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STRONG APPROXIMATION WITH BRAUER-MANIN OBSTRUCTION
FOR GROUPIC VARIETIES

YANG CAO AND FEI XU

ABSTRACT. Strong approximation with Brauer-Manin obstruction is established for smooth
varieties containing a connected linear algebraic group as an open subset with a compatible
action.
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1. INTRODUCTION

(Classical strong approximation for semi-simple simply connected linear algebraic groups has
been established by Eichler in [13]-[14], Weil in [37], Shimura in [34], Kneser in [21], Platonov
in [28]-[29], Prasad in [31] and so on from thirties to seventies of last century. Minchev in [25]
pointed out that classical strong approximation is not true for varieties which are not simply
connected. Colliot-Théléne and the second named author in [9] first suggested that one should
study strong approximation with Brauer-Manin obstruction which generalizes classical strong
approximation by using Manin’s idea and established strong approximation with Brauer-Manin
obstruction for homogenous spaces of semi-simple linear algebraic groups with application to
integral points. Since then, Harari in [I8] proved strong approximation with Brauer-Manin
obstruction for tori and Demarche in [12] extended Harari’s result to connected linear algebraic
groups and Wei and the second named author in [38] extended Harari’s result to groups of
multiplicative type. Borovoi and Demarche in [3] established strong approximation with Brauer-
Manin obstruction for homogenous spaces of connected linear algebraic groups with connected
stabilizers. Colliot-Théléne and the second named author in [I0] proved strong approximation
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with Brauer-Manin obstruction for certain families of quadratic forms and Colliot-Thélene and
Harari in [7] extended this result to certain families of homogenous spaces of linear algebraic
groups.

In our previous paper [5], strong approximation with Brauer-Manin obstruction has been
established for open toric varieties. It is natural to ask whether such a result is still true if the
torus is replaced by a connected linear algebraic group. The basic idea in [5] is to construct the
standard toric varieties (see Definition 2.12 in [5]) by using the complement divisors. The group
action provides the crucial relation of local integral points for almost all places (see Proposition
4.1 in [5]). In order to prove strong approximation, one further needs to show that any point
outside the torus can be approximated by a point in the torus with the same local invariant
for all elements in the Brauer groups of a given toric variety (see Proposition 4.2 in [5]). The
proof of such local approximation property is reduced to an affine toric variety case.

Such a method cannot be generalized to the case of arbitrary connected linear algebraic
groups directly. For example, one cannot expect that such varieties can be covered by affine
pieces of the same type varieties for a general linear algebraic group even over an algebraically
closed field (see [36]).

Instead of explicit constructions, we apply the descent theory to study universal torsors.
Combining with the rigidity property of torsors under multiplicative groups developed by
Colliot-Thélene in [6], we conclude that such torsors also contain linear algebraic groups with
compatible action (see Lemma B.4]). Applying the idea of group action in [5], one can prove
strong approximation with Brauer-Manin obstruction using the relation of local integral points
at almost all places (see Lemma [L3]) provided by these torsors. In fact, this paper recovers the
main result in [5] by this new method.

Notation and terminology are standard. Let k be a number field, €2, the set of all primes in
k and ooy the set of all Archimedean primes in k. Write v < ooy, for v € Q \ oog. Let Oy be
the ring of integers of £ and Oy g the S-integers of £k for a finite set S of 2, containing oo
For each v € Qy, the completion of k at v is denoted by k, and the completion of O, at v by
O,. Write O, = k, for v € ooy, and ko =[] , kv. Let Ay be the adelic ring of k and A£ the
finite adelic ring of k.

For any scheme X over k, we denote X; = X x, k with k a fixed algebraic closure of k. A
variety X over k is defined to be a reduced separated scheme of finite type over k. Let

Br(X) = H%(X,G,,), Bri(X)=ker[Br(X) — Br(X3)], Br.(X)=Br(X)/Br(k).

VEO

We denote by A} the affine space of dimension n over k. Define

X(Ap)e = [T] mo(X (k)] x X(A])

VEOQ

where 7y(X (k,)) is the set of connected components of X (k,) for each v € ocoy. Since an element
in Br(X) takes a constant value at each connected component of 7y(X (k,)) for all v € ooy, one
can define

X(AWT = {(@)ven, € X(Apa: Y invy(E(x,) =0, VE€ B}

vEQN



for any subset B of Br(X). Class field theory implies that X (k) C X (A})5.

Definition 1.1. Let k be a number field. Let X be a variety over k.

(1) If X (k) is dense in X(Ay)e, we say X satisfies strong approximation off oo.

(2) If X(k) is dense in X(Ay)E for some subset B of Br(X), we say X satisfies strong
approzimation with respect to B off ooy.

In this paper, we will study strong approximation for a G-groupic variety for a connected
linear algebraic group G defined as follows.

Definition 1.2. Let k be a field. Let G be a connected linear algebraic group over k and X be
a variety over k.
(1) X is called a G-variety if there is an action of G

aX:kaX—>X

over k.

A morphism from a G-variety X to a G-variety X' is defined to be a morphism of schemes
from X to X' which is compatible with the actions of G. Such a morphism is called G-morphism.

(2) If X is a geometrically integral G-variety and G is contained in X as an open subset such
that the action ax|cx,c = ma where me is the multiplication of G, then we call X a G-groupic
variety.

A morphism [ from a G-groupic variety X to a G'-groupic variety X' is defined to be a
morphism of schemes from X to X' such that f|g : G — G’ is a homomorphism of linear
algebraic groups.

It is clear that a morphism of groupic varieties is compatible with group actions.
Let k& be a field with characteristic 0. For any connected linear algebraic group G, the
reductive part G™¢ of G is given by

1= R,(G) =G — G =1

where R, (G) is the unipotent radical of G. Let G* = [G™?, G"*?] be the semi-simple part of G,
let G*¢ be the semi-simple simply connected covering of G*¢, let G*" be the maximal quotient
torus of G and let ¢5 : G — G™" be the canonical quotient homomorphism.

The main result of this paper is the following theorem.

Theorem 1.3. Let k be a number field and G a connected linear algebraic group. Assume
G' (ko) is not compact for any non-trivial simple factor G' of G*¢. Then any smooth G-groupic
variety X over k satisfies strong approzimation with respect to Bri(X) off coy.

The paper is organized as follows. In §2, we study some basic properties of GG-varieties over
a field of characteristic 0. In §3, we apply the descent theory developed by Colliot-Thélene
and Sansuc in [8] and the rigidity property of torsors under multiplicative groups developed by
Colliot-Thélene in [6] to construct the right candidates so that one can expect the arguments
analogue to those of [5] to apply. All results in this section work over arbitrary fields of
characteristic 0 as well. In §4, we give a proof of Theorem [[.3 based on the results in previous
sections. In §5, we study strong approximation with Brauer-Manin obstruction off any finite
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non-empty subset of €, and prove such strong approximation when the invertible functions
over k are constant (see Theorem [5.5]).

2. PRELIMINARY ON (G-VARIETIES

In this section, we establish some basic results on G-varieties which we need in the next
sections. In this section, we assume that k is an arbitrary field & with char(k) = 0 and
[, = Gal(k/k) where k is an algebraic closure of k.

First, we need a kind of Stein factorization in the category of G-varieties.

Lemma 2.1. Let A 2 B be a dominant G-morphism of normal and geometrically integral
G-varieties over k where G is a connected linear algebraic group. Assume B is affine. Then A
can be factorized into morphisms of G-varieties A = C and C = B such that C' is normal and
geometrically integral, the generic fiber of v is geometrically integral and T is finite.

Proof. Since X is dominant, one can view k(B) as a subfield of k(A). Let k(C) be the algebraic
closure of k(B) inside k(A) and k[C] be the integral closure of k[B] inside k(C'). Since A
is normal, one has k[C] C k[A] and k[C] is integral closure of k[B] inside k[A]. Since A is
geometrically integral, one has k is algebraically closed inside k(A). Therefore k is algebraically
closed in k(C'). Then C = Spec(k[C]) is normal, geometrically integral and C' — B is finite.
Moreover A factors into A = C' and C' = B by inclusion of the global sections.

Similarly, we can factor A x;, G 2 p x5, G into G x, A — C — G x;, B such that k[é]
is the integral closure of k[B X G] inside k[A X, G]. Then one has the following commutative
diagram

Gx, A 225 A

| |

c —C

l |

GXkB—)B

pr2
where C' — C is a canonical morphism induced by k[A] < k[G x; A]. Moreover one has a

unique morphism cta X C' which is finite because both the morphism C -G X B and
the morphism G x;, C' — G X, B are finite. Let n¢ be the generic point of C'. Then one obtains

G Xk Anc — 5770 — G Xk I{Z(C)
over 7c. Since k(C') is algebraic closed in k(A), one obtains that all fibers of
G Xk AUC -G Xk kJ(C)

are geometrically integral. Therefore C~’nc — G Xy, k(C) is an isomorphism. This implies that
0 is an isomorphism.
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Replacing pro by the actions a4 and ap in the above diagram, one obtains the following
commutative diagram

GxpA 5 A

! |

C=Gx,C 2, ¢

! J

GXkB —_—

ap
where a¢ is induced by the homomorphism of the global sections which is the unique homo-
morphism to make the above diagram commute. This implies that C' is a G-variety and ¢ and
7 are morphisms of G-varieties by uniqueness. O

We can apply this lemma to prove the following result.

Proposition 2.2. Let A X B bea G-morphism of geometrically integral G-varieties over k.
Assuming B is affine and smooth. If B = G/G1 where both G and G are connected linear
algebraic groups, then all fibers of X are nonempty and geometrically integral. Moreover if A is
smooth, then X\ is smooth.

Proof. Without loss of generality, one can assume k& = k. Since the action of G on B is
transitive, A is surjective.

Suppose A is smooth. By applying Lemma 2.1} one can factorize A into morphisms of G-
varieties A - C and C' = B such that C is geometrically integral, the generic fiber of ¢ is
geometrically integral and 7 is finite. Since B has only a single orbit, any orbit of G in C
contains the generic point of C'. This implies that C' has a single orbit of G as well. Since G is
connected, (G; contains no proper closed subgroups of finite index. This implies B = C. This
means that the generic fiber of \ is nonempty and geometrically integral.

In general, let A*™ be the smooth locus of A. Then A®*™ is also a G-variety. By the above
result, one has that the generic fiber of A4sm is geometrically integral. Since A7 is open dense in
A,, where 7p is the generic point of B, one concludes that A, is geometrically integral. Since
all fibers are translated by the group action, one concludes that all fibers of A are nonempty
and geometrically integral. By generic smoothness (see Corollary 10.7 of Chapter III in [20]),
one further obtains that A is smooth. 0J

Proposition 2.3. Let A be a smooth geometrically integral G-variety, B C A an open G-
subvariety. Then there exists an open G-subvariety C° C A, such that codim(A \ C, A) > 2,
B c C, (C\ B); = 1I,D; and each D; is a smooth integral Gp-variety with dim(D;) =
dim(A) — 1.

Proof. Let C" = A\ [(A\ B)sing), where (A \ B)giny is the singular part of A\ B. Then
(" is an open G-subvariety of A, codim(A \ C’; A) > 2 and C' \ B is smooth over k. Thus
(C"\ B) = C1 ][ C5 where C} is the union of all codimension 1 connected components of C"\ B,
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and (5 is the union of all codimension > 2 connected components of C’\ B. Then C; and Cy
are stable under the action of G. Let C' := C"\ Cy and one obtains the result. u

3. PULL-BACK OF UNIVERSAL TORSORS OVER SMOOTH COMPACTIFICATIONS

Harari and Skorobogatov have extended the descent theory of Colliot-Thélene and Sansuc in
[8] to open varieties by defining the extended type of torsors in [I9]. One could try to use this
generalisation, but we will use the pull-back of the universal torsors of smooth compactifications
of open varieties. By the rigidity property of torsors under multiplicative groups developed in
[6], one concludes that such torsors also contain a linear algebraic group as an open subset with
a compatible action.

In this section, we assume that k is an arbitrary field k with char(k) = 0 and T', = Gal(k/k)
where k is an algebraic closure of k. Let X be a smooth G-groupic variety over k and X° be a
smooth compactification of X over k. Then X¢ is a smooth compactification of G' over k and
Pic(X7) is a flasque I'y-module by Theorem 3.2 in [4]. Let T be a torus over k such that the
character group

T* = Homg(T, G,,) = Pic(X3).

By corollary 2.3.9 in [33], there is a universal torsor p : Z — X° under T over k satisfying
pt(1g)(k) # 0. Since k[ X< = k*, by [8] Section 2.1, one has Pic(Z;) = 0 and k[Z]* = k*.
Let

H=7xx.GCZ
Then H is a quasi-trivial linear algebraic group over k (i.e. Pic(Hg) = 0 and k[H]*/k* is a
permutation Gal(k/k)-module, see Definition 2.1 in [6]) and the projection map pg induces a
flasque resolution

1-TS5H% G0 -1 (3.1)
of G by Theorem 5.4 in [6]. Moreover, one has
k[H]*/k* = Divg\u, (Z5) = Divye\q, (X7) (3.2)

by Theorem 1.6.1 in [§] and Lemma B.1 in [6].
The pull-back of the universal torsor Z — X ¢ defines a torsor over X under T"

px: Y = Zxxe X — X,
By Proposition 5.1 in [6], the variety Y is quasi-trivial (see Definition 1.1 in [6]) and
kY] /k* = Divgay, (Z5) = Divxe\x, (X) (3.3)
by Theorem 1.6.1 in [§] and Lemma B.1 in [6].
Lemma 3.4. The multiplication myg : H X, H — H can be extended to an action
ay : HxyY =Y

over k.



Proof. One only needs to modify the argument in Theorem 5.6 in [6] and replace
mag:GXp,G—G by ax : GxpX—>X
with ax|cx,¢ = mg. By Lemma 5.5 in [0], there is a morphism
ay : Hx,Y =Y

such that the following diagram

Hx, Y 25 Y
PGXPXJ/ lPX
GXkX — X

ax

commutes and ay|gx, g = mpy. Since H is dense in Y, the associativity of my implies that ay
O

is an action of H.

It is clear that the following diagram

commutes and that its columns and rows are exact. Therefore ker(cs) is geometrically integral

whenever (G is connected.
Since
(Htor)* = E[H]X/EX = DiVXE\GE(X,;) ) DiVXg\X,;(X;’g)

as ['y-module by [3.2), one has H'" = Ty x Ty where Ty and Ty are tori over k such that
Ték = DiVXE\GE (XE) = DiVYE\HIE (YE) and Tl* = DiVX;%\XE (Xg)
by Lemma B.1 in [6]. Moreover, the inclusion ¢ : Ty < H'™" is induced by

s (H ) = E[H]* /B 2% Divy g, (Y3) = T (3.5)
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Lemma 3.6. Let ¢ be the surjective homomorphism H AN Ty obtained by composing sy with
the projection on Ty and Hy = ker(v). Then Hy and ker(sy,) are connected and quasi-trivial
with the canonical isomorphisms

o o

Hy® — H” — G* and X*iTgiE[HO]X/EX'

Proof. By P.94 in [6], one has H* = H* = G*°. It is clear that there is a surjective homo-
morphism Hy = Ty over k such that the following diagram

ker(y) —— ker(sy)

1 —— Hy —— H LN 1
X SH l:
1 — T, —2 mHtor LN o} y 1
1 1

commutes and has exact rows and columns. One concludes that ker(x) is connected and

ker(y) = ker(sp,). Therefore Hy is connected and H§? £ ker(x)** = H*. Since Pic(Hz) = 0,
one further has that Pic((Hp)z) = 0, and then Pic(ker(sy,)z)) = 0 by (6.11.4) in [32]. O

Lemma 3.7. If k[X]* = kX, then H, L9y @ is surjective and its kernel is a group of multi-
plicative type.

Proof. Since k[X]*/k* = 1, the morphism k[G]*/k* LN Divx,\¢, (X;) is injective. Since one
has the following commutative diagram

RGP ks 25 E[H]D RS —— K[Hy)* /F

N 1 I

DiVXE\G;; (X%) p—"> DiVYE\H;; (Yz) ~ Ty
X
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by Lemma 3.6 one obtains that k[G]*/k> 76, k[Ho)* /k* is injective. By tracing the following
diagram with the exact rows

| — s B[O R 2o RHD R s T

l:

1 — T - E[H)* /k* —— k[Ho)*/k* —— 1,

one obtains that k* o1 is injective. Therefore T’ or, T} is surjective. By tracing the following
diagram with the exact rows

1l — T —“5 H X @ 1
1] —— HO H " T1 1,
one obtains that Hy 2% G is surjective and its kernel is a group of multiplicative type. 0

Proposition 3.8. One has the following exact sequence
1— Brl(X) — Brl(G) — Bra(Ho)

for a smooth G-groupic variety (G — X) over k, where the map Bri(G) — Br,(Hy) is given
by the map Hy — H 2% G.

Proof. On the one hand, one has the following commutative diagram of exact sequences
1 —— Bri(X) —— Bri(G) —— H?*(k,Divx,\q, (Xz))
| s -
1 —— Bri(Y) —— Bri(H) —— H?*(k, Divy,\n, (Y3))

by (6.1.3) of Lemma 6.1 in [32] and functoriality.
On the other hand, since Pic((Hp)z) = Pic(H;) = 0 by Lemma B.6] the homomorphism
Hy — H induces the following commutative diagram

H2(k, H™) —— H2(k,k[H]*/k*) —— Br,(H)
H2(k, T5)  —S H2(k, K[Ho]* /k*) —— Brq(Ho)

by Hochschild-Serre spectral sequence and Lemma Since the composition of morphisms

H?(k,k[H])*/k™) — Bro(H) — H?*(k, Divy,\g, (Y3))

is induced by k[H]* /k* LN Divy g, (Y%), the result follows from (3.3). O
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Lemma 3.9. The homomorphism v in Lemmal34 can be extended to a smooth H-morphism

v 4 T1 over k with geometrically integral fibers.

Proof. Let
By ={bek[Y]*: b(ly) =1} and By ={be€k[H]*:b(ly)=1}
be two I'y-modules. Then k[Y]* = k* @ By and k[H]* = kX @ By with By C By by HCY
and
Ty = Diviex, (X7) = Y]/ = By
as ['y-module by (B.3)).
Since ¢ induces the injective homomorphism

W s KT /RS = RIH]* JF*
of I'y-module which is compatible with By C Bpy, one concludes that the homomorphism of
k-algebras ¢* : k[T1] — k[H]| factors through

k[T = k[By] = k[Y] C k[H]
which is also I'y-equivariant.

Since v is a homomorphism from H to 77, one has the following commutative diagram

Hx,Y -5 YV

wxwl lw

T1 Xle E— T1

mTl

by Lemma [3.4l This implies that v is an H-morphism. By Proposition 2.2, one concludes that
1 is smooth with geometrically integral fibers. 0

Proposition 3.10. Let
Yo = 1/}_1<1T1> cY
be the fiber of 17, in Y AN Ty. Then Yy is a smooth Hy-groupic variety, the map given by
divisors of functions
T 7w div .
k[Hol™ [k = Divyy) i), ((Yo)5)
1 an isomorphism, and

kYo =k, Pic((Yo)s) =0 and Br,(Yy) = 0.

Proof. By Lemma [3.9] Y} is an Hy-groupic variety. Since 1 is smooth, one concludes that Yj is
smooth.

By the cartesian diagram
Hy — Yo

L

H —Y
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where the horizontal maps are open immersions and the vertical maps are closed immersions,
one obtains the commutative diagram of exact sequences

1 —— k[Y]* —— k[H]* ——  Divyany, (Yz) —— Pic(Yy) —— Pic(Hf)

| | L | l

1 —— K[Yo]* —— k[Ho* —— Diviyy)\o), (Yo)r) — Pic((Yo)r) —— Pic((Ho)r)

by Theorem 1.6.1 in [§], where ¢ is the pull-back of Cartier divisors (see Section 2.3 in [15]),
which are the same as Weil divisors by smoothness. - -
Let D be an irreducible component of Y3\ Hz. Since D(k) is stable under the action of H (k),

one has
_ H(E)- (D) N Y(R)) € D(F).
For any x € D(k), there is h € H(k) such that 1(h) = ¢(z). Therefore
h e € Yo(R) N D(R) and  H(R) - (D(E) N Yo(R)) = D(R).
This implies that ¢ is injective.
On the other hand, for an irreducible component Dy of (Y5); \ (Ho)z, one has
Do(KYN H(k) =10
and the Zariski closure H - Dy of H-Dy is an irreducible closed subset in Y;\ H;. Let D = H - D,.

Then Dy C DNY,yand D is H-invariant. Applying Proposition for morphism D Yo, 1 1 of
H-varieties, one obtains that ¢;'(17,) = D NY; is geometrically integral. By the maximality
of Dy, one has Dy = D NY,. By the action of H, one has

codim(D,Y) = codim(D,,, ,Y;, ) = codim(D N Yy, Yy) = codim(Dy, Yy) = 1

N7y 9

and D is a divisor of Y. This implies ¢ is an isomorphism.
Since Pic(Y%;) = 0, one obtains that the map

k[Hol™ /= Diviyy)\ (o) (Yo)r)
induced in the above commutative diagram is surjective. This implies that
Pic((Yo)z) =0
by Lemma 3.6l Since both k[Hp|*/k* and k[Yy]* /k* are free abelian groups of finite rank and
rank (k[Ho]* /k™) = rank(Tj) = rank(Divy\ s, (Y3)) = rank(Divyy) (o), (Yo)z))

by Lemma 3.6, (8.2) and (B3.3)), one concludes that the above induced map is an isomorphism.
Therefore k[Yy]* = k*. Applying the Hochschild-Serre spectral sequence (see Lemma 2.1 in
[9]), one has Br,(Yy) = 0. O

Definition 3.11. Let K be a finite étale algebra over k. The unique minimal toric subvariety
V of (Resk/k(G) — Resgyi(A')) over k with respect to Resg ,(Gy,) such that

codim(Resg/k(A") \ V, Resgi(A")) > 2
is called the standard toric variety of K/k.
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Such a standard toric variety always exists by Proposition 2.10 in [5]. By Lemma 3.0, one
has HL" = T; over k.

Proposition 3.12. Let Ty, Hy and Yy be as above. There exists a standard toric variety
(To = V') and an open Hy-subvariety U C Yy such that Hy C U, codim(Yy \ U, Yy) > 2 and the
canonical quotient map H Mo, Ty can be extended a morphism U <% V' of groupic varieties.

Moreover, the morphism ¢y is smooth with nonempty and geometrically integral fibres.

Proof. By Proposition 2.3 there exists an open Hy-subvariety U C Yy, such that Hy C U,
codim(Yy \ U, Yp) > 2, (U \ Ho); = [, Di and each D; is a smooth integral (Hy)z-variety with
dim(D;) = dim(Yy) — 1. One notes

U = U\ (D))
J#
Since the extension of the morphism if it exists is unique, one can assume that k = k. Since
Tg = k[Ho)/k™ = Divyy\m, (Yo) = Diviny, (U)
by Lemma [3.6], Proposition and codim(Yy \ U, Yo) > 2, one has
x; € k[Hyl/k* =Ty  such that  divy(z;) = D;

for 1 <i<s. Then {xy,---,xs} is a Z-basis of T;f and

s
V= U S; C Spec(k[zy, -+, xs])
i=1
with
S; = Spec(klry, a7t -+ iy, w0, 2, SL’¢+1,.T;+11, I N
for 1 <i < s by the structure of standard toric varieties (see Lemma 2.11 in [5]).
Since divy(x;) = D;, one obtains that ¢y, can be extended to Uj; Mo, S;for 1 <i<s. By

gluing <p,,; for 1 <7 < s together, one can extend ¢p, to a morphism U — V.
Applying Proposition to the morphism of Hy-varieties

D; 2% divy () with  divy () = Ty/G = Ho /s (Gum),

one concludes that each ggsi is smooth with nonempty and geometrically integral fibres for
1 < i <s. Since codim(D;,U) = codim(divy (z;), V) = 1, one can conclude further that ¢p, is
flat. Thus ¢p, is smooth with nonempty and geometrically integral fibres. O

4. PROOF OF MAIN THEOREM [I.3

We keep the same notation as that in the previous sections and assume £ is a number field
in this section. We give a proof of Theorem by applying the results in previous section. In
particular, X is a smooth G-groupic variety over k and Y 25 X is a pull-back of a universal
torsor of smooth compactification X of X under the torus T over k with T* = Pic(X). Then
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Y is an H-groupic variety where H = py'(G) is a quasi-trivial linear algebraic group over k by
Lemma [3.4l Moreover, one has

Htor = TQ Xk T1 with Ték = DiVXE\GE (Xfc) and Tl* == DiVX;%\XE (X]g)

Let H % T} be the surjective homomorphism obtained by composing ¢z with the projection

on T} and Hy = ker(y). Then v can be extended to a smooth morphism Y “, Ty by Lemma
B9 Let Yy = ¢~ !(17). It is a closed subscheme of Y.

Lemma 4.1. X (k,) = G(k,) - px(Yo(ky)) for any v € Q.

Proof. Since Y 2% X is a torsor under 7', one has the following commutative diagram
H(k,) —— Y(k)

o | [

G(k,) ——  X(ky)

agl lax

HY(k,,T) —— HY(k,,T)

with the exact columns. Since H!(k,,T) is finite by Theorem 6.14 in Chapter 6 in [30], one
obtains that both dx and Jg are locally constant. Since G/(k,) is dense in X (k,), one concludes
that dx(G(k,)) = Ox(X(k,)). This implies that for any x, € X(k,), there exists g, € G(k,)
such that dg(g,) = Ox(z,). For any z, € X(k,), g, € G(k,), one has 9(g,z,) = 9(g,)0(z,),
since this holds if x, € G(k,) and G(k,) is dense in X (k,). Therefore there is y, € Y (k,) such
that px(y,) = g, 'z,. Thus X(k,) = G(k,) - px (Y (k).

Since H(k,) is dense in Y (k, ), one has that ¢(H (k,)) is dense in (Y (k,)). At the same time,
w(H (k,)) is an open subgroup of T} (k,) by Proposition 3.3 in Chapter 3 in [30]. One concludes
that ¢ (H (k,)) is closed and ¥(H (k,)) = ¢(Y (k,)). For any y € Y (k,), there is h € H(k,) such
that ¥ (y) = ¢(h). This implies that h~'y € Yy(k,). Thus Y (k,) = H(k,) - Yo(k,). The result
follows. O]

Let us now extend the statement of Proposition 4.2 in [5] on local approximation property
for toric varieties to G-groupic varieties.

Proposition 4.2. For any v € X(k,) \ G(k,), there is y € G(k,) such that y is as close to
as required and

inv, (€(2)) = inv,(£(y))
for all £ € Bry(X).

Proof. By Lemma (1], there is g € G(k,) and yy € Yy(k,) such that = g - px(yo). Let M be
an open neighbourhood of x in X (k,). Then yo € px' (¢~ M) N Yy(k,) is a non-empty open
subset of Yy(k,). Since Hy(k,) is dense in Yy(k,), there is hg € Ho(k,) N px' (g~ M).
Let
y=g-px(ho) € G(k,) N M.
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For any ¢ € Br(X), one has
inv, (§(y)) = invy(£(g - px(ho))) = inv,(g°(§) (px (o)) = inv,(pk (97(£)) (o))

and

inv, (£(x)) = invy(§(g - px(y0))) = v, (97(€)(px (90))) = v, (X (97(£)) (%0))-
Since Bry(Yp) is constant by Proposition 310 one obtains the desired result. O

Let S be a finite subset of {2, containing all archimedean places such that the following
conditions hold:
i) The open immersion i : G < X extends to an open immersion ig : G <— X where G is a

smooth group scheme over Oy, s with G X¢, ; k = G and X is a smooth scheme over Oy 5 with
ax

X Xo, s k = X. Moreover, the action G x X 2%, X extends to an action G Xops X — &
which is compatible with the multiplication of G.

ii) The torsor Y PXy X under T extends to a torsor % 2% X under a smooth connected
commutative group scheme 7T over Oy g, where J and 7 are smooth over Oy g such that

Vxo, k=Y and T Xo, sk = T. Moreover, the surjective homomorphism H L9 @ extends to a

surjective smooth homomorphism of smooth group schemes H 2% G over Oy, g with H Xopsk =
H.

iii) The surjective homomorphism H LN 1 extends to a smooth surjective homomorphism of

smooth group schemes H RN T over Oy s such that Ho = )~ (17) is a connected smooth group
scheme over Oy ¢ by Lemma with 71 Xo, ¢ k = T and Ho X0, s k = Hp. The extension

of ¢ in Lemma [3.9] extends to a smooth morphism Y N T, such that Yy = ¢~ (15) with
o Xo, s k= Yo.

iv) The open immersion iy : H < Y extends to an open immersion iy : H < ) such
that the action H x5 Y 25 Y in Lemma B4 extends to an action H. X0ps Y BN Y which is
compatible with the multiplication of H.

Lemma 4.3. For any v € S, one has
G(ky) N X(0y) = G(Oy) - px(Ho(ky) N Vo(Ov))

Proof. Since HL(O,,T) = 0, one has px(Y(O,)) = X(0,). For any = € G(k,) N X(O,),
there is y € H(k,) N Y(O,) such that * = px(y) because H is the pull-back of Y over G.
Since HY(O,,Hy) = 0, there is h € H(O,) such that 1(h) = 1 (y). This implies that h~'y €
Ho(ky) N Yo(Oy). Therefore

v = px(h) - px(h™'y) € G(O,) - pa(Ho(ky) N Vo(0,))

as required. O
For a connected linear algebraic group G, one defines the set

I (k, G) = ker(H'(k,G) = [] H'(k,, G)).
vEQ

The statement below gathers classical theorems on the Hasse Principle.
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Theorem 4.4. Let GG be a connected quasi-trivial linear algebraic group over a number field
k. Then

(1) One has H(k,,G1) = {1} for any no real prime v of k;

(2) One has that Gy satisfies weak approximation;

(3) One has H'(k,Gy) 211, . H'(ky, G1), and then UT' (k, G1) = {1}.

Proof. The results of (1) and (3) follow from applying Proposition 9.2 in [6] to G7*? and Lemma
1.13 in [32] (see also Lemma 7.3 in [16]).
For (2), one has the following digram of short exact sequences

RUGO(K) ——  Gik) ——  Gred(k)  ——s  H'Y(k,Ru(Gh)) =1

l | | |

[, Ru(G) (k) —— TI, Gi(ky) —— L, G (k) —— TI, H' (ky, Ru(Gh)) =

Since G7¢ satisfies weak approximation by Proposition 9.2 in [6], the result follows from weak
approximation of R,(G1) and tracing the above digram. O

In [5] Proposition 3.4, using Harari’s work in [18], we proved a relative strong approximation
for tori. Using Demarche’s work in [12] and the above construction, we now give a relative
strong approximation theorem for arbitrary connected linear algebraic groups.

Proposition 4.5. Let GGy ER Gy be a homomorphism of connected linear algebraic groups over
k and Br,(Gs) EAN Br,(Gy) the induced map. Suppose G(ks) is not compact for any non-
trivial simple factor G of G3¢ for i =1,2. If II'(k,G1) = {1}, then for any open subset W of
GQ(Ak). with
W N Ga(AR)s #0,
there are x € Go(k) and y € G1(Ay)e such that xf(y) € W.
Proof. Let R,(G;) be the unipotent radical of G; and G;"ed be the reductive part of G; for
i=1,2. Since HY(R, R,(G;)) = 1, one has
1 — R,(Gi)(R) = Gi(R) = GI“/(R) — 1
for + = 1,2. This induces an isomorphism
mo(G7*(R)) = mo(Gi(R))

by connectedness of R, (G;)(R) fori =1, 2.

Let G3¢ be a semi-simple simply connected covering of the semi-simple part G5* = [GT¢?, G4
of G; for i = 1,2. Then G:(R) is connected for i = 1,2 by Proposition 7.6 of Chapter 7 in [30].

This implies that G7**(R) in [12] Corollary 3.20 is connected.
By Demarche’s work [12] Corollary 3.20 for Sy = ooy, there are compatible exact sequences:

) —— G1(Ap)e — Br,(G)P —— 'k, G,) = {1}

Ga(k
l |7 [ |

I —— Gy(k) —— Gao(Ap)e — Br,(Go)? ——  II'(k,Gy) —— 1
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where (—)? := Hom(—, Q/Z). There exists y € G1(A})e such that
af(y)™t € Go(k) for a € W N Gy(Ag)ke/”

by the above diagram. Since W f(y)~! is an open subset containing a.f(y)~!, one concludes
that there is x € Gy(k) such that zf(y) € W as required. O

The following proposition benefits from discussion with J.-L. Colliot-Thélene and Dasheng
Wei which refines Proposition 3.6 in [5].

Proposition 4.6. Suppose U is an open subset of n-dimensional affine space A™ over k such
that codim (A" \ U, A™) > 2 and vy is a real prime of k. Let

Ub = Ulkw) N {(z1,- ,22) €KL+ 2 >0 in kyy with 1 <i <n}

where k. = A"(ky,) by fizing the coordinates over k. If W is a non-empty open subset of
U(A)?) where A}° is the adeles of k without vo-component, then

Uk) N (US x W) # 0.

Proof. Without loss of generality, one can assume that W = [], 4vo Wo. By using the fixed
coordinates, we consider the projection to the first coordinate

p: A" — ALY (zy,-- 2) = 2.
It is clear that p~'(x) = A"~ ! over k for any = € k. Since p~!(z)(k,) is Zariski dense in p~!(z)
(see Theorem 2.2 in Chapter 2 of [30]) and dim(p~!(z)) > dim(p~'(z) N Z) for any = € Al(k,),
one has
(p~ (@) NU) (ko) = p~ (@) (ko) \ (0™ (2) N Z)(K0) # 0
for any v € €. Since p is smooth, one concludes that p(U;) x HU#UO p(W,) is an non-empty

open subset of Ay and p(U)) = R* where R" is the set of all positive real numbers.
When k£ = Q, one has
QN R x J] p(W,)] 0
V<00
by Dirichlet’s prime number theorem.

Otherwise, there is € € O} such that € > 1 at vy and |e|, < 1 for all v € oo \ {vo} by 33:8
in [27]. Let ¥ be a finite subset of ) containing oo, such that p(W,) = O, for all v € 3 and
By € Oy such that ord,(B,) > 0 and ord,(5,) = 0 for w # v and w < oo by finiteness of
class number of Oy, for each v < oo,. By strong approximation of A!, there is a € k such that
a € kyy X [Tyzy, P(Wo). Let I, be a sufficiently large integer such that a + 8O, € p(W,) for
each v € ¥\ oog. Let N be a sufficiently large integer such that

b=a+e" H Bl e p(W,)
vEX\ 0oy,
for all v € ook, \ {vo} and is positive at vy. Therefore

beknRY x [] p(W,)] #0.
vV
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If dim(p~(z) N Z) = dim(Z), then there is a generic point y of irreducible components of Z
such that p(y) = z. Since the irreducible components of Z is finite, one has
{r €k: dim(p*(z) N Z) =dim(Z)}
is finite. There is
y € kN[RY x H p(W,)] such that codim(p~'(y)N Z,p ' (y)) > 2.
VF£VQ
By induction on U N p~!(y), one gets

e (UNp )E) N[~ W) (k) NTL) x TT (™ ) VW),
vF£VQ

Combing z and y, one concludes U(k) N (Ut x W) #0 . O

Corollary 4.7. Let (Ty < V) be a standard toric variety over a number field k, vy € oo and
A’ be the adeles of k without vo-component. If W is a non-empty open subset of V(A}°) and
Wy, is a connected component of Ty(k.,), then

V(k) N (W, x W) % 0.

Proof. We first prove the result is true if W, is the connected component of identity of To(ky,)
as an R-Lie group. If vy is complex, then W,,, = Ty(k,,). Since Ty(k,,) is dense V' (k,, ), one has
V (k)N (W,, x W) # () by Lemma 2.11 in [5] and Corollary 3.7 for S = {vp} in [5].

Otherwise, vy is real. Since
T() = ResKl/k(Gm) X X RGSKS/k<Gm)

where K; = k(0;) is a finite extension of k with d; = [K; : k] for 1 < i < s, one can choose 6;
such that 6; is positive in (K}),, for all real primes w’s of K; above vy and the real part %(05) of
027 in (K;), is positive for 1 < j < d; —1 for all complex primes w’s of K; above vy for 1 <i < s.
Fixing an isomorphism Resg, /x(A') — A such that

di—1 di—1
Res, /x(A)(A) = Z Ab] — A%, Z a;0) — (ag, -, ag,_1)
j=0 j=0
with ag, -+ ,aq4,—1 € A for any k-algebra A and 1 <14 < s. By choosing such coordinates, one
has Ty € V C A? over k with d = )7 | d; and
To(ku)™ D {(z1,-+ ,2a) €KL+ ;> 0in ky, for 1 <i < d}

where Tg(k,,)" is the connected component of identity. One concludes V (k) N (W, x W) # ()
by Proposition .6l

In general, since Ty(k) is dense in Tp(ke), there is t € Ty(k) such that ¢ - Wi, = To(kso)™.
The result follows from applying the above result to open set Ty (ko)™ X t - W. O

We can prove strong approximation for Yj by using strong approximation with Brauer-Manin
obstruction for Hy.
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Proposition 4.8. Under the assumptions of Theorem [I.3, the variety Yy satisfies strong ap-
prozimation off coy.

Proof. By Proposition BI2] there exists a standard toric variety (Tp < V') and an open H-

subvariety U C Yy such that Hy C U, codim(Yy \ U, Yy) > 2 and the morphism H, *Ho, Ty can
be extended to a smooth morphism U % V with nonempty and geometrically integral fibres.
Then one only needs to show that U satisfies strong approximation off ooy.

Let W be a non-empty open subset of U(Ay),. Since ¢y is smooth and all fibers of ¢y are

not empty and geometrically integral, one obtains that ¢ (W) is a non-empty open subset of
V(Ar)e. Applying Corollary [L7], one gets = € Ty(k) such that

syt(@)NW £ 0.

Since ;' (z) is smooth and ¢ (z) = ;' (z) N H is an open dense subset of ;' (z), one further

has
Sa(z) N W £ 0.
Since Pic((Ty)z) = Pic((Hp)z) = 0, the quotient map Hy “Mo, Ty induces an isomorphism
k k
Brl(To) = Brl(Ho)
by Lemma [3.0] above and Lemma 2.1 in [9]. Therefore
(W N Ho(Ag)a) P E0) 2 (W 0 gy () P10 = W N G () # 0

by the functoriality of Brauer-Manin pairing.

By Lemma B.6, one has Hi¢ — G*°. Therefore one can apply Corollary 3.20 in Demarche
[12] to Hy and obtains Hy(k) N W # (. O

Proof. (Proof of Theorem[L3.)
Let W =1] W, be an open subset of X (Ay), such that there exist

(T0)veq, € W N X(AL)P*

and a sufficiently large finite subset S; of € containing S with W, = X(O,) for all v € S;. By
Proposition [4.2] one can assume that =, € G(k,) for all v € Q. Then

z, € W, NG(k,) = X(0,) NG(ky) = G(O,) - px(Ho(ky) N Vo(Oy))
for v ¢ S1 by Lemma [£3] Let
gv € G(O,) and B, € (0,) N Hy(ky)

such that z, = g, - px(B,) for all v ¢ Sy and ¢, = z, for v € S;. Then (g,)veq, € G(Ax).
By Proposition [3.10] one has

invy (§(20)) = vy (§(g0 - px (B))) = v ((px 926) (Bo)) = vy ((Px9,€) (1)) = Inve(§(90))

for all € € Bri(X) and v € Q. Since Hy is quasi-trivial by LemmaB.6, the set IIT*(k, Hy) = {1}
by Theorem L4l By Lemma [3.6], for any non-trivial simple factor H' of HE¢, H'(ks) is not
compact.

vEQ
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Applying Proposition to Hy — G, and using Proposition B.8, there exist ¢ € G(k) and
ya € Ho(Ay), such that

gpx(ua) € (T] ia' W) x T (WunG(k) x [T 6(0.)

VEOO vEST\ oo vgSt

where the open immersion ig : G — X induces i : mo(G(k,)) = mo(X (k,)) for v € cog. This
implies that y4 is in the open subset py' (g~!-W) of Yy(A4).. By Proposition @8], one concludes
that there is

y € Yo(k) Npx' (g~ W)

and this is equivalent to that g - px(y) € W as desired. O

5. APPROXIMATION AT ARCHIMEDEAN PRIMES

For classical strong approximation, there is no difference between the archimedean primes
and the non-archimedean primes. In this section, we discuss strong approximation off any finite
non-empty subset S of €2,.. We keep the same notation as that in the previous sections and
assume k is a number field in this section.

First one needs to modify Definition [[.T] as follows.

Definition 5.1. Let S be a non-empty finite subset of Qi for a number field k and X be a
variety over k and pr® be the projection X (Ay) — X (A7) where Ay is the adeles of k without
S-components.

(1) If X (k) is dense in pro(X (Ay)), we say X satisfies strong approximation off S.

(2) If X (k) is dense in pro(X (A)B) for some subset B of Br(X), we say X satisfies strong
approximation with respect to B off S.

One can refine Proposition 4.8 to adapt for any finite subset S by applying the fibration
method in [10].

Proposition 5.2. Let Yy be a variety given by Proposition [3.10 over a number field k and S
be a non-empty finite subset of Y. If [],cq G'(ky) is not compact for any non-trivial simple
factor G' of G*¢, then Yy satisfies strong approximation off S.

Proof. By Proposition BI2] there exists a standard toric variety (T < V') and an open H-

subvariety U C Yy such that Hy C U, codim(Yy \ U, Yy) > 2 and the morphism H Mo, T, can
be extended to a smooth morphism U 2% V with non-empty and geometrically integral fibres.
Then one only needs to show that U satisfies strong approximation off S.

One can verify the condition (i), (ii) and (iii) of Proposition 3.1 in [10] for the fibration
U % V with the open subset Tj of V.

For condition (i), we have V satisfies strong approximation off S by Corollary 3.7 in [5]. If
S contains a real prime vy, we will apply the stronger version of strong approximation off S for
V by Corollary .71

For condition (ii), we have H§® = G*¢ which is semi-simple and simply connected by Lemma
B8 Therefore [],.q H'(k,) is not compact for any non-trivial simple factor H' of Hg® by the
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assumption. Since R,(ker(sy,)) is an affine space, we have that Hj* and R, (ker(sy,)) satisfy
strong approximation off S by Theorem 7.12 of Chapter 7 in [30]. Since

H (ky, Ru(ker(sn,)) = {1}

for each v € S, the quotient maps ker(sy,)(k,) — H§*(k,) is surjective for each v € S. By
Proposition 3.1 in [10], one concludes that ker(cy,) satisfies strong approximation off S.

For any t € Ty(k), one knows that the fiber ¢! (t9) is a ker(cp, )-torsor over k. By Lemma
and Theorem B4, one concludes T (ker(cp,)) = {1}. If <) (to)(Ay) # 0, then ker(sp,) =
She (to) over k. Therefore s (to) satisfies strong approximation off .

For condition (iii), for any no real prime v € S, we have H'(k,,ker(cx,)) = {1} by Lemma
and Theorem B4l Therefore Hy(k,) o, To(k,) is surjective. We only need to consider
S contains a real prime vy. Since H'(k,,, ker(sg,)) is finite by Theorem 6.14 in Chapter 6 of
[30], one has ¢y, (H (ky,)) 2 To(ky,)" where Ty(ky, )T is the connected component of identity.
We apply the stronger version of strong approximation off S for V' by Corollary [£.7] and obtain
to € To(k) and < (to)(ky) # 0 for all v € Q4. The rest of argument follows from the same as
those of Proposition 3.1 in [10]. O

The following lemma provides the computation of Brauer-Manin invariants of points with
with group action for algebraic parts.

Lemma 5.3. Let Gy be a connected linear algebraic group over k and P be a smooth variety
with an action
ap G1 Xk P—P
over k. Suppose P(k) # 0 and fix v € P(k). Then one has
Z vy, (a((go) - (%0))) = Z invy (¢, (@) (g0)) + Z inv, (a(zy))
vEQ vEQ vEQ,

for any (g,) € G1(Ay) and (z,) € P(Ay) and o € Bry(P), where
La, IG1MG1 kaa—P>P.
Proof. By the functoriality of Brauer-Manin pairing, one has
> inve(al(gy) - (2,)) = Y vy (ap(a)(ge, 2.)-
vEQ vEQy
Since both P and (G have rational points, one has
Br (G X P) = pg, (Bre(Gh) @ pp(Bri(P))

by Sansuc’s exact sequence (see (6.10.3) of Proposition 6.10 in [32]), where pg, and pp are the
projection of G; X; P to G; and P respectively and Bry(G;) = Br.(G;) @ Br(k) by using the
section 1g. The result follows from the functoriality of Brauer-Manin pairing. U

In order to establish strong approximation off any finite non-empty subset S, we need the
following descent result other than Proposition [£.5
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Proposition 5.4. Let Gy be a connected linear algebraic group with 10" (k,G,) = {1} and
P = G1/M where M is a group of multiplicative type over k. Let m : Gy — P be the quotient
map. Then

P(A) ™) = n(Gi(Ay)) - P(k)
where 7 : Bry(P) — Br,(G1) induced by 7.
Proof. When M is a group of multiplicative type, there is a map
0(Gy): H'(k,M*) — Br(P)

obtained by restricting the cup product H'(k, M*) x HL(P, M) — Bri(P) to G (see line -3 of
P.316 in [9]). Since the following digram of the cup product

H'(k, M*) x HY(P,M) —— Bry(P)

it | |~
H'(k, M*) x HY(Gy, M) —— Bry(Gy)

commutes and (G; as a torsor over P under M becomes a trivial torsor over G; under M, one
concludes that

Im(0(Gy)) C ker(7").
By Proposition 2.7 in [9], one has the following commutative diagram

Gl(/{?) E—— P(/{Z) E— Hl(/{i, M) —_— Hl(/{Z,Gl)

| J | l

Gi(Ay) —— P(Ay) —— [ HY(k,, M) —— T[, H'(k,,G1)

J l

D
Br,(P)? 29 gk, M)

where (—)? := Hom(—, Q/Z) such that the rows are exact by Proposition 36 in §5.4, Chapter
I of [33] and the third column is exact by Theorem 6.3 in [II]. Since IIT*(k,G;) = {1}, one
concludes that

P(Ay)™ ) = (G (Ay)) - P(k)
by the above diagram and Corollary 1 of P.50 in [33]. This implies that
T(G1(Ay)) - P(k) C P(A) ™) C P(A)™C) = (G (Ay)) - P(k)
as required by Lemma O

The main result of this section is the following theorem.

Theorem 5.5. Let X be a smooth G-groupic variety over a number field k and S be a non-
empty finite subset of Q of k. Ifk[X]* = k* and [[,.q G'(ky) is not compact for any non-trivial
simple factor G' of G*¢, then X satisfies strong approximation with respect to Bri(X) off S.
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Proof. Let W = [[,cq X (kv) X [[,25 W be an open subset of X (Ay) such that
(To)ven, € W N X(Ag)PX.

Then there exists a sufficiently large finite subset S; of €, containing S U ooy such that i), ii),
iii) and iv) before Lemma holds. By Proposition [£2] one can assume that x, € G(k,) for
all v € Q. Then

z, € Wy NG (k) = X(0,) NG(ky) = G(O,) - pa(Ho(ky) N Vo(Oy))
for v ¢ S1 by Lemma [£3l There are
6, €G(0,) and B, € V(0,) N Holk)
such that =, = g, - px(5,) for all v € Sy and g, = z, for v € S;. Then (g,)veq, € G(Ak). By
Proposition [3.10, one has
invy (§(2y)) = vy (§(gy - px (Bo))) = inve((px9,€) (Bo)) = vy ((Px 906) (11,)) = inve(§(gu))
for all £ € Bry(X) and v € €. This implies that

(go)ven, € W N G(A) s

by Proposition B.8

By Lemma B2, we know Hy £% G is surjective and its kernel is a group of multiplicative
type. By Lemma and Theorem &4, III*(k, Hy) = {1}. Applying Proposition 5.4 to the
quotient map Hy 2% G, one has g € G(k) and ya € Ho(Ay) such that

9px(ya) = (gu)vea, €W and ya € [[[Yo(ko) x [[ px'(g7" - W) N Yao(Ay).
veS vgS

Therefore one obtains

y € Yok) N ([ Yolko) x [ px'(g7" - W)
vES vgS

by Proposition This implies g - px(y) € W as desired. O

6. APPENDIX

When X is a sub-variety of an affine space, then X (k) is discrete in X (Ay) by the product
formula. Then non-compactness of [ [, ¢ X (k,) is a necessary condition for X satisfying classical
strong approximation off S. If Br(X)/Br(k) is finite, such compactness is still a necessary
condition for X satisfying strong approximation with Brauer-Manin obstruction. However, this
is no longer true when Br(X)/Br(k) is not finite. For example, a torus T is always satisfying
strong approximation with Brauer-Manin obstruction off oo, by Theorem 2 in [I8] whenever
T'(ks) is compact or not. Semi-simple linear algebraic groups have quite different feature from
tori for strong approximation with Brauer-Manin obstruction off S even though Br(G)/Br(k)
is not finite either when G is not simply connected.
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Proposition 6.1. Let G be a connected semi-simple linear algebraic group over k and S be a
non-empty finite subset of Q.. Then G satisfies strong approximation with respect to Bri(QG)
(or Br(G)) off S if and only if [ [,cq G'(ky) is not compact for any non-trivial simple factor G’
of G*°.

Proof. (<) Since there is an isogeny
o G =G
where G*¢ is a simply connected covering of G over k, one has that [] .4(G*¢)'(k,) is not
compact for any non-trivial simple factor (G*¢)" of G*¢ and the following descent relation
G(A)D = QAP = G(k) - 76(G*(Ay)) (6.2)

by Theorem 4.3 and Proposition 2.12 and Proposition 2.6 in [9] and the functoriality of Braurer-
Manin pairing. The result follows from strong approximation for semi-simple simply connected

groups off S (see Theorem 7.12 of §7.4 Chapter 7 in [30]).
(=) Since there is another isogeny

4 G — G™
where G is the adjoint group of G over k, one obtains
G (AP = G (AP = GUI(k) - [(wG 0 1) (G (Ax)
by (€2]). Therefore
G (AP C G(k) - (xE[G(R) - 7E(G(AR))]) = G (k) - m&(G(AL)PD)

by (62). On the other hand, it is clear that the right hand side is contained in the left hand
side by the functoriality of Brauer-Manin pairing. One obtains the third descent relation

G (AP = G () - (G AP, (63)

By the assumption that G satisfies strong approximation with respect to Br(G), one gets that
G satisfies strong approximation with respect to Br(G%?) by (63)). It is well-known that G
is a product of simple subgroups of G over k (see (1.4.10) Proposition in [23]). By Proposition
3.2 in [22] (or the same proof replacing S by a non-empty finite subset of ), one concludes
that each simple factor of G satisfies strong approximation of the same type. Therefore one
can further assume that G is simple.

For any v € ), one has the long exact sequence

1 — ker(7&) (k) — G*“(k,) — G(k,) — H*(ky,, ker(7&))

by Galois cohomology. Since H'(k,, ker(&,)) is finite by (7.2.6) Theorem in Chapter VII of [26]
and 7§, is proper, one obtains that 7&(G*¢(k,)) is an open subgroup of G(k,) for any v € €.

Let T be a finite subset of Q containing ooy and S with 7'\ (cox U S) # () such that 7§ is
extended to an isogeny

o G =G

of smooth group schemes of finite type over Oy r (see Definition 4 of §7.3 Chapter 7 in [2]).
For any v € T'\ S, we choose a non-empty open subset U, of G(k,) such that the topological
closure U, of U, is compact and U, C 7&(G*(k,)).
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If [],cq G(ky) is compact, then

[[c) < T[ U. x []G(0.)

vesS veT\S vgT

is compact in G(Ay) with

JIGE) x J] Uo x [T G(O)] N G(AL)P 0

veS veT\S vgT

by the functoriality of Brauer-Manin pairing. This implies that

Gk)N[[[Gtk) x T] U. x []G(OL)]

ves veT\S vgT

is finite. Let xq,--- ,x, be all elements in the above finite set. Choose vy € T'\ S and set

Wvo = Uvo \ {1’1, e wxn}-

Then the smaller open subset

C=J[Gk)xWoux ] U.x]]G(O)
ves vET\(SU{vo}) ogT
satisfies that
CNGk)=0 but CNG(AL)PD £

by the functoriality of Brauer-Manin pairing. This contradicts that G satisfies strong approxi-
mation with Brauer-Manin obstruction off S. U
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