodge bundles associated to the PVHS.

2.4. Hodge metrics. Let .V;r;L; F �;Q/ be an R-PVHS of weight n on a log-pair
.X;D/. The restriction of V to U WD X � D is endowed with a C1 hermitian metric h
constructed from the polarization by setting

h.u; v/ WD .i/n �Q.C:u; v/

where v denotes the conjugate of v with respect to the real structure on V and C is the Weil
operator. As any subbundle or quotient bundle of a vector bundle endowed with a hermitian
metric inherits canonically a hermitian metric, the restriction to U of the associated system
of Hodge bundles .E; �/ inherits a C1 hermitian metric hE called the Hodge metric. The
curvature of its Chern connection was computed by Griffiths (compare [16, Theorem 5.2] and
[31, Lemma 7.18]):

� D �.� ^ �� C �� ^ �/;

so that

(2.1) hE .�.x; Ny/.s/; t/ D hE .�.x/.s/; �.y/.t// � hE .�
�. Ny/.s/; ��. Nx/.t//;

where s and t are local sections of EjU D Gr�F VjU and x and y are local sections of T 1;0U . In
these formulas, ��.z/ denotes for any local section z of T 1;0U the adjoint of �. Nz/ with respect
to the Hodge metric.
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To conclude this section, let us recall the following result, which will be fundamental
in the proofs of Theorems 1.3 and 1.8. Some particular cases are due to Zucker [39, Corol-
lary 1.12] and Cattani–Kaplan–Schmid [6, Corollary 5.23]. The general case is due to Kollár
[24, Theorem 5.20]; the proof relies strongly on the estimates for the Hodge metric obtained in
[6].

Theorem 2.5 (Zucker, Cattani–Kaplan–Schmid, Kollár). Let .X;D/ be a complete log-
pair and set U WD X � D. Let .V;r;L; F �;Q/ be a real polarized variation of Hodge
structures on the log-pair .X;D/ (so by definition the local monodromy aroundD is unipotent)
and .E; �/ the associated system of Hodge bundles equipped with the C1 hermitian metric hE
on EjU induced by Q. For any holomorphic subbundle A of E and any holomorphic quotient
bundle B of A, let hB be the metric on BjU induced by functoriality by the metric hE on EjU .

Then every homogeneous polynomial evaluated in the Chern forms of hB (it is a C1

differential form defined on U ) defines a closed current on X whose cohomology class equals
the homogeneous polynomial evaluated in the Chern classes.

Remark 2.6. In [39, Remark 1.13], Zucker gives an example to show that without any
hypothesis on the local monodromy around D Theorem 2.5 does not hold in general.

3. Proof of Theorem 1.3 and its corollaries

3.1. Proof of Theorem 1.3 assuming Theorem 1.8. Let U be a smooth complex al-
gebraic variety and .X;D/ be a log-compactification of U . Let V be a real variation of po-
larized Hodge structures on U whose underlying local system has unipotent local monodromy
around D.

By Theorem 2.3, V is the restriction to U of an R-PVHS .V;r;L; F �;Q/ on the log-
pair .X;D/. Let .E; �/ be the associated system of Hodge bundles. The holomorphic vector
bundle End.V / is naturally endowed with a structure of R-PVHS. The associated system of
Hodge bundles is .End.E/;‚/, where (cf. Section 2.3)

.‚s.‰//.v/ D �s.‰.v// �‰.�s.v//

for ‰ a local holomorphic section of End.E/, v a local holomorphic section of E and s a local
holomorphic section of TX .� logD/.

The Higgs field � W E ! �1X .logD/˝OX
E gives rise to an OX -linear map of sheaves

� W TX .� logD/! End.E/.

Lemma 3.1. The composition of � W TX .� logD/ ! End.E/ with the Higgs field
‚ W End.E/! �1X .logD/˝OX

End.E/ is zero.

Proof. Let s and t be local holomorphic sections of TX .� logD/ and v be a local holo-
morphic section of E. From � ^ � D 0 we get

.‚s.�t //.v/ D �s.�t .v// � �t .�s.v// D 0:

The assertion follows because �.t/ D �t 2 End.E/.
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If the period map is generically immersive, then the map � realizes TX .� logD/ as a
sub-OX -module of End.E/ contained in the kernel of the Higgs field. The idea of the proof is
then to use the metric on TX .� logD/jU induced by the Hodge metric on End.E/jU to prove
that�1X .logD/ is big. Unfortunately this metric has singularities at the points where the period
map is not immersive. To overcome this problem we introduce an auxiliary holomorphic vector
bundle: there exist a log-pair .X 0;D0/, a birational map f W X 0 ! X inducing a morphism of
log-pairs f W .X 0;D0/ ! .X;D/ and a holomorphic subvector bundle A of f � End.E/ such
that the map f �.TX .� logD//! f � End.E/ factors:

f �.TX .� logD// //

''

f � End.E/

A
, �

99

and the map f �.TX .� logD//! A is the identity on a non-empty open subset of X 0. Indeed
this follows from the next lemma, the proof of which relies on Hironaka’s desingularization
theorem and is given in Appendix B.2.

Lemma 3.2. LetX be a smooth complex algebraic variety andE a holomorphic vector
bundle on X . For any sub-OX -module 0 ! F ! E of the corresponding locally free sheaf E
there exist a smooth complex algebraic variety X 0, a birational proper map f W X 0 ! X and
a holomorphic subvector bundle G of f �E such that the map f �F! f �E factors:

f �F //

!!

f �E

G
. �

>>

and the map f �F ! G is the identity on a non-empty open subset of X 0. Moreover, given any
proper closed subset Z of X , we can choose X 0 and f such that f �1.Z/ is a simple normal
crossing divisor.

Composing with the map TX 0.� logD0/ ! f �.TX .� logD//, we get a commutative
diagram:

TX 0.� logD0/ //

%%

f � End.E/ D End.f �E/

A
) 	

66

where the map TX 0.� logD0/ ! A is an isomorphism on a non-empty open subset of X 0.
Note that f �E is the system of Hodge bundles on .X 0;D0/ corresponding to the R-PVHS
f �.V;r;L; F �;Q/ on .X 0;D0/.

Because of the invariance of the logarithmic cotangent dimension by a proper bira-
tional map (cf. Proposition D.5), the bigness of �1X .logD/ is equivalent to the bigness of
�1X 0.logD0/. We can thus suppose from the beginning that there exists a commutative diagram:

TX .� logD/ //

%%

End.E/

A
- 

;;
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where A is a holomorphic subvector bundle of End.E/ and the map TX .� logD/ ! A is an
isomorphism on a non-empty open subset of X .

It follows from Lemma 3.1 that A is in the kernel of the Higgs field ‚. By Theorem 1.8,
this implies that its dual A_ is nef. We will now show that it is big.

By definition, if � W P .A_/ ! X denotes the projective bundle of hyperplanes in A_,
this amounts to showing that the tautological quotient line bundle L D OA_.1/ on P .A_/ is
big. Let n be the dimension of X . Since L is nef (by definition because A_ is nef), it is big if
moreover the number .c1L/2n�1 D sn.A/ is positive (rather than zero), cf. [33] or [25, Theo-
rem 2.2.16]. Denote by hA the metric onAjU obtained by restricting the Hodge metric (cf. Sec-
tion 2.4) on the system of Hodge bundles .End.E/;‚/jU to its holomorphic subvector bundle
AjU , and by hL the induced metric on Lj��1.U /. By Theorem 2.5 the integral

R
U Sn.AjU ; hA/

converges and is equal to sn.A/. (For any hermitian holomorphic vector bundle .V; h/, we
denote by Ck.V; h/ and Sk.V; h/ its k-th Chern form and k-th Segre form, respectively, cf.
Appendix C.) To conclude the proof, we will show that Sn.AjU ; hA/ is a non-negative form,
positive at least at one point of U . Because of the equality

��.C1.Lj��1.U /; hL/
k/ D Sk.AjU ; hA/

(cf. Appendix C), where �� denotes the push-forward of forms along the proper submersion �
(or integration along the fibers), it is sufficient to show that C1.Lj��1.U /; hL/ is a non-negative
form, positive at least at one point of ��1.U /.

At this point we need to recall some notations and facts about hermitian vector bun-
dles. Let .V; h/ be a hermitian holomorphic vector bundle on a complex manifold M . The
curvature of the Chern connection of .V; h/ is an End.V /-valued .1; 1/-form �V . Define
RV .s; t; x; y/ WD h.�V .x; Ny/.s/; t/ where s, t are local sections of V and x, y are local
sections of T 1;0M . At any p 2 M this defines a form RVp W Vp � Vp � TpM � TpM ! C

which is linear in the first and third variables and conjugate linear in the second and fourth
variables. The hermitian holomorphic vector bundle .V; h/ is called Griffiths semi-positive if
for any p 2M , s 2 Vp and x 2 TpM we have RVp .s; s; x; x/ � 0. When .V; h/ is a hermitian
line bundle, this is equivalent to asking that its first Chern form is non-negative.

Let as before � W P .V / ! M be the projective bundle of hyperplanes in V and
L WD OV .1/ be the tautological quotient line bundle equipped with the C1 hermitian met-
ric hL induced by h. For any p 2 M and any 0 ¤ v 2 Vp, the first Chern form of L at the
point .p; Œv�/ 2 P .V / is given by

(3.1) C1.L; hL/.y; Ny/ D

p
�1

2�

1

jvj2
RVp .v; v; yh; yh/C !FS.yv; Nyv/

(cf. [15, (2.36)], see also [37, Example 7.10]), where y is a tangent vector at .p; Œv�/ with
horizontal and vertical parts yh and yv and !FS is the Fubini–Study metric form on the fibers
of � .

We can now finish the proof that C1.Lj��1.U /; hL/ is a non-negative form, positive at
least at one point of ��1.U /, thus showing that A_ is big.

As A belongs to the kernel of ‚, formula (2.1) shows that .AjU ; hA/ is Griffiths semi-
negative. Hence, .A_

jU
; hA_/ is Griffiths semi-positive and C1.Lj��1.U /; hL/ is a non-negative

form by formula (3.1) above. The fact that it is positive at one point of ��1.U / follows from
formula (3.1) coupled with the following lemma.
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Lemma 3.3 (cf. [1, Lemma 1.4]). LetM be a Kähler manifold. Suppose that, at a point
p 2M , the holomorphic sectional curvature

H.y/ D
1

jyj4
R
T

1;0
M
p .y; y; y; y/

of M is at most a negative constant �� for all non-zero vectors y in TpM . Then there is a
non-zero vector x in TpM such that the holomorphic bisectional curvature

B.x; y/ D
1

jxj2jyj2
R
T

1;0
M
p .x; x; y; y/

is at most ��=2 for all non-zero vectors y in TpM .

Indeed we apply Lemma 3.3 at a point of U whereA coincides with TU . The fact that the
metric induced by End.E/ at this point is Kähler follows for example from [26, Lemma 5.1].
The assertion on the holomorphic sectional curvature follows from formula (2.1) (or see [17,
Theorem 9.1]).

The map TX .� logD/ ! A induces a map of sheaves SkA_ ! Sk�1X .logD/ for all
k � 0, which are isomorphisms on a non-empty open subset ofX , giving rise to injective maps
H 0.X; SkA_/ ,! H 0.X; Sk�1X .logD//. Because A_ is big, this implies the bigness of
�1X .logD/ (cf. Appendix D). This finishes the proof of Theorem 1.3 assuming Theorem 1.8.

Remark 3.4. The map A_ ! �1X .logD/ induces a map of sheaves

det.A_/! det.�1X .logD// D KX .D/

which is an isomorphism on a non-empty open subset of X . On the other hand, as the determi-
nant of a nef and big vector bundle is still nef and big, the line bundle det.A_/ is nef and big.
This implies that KX .D/ is big.

3.2. Proof of Corollary 1.2. Let U be a smooth complex algebraic variety and V be an
R-variation of polarized Hodge structures on U with integral monodromy (i.e. the underlying
R-local system has an integral structure). Let .X;D/ be a log-compactification of U .

First consider the case where the corresponding period map is immersive at one point of
U . By a result of Borel (see for example [31, Lemma 4.5]), we know that the local monodromy
around D is quasi-unipotent. As the logarithmic cotangent dimension remains invariant after
a finite étale cover (cf. Proposition D.5), Theorem 1.3 combined with the following lemma
shows that �1X .logD/ is big.

Lemma 3.5. Let n � 1 be an integer and � be a subgroup of GL.n;Z/. There exists a
normal subgroup � 0 � � of finite index such that any quasi-unipotent element of � 0 is in fact
unipotent.

Proof. This is a consequence of the following classical fact due to Minkowski: let M
be a square matrix with integer entries, all of whose eigenvalues are roots of unity. If M
is congruent to the identity matrix modulo a prime number p � 3, then M is a unipotent
matrix.
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Let us now consider the general case. As before we can suppose that the local mon-
odromies around D are unipotent. Let D1 � D be the union of the irreducible components of
D for which the local monodromy is non-trivial. Let U1 D X �D1, so that V extends to U1
as an R-variation of polarized Hodge structures with integral monodromy. As �.U / � �.U1/
(cf. Proposition D.5), we can suppose from the beginning that the local monodromies around
D are all non-trivial. Let eU be a universal cover of U and Qp W eU ! D be the period map cor-
responding to V . It is a holomorphic map which is equivariant with respect to the monodromy
representation � W �1.U / ! G (for details, see [16, Section 9]). By Selberg’s lemma and the
invariance of the logarithmic cotangent dimension by finite étale cover (cf. Proposition D.5),
we can suppose that � D Im.�/ is torsion-free. The quotient D=� is then a complex man-
ifold and the period map induces a holomorphic map p W U ! D=� . As the local mon-
odromies around D are unipotent and non-trivial, they cannot be of finite order. By a theorem
of Griffiths (see [16, Theorem 9.6 and its proof]), the holomorphic map p W U ! D=� is
proper. This forces p.U / to be a closed analytic subvariety of D=� . Moreover, it follows
from the work of Sommese [34] that there exist a smooth quasi-projective complex variety V
and a proper bimeromorphic holomorphic map � W V ! p.U / such that the meromorphic
map q D ��1 ı p W U Ü V is rational. Let dom.q/ be the domain of definition of q. It is
a Zariski-open subset of U . Let W � U � V be the graph of qj dom.q/, and W � U � V its
analytic closure. As q is a rational map, W is a Zariski-closed subset of U � V . Moreover, it
sits in the analytic closed subset U �p.U/ V of U � V :

W
� � // U �p.U/ V

� � //

&&

U � V

�1

��

U

The first projection �1 restricted to W is proper: it is the composition of the closed
immersion W � U �p.U/ V with the map U �p.U/ V ! U , which is proper by base change.
We obtain in this way a proper birational map �1jW W W ! U . Let eW ! W be a proper
birational map with eW a smooth complex algebraic variety (cf. Theorem B.1). Composing
with �1jW , we obtain a commutative diagram in which all maps are proper:

eW //

��

V

�

��

U
p
// p.U / � D=�

The composition V ! p.U / � D=� defines on V an R-variation of polarized Hodge
structures with integral monodromy whose period map is generically an immersion. As showed
before, this forces the logarithmic cotangent dimension of V to be dim.V /. Using Proposi-
tion D.5, this gives �.U / D �.eW / � 2 � dim.V / � dim.U / D 2 � rank.p/ � dim.U /.

4. Proof of Theorem 1.8

Let .X;D/ be a log-pair. For any (smooth) irreducible component Dk of D, we obtain a
new log-pair .Dk;Dk \Dk/, where Dk denotes

S
j¤kDj . If the divisor D in X is defined
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by the vanishing of a global function f 2 OX .X/, then Saito [29] constructed a nearby-
cycles functor ‰f in the context of mixed Hodge modules. In particular, it associates to an
R-PVHS with unipotent monodromy around D a graded-polarized real variation of mixed
Hodge structures on every Dk � Dk \ Dk , admissible with respect to Dk \ Dk . However,
this functor depends on the choice of a function definingD, so it can not be directly globalized
(see nonetheless [36] and [29]).

In this section we introduce a weakened version of the notion of admissible graded-
polarized real variation of mixed Hodge structures for which we can define a global (graded)
nearby-cycles functor (see below for the precise meaning). This will allow us to prove Theo-
rem 1.8 by induction on the dimension of the base.

Before making the corresponding definitions, let us recall some results of Schmid [31]
on degenerations of R-PVHS on the punctured disk to motivate our definition in the simplest
case.

Let V D .V;r;L; F �;Q/ be an R-PVHS on a log-pair .X; 0/ isomorphic to .�; 0/
(hence by definition the monodromy around 0 is unipotent). The fiber V.0/ of V at 0 is a
C-vector space of finite dimension, endowed with the exhaustive decreasing filtration F �.0/
(“the Hodge filtration”) and the C-linear nilpotent endomorphism res0.r/ (the residue at 0
of the connection r with a logarithmic pole at 0). To the latter is canonically associated an
exhaustive increasing filtration W� (“the weight filtration”, see Lemma 4.8).

Now, fixing an isomorphism of .X; 0/ with .�; 0/, or equivalently choosing a coordinate
z onX vanishing at 0, permits to define a privileged real structure of V.0/ for which the weight
filtration is real. The data of V.0/ endowed with its real structure, the Hodge filtration and the
weight filtration define a real mixed Hodge structure on V.0/. Moreover, every GrWk V.0/ en-
dowed with its pure Hodge structure inherits a canonical polarization from Q. This “limiting
mixed Hodge structure” depends on the choice of a coordinate through the induced real struc-
ture on V.0/ (in Saito’s terminology, this is the nearby cycle ‰zV ). However, it turns out that
the induced real structure on the GrWk V.0/ is independent of the choice of the coordinate z.
This observation will make the definition of a global (graded) nearby-cycle possible.

This discussion, together with Theorem 4.2 below, motivates the following definition
in which Z1 denotes the subset of ZN formed by elements m D .m1; : : : ; mi ; : : :/ whose
components mi are almost all zero, totally ordered by the lexicographic order.

Definition 4.1. Let .X;D/ be a log-pair. A real graded-polarized family of mixed
Hodge structures (R-GrPFMHS) V on .X;D/ is the datum of

� a holomorphic vector bundle V onX equipped with an increasing exhaustive filtrationW�
indexed by Z1 (the weight filtration) and a decreasing exhaustive filtration F � indexed
by Z (the Hodge filtration) by holomorphic subvector bundles, such that for all m 2 Z1

and p 2 Z the coherent sheaf GrpFGrWm V is locally free (by abuse of notation we also
denote by F � the filtration induced by F � on GrWm V ),

� for all m 2 Z1, an integrable connection rm on the holomorphic vector bundle GrWm V
with logarithmic poles along D and nilpotent residues, and a real structure Lm on
.GrWm V;rm/, making Lm WD .GrWm V;rm;Lm/ an element of VCnil

log.X;D/R,

� for all m 2 Z1, a morphism Qm W Lm ˝ Lm ! R in VCnil
log.X;D/R,
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such that
GrWm V WD .GrWm V;rm;Lm;GrWm F

�;Qm/

is an R-PVHS on .X;D/ (cf. Definition 2.1) for all m 2 Z1.

Morphisms of R-GrPFMHS are defined in an obvious manner. The R-GrPFMHS on a
given log-pair .X;D/ form a category denoted by GrPFMHS.X;D/R. For any morphism of
log-pairs f W .Y;E/! .X;D/ there is a pull-back functor

f � W GrPFMHS.X;D/R ! GrPFMHS.Y;E/R

extending the usual pull-back on the underlying bifiltered holomorphic vector bundles.
This definition is reminiscent of the notion of graded-polarized variation of mixed Hodge

structures onU admissible with respect toD (see [22] for the definition). In fact, if the category
of graded-polarized real variations of mixed Hodge structures on U admissible with respect
to D is denoted by GrPVMHS.X;D/ad

R , then there is a natural forgetting functor

GrPVMHS.X;D/ad
R ! GrPFMHS.X;D/R:

Let V D .V;W�; F
�; : : :/ be an element of GrPFMHS.X;D/R. We obtain a bigraded

holomorphic vector bundle E�;� by setting

Em;p WD GrpFGrWm V

D GrWm GrpF V D F
pV \WmV=..F

pC1V \WmV /C .F
pV \Wm�1V //:

For any m 2 Z1, the holomorphic vector bundle GrFGrWm V D
L
p E

m;p is endowed with a
structure of Higgs bundle induced by the R-PVHS GrWm V (cf. Section 2.3). We obtain in this
way a structure of Higgs bundle on the holomorphic vector bundle E WD

L
m;p E

m;p. This
defines a functor GrPFMHS.X;D/R ! Higgs.X;D/.

Recall that for any log-pair .X;D/ and any (smooth) irreducible component Dk of D,
we obtain a new log-pair .Dk;Dk \Dk/, where Dk denotes

S
j¤kDj .

Theorem 4.2. Let .X;D/ be a log-pair and Dk be an irreducible component of D.
There exists a functor (whose construction will be given in Section 4.2)

‰Dk
W GrPFMHS.X;D/R ! GrPFMHS.Dk;Dk \D

k/R;

called the graded nearby-cycles functor, which satisfies the following properties:

(i) If V is an R-PVHS on .�; 0/ viewed as an element of GrPFMHS.�; 0/R, then ‰0.V / is
the element of GrPFMHS.0/R associated to the limiting graded polarized mixed Hodge
structure ‰z.V / of Schmid, where z is any coordinate of the disk vanishing at 0. In
particular, this implies that all ‰z.V / define the same element in GrPFMHS.0/R.

(ii) Denoting by FiltBun.X/ the category of holomorphic vector bundles onX equipped with
an exhaustive decreasing filtration, there is a commutative diagram:

GrPFMHS.X;D/R
‰Dk //

��

GrPFMHS.Dk;Dk \Dk/R

��

FiltBun.X/ // FiltBun.Dk/:
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The vertical functors associate to any R-GrPFMHS V D .V;W�; F
�; : : :/ the under-

lying holomorphic vector bundle endowed with its Hodge filtration .V; F �/. The functor
FiltBun.X/! FiltBun.Dk/ is the restriction.

(iii) Let V D .V;W�; F
�; : : :/ be an element of GrPFMHS.X;D/R and .E;‚/ be the asso-

ciated Higgs bundle. Let A be any holomorphic subvector bundle of GrF V such that the
coherent sheaf GrWA belongs to the kernel of ‚. Let ‰Dk

.V / D .VjDk
;M�; F

�
jDk

; : : :/

and .E 0; ‚0/ be the associated Higgs bundle. Then GrMAjDk
is in the kernel of the Higgs

field ‚0.

Remark 4.3. Unlike the Hodge filtration, the weight filtrationM� of‰Dk
.V / is not the

restriction to Dk of the weight filtration W� of V but a refinement.

Remark 4.4. Let .X;D/ be a log-pair and letDi , i 2 I , be the irreducible components
of D. For any subset J � I , set DJ D

T
j2J Dj and DJ D

S
j…J Dj . When D possesses

two different irreducible components D1 and D2 which intersect, we can form a diagram of
graded nearby-cycles functors:

GrPFMHS.X;D/R
‰D1 //

‰D2

��

GrPFMHS.D1;D1 \D1/R

��

GrPFMHS.D2;D2 \D2/R // GrPFMHS.D¹1;2º;D¹1;2º \D¹1;2º/R:

This diagram turns out to be commutative (this follows from the construction given in
Section 4.2 and the work of Cattani and Kaplan, cf. [4, Theorem 3.3]), but as we won’t use this
fact in the sequel we won’t prove it. More generally, for any subset J � I such that DJ is
non-empty, there is a well-defined functor (i.e. independent of the choice of an order on J ):

‰DJ
W GrPFMHS.X;D/R ! GrPFMHS.DJ ;DJ \DJ /R:

The goal of this part is to show the following generalization of the Fujita–Kawamata
semi-positivity theorem (cf. [14] and [23]; for similar results see [39], [40, Theorem 1.2],
[12, Theorem 1.3] and [13, Theorem 3]).

Theorem 4.5. Let .X;D/ be a complete log-pair and V D .V;W�; F
�; : : :/ be an ele-

ment of GrPFMHS.X;D/R and .E;‚/ be the associated Higgs bundle. If A is a holomorphic
subbundle of GrF V such that the coherent sheaf GrWA is contained in the kernel of the Higgs
field ‚, then its dual A_ is nef.

This theorem applies in particular to graded-polarized variations of mixed Hodge struc-
tures on X � D admissible with respect to D. The particular case where the filtration W� is
trivial is exactly Theorem 1.8. In this form the theorem has the advantage to be well-suited for
a proof by induction on the dimension of X , due to the existence of the graded nearby-cycles
functor for real graded-polarized families of mixed Hodge structures. Its proof rests first on
the nice curvature properties of the Hodge metric and secondly on the properties of the graded
nearby-cycles functor collected in Theorem 4.2.
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Remark 4.6. As said above, Theorem 4.5 generalizes a series of statements which goes
back at least to Griffiths’ computation of the curvature of the Hodge bundles with respect to the
Hodge metric [16] (note that Theorem 4.5 in the compact case, i.e. D D ¿, is a direct conse-
quence of Griffiths’ formula). With the notations of Theorem 4.5, let p be the biggest integer
such that F pV D V . It follows from Griffiths’ transversality that A WD GrpF V D V=F pC1V

satisfies the hypothesis of Theorem 4.5, hence its dual .GrpF V /
_ is nef. This particular case is

due to Fujita [14] and Zucker [39] when X is a curve, and to Kawamata [23], Fujino–Fujisawa
[12] and Fujino–Fujisawa–Saito [13] in higher dimensions. In these latter works, the higher
dimensional case is reduced to the one-dimensional case by taking advantage of the stratifica-
tion of X induced by D. Even if Theorems 1.8 and 4.5 do not seem to be consequences of
these results, their proofs follow the same strategy. However, contrary to the above cited re-
sults, the general case does not follow from the pure case (in other words, Theorem 4.5 is not a
corollary of Theorem 1.8). Indeed, the filtration of A induced by W� is a filtration by coherent
sub-sheaves but not necessarily a filtration by sub-vector bundles. This is also the main delicate
point in the proof of [40, Theorem 1.2], as it is implicitly assumed that this is the case.

4.1. Proof of Theorem 4.5. In this section, we prove Theorem 4.5, assuming the exis-
tence of the functors ‰Dk

of Theorem 4.2.
Recall that a holomorphic vector bundle E on a complete complex algebraic variety X

is nef if for any finite morphism f W C ! X from a smooth projective curve and any quotient
line bundleQ of f �E, the degree ofQ is non-negative (cf. [25, Proposition 6.1.18]). It follows
that the dual of E is nef if for any finite morphism f W C ! X from a smooth projective curve
and any line subbundle F of f �E, the degree of F is non-positive.

We keep the notations of the statement. Theorem 4.5 will be proved by induction on the
dimension of X .

Let f W C ! X be a finite morphism from a smooth projective curve and L be a line
subbundle of f �A. We have to show that the degree of L is non-positive.

Let us first consider the case when f .C /meets U WD X�D (in particular this will prove
the theorem when X is a curve). Pulling-back everything on C , this amounts to showing the
following lemma, whose proof is classical (see [14] and [39]).

Lemma 4.7. Let .X;D/ be a complete log-pair of dimension 1, V D .V;W�; F
�; : : :/

be an element of GrPFMHS.X;D/R and .E;‚/ be the associated Higgs bundle. If L is a
holomorphic sub-line bundle of GrF V such that the coherent sheaf GrWL is contained in the
kernel of the Higgs field ‚, then deg.L/ is non-positive.

Proof. Let m be the minimal index such that L � WmGrF V , so that the induced map
L ! Em WD GrWm GrF V is non-zero. Let Lsat � Em be the saturation of L in Em, i.e. the
kernel of the map Em ! .Em=L/=.Em=L/torsion. As X is a curve, the subsheaf Lsat of Em
is a holomorphic sub-line bundle. The Hodge metric on EmjU induces a metric on Lsat

jU
whose

first Chern form computes the degree by Theorem 2.5. Moreover, as GrWL is contained in the
kernel of the Higgs field ‚, Lsat is contained in the kernel of the Higgs field associated to Em.
It follows by formula (2.1) that the first Chern form of Lsat

jU
is non-positive, hence the degree

of Lsat is non-positive. This implies that the degree of L is non-positive.
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Let us now consider the case when f .C / is included in D. Let Dk be an irreducible
component of D which contains f .C /. Let Vk WD ‰Dk

.V / 2 GrPFMHS.Dk;Dk \ Dk/R
and .Ek; ‚k/ be the associated Higgs bundle. Because of Theorem 4.2, AjDk

is a holomorphic
subbundle of GrF VjDk

such that the coherent sheaf GrWAjDk
is in the kernel of the Higgs

field ‚k . This finishes the proof by induction on the dimension.

4.2. The graded nearby-cycles functor. The goal of this section is to construct the
graded nearby-cycles functor ‰ of Theorem 4.2.

An informed reader will note that this construction is related to Saito’s nearby-cycles
functor for mixed Hodge modules (cf. [29]). Even if the use of Saito’s nearby-cycles functor
would shorten the exposition, we do not use mixed Hodge modules in order to reduce the
prerequisites (see nonetheless Remark 4.13).

Rather than describing directly the functor of graded nearby-cycles for R-GrPFMHS, we
proceed by successive enrichment: this hopefully clarifies the construction and also proves the
existence of such a functor in situations with less structures.

Let .X;D/ be a log-pair. Consider the following categories:

(i) Let ExtVCnil
log.X;D/ be the category whose objects are triplets .V;W�;r�/ where

� V is a holomorphic vector bundle on X ,
� W� is an exhaustive increasing filtration indexed by Z1 of V by holomorphic sub-

vector bundles,
� for every m 2 Z1, rm is an integrable connection on the holomorphic vector

bundle GrWm V with logarithmic poles along D and nilpotent residues,

with the obvious morphisms.

(ii) Let ExtVCnil
log.X;D/R be the category whose objects are triplets .V;W�;r�;L�/ where

.V;W�;r�/ belongs to ExtVCnil
log.X;D/ and Lm is a real structure on .GrWm V;rm/ for

every m 2 Z1, with the obvious morphisms.

These categories are linked by obvious forgetting functors:

GrPFMHS.X;D/R ! ExtVCnil
log.X;D/R ! ExtVCnil

log.X;D/:

Let Dk be a (smooth) irreducible component of D. We will describe three functors, all
denoted by ‰Dk

by abuse of notation, giving a commutative diagram:

ExtVCnil
log.X;D/

‰Dk // ExtVCnil
log.Dk;Dk \D

k/

ExtVCnil
log.X;D/R

‰Dk //

OO

ExtVCnil
log.Dk;Dk \D

k/R

OO

GrPFMHS.X;D/R
‰Dk //

OO

��

GrPFMHS.Dk;Dk \Dk/R

OO

��

FiltBun.X/ // FiltBun.Dk/

(the functors involving the lower line are the ones described in the statement of Theorem 4.2).
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4.2.1. The functor ‰Dk
for ExtVCnil

log.X; D/. In this section we construct the functor

‰Dk
W ExtVCnil

log.X;D/! ExtVCnil
log.Dk;Dk \D

k/:

Let Uk be a tubular neighborhood of Dk in X . A fortiori, Uk �Dk is a tubular neigh-
borhood of Dk �Dk , and we have an exact sequence:

1! K ! �1.Uk �D/! �1.Uk �D
k/! 1:

The groupK is canonically isomorphic to Z and we denote by tk 2 �1.Uk�D/ its canon-
ical generator (which corresponds geometrically to the class of a simple loop going aroundDk
counterclockwise). Moreover, K is central in �1.Uk �D/, hence it acts on any complex local
system defined on Uk � D. Thanks to the Riemann–Hilbert correspondence and the equiv-
alence of categories recalled in Theorem A.8, we obtain that the group K acts by unipotent
automorphisms on any element of the abelian category VCnil

log.Uk;D \ Uk/.
We need a small categorical interlude. Let A be an abelian category and Z be an object

of A equipped with a unipotent automorphism T , i.e. satisfying .T � Id/k D 0 for k � 0

(where Id denotes the identity endomorphism of Z). We define

(4.1) N WD log.T / D
1X
kD1

.�1/kC1

k
� .T � Id/k :

This is a nilpotent endomorphism of Z which satisfies

T D exp.N / WD
1X
kD0

1

kŠ
�N k :

Note that the two sums considered above contain in fact only a finite number of sum-
mands. Recall the following well-known lemma.

Lemma 4.8 (cf. [8, Proposition 1.6.1]). Let A be an abelian category. For each object
Z of A equipped with a nilpotent endomorphism N , there exists a unique finite increasing
filtration M� DM.N/� of Z satisfying the following conditions:

(i) N.Ml/ �Ml�2 for every l .

(ii) N l induces an isomorphism GrMl Z
�
�! GrM

�lZ for every l � 0.

Moreover, the association .Z;N / 7! .Z;M.N/�/ defines a functor between the category of
objects Z of A equipped with a nilpotent endomorphism N , a morphism between .Z1; N1/
and .Z2; N2/ being a morphism f W Z1 ! Z2 in A such that f ı N1 D N2 ı f , and the
category of objectsZ of A equipped with a finite increasing filtrationM�, the morphisms being
the morphisms preserving the filtrations.

We are now in position to define the functor ‰Dk
for any element .V;r/ of the cate-

gory ExtVCnil
log.X;D/. We first consider the case where the filtration W� is trivial, in other

words the case when .V;r/ 2 VCnil
log.X;D/. By restriction to Uk , .V;r/ defines an ele-

ment of VCnil
log.Uk;D \ Uk/, which is canonically endowed with an action of K by unipo-

tent automorphisms in the category VCnil
log.Uk;D \ Uk/. We denote by Tk the automorphism
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corresponding to the action of tk 2 K. By applying the discussion above in the abelian cat-
egory VCnil

log.Uk;D \ Uk/ to the object .V;r/jUk
equipped with its nilpotent endomorphism

Nk WD log.Tk/, we obtain a canonically defined finite increasing filtration M� of .V;r/jUk
in

this category. By construction, the action of tk on GrMl .V;r/jUk
is trivial for any l. Equiva-

lently, the residue along Dk of the corresponding connection is zero (cf. Lemma A.10), mean-
ing that GrMl .V;r/jUk

is in fact an element of VCnil
log.Uk;D

k \ Uk/. In particular, when
restricting to Dk , this endows .GrMl VjUk

/
jDk

with an integrable connection rl with logarith-
mic poles alongDk \Dk and nilpotent residues. We define ‰Dk

.V;r/ to be the holomorphic
vector bundle VjDk

equipped with the exhaustive increasing filtration M�jDk
by vector sub-

bundles, and the integrable connections rl on GrMl VjDk
.

Remark 4.9. By Lemma A.10, the restriction toDk ofNk viewed as an endomorphism
of the holomorphic vector bundle V is exactly the residue resDk

.r/ 2 End.VjDk
/ multiplied

by �2�i . In particular, the filtration of VjDk
in the abelian category of coherent sheaves onDk

associated by Lemma 4.8 to VjDk
equipped with its nilpotent endomorphism resDk

.r/ is equal
to M�jDk

. In particular, it is a filtration by subbundles, which is not clear from its definition.

Remark 4.10. We can ask if the connections rl just constructed are induced by a con-
nection on VjDk

. This is true locally (for any choice of a local equation of the divisor Dk
we get a connection from the nearby-cycles formalism), but in general only the connections
induced on the graded pieces are defined globally.

Remark 4.11. There are other constructions of similar functors (cf. [10]). The one we
described is well-behaved with respect to R-PVHS.

Now, the general case where the filtrationW� is not necessarily trivial reduces to the triv-
ial filtration case thanks to the following observation: for anym 2 Z1, a filtrationM� indexed
by Z of GrWm VjDk

by holomorphic subvector bundles gives rise by inverse image to a refine-
ment W 0� jDk

of the filtration W�jDk
of VjDk

. Namely, if m D .m1; : : : ; mi ; : : : ; mN ; 0; : : :/,
where N is the biggest integer for which mi is non-zero, define

W 0.m1;:::;mN ;mNC1;0;:::/

to be the preimage ofMmNC1
. Doing this for any m 2 Z1 with the filtration M� of GrWm VjDk

coming from the trivial filtration case, we obtain a refinement of W�jDk
which is the desired

filtration of ‰Dk
.V;W�;r�/.

4.2.2. The functor ‰Dk
for ExtVCnil

log.X; D/R. Let us now construct the functor

‰Dk
W ExtVCnil

log.X;D/R ! ExtVCnil
log.Dk;Dk \D

k/R:

As remarked before, it is enough to perform the construction in the case where the fil-
tration W� is trivial. Keeping the notations of Section 4.2.1, we have to show how a real
structure L on .V;r/ induces a real structure on each .GrMl VjDk

;rl/. The construction is
analogous to the one described in the preceding section. Recall that for every log-pair .Y;E/
we denote by VCnil

log.Y;E/R the abelian category whose objects are triplets .V;r;L/ where
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.V;r/ 2 VCnil
log.Y;E/ and L is a real structure on .V;r/ (cf. Appendix A), with the obvious

morphisms. The functor .V;r;L/ ! L defines an equivalence of abelian categories between
VCnil

log.Y;E/R and the category of real local systems on Y � E with unipotent local mon-
odromies around E (cf. Corollary A.9).

In the notations of the preceding section, the group K acts on any real local system
defined on Uk � D, hence by the equivalence of categories just recalled, it acts on any el-
ements of VCnil

log.Uk;D \ Uk/R by unipotent automorphisms. If .V;r;L/ is an element of
VCnil

log.X;D/R, its restriction to Uk is then canonically endowed with a unipotent automor-
phism Tk corresponding to the action of tk 2 �1.Uk �D/. We can define as before its loga-
rithm Nk by using formula (4.1), and consider the corresponding filtration M� of .V;r;L/jUk

in the category VCnil
log.Uk;D\Uk/R. We can then form the corresponding graded object which

is a priori just an object of VCnil
log.Uk;D \ Uk/R. To conclude, we need to verify that it is in

fact an object of VCnil
log.Uk;D

k \ Uk/R. But this follows from the next lemma.

Lemma 4.12. An element of the category VCnil
log.Uk;D \Uk/R belongs to the full sub-

category VCnil
log.Uk;D

k \ Uk/R if and only if tk acts on it trivially.

Proof. It is a consequence of the equivalence of categories recalled above (cf. Corol-
lary A.9) together with the fact that a real local system on Uk � D with trivial monodromy
around Dk extends in a unique way to a real local system on Uk �Dk .

4.2.3. The functor ‰Dk
for GrPFMHS.X; D/R. Let us now turn to the construction

of ‰Dk
for the category GrPFMHS.X;D/R. As remarked before, it is enough to perform

the construction in the case where the filtration W� is trivial. Keeping the notations of Sec-
tions 4.2.1 and 4.2.2, we have first to construct a polarization Ql on each GrMl V and then
check that the axioms of an R-PVHS are satisfied.

First recall the notion of decomposition in primitive parts in the general setting of
Lemma 4.8. Keeping the same notations, the morphism N induces an endomorphism ofL
l GrMl Z decreasing the graduation by 2. Defining the so-called primitive part Pl � GrMl Z

as the kernel of N lC1 W GrMl Z ! GrM
�l�2Z for l � 0 and to be zero for l < 0, we have the

following decomposition in primitive parts (cf. [8, Section 1.6] or [31, Lemma 6.4]):

GrMl Z D
M

i�max.0;�l/

N iPlC2i :

In the case where Z D .V;r;L/ 2 VCnil
log.Uk;D \Uk/R and Nk D log.Tk/ as before, we get

a decomposition

(4.2) GrMl V D
M

i�max.0;�l/

N i
kPlC2i

in the abelian category VCnil
log.Uk;D \ Uk/R.

As explained in the sections above, GrMl V is in fact an element of VCnil
log.Uk;D

k\Uk/R.
Moreover, as VCnil

log.Uk;D
k \ Uk/R is a full subcategory of VCnil

log.Uk;D \ Uk/R, Nk is an
endomorphism of

L
l GrMl V viewed as an element of VCnil

log.Uk;D
k \ Uk/R. It follows that

the primitive parts Pl are elements of VCnil
log.Uk;D

k \ Uk/R and that the decomposition (4.2)
holds in VCnil

log.Uk;D
k \ Uk/R.
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It can bee seen that the compatibility of the filtrationM� with the tensor products implies
Q.Ml ˝ Ml 0/ D 0 for every l; l 0 with l C l 0 < 0 (cf. [31, Lemma 6.4]). In particular, Q
induces a morphism

GrMl V ˝OUk
GrM
�lV ! OUk

in the category VCnil
log.Uk;D \ Uk/R for each non-negative integer l . As above, it is in fact a

morphism in VCnil
log.Uk;D

k \ Uk/R. By restriction to Dk , we get a morphism

GrMl VjDk
˝ODk

GrM
�lVjDk

! ODk

in VCnil
log.Dk;D

k \Dk/R for each non-negative integer l , that we denote by QjDk
for all l by

a slight abuse of notation.
Let us now turn to the definition of Ql . As in [31], we define the polarization

Ql W GrMl VjDk
˝ODk

GrMl VjDk
! ODk

by imposing that the decomposition in primitive parts (4.2) is orthogonal, that Nk jDk
is an

isometry of
L
l GrMl VjDk

equipped with the
L
l Ql and setting

Ql.u; v/ D QjDk
.u; .Nk/

lv/

for u and v local sections of Pl � GrMl VjDk
.

To conclude the construction of ‰Dk
, we need to verify that for all l , the data

.GrMl VjDk
;rl ;Ll ;GrMl F

�;Ql/

defines an R-PVHS on .Dk;Dk \ Dk/. For this, we have to check that GrMl F
� is a filtra-

tion by holomorphic subvector bundles satisfying Griffiths’ transversality, and that for each
x 2 Dk \ D

k the filtration GrMl F
�.x/ on GrMl VjDk

.x/ defines a real Hodge structure on
Ll.x/ polarized by Ql.x/. This can be done locally, hence it is sufficient to consider the case
where X D �n is a polydisk andD D

S
1�i�pDi withDi D �i�1 � ¹0º ��n�i � �n. Let

us explain how it follows from [31] and [6]. Consider the new connection on V defined by the
formula

r
0
WD r �

1

2i�
�Nk.z/ �

dzk

zk

(here we regard Nk as an endomorphism of V 2 VCnil
log.X;D/R). This connection has no

monodromy around Dk (see Lemma A.10). Locally, if  is a flat section of .V;r/, then

z D .z1; : : : ; zn/ 7!  .z/ � exp
�
�

log.zk/
2i�

�Nk.z/
�

defines a flat section of .V;r 0/. We obtain a real structure on .V;r 0/ by looking at all flat
sections obtained in this way from real flat sections of .V;r/. Denote by L0 this real structure.
It is a real local system defined on �n �Dk . By [31, Theorem 6.16], for every z 2 Dk �Dk ,
the complex vector space V.z/ endowed with the real structure L0.z/, the Hodge filtration
F �.z/ and the weight filtration M�.z/ define a real mixed Hodge structure graded-polarized
by Q.z/. Moreover, the data

.VjDk
;r 0
jDk

;L0
jDk�Dk\Dk ;M�jDk

; F �
jDk

;QjDk
/
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defines a graded-polarized variation of real mixed Hodge structures which is admissible (this
result follows from [6] but is not explicitly stated there; it can be found for example in [5, Propo-
sition 2.10] and the discussion which follows it). By [22, Proposition 1.11.3], this implies that
for all l , GrMl F

� defines a filtration of GrMl VjDk
by holomorphic subvector bundles and not

just coherent subsheaves (equivalently for all integers m and p the coherent sheaf GrpFGrWm V
is locally free). To conclude the proof, we need to check that for all l , the connection and
the real structure induced on GrMl VjDk�Dk\Dk by r 0 and L0 coincide with rl and Ll . But
this follows from the definitions of r 0 and L0, since the induced action of Nk on GrMl VjDk

is
trivial.

Remark 4.13. Following a suggestion of the referee, we sketch an alternative construc-
tion of our graded nearby-cycle functor by means of Verdier specialization for mixed Hodge
modules (see [36] and [29, Section 2.30]). Let Y be a closed subvariety of the smooth complex
variety X . Define

DYX WD Spec
�M
k2Z

tk � I�kY

�
;

where IY denotes the ideal of functions vanishing on Y (by convention I�k D OX for k � 0).
By definition, the space DYX is equipped with two natural projections t W DYX ! C and
p W DYX ! X . The fibre of t at 0 is the normal cone CYX of Y in X and the restriction of
p � t to t�1.C�/ induces an isomorphism with X � C�. The map t is flat and we have the
following diagram with cartesian squares:

CYX //

��

DYX

t

��

X �C�
j

oo
p0
//

��

X

¹0º // C C�oo

This is the so-called deformation of X to the normal cone CYX . When Y is a smooth
divisor, the normal cone CYX is nothing but the total space TYX of the normal bundle of Y
in X .

Given a polarizable mixed Hodge module M 2 MHM.X/, we define its Verdier special-
ization along Y by the following formula:

SpY jXM WD  t jŠ .p
0/�MŒ1� 2 MHM.CYX/:

The underlying perverse sheaf is monodromic, i.e. its restriction to any punctured gener-
atrix of the cone CYX is a local system. Moreover, if Y is a smooth divisor, then SpY jXM is
endowed with a monodromy automorphism T in the category MHM.TYX/ corresponding to
the action of a meridian loop.

Going back to the situation of Theorem 4.2, let .X;D/ be a log-pair and M be a polariz-
able (the actual choice of a polarization does not matter) pure Hodge module with strict support
X , extending a variation of polarizable Hodge structures V of weight k on U WD X �D with
unipotent monodromy around the irreducible components Di of D. For any irreducible com-
ponent Dk , we can define a polarizable pure Hodge module with strict support Dk as follows.
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The restriction of SpDk jX
.M/ to TYX�Y is a polarizable mixed Hodge module equipped with

a unipotent monodromy automorphism T . Using Lemma 4.8, we get an increasing filtration
on SpDk jX

.M/ such that T acts trivially on each graded piece. It turns out that this filtration is
(a shift of) the weight filtration W� of SpDk jX

.M/. In particular, the associated graded object
is pure and invariant by T , hence gives rise to a pure object in MHM.Dk/. This turns out to be
the pure Hodge module associated to the (log-)variation of polarized Hodge structures obtained
by taking the sum of the graded pieces of ‰Dk

V for the weight filtration W�.

A. Integrable connections with logarithmic poles and Deligne’s canonical extension

A.1. Connections with logarithmic poles.

A.1.1. Definitions.

Definition A.1. Let .X;D/ be a log-pair and V be a holomorphic vector bundle on X .
A connection on V with logarithmic poles along D is a CX -linear map of sheaves

r W V ! �1X .logD/˝OX
V

which satisfies the Leibniz rule:

r.f � s/ D f � r.s/C df ˝ s;

where f is a local section of OX and s a local section of V .

Remark A.2. In the particular case where D D ¿ we recover the usual notion of
connection on a holomorphic vector bundle. If .X;D/ is a log-pair and V 0 is a holomorphic
vector bundle on X � D endowed with a connection r 0 obtained by restricting to X � D
a holomorphic vector bundle V on X endowed with a connection r with logarithmic poles
along D, then we say that r has logarithmic poles along D with respect to the extension V . It
is a property of the extension V .

If .V;r/ is a holomorphic vector bundle on X endowed with a connection with logarith-
mic poles along D, then for every p � 1 there exists a unique CX -linear map of sheaves

rp W �
p
X .logD/˝OX

V ! �
pC1
X .logD/˝OX

V

which satisfies the generalized Leibniz rule:

rp.! ˝ s/ D d! ˝ s C .�1/
p
� ! ^ rp.s/;

where ! is a local section of �pX .logD/ and s a local section of V .
The curvature of the connection is the map Fr W r1 ı r W V ! �2X .logD/˝OX

V . It is
easily seen to be an OX -linear map.

Definition A.3. The connection is called integrable if its curvature is zero.
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A morphism between two holomorphic vector bundles .V1;r1/ and .V2;r2/ on X

equipped with an integrable connection with logarithmic poles along D is a morphism of vec-
tor bundles � W V1 ! V2 commuting with the connections. The holomorphic vector bundles
on X equipped with an integrable connection with logarithmic poles along D form an abelian
category VClog.X;D/.

To any map f W .Y;E/ ! .X;D/ of log-varieties is associated an (additive) functor
f � W VClog.X;D/ ! VClog.Y;E/. We can also define the tensor product and internal hom
of two elements in VClog.X;D/, extending the corresponding notions for holomorphic vector
bundles.

Remark A.4. If D D ¿ and the connection r is integrable, then the sheaf

V r WD ker.r W V ! �1X ˝OX
V /

is a complex local system. The classical Riemann–Hilbert correspondence says that for any
complex manifold X , the functor .V;r/ 7! V r between the category of holomorphic vector
bundles on X endowed with an integrable connection and the category of complex local sys-
tems on X is an equivalence of categories. A quasi-inverse is defined by associating to any
complex local system L the holomorphic vector bundle V WD OX ˝C L endowed with the
connection r.f � s/ D df ˝ s. These functors are compatible with the formation of tensor
products, internal hom, dual and pull-back.

Finally, a complex local system L on X (connected) is completely understood by its
monodromy’s representation �1.X; x/! GL.Lx/ for any x 2 X .

Example A.5. Fix two integers 1 � p � n. Let V be a C-vector space equipped with
p endomorphisms N1; : : : ; Np. Let .X;D/ be the log-pair .�n;

S
1�k�pDk/ where

Dk D �
k�1
� ¹0º ��n�k � �n:

Fix a system of coordinates x1; : : : ; xn on�n coming from the choice of a coordinate on� and
consider the holomorphic vector bundle V WD V ˝C OX on X endowed with the connection
with logarithmic poles along D defined by

r D d �
X

1�k�p

1

2i�
�Nk �

dxk

xk

where Nk denotes by abuse of notation the induced endomorphisms of V .
The connection is integrable if and only if the Nk commute pairwise.
The group isomorphism �1.��¹0º/ D Z, in which the counter-clockwise generator loop

corresponds to 1 2 Z, induces an isomorphism �1.X � D/ D Zp. When the connection is
integrable, the monodromy of the associated complex local system onX�D along the element
of �1.X�D/ corresponding to the k-th base-vector of Zp through the preceding isomorphism
is given by Tk D exp .Nk/.

By the classical Riemann–Hilbert correspondence, as a holomorphic vector bundle en-
dowed with an integrable connection is completely determined up to isomorphism by its mon-
odromy, all holomorphic vector bundles with an integrable connection on �n �

S
1�k�pDk

are obtained by restricting a connection with logarithmic poles along D of the precedent type.
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A.1.2. Real and integral structures.

Definition A.6. A real (resp. integral) structure on an element .V;r/ 2 VClog.X;D/ is
a real (resp. integral) sub-local system L of

V r
jU WD ker.rjU W VjU ! �1U ˝OU

VjU /:

such that
L˝R C D V r

jU .resp. L˝Z C D V r
jU /:

A.1.3. Residue. Let .X;D/ be a log-pair and .V;r/ 2 VClog.X;D/. For any irre-
ducible component Dk of D there is an associated Poincaré residue map

Rk W �
1
X .logD/! ODk

:

It is an OX -linear map. The map .Rk ˝ Id/ ı r induces an ODk
-linear endomorphism:

resDk
.r/ 2 End.VjDk

/. The residue resDk
.r/ is an endomorphism of VjDk

as a vector bundle
(i.e. it has constant rank). The endomorphisms resDk

.r/x 2 V.x/ for every x 2 Dk have the
same characteristic polynomials (cf. [7]). The residue is called nilpotent if the eigenvalues are
all zero.

The full subcategory VCnil
log.X;D/ of VClog.X;D/ formed by vector bundles on X with

an integrable connection with logarithmic poles along D and nilpotent residues is stable by all
the functors considered above.

Example A.7 (Example A.5 continued). The residue of r on Dk is the endomorphism
�

1
2i�
�Nk jDk

2 End.VjDk
/.

A.1.4. Deligne’s canonical extension.

Theorem A.8 (Deligne, Manin, cf. [7]). Let .X;D/ be a log-pair and V a holomorphic
vector bundle onX�D equipped with an integrable connection r such that the corresponding
complex local system V r has unipotent local monodromy around D. There exists a holomor-
phic vector bundle eV on X extending V , unique up to unique isomorphism, called Deligne’s
canonical extension, such that

(i) the connection r has logarithmic poles along D with respect to the extension eV ,

(ii) the residues of r with respect to the extension eV are nilpotent.

Moreover, the association .V;r/ 7! .eV ;r/ defines a functor which is an equivalence be-
tween the category of holomorphic vector bundles on X �D equipped with an integrable con-
nection such that the corresponding complex local system V r has unipotent local monodromy
around D and the category VCnil

log.X;D/ of holomorphic vector bundles on X equipped with
an integrable connection with logarithmic poles along D and nilpotent residues. This functor
is exact and compatible with the formation of tensor products, internal hom, dual and pull-back
along maps of log-varieties.

If .X;D/ is a log-pair, we denote by VCnil
log.X;D/R the category whose elements are

triplets L D .V;r;L/ where .V;r/ 2 VCnil
log.X;D/ and L is a real structure on .V;r/. It is

an R-linear abelian category with tensor products.
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Corollary A.9. The functor .V;r;L/ 7! L is exact and compatible with the formation
of tensor products, internal hom, dual and pull-back along maps of log-varieties, and defines
an equivalence of categories between VCnil

log.X;D/R and the category of real local systems on
U with unipotent local monodromy around D.

A.1.5. Local description of integrable connections.

Lemma A.10. Fix two integers 1 � p � n and consider the log-pair .X;D/, where
X D �n and D D

S
1�k�pDk with Dk D �k�1 � ¹0º � �n�k � �n. Set U WD X �D.

Let .V;r/ be a holomorphic vector bundle on X equipped with an integrable connection with
logarithmic poles along D and nilpotent residues.

(i) The action of �1.U / on the complex local system V r
jU

extends to an action of �1.U /
on .V;r/ by automorphisms in the category VCnil

log.X;D/ (respectively in the category
VCnil

log.X;D/R if .V;r/ is endowed with a real structure). If Ti denotes the automor-
phism of .V;r/ image of ti , then

Ti jDi
D exp.�2i� � resDi

.r//:

(ii) For any system of coordinates x1; : : : ; xn on �n coming from the choice of a coordinate
on �, there exists a C-vector space V equipped with p commuting nilpotent endomor-
phisms N1; : : : ; Np such that .V;r/ is isomorphic to the holomorphic vector bundle
V ˝C O�n endowed with the integrable connection with logarithmic poles along D de-
fined by (cf. Example A.5)

r D d �
X

1�k�p

1

2i�
�Nk �

dxk

xk
:

Proof. For (i) see [7, Proposition 3.11] and [11, Section 1]. Assertion (ii) is a direct
application of Theorem A.8.

B. Resolution of singularities and extension of rational maps

B.1. Hironaka’s theorem. If f W X 0 ! X is a birational morphism between complex
algebraic varieties, there is a biggest open subset U of X such that f induces an isomorphism
f �1.U /

�
�! U . We call the closed subset Exc.f / WD X 0 � f �1.U / � X 0 the exceptional

locus of f .

Theorem B.1 (Hironaka [19]). LetX be a complex algebraic variety andZ be a proper
closed subset of X . Then there exist a smooth algebraic variety X 0 and a proper birational
morphism f W X 0 ! X such that the closed subset Exc.f / [ f �1.Z/ is the support of a
simple normal crossing divisor and Exc.f / � f �1.X sing [Z/.

Corollary B.2. Let g W Y ! X be a proper holomorphic map between two smooth
complex algebraic varieties X and Y . Let � W X Ü Y be a rational section of g. Then
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there exist a smooth algebraic variety X 0, a proper birational morphism ˆ W X 0 ! X and a
morphism � 0 W X 0 ! Y such that � ıˆ D � 0.

Moreover, given any proper closed subset Z of X , we can choose X 0 and � 0 such that
ˆ�1.Z/ is a simple normal crossing divisor.

B.2. Proof of Lemma 3.2. To prove Lemma 3.2, we keep the notations of the state-
ment. For any k, 1 � k � rank.E/, we denote by � W Gr.E; k/! X the relative Grassmann-
ian of k-dimensional subspace ofE, whose fiber over x 2 X is the Grassmannian Gr.Ex; k/ of
k-dimensional vector subspaces of Ex , and by Vk ! Gr.E; k/ the tautological vector bundle
of rank k over Gr.E; k/ (this naive definition will be sufficient for our purpose).

Denote by r the generic rank of F. It follows from the hypothesis that there exists a ratio-
nal section � W X Ü Gr.E; r/ of � W Gr.E; r/ ! X . By Lemma B.2, there exists a smooth
complex algebraic variety X 0 and a proper birational map f W X 0 ! X such that the composi-
tion � ı f W X 0 Ü Gr.E; r/ is actually a holomorphic map, therefore defining a holomorphic
subvector bundle G of f �E of rank r . We denote by G the corresponding locally free sheaf.
As the sheaf .f �E/=G is locally free and the composition f �F! f �E! .f �E/=G is gener-
ically zero, this composition is in fact everywhere zero, showing that the map f �F ! f �E

factors:
f �F //

!!

f �E

G
. �

>>

By definition, the map f �F ! G is the identity on the preimage of the (open) subset
in X where F is a subvector bundle of E. It follows from Lemma B.2 that X 0 and f can be
chosen such that f �1.Z/ is a simple normal crossing divisor.

C. Segre classes and Segre forms

For any holomorphic vector bundle E on a compact complex manifold X , the total Segre
class s.E/ is defined as the inverse of the total Chern class c.E/.

Let � W P .E/ ! X be the projective bundle of hyperplanes in E and OE .1/ be the
quotient of ��E by its tautological hyperplane subbundle. Set r D rank.E/.

Proposition C.1. For any cohomology class ˛ and any k � 0, we have

��
�
.��˛/ ^ .c1OE .1/

r�1Ck/
�
D sk.E

_/ ^ ˛:

In particular,
sk.E

_/ D ��.c1OE .1/
r�1Ck/:

Suppose now thatE is endowed with a C1 hermitian metric h. The Segre forms Sk.E; h/
are defined inductively from the Chern forms Ck.E; h/ by the relation

Sk.E; h/C C1.E; h/ ^ Sk�1.E; h/C � � � C Ck.E; h/ D 0:
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Proposition C.2 (Guler [18]). For any k � 0, we have

Sk.E
_; h_/ D ��

�
C1.OE .1/; hOE.1//

r�1Ck
�
;

where h_ is the dual metric of h and hOE.1/ is the metric induced by h on OE .1/.

D. Sakai’s dimension of a holomorphic vector bundle

D.1. Sakai’s dimension. Let X be a compact complex manifold and E be a holomor-
phic vector bundle on X . Sakai defined and studied in [30] a generalization for vector bundles
of the Kodaira dimension of a line bundle (this is not really a generalization because Sakai’s
dimension never equals minus infinity).

Let †.X;E/ WD
L1
mD0 H0.X; SmE/. This is a commutative graded C-algebra.

Definition D.1. Sakai’s dimension of E is by definition the number

�.X;E/ WD degtrC†.X;E/ � rank.E/:

It is an integer which belongs to ¹� rank.E/; : : : ; 0; : : : ; dim.X/º.

Remark D.2. Let � W P .E/ ! X be the projective bundle of hyperplanes in E and
OE .1/ be the tautological quotient line bundle. Then ��OE .k/ D SkE for every k � 0. In
particular, †.P .E/;OE .1// D †.X;E/, and E is big if and only if †.X;E/ D dim.X/.

Remark D.3. If there is a positive integer m0 such that dim H0.X; Sm0E/ > 0, then
the following estimate holds for large m:

˛:m�Crank.E/�1
� h0.X; Sm:m0E/ � ˇ:m�Crank.E/�1;

where ˛ and ˇ are positive numbers and � D �.X;E/. When E is big, we have the following
stronger statement: there exist c > 0 and j0 � 0 such that

h0.X; SjE/ � c:j dim.X/Crank.E/�1 for all j � j0:

D.2. Logarithmic cotangent dimension.

Definition D.4. Let U be a smooth complex algebraic variety. The number

�.U / WD �.X;�1X .logD// 2 ¹� dim.U /; : : : ; 0; : : : ; dim.U /º

does not depend on the choice of a log-compactification .X;D/ of U . It is called the logarith-
mic cotangent dimension of U .

Proposition D.5. Let f W U ! V be a holomorphic map between two smooth complex
algebraic varieties.

(i) If f is a finite étale cover or a proper birational morphism, then �.U / D �.V /.

(ii) If f is dominant, then �.U / � �.V /C .dim.V / � dim.U //.
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Proof. For compact U and V , the statements can be found in [30, Proposition 7 and
Theorem 1]. The same proofs work for the general case, except when f is étale. In this case,
the proof for non-compact U and V is a bit more subtle, so we briefly sketch it. Assume
f W U ! V is étale and let .X;D/ and .Y;E/ be good compactifications of U and V such that
f extends to a morphism of log-pairs f W .X;D/! .Y;E/. Let

� W f ��1Y .logE/! �1X .logD/

be the associated map of OX -modules and Z be the closed subset of X where � is not an
isomorphism. This set is defined by the vanishing of det.�/, in particular it is a divisor in X
(here we use that the logarithmic cotangent bundles are locally free). By [20, Theorem 6.1.6],
Z is contracted by f , i.e. codimY .f .Z// � 2.

We can now argue as in [35, Theorem 5.13]. As the logarithmic cotangent dimension
increases in étale covers (this follows from the second case of the proposition, i.e. when f
is dominant), we can assume from the beginning that f W U ! V is a Galois étale cover
with group G. If �.U / D � dim.U /, then the trivial inequality �.U / � �.V / implies that
�.U / D �.V /. Suppose now that �.U / > � dim.U /. Let !1; : : : ; !N be homogeneous
elements of †.X;�1X .logD// such that †.X;�1X .logD// is an algebraic extension of the
field generated over C by the !i . For every i , define the Sk.!i / byY

g2G

.X � g�!i / D X
n
C S1.!i / �X

n�1
C � � � C Sn.!i /;

where X is a variable and n is the order of G. The Sk.!i / are meromorphic symmetric forms
on X with no poles on X � Z. As they are G-invariant by definition, they are pull-back of
symmetric forms defined on Y � f .Z/ which extend to Y by Hartogs’ extension theorem
(recall that �1Y .logE/ is locally free and codimY .f .Z// � 2). As the field C.!1; : : : ; !N / is
a finite extension of the field generated over C by the Sj .!i /, we obtain that �.U / � �.V /.
The other inequality is trivial.
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