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Abstract. The filtered derived category of an abelian category has played a useful role in subjects including
geometric representation theory, mixed Hodge modules, and the theory of motives. We develop a natural
generalization using current methods of homotopical algebra, in the formalisms of stable ∞-categories, sta-
ble model categories, and pretriangulated, idempotent-complete dg categories. We characterize the filtered
stable ∞-category Fil (C) of a stable ∞-category C as the left exact localization of sequences in C along the
∞-categorical version of completion (and prove analogous model and dg category statements). We also spell
out how these constructions interact with spectral sequences and monoidal structures. As examples of this
machinery, we construct a stable model category of filtered D-modules and develop the rudiments of a theory
of filtered operads and filtered algebras over operads.

1 Introduction

The filtered derived category plays an important role in the setting of constructible sheaves, D-modules,
mixed Hodge modules, and elsewhere. Our goal is to revisit this construction using current technology for ho-
motopical algebra, extending it beyond the usual setting of chain complexes (or sheaves of chain complexes).
Put simply, we would like to describe the filtered version of a stable ∞-category, generalizing this classical
situation. We also develop explicitly this machinery in the setting of model categories and dg categories, so
that it can be deployed in highly structured contexts and used in concrete computations.

There are several places where this kind of machinery would be useful. For instance, it applies to fil-
tered spectra (and sheaves of spectra). In a different direction, this work allows one to work with filtered
∞-operads and filtered algebras over ∞-operads in a clean way, as explained in §6.

Several results here are undoubtedly well-known but seem to be unavailable for convenient reference.
In this introduction, we begin by describing the classical construction and the basic problem we pursue. We
then describe our main results and the structure of the paper and finish with a comparison to other work.

1.1. The classical construction

Let Z denote the integers, equipped with the usual total ordering by <. Let Z denote the associated
category, whose objects are integers and where Z(m,n) is empty if m > n and is a single element if m ≤ n.

Let A denote an abelian category.

Definition 1.2. The category of sequences in A is the functor category Fun(Z, A). We denote it by Seq(A).

Definition 1.3. The filtered category of A, denoted Fil(A), is the full subcategory of the category of se-
quences in which an object X :Z→ A satisfies the condition that X(m→ n):X(m)→ X(n) is a monomor-
phism for every m ≤ n.

Given an object X in Fil(A), we view it as equipping the object X(∞) = colimX with the filtration
whose nth component is X(n). Thus, we only consider filtrations that are “exhaustive” in the classical
terminology.
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Remark 1.4. Often, people are interested in a tower, i.e., a sequence where one is interested in the limit
X(−∞) (or homotopy limit) rather than colimit. In algebra, one often studies examples where each structure
map is an epimorphism, such as

· · · → Z/pnZ→ Z/pn−1Z→ · · · → Z/p2Z→ Z/pZ→ 0.

In stable homotopy theory, one studies towers of spectra, such as the chromatic tower. It is possible to view
a tower as a sequence in our sense by working in the opposite category (see Remark 2.20). Used in 2.20.

It is well-known that Fil(A) is additive but not abelian, which increases the complexity of homological
algebra in this setting.

Definition 1.5. The associated graded functor Gr: Seq(A)→
∏

Z
A sends a sequence X to GrX where

(GrX)n = X(n)/ imX(n− 1→ n)

for all n ∈ Z.

Remark 1.6. In Lemma 3.30, we show that Gr is left adjoint to the functor that turns a list of objects
(An)n∈Z into a sequence where every structure map is zero.

We now consider the abelian category Ch(A) of unbounded chain complexes in A. We equip it with the
quasi-isomorphisms as its class of weak equivalences.

Definition 1.7. The filtered derived category of A, denoted Dfil(A), is the localization of Ch(Fil(A)) (equiv-
alently, Fil(Ch(A))) with respect to the filtered weak equivalences, which are maps of sequences f :X → Y
such that Gr f : GrX → Gr Y is an indexwise quasi-isomorphism. Used in 5.34*.

A core objective of this paper is to formulate and analyze a version of this construction that takes as
input a stable ∞-category or stable model category. We show, of course, that our construction applied to
Ch(A) recovers this classical construction at the level of homotopy categories. We also explore how this lift
of the classical construction interacts with, e.g., monoidal structures and spectral sequences.

Remark 1.8. This kind of construction is also useful in the setting of stable homotopy theory, as the spec-
tral sequence arising from a sequence of spectra X = · · · → X(n)→ X(n+ 1)→ · · · only depends on X up
to the spectral version of filtered weak equivalence. (We prove this assertion in Propositions 2.18 and 3.45.)

1.9. Overview of the paper and its main results

The statements below admit both a ∞-categorical interpretation (with “category” replaced by “∞-
category” and terms like “colimit” interpreted ∞-categorically), as explained in §2, and a model-categorical
interpretation (with “category” replaced by “model category”, “colimit” by “homotopy colimit”, and so on),
as explained in §3. As shown in §4, these two approaches are equivalent. In §5, we also construct a dg
category of filtered objects and show it is equivalent to its quasicategorical and model-categorical cousins,
so we refrain from formulating the dg category version of our main result.

Remark 1.10. The reader will notice, just by counting pages, that the ∞-categorical treatment is notice-
ably quicker, thanks to the convenient machinery developed by Lurie in [HTT] and [HA]. The relative length
in the model category section arises because we need to introduce and develop model categorical versions of
some concepts, such as t-structures, in a convenient fashion. We expect that these tools may be helpful for
other purposes.

Consider the category of functors from Z to a locally presentable stable category A, which we call se-
quences in A. A crucial role is played, in both approaches, by a completion functor, which an endofunctor
on sequences in A.
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Theorem 1.11. The following categories of filtered objects in A are equivalent:
(1) sequences localized at graded equivalences;
(2) sequences localized at completion maps;
(3) the essential image of the completion functor;
(4) complete sequences;
(5) sequences reflectively localized at maps from the zero object to constant sequences.

The associated graded functor is a continuous and cocontinuous functor to Z-graded objects in A. It creates
equivalences.

One reason for the importance of these filtered categories is the following relationship with spectral
sequences.

Proposition 1.12. Given a presentable stable category A with a t-structure, the functor that constructs a
spectral sequence from a sequence in A factors through the category of filtered objects in A.

The constructions play well with a symmetric monoidal structure. If A is closed symmetric monoidal,
then so is the category of sequences in A, with the monoidal structure given by the Day convolution with
respect to the addition on Z.

Theorem 1.13. The Day convolution monoidal structure descends to a closed symmetric monoidal struc-
ture on filtered objects. The associated graded functor is strong monoidal and strong closed.

We discuss issues of duals and dualizability in this context as well.

Remark 1.14. If one restricts to the subcategory of nonnegative integers and hence to sequences of the form
X(0) → X(1) → · · ·, then the Dold–Kan correspondence (and its generalization to stable quasicategories,
see Theorem 1.2.4.1 in [HA]) provide an efficient approach to the kind of results we develop here. But our
interest includes unbounded sequences, which is not subsumed by those results.

Here is an outline of the paper’s structure. In §2 of the paper, we rely on the formalism articulated
by Lurie in [HTT] and [HA] to develop this notion; a key point is showing that the completion functor is
the localization functor for graded equivalences. (It begins by filling in and fixing the assertions of Exam-
ple 1.2.2.11 of Lurie [HA].) In §3, we approach these questions via model categories, in hopes of making it as
easy as possible to apply these notions in concrete situations. (These two sections can be read independently,
according to the taste of the reader. Comparing them, though, can be illuminating.) In §4, we provide a
precise comparison and methods for converting between the quasicategorical and model categorical settings.
In §5, we also discuss differential graded (dg) categories, develop a version of the filtered dg category for a
nice class of dg categories, and verify both that our dg construction agrees with the quasicategorical and
model categorical versions and that it is the unique dg enhancement of the filtered derived category. We
finish by developing some quick applications: we provide convenient model categories for filtered operads
and filtered algebras over filtered operads, and we construct a stable model category of filtered D-modules.

1.15. Notation

We work in the settings of model categories, dg categories, and ∞-categories (which will mean quasi-
categories here, although nearly all arguments are model-independent). To help make clear which setting
applies, we use italic letters like C to denote∞-categories, bold letters like A to denote model categories, and
calligraphic letters like C to denote dg categories. When working with ∞-categories, we will use terms like
“functor” or “colimit” and mean the ∞-categorical notions (which are the only ones that make sense in that
setting). When working with model or dg categories, we will carefully distinguish between, e.g., “colimit”
(the 1-categorical notion) and “homotopy colimit.”

We work with categories equipped with various kinds of enhancements, so that there are different types
of morphisms (a plain set or an enriched hom or derived hom and so on). For an ordinary category C, we
use MorC(X,Y ) to denote the underlying set of morphisms from object X to object Y . If C is enriched over
a symmetric monoidal category V ⊗, then we use C(X,Y ) to denote the morphisms that live in V . If C⊗ is
a closed symmetric monoidal category, then HomC(X,Y ) denotes the internal hom adjoint to ⊗. For C a
relative category or a model category, we use Map(X,Y ) to denote the derived mapping space from X to Y .
If C is an ∞-category, then C(X,Y ) denotes the space of morphisms. Finally, if C⊗ is a closed symmetric
monoidal ∞-category, then we use HomC to denote the internal hom adjoint to ⊗.
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1.16. Relation to other work

There is a substantial literature using filtered derived categories, and filtrations themselves are used
wherever people want to do nontrivial homological algebra. We thus do not provide a detailed survey of the
literature here; Theorem 2.6 shows that we are enhancing the classical situation. Our construction using sta-
ble model categories, due to its 1-categorical flavor, is easy to compare to approaches via classical homological
algebra (e.g., by Laumon [DmodF]). For instance, the recent work of Schapira and Schneiders [DCFO] finds
an abelian category presenting the filtered derived category in much the way our model category construction
does.

Carlsson [DCSH] studies a version of derived completion in the setting of stable homotopy theory. His
focus is on base-change of spectral modules along morphisms of ring spectra, and his derived completion
is a spectral generalization of I-adic completion in classical commutative algebra, as he explains carefully.
(Bhatt [CddR] and Bhatt–Scholze [PETS] employ techniques similar to Carlsson’s.) Using the∞-categorical
Dold–Kan correspondence of Lurie, Theorem 1.2.4.1 of [HA], one can convert Carlsson’s cosimplicial con-
structions into constructions with sequences (in our terminology). Lurie in §4 of [DAGXII] also develops
a similar formalism. Our constructions use the term “derived completion” in a more abstract setting but
apply in these algebraic settings, although we do not examine here whether our results are helpful in those
contexts. Our work bears the same relationship to that of Carlsson or Bhatt and Scholze as an abstract
spectral sequence bears to I-adic completion.

More recently, Lurie (§1.2.2, §1.2.3 in [HA]) introduced filtered objects in stable quasicategories, and
in §3.1, §3.2 of [Rot] he studies some properties of filtered spectra, in particular, the strong monoidality
of the associated graded functor. Our focus here includes many aspects not covered there, such as natural
symmetric monoidal structures and dualizability, in addition to the comparisons with model categories.

Another treatment of filtrations in higher categories occurs in Barwick [AKT], which provides a context
in which algebraicK-theory obtains a characterizing universal property. There, Barwick studies objects with
finite-length filtrations in the setting of Waldhausen quasicategories (i.e., quasicategories that have a zero
object and are equipped with a class of “ingressive morphisms” that are closed under cobase changes and
contain all morphisms from the zero object — and hence behave like inclusions). From the point of view
of K-theory, an extension (and more generally, finitely-filtered object) ought to be understood as equivalent
to its constituents (respectively, associated-graded object). By declaring all morphisms to be ingressive,
any stable quasicategory provides a Waldhausen quasicategory. Hence, Barwick’s work intersects with ours
in that setting, namely finite filtrations in a stable quasicategory; however, our work explicitly includes
filtrations extending infinitely in both directions, and Barwick moves beyond the stable setting.
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2 Filtered objects in the language of stable ∞-categories

In this section, our arguments will be model-independent in nature, never relying on particular features
of quasicategories. Hence here we will use the term “∞-category” and not “quasicategory.” In §4, we use
“quasicategory” to emphasize that there we use quasicategories as an explicit model for ∞-categories.

Let C be a stable ∞-category. For φ:A → B in C, let cofib(φ) denote the pushout of φ and the zero
map 0:A → 0. Let Seq(C) denote the functor category Fun(Z, C). We call such a functor a sequence in C.
The ∞-category Seq(C) is automatically stable, as limits and colimits in functor categories are computed
objectwise.

In this section, for a sequence X , we will use X(n)/X(n− 1) to denote

cofib(X(n− 1→ n):X(n− 1)→ X(n)),

for simplicity. The functor cofib: Fun(∆1, C) → C is left adjoint to the functor A 7→ (0 → A), which is the
left Kan extension induced by the inclusion {1} → ∆1. (See Remarks 1.1.1.7 and 1.1.1.8 of [HA].)

Our focus in this paper is on the interplay between sequences and their associated graded objects.

Definition 2.1. The associated graded functor Gr: Seq(C)→
∏

Z
C sends a sequence X to the graded object

(X(n)/X(n− 1))n∈Z. Used in 2.7*, 4.3*.

The functor Gr is the composite

Seq(C)→
∏

Z

Fun(∆1, C)→
∏

Z

C,

where X maps to (X(n− 1→ n))n∈Z and then to (cofib(X(n− 1→ n)))n∈Z.

Definition 2.2. A morphism f :X → Y is a graded equivalence if Gr f is an equivalence.

The usual terminology is filtered equivalence but we find graded more descriptive. In words, a morphism
between sequence f :X → Y is a graded equivalence if the induced map

X(n)/X(n− 1)→ Y (n)/Y (n− 1)

is an equivalence for every n.
Let WG denote the collection of graded equivalences.

Definition 2.3. For C a stable ∞-category, the filtered ∞-category of C is the localization Seq(C)[W−1
G ].

We denote it by Fil(C).

Remark 2.4. The word “localization” above might seem ambiguous: it can mean either inverting mor-
phisms up to a homotopy, or it can mean passing to the full subcategory of local objects. As we show in
Lemma 2.15, the two notions coincide in our case.

Theorem 2.5. If C possesses sequential limits, then the localization Fil(C) exists and is a stable∞-category.

Proof. In §2.7 we construct Fil(C) by giving an explicit equivalence with the image of a left exact localization
functor on Seq(C), namely the completion functor. By Lemma 1.4.4.7 of Lurie [HA], such a localization is
stable.

This terminology of “filtered ∞-category” is justified by the next result. Let D(A) denote the derived
∞-category of a Grothendieck abelian category A. (See §1.3.5 of Lurie [HA] for its construction.)

Theorem 2.6. The homotopy category of the filtered ∞-category Fil(D(A)) is equivalent to the classical
filtered derived category Dfil(A). Used in 1.16*, 4.5.

This result is a folklore theorem, undoubtedly well-known to many people, but it is not available in the
literature so far we can tell. One goal of this paper is to make the result available for reference. To ease
the comparison with more classical approaches, we use model categories as an intermediary, so the proof is
deferred to §4, where it follows immediately from Proposition 4.3 and Theorem 4.4.
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2.7. Complete filtered objects Used in 2.5*, 5.28*.

We will now construct the localization of Seq(C) at the graded equivalences WG (see Definition 2.1).
The key notion will be that of completion of a sequence. We assume for the remainder of this section that

C possesses sequential limits.

Definition 2.8. Let X be a sequence, and let X(−∞) = limX . The completion of X is the sequence X̂

with X̂(n) = cofib(X(−∞)→ X(n)). Let comp: Seq(C)→ Seq(C) denote the completion functor sending X

to X̂ .

For X a sequence, let X(∞) denote colimX , which we view as the “underlying object” whose filtration
is given by the sequence. The completion of a constant sequence X is thus always zero, since the map
X(−∞)→ X(n) is an equivalence for all n. This observation means that completion typically changes the

“underlying object” of a filtration X : indeed, a sequence is complete precisely when the map X(∞)→ X̂(∞)
is an equivalence.

This notion of completion is not the obvious generalization of the “classical” approach to completion,
so we will show that both approaches do coincide. The classical completion X of an ordinary sequence (say,
of chain complexes) goes as follows. Let X(∞) denote limn∈ZX(∞)/X(n). The classical completion of X

is the sequence X(n) = fib(X(∞)→ X(∞)/X(n)).

Lemma 2.9. The fiber of the canonical map X(∞)→ X(∞) is X(−∞). Hence

X(n) ≃ cofib(X(−∞)→ X(n)) = X̂(n),

so that X ≃ X̂. In particular, colimX(n) ≃ X(∞) ≃ X̂(∞). Used in 3.14, 3.29*.

Moreover, this result justifies a posteriori our use of the notation X(∞), as it is the colimit of the
sequence X.

Proof. The first assertion is by the following computation:

fib(X(∞)→ X(∞)) ≃ fib(limX(∞)→ limX(∞)/X(n))

≃ lim fib(X(∞)→ X(∞)/X(n))

≃ limX(n) = X(−∞),

as desired.
The second claim is then

X(n) ≃ fib(X(∞)→ X(∞)/X(n))

≃ fib( lim
m<n

X(∞)/X(m)→ lim
m<n

X(∞)/X(n))

≃ lim
m<n

fib(X(∞)/X(m)→ X(∞)/X(n))

≃ lim
m<n

cofib(X(m)→ X(n)),

≃ cofib( lim
m<n

X(m)→ X(n))

≃ cofib(X(−∞)→ X(n)),

as asserted. The final claim follows by analogous manipulations.

By the lemma, for every n, there is a canonical morphism X(n)→ X̂(n), and these are compatible with

the structure maps of the sequences X and X̂. In other words, we have the following.

Corollary 2.10. There is a natural transformation γ: idSeq(C) ⇒ comp via the natural map X → X̂.

The following is now immediate.
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Lemma 2.11. For every sequence X , the map γ(X) is a graded equivalence. Indeed, for each pair n < m,
the induced map

X(m)/X(n)→ X̂(m)/X̂(n)

is an equivalence. Used in 2.18*.

Definition 2.12. A sequence X is complete if γ(X):X → X̂ is an equivalence.

A sequence X is complete if and only if X(−∞) ≃ 0. For example, the “step-sequence” 〈n,A〉 of an
object A—with 〈n,A〉(m) = 0 for m < n and 〈n,A〉(m) = A for m ≥ n, with the identity map for each
morphism 〈n,A〉(n→ n+ 1)—is complete.

Remark 2.13. One should be careful here. When working in a classical situation, such as with a filtered
chain complex, one must bear in mind that X(−∞) is a homotopy limit and often not a limit. Hence
X(−∞) ≃ 0 should not be identified with the classical notion of a “Hausdorff” or “separated” filtration. For
instance, anticipating Example 3.13 below, we note that the filtration of the polynomial ring k[t] by powers
of the ideal (t) is separated in the classical sense, but this sequence X is not complete. Its completion is

X̂ ≃ k[[t]], so that

X(−∞) ≃ fib(X(∞)→ X̂(∞)) ≃ (k[[t]]/k[t])[−1],

using the fact that fibers and cofibers agree up to suspension. Used in 3.17.

Proposition 2.14. The completion functor is a left exact localization of Seq(C).

Proof. Any localization of a stable∞-category is left exact because left adjoints between stable∞-categories
preserve finite limits. We now show that completion is a localization. Let X be a sequence and Y a complete
sequence. If f :X → Y is a map of sequences, then there is a natural map f(−∞):X(−∞)→ Y (−∞) ≃ 0.
Hence, for every n, the map f(n) factors through X(n)/X(−∞), and so f factors as

X
γ(X)
−−−−→ X̂

f̂
−−−−→ Y.

Thus comp is left adjoint to the inclusion of the full subcategory of complete sequences into Seq(C).

We now want to relate this localization with localizing Seq(C) at WG.

Lemma 2.15. The functor comp realizes localization with respect to the graded equivalences WG. Used in

2.4.

Proof. A map f :X → Y is a graded equivalence if and only if cofib(Gr f) ≃ 0. Now observe that Gr is
an exact functor: in functor categories, like Seq(C), colimits are computed objectwise, and since colimits
commute, it is manifest that Gr is right-exact and hence exact. Thus, f is a graded equivalence if and only
if Gr(cofib f) ≃ cofib(Gr f) ≃ 0, which is equivalent to cofib f being a constant sequence.

Similarly, as comp is a left adjoint, we see that comp(f) is an equivalence if and only if

comp(cofib f) ≃ cofib(comp f) ≃ 0,

which is equivalent to cofib f being a constant sequence (we need cofib f(n) ≃ cofib f(−∞) for all n). Thus,
a map f is an equivalence after completion if and only if it is a graded equivalence.

Remark 2.16. The above shows that Fil(C) can also be defined as the localization of Seq(C) with respect
to the completion maps X → comp(X) for all objects X .

2.17. Spectral sequences

Given a t-structure on a stable ∞-category C, its heart C♥ is an abelian category. In §1.2.2 of [HA],
Lurie explains how to construct a spectral sequence in C♥ for each sequence X ∈ Seq(C). We obtain the
following ∞-categorical generalization of the classical fact that a filtered complex and its completion have
the same spectral sequence.
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Proposition 2.18. For any sequence X , the completion map γ(X):X → X̂ induces an isomorphism of
spectral sequences. Used in 1.8.

In other words, the construction of spectral sequences factors through Fil(C).

Proof. We freely use Lurie’s terminology from §1.2.2 of [HA]. The spectral sequence for X is determined by
the Z-complex associated to X , which assigns to each i ≤ j the cofiber cofib(X(i)→ X(j)). The Z-complex

of X̂ is precisely the same, by Lemma 2.11, and γ(X) produces the isomorphism.

Remark 2.19. We want to emphasize that a t-structure on C also provides two natural sequences for each
object X via the shifted truncations. The first sequence is

· · · → τ≥k+1X → τ≥kX → τ≥k−1X → · · · ,

which generalizes Whitehead towers of spectra to the setting of stable ∞-categories. The second sequence is

· · · → τ<k+1X → τ<kX → τ<k−1X → · · · ,

which generalizes Postnikov towers and can be obtained by taking the homotopy cofiber of the canonical
map of the Whitehead filtration on X to the constant sequence on X . Thus every t-structure associates to
each object two spectral sequences (though they only differ by indexing).

Remark 2.20. In Remark 1.4, we mentioned that one might care about towers; in other words, one might
view a sequence X as a way of describing its limit limnX , rather than its colimit. It is easy to accomplish
this redirection, as follows. The opposite category Cop of a stable ∞-category C is also stable. Consider the
functor ι:Z→ Zop sending n to −n. Given a sequence X ∈ Seq(C), let X◦ ∈ Seq(Cop) denote the composite
Xop ◦ ι, where Xop:Zop → Cop is X viewed in the opposite categories. Then colimX◦ = X◦(∞) ≃ limX .
The spectral sequence for X◦ is the natural spectral sequence for a tower. (This spectral sequence agrees
with that for X , up to some reindexing, since cofibers in Cop agree, up to a shift, with cofibers in C.) Used in

1.4.

We would like to further clarify the relationship between Lurie’s approach to spectral sequences and ours
here, although we have depended on his work in our discussion. In §1.2.2 of [HA], a key role is played by a cor-
respondence between sequences in C and “chain complexes,” whose category is denoted by Gap(C). For the
precise notion of a Z-complex, see Definition 1.2.2.2 and Remark 1.2.2.3 of [HA], but roughly speaking, such
a chain complex is a functor Z→ C equipped with null homotopies of each composition n→ n+ 1→ n+ 2
(which encodes the idea that d2 = 0) along with appropriate higher coherences. Using our completed cate-
gory, we now establish a useful variant of Lurie’s Lemma 1.2.2.4, which characterizes the∞-category Gap(C)
of Z-complexes.

Lemma 2.21. Let Gap(Z, C) denote the∞-category of Z-chain complexes in the stable∞-category C. The
restriction functor res:Gap(Z, C) → Seq(C) sending a complex to the underlying sequence post-composes
with localization to produce a functor fres:Gap(Z, C)→ Fil (C), and fres is an equivalence of ∞-categories.

Remark 2.22. Construction 1.2.2.6 in [HA] extracts a spectral sequence from an object in Fil (C) by passing
to an object in Gap(Z, C) using Lemma 1.2.2.4. Our variant can be used in a similar role. A crucial difference

between our lemma and Lurie’s is that our chain complexes are indexed by Z and not by Ẑ := {−∞} ∪ Z.
Lemma 1.2.2.4 uses the element −∞ to account for the homotopy limit of a possibly noncomplete sequence.

Proof. By Lemma 1.2.2.4 in [HA] we have an equivalence Gap(Ẑ, C) → Seq(C) induced by the restriction

map. Furthermore, Gap(Z, C) is a (reflective) localization of Gap(Ẑ, C) whose local objects are precisely

those Ẑ-chain complexes F for which 0 ≃ F (−∞,−∞) → limi∈Z F (−∞, i) is an equivalence. Similarly,
Fil(C) is a (reflective) localization of Seq(C) whose local objects are complete sequences, i.e., the limit is the
zero object. We now observe that equivalences in both directions preserves these classes of local objects:
the restriction functor clearly preserves locality, whereas the functor in the other direction yields a chain
complex whose values at (−∞, k) give the original sequence, so again locality is clearly preserved.
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Thus we have an equivalence between the localization of Gap(Ẑ, C) and Fil(C). We complete the proof by

showing that the restriction functor L induces an equivalence from the localization of Gap(Ẑ, C) to Gap(Z, C).

A functor R in the other direction extends a Z-chain complex F to a Ẑ-chain complex F̂ by setting

F̂ (−∞, k) = lim
i∈Z

F (i, k)

and F̂ (−∞,−∞) = 0. (This is formalized in the obvious fashion using right Kan extensions.) This con-
struction lands in chain complexes because sequential limits preserve (co)fibers and it lands in local objects

because the diagonal Z → Z[1] is a final functor. The induced endofunctor LR on Z-chain complexes is
equivalent to the identity functor. It remains to show that the induced endofunctor RL on Ẑ-chain com-
plexes is also equivalent to the identity functor. The unit map is F̂ → RL(F̂ ) and it is an equivalence
on (i, j) if i 6= −∞ by construction and also on (−∞,−∞) (trivially). Thus it remains to show it is an
equivalence on (−∞, k). The definition of a chain complex (Definition 1.2.2.2 in [HA]) immediately implies
that the restriction of the unit to the full subcategory on (−∞, k) (k ∈ Z) is a graded equivalence. The
source is complete by assumption and the target is complete by the above observation, therefore it is also
an objectwise equivalence, which completes the proof.

2.23. Symmetric monoidal structures

If C is a presentable closed symmetric monoidal stable ∞-category, then so is the ∞-category Seq(C)
with its natural symmetric monoidal product ⊗s given by the Day convolution. (See Proposition 2.9 of
Glasman [DCIC].) In essence, we have

(X ⊗s Y )(n) ≃ colim
p+q≤n

X(p)⊗ Y (q),

which assembles all the elements of the “double complex” X ⊗ Y :Z2 → C below the line p+ q = n, so that
∞-categorical Day convolution is a direct generalization of the classical formula from homological algebra.
The colimit functor X 7→ X(∞) is a strong monoidal functor from Seq(C) to C, and thus the “underlying
object” of a tensor product of sequences goes to the tensor product of the underlying objects.

Remark 2.24. One way to understand this symmetric monoidal product is by examining how it behaves
on a collection of generators of Seq(C). A natural choice for generators are the “step-sequences”: let 〈m,A〉
denote the sequence which is zero for n < m and the fixed object A for n ≥ m, with identity as the structure
maps. These generators form a ∞-subcategory Gen of all sequences, and there is a relative Yoneda embed-
ding Seq(C) → PSh(Gen), which is a fully faithful functor from sequences to the ∞-category of presheaves
on these generators. Indeed, the representable functors for the 〈m,A〉 and the maps 〈m,A〉 → 〈m,A′〉 detect
the mth component, whereas the Yoneda image of 〈m,A〉 → 〈m + 1, A〉 detects the transition map from
the mth to the (m + 1)st component. (Any map between generators is either zero or can be presented as
the composition of these two maps.) The monoidal product 〈m,A〉 ⊗s 〈n,B〉 is just 〈m + n,A ⊗ B〉, and
this produces a monoidal product on presheaves on generators. By the monoidal Yoneda embedding, this
presheaf monoidal structure determines the tensor product of sequences. Used in 2.26*.

Let ι:Fil (C) → Seq(C) denote the forgetful functor right adjoint to comp. We use it to induce a sym-
metric monoidal structure on the filtered ∞-category.

Theorem 2.25. The filtered ∞-category Fil (C) is a symmetric monoidal ∞-category via the completed

tensor product ⊗̂s, where

X ⊗̂s Y = comp(ιX ⊗s ιY )

for any X and Y in Fil (C).

Proof. By Proposition 2.2.1.9 and Example 2.2.1.7 of Lurie [HA], to prove our claim, we need only to show
that for any graded equivalence f :X → Y and any sequence Z, idZ ⊗s f :Z ⊗s X → Z ⊗s Y is a graded
equivalence.
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Observe the following simple fact: given a commuting square

X(n− 1) −−−→ X(n)
yf(n−1)

yf(n)

Y (n− 1) −−−→ Y (n)

in a stable ∞-category, the map X(n)/X(n − 1) → Y (n)/Y (n − 1) is an equivalence if and only if the
map cofib f(n− 1)→ cofib f(n) is an equivalence. Thus we have another mechanism for identifying graded
equivalences: check if the sequence cofib f is constant.

Suppose f :X → Y is a graded equivalence and Z is arbitrary. We compute

cofib(idZ ⊗s f)(n) ≃ colim
p+q≤n

cofib(Z(p)⊗X(q)
idZ(p)⊗f(q)
−−−−−−−−−−−−−→ Z(p)⊗ Y (q))

≃ colim
p+q≤n

(Z(p)⊗ cofib f(q))

≃ colim
p+q≤n

(Z(p)⊗ cofib f(q − 1))

≃ colim
p+q≤n

cofib(Z(p)⊗X(q − 1)
idZ(p)⊗f(q−1)
−−−−−−−−−−−−−→ Z(p)⊗ Y (q − 1))

≃ cofib(idZ ⊗s f)(n− 1).

Hence, idZ ⊗s f is also a graded equivalence.

The following proposition is proved by Lurie for the case of filtered spectra as Proposition 3.2.1 in [Rot].

Proposition 2.26. The associated graded functor Gr is strong monoidal, intertwining ⊗̂s on Fil(C) with
the tensor product ⊗Gr given by Day convolution on

∏
Z
C. Used in 3.55*.

Proof. Recall from Remark 2.24 that the monoidal structure is determined by its behavior on the step-
sequences 〈m,A〉, due to the fully faithful relative Yoneda embedding Y . For formal reasons, the functor Y
is strong monoidal. (This follows from the general theory of Day convolutions, see §3 in Glasman [DCIC].)
Given a cocontinuous functor F , a strong monoidal structure on F can be constructed on the symmetric
monoidal ∞-category of generators, and then canonically extended to the whole category by cocontinuity.
Observe that the associated graded functor Gr is cocontinuous. The associated graded of 〈m,A〉 is A in
degree m and zero elsewhere, which allows us to lift the structure maps of the strong monoidal structure
on C to Fil(C). For maps of generators, observe that there is only the zero map 〈m,A〉 → 〈n,B〉 for m < n.
If m ≥ n, then such maps can be identified with map A→ B, and for these the functoriality conditions are
satisfied because they are satisfied for C.

The functor Gr also plays nicely with the internal homs in both categories. Let HomC denote the in-
ternal hom in C adjoint to ⊗. Let HomGr denote the internal hom adjoint to ⊗Gr on

∏
Z
C. Observe the

following explicit formula:

HomGr(X,Y )n =
∏

m∈Z

HomC(Xm, Ym+n).

Similarly, let HomFil denote the internal hom adjoint to ⊗̂s on Fil(C). We now obtain a convenient explicit
formula for HomFil.

Lemma 2.27. For any X,Y ∈ Fil(C),

HomFil(X,Y )(n) ≃

∫

m∈Z

HomC(X(m), Y (m+ n))

where
∫
•
B(−,−) denotes the end of a bifunctor B.

Proof. It suffices to show that both sides represent the same functor. We want to show that for any object
A in C we have

C(A,HomFil(X,Y )(n)) ≃ C(A,

∫

m∈Z

HomC(X(m− n), Y (m))).
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Using hom-tensor adjunctions and the fact that ends are limits, we transform this desired equivalence to

C(〈n,A〉 ⊗X,Y ) ≃

∫

m∈Z

C(A⊗X(m− n), Y (m)).

The equality now expresses the fact that the space of natural transformations between two functors can be
computed as an end. In the last transition we commuted the continuous functor C(A,−) past the end, which
is a limit, and used the hom-tensor adjunction.

Proposition 2.28. The associated graded functor Gr is strong closed, meaning the canonical morphism

Gr(HomFil(X,Y ))→ HomGr(GrX,Gr Y ),

which is adjoint to the composition

GrX ⊗Gr Gr(HomFil(X,Y ))→ Gr(X ⊗̂s HomFil(X,Y ))→ Gr Y,

is an equivalence. Used in 3.55*.

Proof. As in the previous proof, it suffices to verify the case when X is a step-sequence 〈m,A〉. Shifting
the degree by m, we may assume m = 0. We have HomFil(〈0, A〉, Y ) = Y A, where Y A denotes the object-
wise internal hom n 7→ HomC(A, Y (n)). Furthermore, Gr(〈0, A〉) = A[0], which is a copy of A in degree 0
and 0 elsewhere, and HomGr(A[0],Gr Y ) = (Gr Y )A, where the superscript A again denotes the objectwise
internal hom, this time for graded objects. Combining these observations together, we want to show that
Gr(Y A)→ (Gr Y )A is an equivalence, which is true because HomFil(A,−) preserves finite (co)limits and Gr
is defined using a cofiber.

2.29. Dualizability and reflexivity

Convention 2.30. In this section C denotes a presentable closed symmetric monoidal ∞-category with a
monoidal unit 1.

2.31. Abstract theory

Any symmetric monoidal ∞-category has an intrinsic notion of a dualizable object (see Ponto and
Shulman [Traces] for an expository account and §4.6 of [HA] for a quasicategorical treatment). When the
category is closed, however, the situation is slightly simpler and so we will work in that context. Let C⊗

be a closed symmetric monoidal ∞-category, and let HomC denote the internal hom adjoint to ⊗. Let
1 denote the unit object in C. An object X in C is dualizable (or rigid) if and only if the canonical map
X⊗HomC(X,1)→ HomC(X,X) is an equivalence (see §2 in [Traces] or Proposition 10.2.(iii) in Boyarchenko
and Drinfeld [GVdual]). The dual X∨ is given by HomC(X,1).

Remark 2.32. It is possible to develop notions of dualizability in monoidal ∞-categories, but to simplify
the exposition below, we always assume C to be symmetric. In this setting the square of the dualization
functor HomC(−,1) is canonically isomorphic to the identity functor once we restrict it to dualizable objects.

This notion of dualizability does not encompass all natural situations. For example, the sheaf of fil-
tered differential operators on a smooth variety in characteristic 0 is not dualizable as a filtered O-module,
essentially because the associated graded is nonzero in infinitely many degrees. In many ways, however, the
sheaf of filtered differential operators behaves similarly to dualizable objects, so it is desirable to capture the
essence of this situation in a definition.

There is a more general notion of dual, given by a functor of the form HomC(−, D), where D is a
reflecting object that must be specified in advance. For instance, consider the Verdier duality functor on a
locally compact Hausdorff space M . Here one works with C-valued sheaves on such spaces. For M = pt,
the reflecting object Dpt is simply the monoidal unit 1 in C, and for other such spaces M , the reflecting
object DM is taken to be the derived exceptional inverse image of 1 along the map M → pt.

We want to introduce a more general version of dualization on filtered objects, so we use this D-depen-
dent notion and do not require a priori that HomC(−, D) is a contravariant autoequivalence (as is usually
done for reflecting objects). After all, one can always restrict to the full subcategory of objects X for
which the canonical morphism X → HomC(HomC(X,D), D) is an equivalence, and on this subcategory
HomC(−, D) is a contravariant autoequivalence.
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Definition 2.33. Let D be an object in a closed symmetric monoidal ∞-category C. An object X in C is
D-reflexive if the canonical map X → HomC(HomC(X,D), D) is an equivalence; the object HomC(X,D) is
the D-reflector of X .

If every object is D-reflexive, we call the pair (C, D) a symmetric Grothendieck–Verdier category, fol-
lowing Boyarchenko and Drinfeld [GVdual]. As the name suggests, there are many examples arising from
geometry, such as flavors of bounded derived categories of constructible sheaves. These were also studied by
Michael Barr under the name of *-autonomous categories, see [StarAut].

Remark 2.34. Dualizable objects are 1-reflexive, but the opposite is not true. An elementary example is
given by Boyarchenko and Drinfeld in Example 3.3 of [GVdual]: take the closed symmetric monoidal cate-
gory of finite-dimensional normed real vector spaces with contractive maps (i.e., maps of norm at most 1)
as morphisms. All objects in this category are 1-reflexive. However, for any dualizable object X , the trace
of the identity map on X is a contractive map 1 → 1 given by the multiplication by the dimension of X ,
which implies that the dimension must be at most 1.

2.35. Graded reflexivity and dualizability

Given a reflecting object D ∈ C, we can construct a reflecting object D[0] ∈ Gr(C) by putting D in
degree 0 and the zero object in all other degrees. Using the formula

HomGr(X,Y )n =
∏

m∈Z

HomC(Xm, Ym+n)

for the internal hom in graded objects, one immediately computes an explicit expression for theD[0]-reflector:

HomGr(X,D[0])n = HomC(X−n, D).

Hence we obtain the following.

Proposition 2.36. A graded object is D[0]-reflexive if and only if its individual components areD-reflexive.

When no ambiguity can arise, we refer to D[0]-reflexive objects and D[0]-reflectors as D-reflexive and
D-reflectors, respectively. Recall that being 1-reflexive is a necessary condition for being dualizable, and the
1-reflector computes the dual in this case.

Proposition 2.37. If a graded object M = (Mn) has finitely many nonzero components, each of which
is C-dualizable, then M is dualizable in

∏
Z
C. As a partial converse, if the monoidal unit 1 is a compact

object in C, then a dualizable object in
∏

Z
C has only finitely many nonzero components, each of which is

C-dualizable.

Proof. For the first part, start with a graded object M with finitely many nonzero components, each of
which is C-dualizable. Construct the dual N of M by placing the dual of M−n in degree n. The counit map
M ⊗N → 1[0] is given by the counit maps M−n ⊗Nn → 1. The unit map 1[0]→ N ⊗M has as its target∐

n∈Z
Nn ⊗M−n, and only finitely many components are nonzero, hence by stability

∐
=
∏

in this case
and we can use the unit maps 1→ Nn⊗M−n as individual components. The triangle identities follows from
the triangle identities of Mn.

For the second part, recall that an object X is dualizable if and only if the canonical map

X ⊗HomGr(X,1)→ HomGr(X,X)

is an equivalence. Via the explicit formulas for tensor products and homs of graded objects, the degree n
component of that canonical map is

∐

m∈Z

HomC(Xm,1)⊗Xm+n →
∏

m∈Z

HomC(Xm, Xm+n).

For the canonical map to be an equivalence, we conclude, using the next lemma below, that the individual
components

HomC(Xm,1)⊗Xm+n → HomC(Xm, Xm+n)
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must be equivalences for allm and n. For n = 0 we now show that individual components of X are dualizable.
The counit map in graded objects

c:1[0]→ X ⊗HomGr(X,1)

has degree 0 component

c0:1→
∐

m∈Z

HomC(Xm,1)⊗Xm.

Consider the map

πm:
∐

m∈Z

HomC(Xm,1)→ HomC(Xm,1),

given by the identity map in degree m and the zero map in other degrees. The composition πm ◦ c0 is the
counit map of Xm. On the other hand, the compactness of 1 implies that only finitely many of these counit
maps are nonzero, and hence only finitely many of Xm are nonzero.

Lemma 2.38. Let f :
∐

n∈Z
An →

∏
n∈Z

Bn be induced by maps fn:An → Bn. If f is an equivalence, then
the components fn:An → Bn are equivalences.

Proof. Suppose g:
∏

n∈Z
Bn →

∐
n∈Z

An is an inverse to f . Precomposing and postcomposing with the
canonical maps Bn →

∏
n∈Z

Bn and
∐

n∈Z
An → An gives us a collection of maps gn:Bn → An, which are

the inverses of the given maps f :An → Bn.

2.39. Reflexivity and dualizability of sequences

Recall that the monoidal unit 1s in sequences is the step-sequence 〈0,1〉, which is zero in negative
degrees and 1, with identity structure map, in nonnegative degrees.

We start by computing the 1s-reflector of X , which is the dual of X whenever X is dualizable in Seq(C).

Lemma 2.40. For any sequence X , the 1s-reflector HomSeq(X,1s) of X is equivalent to the sequence

n 7→ HomC(X(∞)/X(−n− 1),1).

More generally, if D is a reflecting object in C and Ds denotes the sequence 〈0, D〉, then the Ds-reflector of
X is equivalent to the sequence n 7→ HomC(X(∞)/X(−n− 1), D).

Proof. Recall that for any step-sequence 〈n,A〉 and any sequence X , we have

Seq(〈n,A〉, X) ∼= C(A,X(n)).

Thus, by Yoneda, we see that the functor A 7→ Seq(〈n,A〉, X) is represented by X(n). We will use this
observation to compute the nth value of the sequence HomSeq(X,1s). To do so, however, it is convenient to
use the following observation.

For a sequence Z, let Z[−1] denote the sequence where Z[−1](k) = Z(−1) for k ≥ 0, with identity as
transition maps, and where Z[−1](k) = Z(k) for k < 0, with transition maps inherited from Z. Consider the

cofiber Z [−1] of the natural map Z[−1] → Z: it has

Z [−1](k) = cofib(Z(−1)→ Z(k)) = Z(k)/Z(−1)

for k ≥ 0 and Z [−1](k) = 0 for k < 0. Observe that

Seq(Z,1s) = C(Z(∞)/Z(−1),1) = Seq(Z [−1](∞),1s),

which is the main property we need of this operation Z 7→ Z [−1].
Combining the two observations above, we compute

Seq(〈n,A〉,HomSeq(X,1s)) ≃ Seq(〈n,A〉 ⊗s X,1s)

≃ Seq((〈n,A〉 ⊗s X)[−1],1s)

≃ C((〈n,A〉 ⊗s X)[−1](∞),1)

≃ C(A⊗ (X(∞)/X(−n− 1)),1)

≃ C(A,HomC(X(∞)/X(−n− 1),1)).

By Yoneda, we thus see that HomSeq(X,1s)(n) is given by HomC(X(∞)/X(−n−1),1). No special properties
of 1 were used, so the proof for general D is the same.
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The above computation shows that the monoidal unit 1s is not very convenient as a reflecting object;
both X(∞) and a shift appear in the expression for the reflector.

Definition 2.41. Consider a closed symmetric monoidal stable ∞-category C with a reflecting object D.
Let D≤0 denote the sequence that is zero for n > 0 and is D in nonpositive degrees, with identity maps as
the structure maps. The sequences D≥0 and D>0 are defined analogously, with D placed in degree n where
n ≥ 0 or n > 0, respectively. Let const(D) denote the constant sequence with value D.

Lemma 2.42. The D≤0-reflector of a sequence X is the sequence n 7→ HomC(X(−n), D).

Proof. Consider the exact sequence

D>0 → const(D)→ D≤0;

in other words, D≤0 = cofib(D>0 → const(D)). Observe that

HomSeq(X, const(D)) = const(HomC(colimX,D)) = const(HomC(X(∞), D)).

By the previous lemma, we compute

HomSeq(X,D>0)(n) = HomC(X(∞)/X(−n), D).

(Note the shift because D>0 is the sequence 〈1, D〉.) The nth value of the D≤0-reflector of X is then the
cofiber of the map

HomSeq(X,D>0)(n)→ HomSeq(X, const(D))(n),

which is

HomC(fib(X(∞)→ X(∞)/X(−n)), D) = HomC(X(−n), D),

verifying the claim.

We have Gr(D≤0) = ΣD[1], so the associated graded of a D≤0-reflector is the ΣD[1]-reflector, i.e., the
suspension and shift of the D-reflector. On the other hand, Gr(D≥0) = D[0], so the associated graded of a
D≥0-reflector is the D-reflector itself, in particular, the associated graded preserves duals, as expected.

2.43. Filtered reflexivity and dualizability

For filtered objects we have the following criterion for reflexivity. Let R ∈ Fil (C) be a choice of reflecting
object.

Proposition 2.44. An object in Fil(C) is R-reflexive if and only if its associated graded is GrR-reflexive.
The associated graded functor sends R-reflectors to GrR-reflectors.

Proof. The associated graded functor is a strong monoidal and strong closed functor, and so it preserves
reflexive objects and sends reflectors to reflectors. Furthermore, the associated graded functor reflects equiv-
alences, so that the morphism X → HomFil(HomFil(X,R), R) is an equivalence if the associated graded of X
is GrR-reflexive, i.e., GrX → HomGr(HomGr(GrX,GrR),GrR) is an equivalence.

Proposition 2.45. An object in Fil (C) is dualizable if and only if its associated graded is dualizable. The
associated graded functor preserves duals.

Proof. As in the previous proof, the associated graded functor is strong monoidal, strong closed, and reflects
equivalences. Dualizability of X is equivalent to the map X ⊗ HomFil (X,1s) → HomFil (X,X) being an
equivalence, and the dual of X is computed by HomFil (X,1s), which implies our claims.
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3 Filtered objects in the language of stable model categories

We now develop an enhancement of the filtered derived category using model categories. Our motivation
is to provide concrete tools for manipulating and computing filtered objects in highly structured situations,
like symmetric spectra or chain complexes.

Let A be a left proper combinatorial stable model category. (See Chapter 7 of Hovey [ModCat] for a
review of stable model categories and Appendix A.2 of Lurie [HTT] for a review of combinatorial model cat-
egories.) Let Seq(A) denote the functor category Fun(Z,A) equipped with the projective model structure,
in which weak equivalences are natural transformations that are objectwise weak equivalences and in which
fibrations are natural transformations that are objectwise fibrations.

Lemma 3.1. If a sequence

· · ·
xn−1
−−−−→ X(n)

xn−−−−→ X(n+ 1)
xn+1
−−−−→ X(n+ 2)

xn+2
−−−−→ · · ·

is cofibrant, then each map xn is a cofibration and all objects X(n) are cofibrant. More generally, for a
cofibration X → Y of sequences, the individual components X(n)→ Y (n) and the maps

Y (n− 1) ⊔X(n−1) X(n)→ Y (n)

are cofibrations.

Proof. Any cofibration is a retract of a transfinite composition of cobase changes of generating cofibrations,
so it suffices to check the claim on generating cofibrations and under these operations. Let 〈m,A〉 denote
the sequence given by 0 for n < m and for n ≥ n the object A ∈ A with identity as every structure map.
(It is a kind of step function; these generate all sequences.) In Seq(A), a generating cofibration is a map
〈m, f〉: 〈m,A〉 → 〈m,B〉 which is 0 for n < m and the same map f for every n ≥ m, with f :A → B a
generating cofibration in A. Thus, a generating cofibration 〈m, f〉 is clearly a levelwise cofibration and the
other maps (involving the pushouts) are also cofibrations.

Consider the inclusion {n} →֒ Z; restricting along this inclusion sends X to X(n). Retracts, cobase
changes, and transfinite composition in Seq(A) all commute with restriction along this inclusion. A generat-
ing cofibration 〈m, f〉 also clearly restricts to a generating cofibration in A (possibly trivial). As cofibrations
in A are preserved under these three operations, we see that a cofibration f in sequences restricts to a
cofibration f(n) in A.

Similarly, consider the inclusion (n− 1→ n) →֒ Z; restricting along this inclusion sends X to the arrow
X(n − 1) → X(n). Again, generating cofibrations restrict to generating cofibrations along this inclusion,
and the three operations commute with this restriction. This implies that the pushout map

Y (n− 1) ⊔X(n−1) X(n)→ Y (n),

arising from a cofibration of sequences, is a cofibration.

As a partial converse, for a sequence X in which each X(n) is cofibrant and each structure map xn is a
cofibration, if X is bounded below—so that X(k) = 0 for k ≪ 0—then X is a cofibrant sequence.

Remark 3.2. There is a model structure on sequences in A for which the cofibrant objects are precisely the
sequences with cofibrant components and cofibrations as transition maps. Indeed, the class of morphisms
that satisfies the two properties indicated in the above lemma is weakly saturated, as explained in the proof.
Furthermore, it lies between the projective cofibrations and the injective cofibrations and is cofibrantly gen-
erated by Corollary 3.3 in Makkai and Rosický [CellCat]. Thus this intermediate model structure with such
cofibrations exists by the Smith recognition theorem. We will not develop or use this model structure because
it presents the same ∞-category as the projective model structure, but the projective model structure is
better developed and more convenient to apply. Used in 4.5*.

Example 3.3. Consider A = Ch(A), the category of unbounded chain complexes of a Grothendieck abelian
category A, equipped with the injective model structure in which the weak equivalences are the quasi-iso-
morphisms and the cofibrations are the levelwise monomorphisms. (See Proposition 1.3.5.3 in Lurie [HA],
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in which A is constructed and shown to be left proper, combinatorial, and stable.) By the lemma, we see
that a (projectively) cofibrant sequence is always a filtered chain complex, and every bounded below filtered
cochain complex is a cofibrant sequence. Moreover, this lemma ensures that every sequence is weakly equiv-
alent to a filtered chain complex, by applying a cofibrant replacement functor. Hence, one might profitably
view filtrations simply as tools for understanding sequences, rather than as intrinsically important. (In the
intermediate model structure introduced in the preceding remark, the filtered chain complexes are precisely
the cofibrant sequences.)

Recall that the cofiber of a map f :A → B is the pushout of 0 ← A → B, where 0 is the zero object,
or equivalently, it is the coequalizer of f :A → B and the zero map 0:A → B. (That is, it is a cokernel.)
The homotopy cofiber is the cofiber after cofibrantly replacing f in the projective structure on the arrow
category of A.

Let Seq(A)c denote the full subcategory of cofibrant sequences. For X ∈ Seq(A)c, each structure
map xn is a cofibration and so the homotopy cofiber hocofib(X(n)→ X(n+ 1)) is weakly equivalent to the
cofiber cofib(X(n)→ X(n+ 1)) because the model category A is left proper.

Definition 3.4. A map f :X → Y of cofibrant sequences is a graded equivalence if for every n, the induced
map cofib(X(n− 1)→ X(n))→ cofib(Y (n− 1)→ Y (n)) is a weak equivalence.

It will be useful to extend this notion to noncofibrant sequences. LetWG denote the collection of graded
equivalences.

Definition 3.5. For A a stable model category, the filtered model category of A is the left Bousfield local-
ization LG Seq(A) of the projective model structure along WG. We denote it by Fil(A).

We would like a simple characterization of the weak equivalences in Fil(A). Let WG denote the sub-
category of weak equivalences generated under the 2-out-of-3 condition by the levelwise weak equivalences
and graded equivalences between cofibrant sequences.

Fix a cofibrant replacement functor Q on Seq(A).

Definition 3.6. A map f :X → Y of sequences is a derived graded equivalence if the map Qf : QX → QY
is a graded equivalence.

Proposition 3.7. A map f :X → Y of sequences is in WG if and only if it is a derived graded equivalence.
In particular, the class of derived graded equivalences does not depend on the choice of Q. Used in 3.9*.

Proof. Given f :X → Y , we have a commuting square

X
f
−−−→ Y

xqX≃

xqY ≃

QX
Qf
−−−→ QY.

If f is a graded equivalence between cofibrants, then so is qY ◦ Qf = f ◦ qX , hence Qf must be as well.
Conversely, if Qf is a graded equivalence, then f is in WG.

Remark 3.8. A priori we know that the weak equivalences in Fil(A) will include the derived graded equiv-
alences but might include more. In Proposition 3.31, however, we will show that weak equivalences in the
left Bousfield localization indeed coincide with derived graded equivalences.

We now provide conditions under which this localization exists. Recall that a model category is left
proper if cobase changes along cofibrations are homotopy cobase changes. Equivalently, one can say that
weak equivalences are closed under cobase changes along cofibrations. For the purposes of this section, a
model category is compactly generated if maps with a right lifting property with respect to all cofibrations
between compact objects are weak equivalences. This is a very mild condition, for example, any left Bous-
field localization of the projective model structure on simplicial presheaves on any small category has this
property. A crucial property of compactly generated model categories is that weak equivalences are closed
under filtered colimits, in particular, transfinite compositions.
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Theorem 3.9. If a model category A is combinatorial, stable, and left proper, then so is Fil(A). In
particular, the model structure on Fil(A) exists. In addition, if A is compactly generated, then so is Fil(A).

Proof. The desired model structure is the left Bousfield localization of the projective model structure on
Seq(A) with respect to the derived graded equivalences. By Theorem 4.7 in Barwick [LR] such left Bous-
field localizations exist for any left proper combinatorial model category as soon as the subcategory of weak
equivalences is accessible. (The statement there requires a set of localizing morphisms. Here one can take
any set of morphisms that generates derived graded equivalences under κ-filtered colimits, where the subcat-
egory of derived graded equivalences is κ-accessible and the model category Seq(A) is κ-combinatorial. By
Proposition 3.31 below, we can simply take maps between constant sequences 0→ K, where K runs over a
set of homotopy generators for A.)

The underlying category A is locally presentable by assumption. The subcategory of levelwise weak
equivalences is accessible because so is the subcategory of weak equivalences in A. We wish to show WG is
an accessible subcategory, meaning it is accessible as a category and the embedding is an accessible functor.
To this end we use Theorem 5.1.6 in Makkai and Paré [AccCat], which shows that the forgetful functor from
the bicategory of accessible categories and accessible functors to the bicategory of all categories and functors
creates products, inserters, and equifiers (the so-called “PIE-limits”). We will show that WG arises as such
a PIE-limit.

Let Q be an accessible cofibrant replacement functor for Seq(A) constructed by the small object argu-
ment. The functor Gr ◦Q to the combinatorial model category

∏
Z
A is accessible, and hence the preimage

of the class of weak equivalences in
∏

Z
A is accessible. By Proposition 3.7, we know that WG is precisely

this preimage.

From now on, we assume Fil(A) is equipped with the model category structure just discussed. That is,
we work with A a left proper combinatorial stable model category.

3.10. Complete filtered objects

In this subsection, we provide a different perspective on where the filtered stable category comes from.
To be more precise, we provide a different class of morphisms, the completion maps, such that localization
along them agrees with localization along the graded equivalences.

3.11. Completions

Definition 3.12. Given a collection W of arrows on a category C, let W denote the closure of W under the
2-out-of-3 relation. Then (C,W ) is a category with weak equivalences.

The essence of our problem is to compare two different notions of weak equivalence on the category
of sequences Seq(A). Let WL denote the collection of levelwise weak equivalences, which is the usual no-
tion of weak equivalence on such a diagram category. As above, WG denotes the collection of graded weak
equivalences between cofibrant sequences.

The ∞-categories presented by the relative categories (Seq(A),WL) and (Seq(A),WG ∪WL) are not
equivalent. It is immediate that WL ⊂ WG ∪WL, but the converse does not hold. Consider the following
classic example.

Example 3.13. We filter the polynomial algebra k[t] by the powers of the ideal (t):

A(n) =

{
k[t], for n ≥ 0;
(t−n), for n < 0.

The map f : p(t) 7→ (1 + t)p(t) is filtration-preserving, and Gr f : GrA → GrA is the identity. However,
f itself is not invertible. Used in 2.13, 3.17.

But these∞-categories are very close to being equivalent, and we want to understand how to enlargeWL

in a natural way to obtain WG ∪WL. The key role is played by completion.
Fix a fibrant replacement functor R on Seq(A), and let holimY = limR(Y ) be its homotopy limit.

There is a natural map limY → holimY . (The choice of R does not matter as any other choice will have a
zigzag of natural weak equivalences to R.)
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Similarly, fix a fibrant replacement functor R′ on the arrow category Fun({0→ 1},A) and define

hofib(φ) = fibR′(φ)

for φ:A→ B a morphism in A. (In a linear setting, the fiber fib(φ) is typically called the kernel.) There is
a natural map fib(φ)→ hofib(φ).

Finally, fix a cofibrant replacement functor Q on Seq(A).
The following constructions play an important role for us.

(1) Consider the functor colim:Seq(A)c → A. We denote the image of a cofibrant sequence X under
this functor by X(∞), and we view this object as equipped with a filtration via the sequence. The
object X(∞) is a representative of the homotopy colimit, as we are working with the projective model
structure. (We are thus working only with exhaustive filtrations, in classical terminology.) Note as well
that the natural map X(n)→ X(∞) is a cofibration between cofibrant objects, so its cofiber is also the
homotopy cofiber.

(2) Consider the functor quot:Seq(A)c → Seq(A) sending a sequence X to the sequence

quotX(n) = cofib(X(n)→ X(∞)).

We then define a functor (−)∧:Seq(A)c → A sending a sequence X to X∧ = holimquot(X).
(3) Finally, we define a completion functor comp:Seq(A)c → Seq(A) where the completion of X , de-

noted X̂ = compX , is the sequence

X̂(n) = hofib (X∧ → quotX(n)) .

There is a natural transformation c: id ⇒ comp arising from the natural (in X) map of sequences

cX :X → X̂ given by the natural (in X and n) map X(n) → X̂(n) for every n. We call this the
completion map for X .

Remark 3.14. There is another approach, following our construction with stable quasicategories. Let

X(−∞) = holim
n∈Z

X(n)

and set
X̂(n) = hocofib(X(−∞)→ X(n)).

By suitably modifying the arguments around Lemma 2.9, one can show that this definition of X̂ agrees, up
to weak equivalence, with the completion functor we just defined. The reason why we stick to the other
approach is that the homotopy limits involved in its definition can often be computed as ordinary limits, as
explained below. This allows for convenient calculation of the completion, without deriving any functors.

Definition 3.15. A cofibrant sequence is complete if the natural map X(∞)→ X̂(∞) is a weak equivalence
(equivalently, if X(−∞) ≃ 0). The derived completion of a sequence X ∈ Seq(A) is the completion of its

cofibrant replacement QX . A sequence is derived complete if the completion map cQX : QX → Q̂X is a weak
equivalence.

Remark 3.16. In the case that a cofibrant sequence X is bounded below, so that there is some N such that
X(n) = 0 for all n < N , X̂(∞) = X(∞) as quotX(n) = X(∞) for all n < N . Hence a bounded below
sequence is complete.

This notion of completeness diverges from the usual notion in that we work with the homotopy limit of
the sequence of quotients cofib(X(n)→ X(∞)), rather than the limit (i.e., the limit in the sense of ordinary
categories). In certain situations, these coincide. For instance, let A be an abelian category satisfying AB3
and AB4* and having a generator. Let A = Ch(A) be the category of unbounded complexes. Then for a
sequence X in A where each map X(i)→ X(i+1) is an epimorphism, the homotopy limit holimX coincides
with the limit limX . (This result is Theorem 3.1 of Roos [DerLim].)

Remark 3.17. Our polynomial example 3.13 is not complete in the traditional or homotopical sense. The
limit of the quotients is lim k[t]/(tn) = k[[t]], and it is also the homotopy limit, as just remarked. However,
using the filtration of k[[t]] by powers of the ideal (t), the map f : p 7→ (1 + t)p is invertible by the geometric
series. (Note the perhaps-surprising consequence that the homotopy limit of the sequence

· · · → (tn)→ (tn−1)→ · · · → k[t]

is not zero! Rather, it can be computed as (k[[t]]/k[t])[−1]. See Remark 2.13.)
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3.18. The comparison result

Definition 3.19. Let WC denote the collection of completion maps for cofibrant sequences.

Recall that WG only involves morphisms between cofibrant sequences, so it does not contain WL, which
allows arbitrary sequences.

Lemma 3.20. On Seq(A), WG ∪WL is equal to WC ∪WL.

Remark 3.21. In other words, once sequences are identified with their completions, levelwise and graded
weak equivalences coincide. This statement is analogous to the well-known fact that a filtered object and its
completion have the same spectral sequence.

We immediately obtain the following consequence of the lemma.

Corollary 3.22. The ∞-categories presented by (Seq(A),WG ∪WL) and (Seq(A),WC ∪WL) are equiva-
lent.

Proof of lemma. The proof relies on several lemmas proved below. First, we show that every graded equiv-
alence arises in some 2-out-of-3 relation with completions or levelwise equivalences. Let f :X → Y a graded
weak equivalence between cofibrant objects. Applying completion, we obtain a commuting diagram

X
f
−−−→ Y

ycX

ycY

X̂
f̂
−−−→ Ŷ .

By Lemma 3.26, we see that f̂ is a levelwise equivalence. Hence the composition f̂ ◦ cX = cY ◦ f is in the
closure of WL ∪WC under composition, which forces f to be in the closure, too.

Second, by Lemma 3.27, we know that every completion map cX :X → X̂ factors into a graded equiva-
lence followed by a levelwise equivalence. Hence it arises in a 2-out-of-3 relation with graded and levelwise
equivalences.

To simplify notation, we write M/N for the cofiber of a map f :M → N , where the map f will be clear
from context. For a cofibrant sequence A, the structure maps A(m)→ A(n) are cofibrations for all m < n.
Hence, for any k < m < n, the induced map A(m)/A(k) → A(n)/A(k) is a cofibration because it is the
pushout of the cofibration A(m)→ A(n) along the map A(m)→ A(m)/A(k).

Lemma 3.23. If f :A→ B is a graded equivalence between cofibrant sequences, then the induced maps

f̄mn:A(n)/A(m)→ B(n)/B(m)

are weak equivalences for all m < n. Used in 3.45*.

Proof. The proof is by induction on k = n − m. As Gr f is a weak equivalence, we have the base case
of k = 1. For the induction step, consider the map of short exact sequences

0 −−−→ A(n− k)/A(n− k − 1) −−−→ A(n)/A(n − k − 1) −−−→ A(n)/A(n − k) −−−→ 0
y

y
y

0 −−−→ B(n− k)/B(n− k − 1) −−−→ B(n)/B(n− k − 1) −−−→ B(n)/B(n− k) −−−→ 0.

(Alternatively, view it as a map of pushout squares.) These short exact sequences are also homotopy ex-
act due to the left pair of horizontal arrows being cofibrations, so by left properness their cofibers are also
homotopy cofibers. Thus, as we know the leftmost and rightmost vertical maps are weak equivalences, the
middle vertical arrow is also a weak equivalence.
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Lemma 3.24. If f :A→ B is a graded equivalence between cofibrant sequences, then the induced maps

f̄m∞:A(∞)/A(m)→ B(∞)/B(m)

are weak equivalences for all m. Used in 3.25*, 3.26*.

Proof. Because colimits commute and, in this situation of cofibrant objects, the homotopy colimit coincides
with the colimit, we find

A(∞)/A(m) = colim
n>m

(A(n)/A(m)) ≃ hocolim
n>m

(A(n)/A(m)),

and likewise for B(∞)/B(m). The preceding lemma then ensures that

hocolim
n>m

f̄mn: hocolim
n>m

(A(n)/A(m))→ hocolim
n>m

(B(n)/B(m))

is a weak equivalence.

Lemma 3.25. If f :A→ B is a graded weak equivalence of complete cofibrant sequences, then the morphism
f(∞):A(∞)→ B(∞) is a weak equivalence. Used in 3.26*.

Proof. By Lemma 3.24, we know that

holim
n

A(∞)/A(n)→ holim
n

B(∞)/B(n)

is a weak equivalence because the morphism of underlying diagrams is an objectwise weak equivalence. By
the definition of completeness, we then see that f(∞) is a weak equivalence.

Lemma 3.26. If f :A → B is a graded weak equivalence of complete cofibrant sequences, then the map
f(n):A(n)→ B(n) is a weak equivalence for all n. Hence, f is a levelwise weak equivalence. Used in 3.22*.

Proof. Consider the diagram

0 −−−→ A(n) −−−→ A(∞) −−−→ A(∞)/A(n) −−−→ 0
y

y
y

0 −−−→ B(n) −−−→ B(∞) −−−→ B(∞)/B(n) −−−→ 0.

By Lemma 3.25, we know f(∞):A(∞)→ B(∞) is a weak equivalence. We also know the rightmost vertical
arrow is a weak equivalence by Lemma 3.24. Because A(n) → A(∞) and B(n) → B(∞) are cofibrations,
the right map is the homotopy cofiber of the left two maps. But by stability, the left map is the homotopy
fiber of the right two maps, which are weak equivalences. Hence, the leftmost vertical arrow is also a weak
equivalence.

Lemma 3.27. For every cofibrant sequence X , the canonical map X → Q(X̂) is a graded equivalence. Used

in 3.22*, 3.45*.

Proof. Observe that the completion map cX admits a functorial factorization X ֌ Q(X̂) ։̃ X̂, where the
first map is a cofibration and the second map is an acyclic fibration (in Seq(A) with the projective model
structure). We know that

cofib(Q(X̂)(n)→ Q(X̂)(n+ 1)) ≃ hocofib(X̂(n)→ X̂(n+ 1)).

Since A is stable, the homotopy cofiber agrees with the homotopy fiber, up to shift. Moreover, homotopy
(co)fibers commute. Applying these facts repeatedly, we compute

hocofib(X̂(n)→ X̂(n+ 1)) ≃ Σhofib(hofib(X∧ → X(∞)/X(n))→ hofib(X∧ → X(∞)/X(n+ 1)))

≃ Σhofib(hofib(X∧ → X∧)→ hofib(X(∞)/X(n)→ X(∞)/X(n+ 1)))

≃ Σhofib(0→ hofib(X(∞)/X(n)→ X(∞)/X(n+ 1)))

≃ hofib(X(∞)/X(n)→ X(∞)/X(n+ 1))

≃ Ωhocofib(hocofib(X(n)→ X(∞))→ hocofib(X(n+ 1)→ X(∞)))

≃ Ωhocofib(hocofib(X(n)→ X(n+ 1))→ hocofib(X(∞)→ X(∞)))

≃ Ωhocofib(hocofib(X(n)→ X(n+ 1))→ 0)

≃ hocofib(X(n)→ X(n+ 1)).

Hence, the canonical map is a graded equivalence, as desired.
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3.28. Completion and derived graded equivalences

We finish this subsection by identifying the weak equivalences in Fil(A) with derived graded equiva-
lences. Although derived graded equivalences are by definition contained in the weak equivalences of Fil(A),
a priori it might be possible that the process of left Bousfield localization introduces new weak equivalences.
We show that this is not the case in Proposition 3.31.

To prepare for the proof of that Proposition, we recall some important machinery from the theory of
model categories and then prove some technical lemmas.

In a model category A, there is a simplicial set known as the derived mapping space Map(X,Y ) (some-
times also denoted RMap) between any two objects X and Y in A. See Chapter 17, and in particular
§17.5.15, of Hirschhorn [ModCat], who calls it the functorial two-sided homotopy function complex. This
construction encodes important information about weak equivalences: Theorem 17.7.7 in [ModCat] states
that a map f :X → Y is a weak equivalence in A if and only if the induced map Map(W,X)→ Map(W,Y )
is a weak equivalence of simplicial sets for every object W in A, and likewise if and only the induced map
Map(Y, Z)→ Map(X,Z) is a weak equivalence of simplicial sets for every object Z in A.

This construction is also central in Bousfield localization. Recall that for a morphism f :X → Y in A,
an object Z is f -local if the associated map Map(Y, Z) → Map(X,Z) is a weak equivalence. Similarly, for
any object Z, a morphism f :X → Y is Z-local if the associated map Map(Y, Z) → Map(X,Z) is a weak
equivalence. Given a collection S of morphisms in a model category A, a map f is a weak equivalence in the
left Bousfield localization LSA if it is local with respect to every object X that is itself local with respect to
every morphism in S.

Besides these general tools, we need two lemmas.
The first concerns simple constructions with sequences. For any object K in A, let const(K) denote

the constant sequence for K: const(K)(n) = K for all n and every structure map is the identity. For any
sequence X , let X(−∞) = holimX and X(∞) = hocolimX .

Lemma 3.29. For any sequence X ,

const(X(−∞)) ≃ hofib(cX :X → X̂)

and
hocofib(cX :X → X̂) ≃ const(X̂(∞)/X(∞)).

Used in 3.31*.

Proof. The arguments in Lemma 2.9 (and just around it) apply essentially verbatim.

The second verifies that taking associated graded determines a Quillen adjunction.

Lemma 3.30. The functor Gr:Seq(A)→
∏

Z
A is a left Quillen functor whose right adjoint R is given by

R(B) = (· · ·
0
−→ Bn

0
−→ Bn+1

0
−→ · · ·),

where B is the graded object (Bn)n∈Z. Used in 1.6, 3.31*.

Proof. It is clear that R preserves fibrations and acyclic fibrations, as those are objectwise, so it suffices to
verify that we have an adjunction. Let X denote a sequence

· · ·
xn−1
−−−−→ X(n)

xn−−−−→ X(n+ 1)
xn+1
−−−−→ · · ·

and B a graded object (Bn)n∈Z. To give a map of sequences f :X → R(B) is to give a map f(n):X(n)→ Bn

for every n such that f(n) ◦ xn−1 = 0 ◦ f(n− 1) = 0. Hence f(n) factors as

X(n)
qn
−−→ X(n)/ imxn−1

f̄(n)
−−→ Bn.

Hence the map f factors through f̄ : GrA→ B, the associated map between graded objects. Conversely, any
map of graded objects g: GrX → B produces a map of sequences by precomposition with the quotient maps
qn:X(n)→ X(n)/ imxn−1.

We can now prove the goal of this section.
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Proposition 3.31. The class ofWG-local objects in Seq(A) coincides with the class of derived complete se-
quences. Furthermore, the class of weak equivalences in Fil(A) (i.e., local equivalences in Seq(A)) coincides
with derived graded equivalences. Used in 3.8, 3.9*, 3.28*, 3.32*, 5.30*.

Proof. A morphism of sequences const(K) → Y is given by a map K → limY in A, and similarly the
derived mapping space Map(const(K), Y ) between sequences is weakly equivalent to the derived mapping
space Map(K, holimY ) in A. Observe as well that the morphism from const(0) → const(K) is always a
derived graded equivalence. Thus, a sequence Y is local with respect to the morphism const(0)→ const(K)
if the morphism of derived mapping spaces

Map(K, holimY )→ Map(0, holimY ) ≃ pt

is a weak equivalence (by Theorem 17.7.7 in Hirschhorn [ModCat]). Consequently, Y is local for mor-
phisms const(0) → const(K) with arbitrary K if and only if holimY is weakly equivalent to 0, and so, by
Lemma 3.29, if and only if Y is derived complete.

It remains to show that derived graded equivalences contain all local equivalences with respect to de-
rived complete sequences. Let f :X → Y be local for every derived complete sequence, and without loss of
generality assume f is a cofibration between cofibrant objects. Let Z be a fibrant object in A and let Z[n]
denote the sequence that is zero except for Z placed in degree n; Z[n] can be see as the right adjoint R
applied to the graded object with Z in spot n. By construction Z[n] is derived complete. Using Proposi-
tion 17.4.16 in Hirschhorn [ModCat] and Lemma 3.30, we see that the map Map(Y, Z[n]) → Map(X,Z[n])
is weakly equivalent to Map(Y (n)/Y (n− 1), Z)→ Map(X(n)/X(n− 1), Z), which is a weak equivalence by
the assumption that f is local. Since Z is an arbitrary fibrant object in A, Theorem 17.7.7 in [ModCat]
again shows that X(n)/X(n− 1)→ Y (n)/Y (n− 1) is a weak equivalence. The latter expression computes
the (derived) associated graded of f at index n. Varying n, we find that f is a derived graded equivalence.

We remark that the above proof shows that it suffices to perform left Bousfield localization with respect
to morphisms of the form const(0)→ const(K).

Corollary 3.32. The left derived functor of Gr:Fil(A)→
∏

Z
A creates weak equivalences.

Proof. The derived graded equivalences are, by definition, the maps created by the left derived functor of
Gr:Seq(A) →

∏
Z
A. Proposition 3.31 shows that the class of weak equivalences of Fil(A) coincides with

derived graded equivalences.

3.33. t-structures and spectral sequences

To construct a spectral sequence for a filtered object of a stable model category A, we need an analog of
homology groups. The standard tool is a t-structure, which provides an abelian categoryA♥ and a nice func-
tor π0: Ho(A) → A♥. The “homology groups” of an object X ∈ A are then the collection {π0(Ω

nX)}n∈Z,
where Σ denotes suspension and Σ−1 = Ω denotes looping. Once one has a t-structure, there is a natural
way to construct a spectral sequence for a filtered object, as we explain below.

3.34. t-structures for stable model categories Used in 5.18*, 5.18*.

In the context of triangulated categories and stable quasicategories, there is a well-known notion of
t-structure. We give a transcription into the language of stable model categories, which is desirable if one
wants to perform concrete computations with spectral sequences.

Recall (Definition 17.8.1 in Hirschhorn [ModCat]) that a homotopy orthogonal pair is a pair of morphism
i:A→ B and p:X → Y such that the canonical map

Map(B,X)→ Map(A,X)×Map(A.Y ) Map(B, Y )

is a weak equivalence. Here Map denotes the derived mapping space and × denotes homotopy pullback. In
this case we say that i is left homotopy orthogonal to p and p is right homotopy orthogonal to i.

Recall (Bousfield, Definition 6.2 in [Fact]) that a homotopy factorization system on a model category A
is a pair (E,M), where E is a class contained in the cofibrations of A and M is a class contained in the
fibrations of A, such that
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(1) the class E coincides with the class of cofibrations that are left homotopy orthogonal to all elements
of M ;

(2) the class M coincides with the class of fibrations that are right homotopy orthogonal to all elements
of E;

(3) any morphism in A factors as an element of E composed with an element of M .

We additionally demand that the latter factorization is functorial, in complete analogy to the modern defi-
nition of a model category. A homotopy factorization system is accessible if its functorial factorization is an
accessible functor.

Remark 3.35. According to Theorem 7.1 in Bousfield [Fact] (modified to use framing instead of simplicial
enrichments in the case of nonsimplicial model categories), any set IE of cofibrations in a combinatorial
model category generates an accessible homotopy factorization system whose class E is the smallest weakly
saturated class containing IE and all (generating) acyclic cofibrations and satisfying the condition that for
any composable pair (f, g) of cofibrations such that gf and f belong to E, then so does g. Typically IE will
be a subset of the set of generating cofibrations. Used in 3.38.

The functorial factorization provides two natural functors on A. Every object X ∈ A has a unique
terminal morphism X → 1, and we let τ<0 denote the functor arising from the factorization X → τ<0X → 1.
Likewise, factoring 0→ X gives us 0→ τ≥0X → X for some functor τ≥0. The notations τ<0 and τ≥0 were
chosen in anticipation of the definition below. The functors τ<0 and τ≥0 preserve weak equivalences and thus
need not be derived. The maps τ≥0τ≥0X → τ≥0X and τ<0X → τ<0τ<0X are isomorphisms, i.e., τ≥0 is an
idempotent monad and τ<0 an idempotent comonad. In particular, they induce two adjunctions τ<0 ⊣ ι<0

and ι≥0 ⊣ τ≥0, where ι<0 and ι≥0 denote the inclusion functors on the full subcategories of A consisting
of the objects in the image of τ<0 respectively τ≥0. The unit of the first adjunction is X → τ<0X and the
counit of the second adjunction is τ≥0X → X , whereas the other (co)unit is the identity functor.

In terms of functors τ<0 and τ≥0 one can characterize the classes E and M as follows: E consists of
those cofibrations f for which τ<0f is a weak equivalence andM consists of those fibrations g for which τ≥0g
is a weak equivalence.

Definition 3.36. A t-structure on a combinatorial stable model category A is a homotopy factorization
system on A that is normal : for any object X the induced sequence τ≥0X → X → τ<0X is homotopy
exact, i.e., applying the derived mapping space functor Map(−, Z) for any object Z gives us a homotopy
fiber sequence of pointed spaces. A t-structure is accessible if its homotopy factorization system is.

We give a detailed comparison with the quasicategorical notion of t-structure in §4.7.

Remark 3.37. Passing to the homotopy category of A, the normality property reproduces property (iii)
of the original Definition 1.3.1 of a t-structure on a triangulated category from Beilinson, Bernstein, and
Deligne [Perv]. The other two properties (i) and (ii) are supplied by the notion of a homotopy factorization
system.

Remark 3.38. As shown by Lurie in Proposition 1.2.1.16 of [HA], the normality condition can be refor-
mulated as an additional condition on E: the class E is generated by the subclass consisting of morphisms
whose domain is the initial object of A. Equivalently, one can say that if A → B is in E, then so is its
homotopy base change along 0 → B, as explained in Proposition 4.11 of Fiorenza and Loregiàn [NTT].
Using the latter as an additional saturation condition to the one explained in Remark 3.35, we can speak of
t-saturation.

Remark 3.39. Every stable ∞-category C has two trivial t-structures: in one, all objects are in C≥0, and
in the other, only the zero object belongs to C≥0. These correspond to picking IE empty or everything. We
are typically interested in less extremal choices!

In light of the discussion above, we have the following result.

Proposition 3.40. For any combinatorial stable model category A and any set of cofibrations IE , there is
an accessible t-structure on A whose class E is generated by IE under t-saturation.

Example 3.41. Consider the symmetric monoidal combinatorial model category Ch of unbounded chain
complexes of abelian groups equipped with the projective model structure. A standard set of generating
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cofibrations consists of the inclusions Z[n] → (Z[n + 1] → Z[n]). Take IE to consist of those generating
cofibrations with n ≥ 0, and construct the associated t-structure. Maps in E are cofibrations that induce an
isomorphism on homology in strictly negative degrees. Maps inM are fibrations that induce an isomorphism
on homology in nonnegative degrees.

Example 3.42. Consider the symmetric monoidal combinatorial stable model category SpΣ of symmetric
simplicial spectra, equipped with the stable projective model structure. (See Hovey, Shipley, Smith [Sym-
Spec].) The generating cofibrations of SpΣ are S⊗ (Σn× (∂∆k → ∆k))+[n], where S denotes the symmetric
sequence that gives the sphere spectrum. Define IE to consist of those generating cofibrations for which
k ≥ n. Observe that for this t-structure a morphism 0 → X belongs to E if the nth spectral level of X
is strictly n-connective, i.e., is a pointed simplicial set whose set of k-simplices consists of one element for
k < n. In order to identify this t-structure with the standard t-structure on spectra it suffices to show that
the closure under weak equivalences of the codomains of morphisms in E of the form 0→ X coincides with
connective spectra. In one direction, elements of IE are morphisms of connective spectra, hence τ<0 applied
to them produces an equivalence. For the other direction it suffices to show that spectra X for which the
terminal morphism X → 1 is right homotopy orthogonal to IE are coconnected (meaning τ<0 vanishes).
(Abusing the language, we say that X itself has this property.) Without loss of generality assume X to be
fibrant. Next, observe that in the above formula S⊗− is derived, hence we can use the adjunction property
to reduce the problem to identifying symmetric sequences in pointed simplicial sets that are right homotopy
orthogonal to the maps (Σn × (∂∆k → ∆k))+[n] for k ≥ n. Again, the functor (Σn × −)+[n] is derived
in the above formula, and using the same trick again we reduce the problem to identifying morphisms of
simplicial sets that are right homotopy orthogonal to the maps ∂∆k → ∆k for k ≥ n. These are precisely the
(n− 2)-truncated simplicial sets. Thus we have an Ω-spectrum whose nth spectral level is (n− 2)-truncated
(e.g., the 0th level is contractible), hence its nonnegative homotopy groups vanish, hence it is coconnected.

Remark 3.43. Any t-structure on a stable model category gives rise to two different sequences for any
object X . The first sequence is

· · · → τ≥k+1X → τ≥kX → τ≥k−1X → · · · ,

which generalizes Whitehead towers of spectra to the setting of stable model categories. The second sequence
is

· · · → τ<k+1X → τ<kX → τ<k−1X → · · · ,

which generalizes Postnikov towers and can be obtained by taking the homotopy cofiber of the canonical
map of the Whitehead filtration on X to the constant sequence on X . (Thus in the setting of filtered objects,
these two objects only differ by suspension.)

3.44. Spectral sequences

We now turn to setting up spectral sequences. As shown by Beilinson, Bernstein, and Deligne in [Perv],
the t-structure on Ho(A) picks out a full subcategory of the homotopy category, known as its heart , which
is abelian. We denote this category by A♥. By construction, the double truncation functor τ≤0 ◦ τ≥0 on
Ho(A) maps to A♥. We denote by π0 the composition A → Ho(A) → A♥. Thus, we obtain “homotopy
groups” with values in A♥ for every object in A by the formula πn = π0 ◦ Σ

−n.
Each sequence X ∈ Seq(A) has an associated spectral sequence taking values in A♥, which we quickly

describe below, following §1.2.2 of Lurie [HA]. We now obtain a generalization of the classical statement that
a filtered complex and its completion have the same spectral sequence.

Proposition 3.45. A sequence X and its derived completion Q̂X have the same spectral sequence. Hence,
the functor from Seq(A) to the category of spectral sequences in A♥ factors through the filtered category
Fil(A). Used in 1.8.

This proposition follows immediately from the construction of the spectral sequence E∗,∗
∗ (X) of a se-

quence X , which is given by

Ep,q
r (X) = imπp+q(hocofib(X(p− r)→ X(p))→ hocofib(X(p− 1)→ X(p+ r − 1))).
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The differential dr is determined by the connecting maps in the long exact sequences of homotopy groups
arising from the homotopy pushout square

hocofib(X(i)→ X(j)) −−−→ hocofib(X(i)→ X(k))
y

y

0 = hocofib(X(j)→ X(j)) −−−→ hocofib(X(j)→ X(k))

that holds for any triple i ≤ j ≤ k. (For a more extensive discussion, see Construction 1.2.2.6 and Proposi-
tion 1.2.2.7 of Lurie [HA].)

Proof. The canonical map qX : QX → X is a weak equivalence, and hence this map induces an isomorphism
of spectral sequences. By Lemma 3.27, we know QX → Q(Q̂X) is a graded equivalence, and so Lemma 3.23

tells us the map provides an isomorphism of spectral sequences. Finally, q
Q̂X

: Q(Q̂X)→ Q̂X again induces

an isomorphism of spectral sequences. Altogether, we obtain the proposition.

3.46. Enrichments and enhancements

The following result shows that an enrichment on the underlying model category A passes to its cat-
egory of filtered objects Fil(A). In particular, if the original model category is dg enhanced (i.e., enriched
over chain complexes), then so is its category of filtered objects. Thus this result provides one more sense in
which to interpret the paper’s title.

Recall from Barwick [LR] that a model category is tractable if it is combinatorial and all cofibrations
are generated, under weak saturation, by cofibrations with cofibrant source. Examples of tractable model
categories include chain complexes over a ring (or differential graded algebra), simplicial symmetric spectra,
motivic symmetric spectra, presheaves of simplicial symmetric spectra with the local model structure, and
symmetric spectra in some tractable left proper symmetric monoidal model category. Indeed, almost every
combinatorial model category encountered in practice is tractable; constructing a nontractable combinatorial
model category is nontrivial, but see the example after Corollary 8.6.4 in Simpson [HTHC].

Proposition 3.47. IfV is a symmetric monoidal tractable model category andA is aV-enriched model cat-
egory that is tractable, left proper, and stable, then the model category Fil(A) is V-enriched and tractable.

Proof. The model category Seq(A) is V-enriched because the pushout-product axiom and the unit axiom
can be verified indexwise. We now apply Theorem 4.46 in Barwick [LR], which requires us to verify (as
explained in the proof there) that the class of maps with respect to which we localize (in our case, the
derived graded equivalences) is closed with respect to the derived tensor product with an arbitrary object
of V. Observe that derived graded equivalences are defined using a homotopy cofiber, and homotopy cofibers
commute with derived tensor products. (Derived tensor product with a fixed object X⊗L− can be computed
as the tensor product with a fixed cofibrant replacement of this object Q(X)⊗−. As the left derived functor
of the left Quillen functor, it preserves homotopy colimits.)

Remark 3.48. A special case appears frequently in contemporary mathematics: V = Ch(R), where R
is a commutative ring. In this case V-enriched model categories are also known as dg model categories.
Given such a model category C, one can extract the dg category C◦ of bifibrant objects, which as a dg
category has the same homotopical information as the model category C: its dg nerve is equivalent to UC
as a quasicategory. If C satisfies the conditions of the above proposition, then the model category Fil(C)
is a stable tractable dg model category. In §5 we also construct a filtered dg category associated to any dg
category using methods intrinsic to dg categories. In Proposition 5.30 of §5, we explain how the enriched
model-categorical approach relates to that dg categorical construction.

3.49. Symmetric monoidal structures

Many of the most important stable model categories in mathematics have a natural symmetric monoidal
structure. For example, given a commutative ring R, chain complexes of R-modules can be tensored over R.
We now explain how to incorporate such a structure into the filtered setting.

Let (A,⊗) now denote a symmetric monoidal combinatorial stable model category. We do not assume
the unit to be cofibrant, but we do require Hovey’s unit axiom. Our main result in this section is the
following.
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Theorem 3.50. There is a symmetric monoidal product ⊗s on Fil(A) such that (Fil(A),⊗s) is a symmetric
monoidal stable model category. Used in 3.54*.

The rest of the section is devoted to the proof. We begin by equipping Seq(A) with a symmetric
monoidal structure (via Day convolution) and verify it satisfies the pushout-product axiom. We then de-
fine ⊗s and prove the main result.

The arguments depend on verifying certain properties of generating cofibrations, so we need to identify
these maps in Seq(A) = Fun(Z,A) and Fun(Z×Z,A), which are both equipped with the projective model
structure. Every n ∈ Z and every A ∈ A determines a “step-sequence,” denoted 〈n,A〉, that sends m to 0
if m < n and to A if m ≥ n (with identity as structure map). A generating cofibration in Seq(A) is then a
map f : 〈n,A〉 → 〈n,A′〉 where for m ≥ n, the map is always a fixed cofibration φ:A→ A′ in A. A generating
cofibration in Fun(Z × Z,A) is entirely analogous: a map F : 〈(m,n), A〉 → 〈(m,n), A′〉 where the map is a
cofibration φ:A→ A′ for (i, j) with i ≥ m and j ≥ n, but is otherwise zero.

Now we define the “external product”, which is the bifunctor

⊠: Fun(Z,A)× Fun(Z,A)→ Fun(Z × Z,A)

sending (X,Y ) to X ⊠ Y : (m,n) 7→ X(m)⊗ Y (n). It possesses the following crucial property.

Lemma 3.51. Let f :X → Y and g:U → V be cofibrations in Seq(A). Then the natural map

X ⊠ V ⊔X⊠U Y ⊠ U → Y ⊠ V

is a cofibration in Fun(Z × Z,A). If one of the cofibrations is acyclic, then so is the resulting map. Used in

3.54*.

Proof. It suffices to check this assertion when f and g are generating cofibrations. Let X = 〈m,A〉 and
Y = 〈m,B〉 with f determined by a cofibration φ:A → B in A, and likewise U = 〈n,C〉 and V = 〈n,D〉
with g determined by a cofibration ψ:C → D in A. Then, for instance, X ⊠ U = 〈(m,n), A ⊗ C〉. The
pushout X ⊠ V ⊔X⊠U Y ⊠ U is then

〈(m,n), A⊗D ⊔A⊗C B ⊗ C〉.

The natural map from the pushout to the product is then the generating cofibration determined by (m,n)
and the cofibration

A⊗D ⊔A⊗C B ⊗ C → B ⊗D

in A.

Next, we define the “totalization”, which is the functor

tot: Fun(Z× Z,A)→ Fun(Z,A) = Seq(A)

sending Z to tot(Z)(n) = colimp+q≤n Z(p, q). (This colimit is over the full subcategory of Z2 given by
objects (p, q) such that p+ q ≤ n.)

Lemma 3.52. ⊠ is a left Quillen bifunctor, and tot is a left Quillen functor.

Proof. Now observe that tot is the left Kan extension along the addition map +:Z × Z → Z. By Proposi-
tion A.2.8.7 in Lurie [HTT], tot is thus a left Quillen functor with respect to the projective model structures.
(We note that this proposition is slightly more general than stated: it holds for a cofibrantly-generated model
category, not just a combinatorial model category.)

Definition 3.53. For X and Y in Seq(A), we define X ⊗s Y = tot(X ⊠ Y ).

Proposition 3.54. The composition ⊗s = tot ◦ ⊠ makes Seq(A) into a symmetric monoidal stable model
category.

Proof. Applying tot to the map in Lemma 3.51, we find that

A⊗s D ⊔A⊗sC B ⊗s C → B ⊗s D

is a cofibration in Seq(A) with the projective model structure. Hence, ⊗s satisfies the pushout-product
axiom with respect to the projective model structure.
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Proof of Theorem 3.50. We now want to verify that we obtain a monoidal model category after left Bousfield
localizing at the graded equivalences WG. By Proposition 4.47 of Barwick [LR], it suffices to show that the
derived graded equivalences are closed under taking the derived tensor product with an arbitrary object. In
fact, it suffices to verify this only for a collection of weak (aka homotopy) generators. We will work with the
sequences 〈m,A〉, which are zero for n < m and a cofibrant object A from A for n ≥ m, with the identity
as the structure map; these are homotopy generators.

Now consider f :X → Y a graded equivalence between cofibrant sequences. We want to show that

〈m,A〉 ⊗s f : 〈m,A〉 ⊗s X → 〈m,A〉 ⊗s Y

is a graded equivalence of cofibrant sequences. Observe that

(〈m,A〉 ⊗s X) (n)/ (〈m,A〉 ⊗s X) (n− 1) ∼= A⊗ (X(−m+ n)/X(−m+ n− 1)) .

Thus, as A is cofibrant, the induced map Gr (〈m,A〉 ⊗s f) is an indexwise weak equivalence.
We now prove the unit axiom. The monoidal unit is given by 〈0, 1〉 and its cofibrant replacement can

be taken to be 〈0,Q1〉, where Q1 → 1 is a cofibrant replacement in A. It now suffices to observe that
〈0, 1〉 ⊗ X = X and 〈0,Q1〉 ⊗ X = Q1 ⊗ X (here Q1 ⊗ X is taken componentwise), and that a cofibrant
object X in particular has cofibrant components. Hence the map Q1⊗X → 1⊗X = X is a weak equivalence
by the unit axiom of A.

Proposition 3.55. The associated graded functor has canonical strong monoidal and strong closed struc-
tures. Used in 6.14*.

Proof. The argument for Proposition 2.26 and Proposition 2.28 works here with no changes. The associated
graded functor is cocontinuous, and the tensor product is strong monoidal on generators.

3.56. The monoid axiom

Suppose A is a symmetric monoidal combinatorial stable model category and R is a monoid in filtered
objects in A. We would like to equip the category ModR of left R-modules in (Fil(A),⊗s) with a model
structure whose fibrations and weak equivalences are transferred along the forgetful to Fil(A). Schwede and
Shipley [MonAx] have provided a simple and conceptual condition for this kind of construction to work:
Theorem 4.1 of [MonAx] states that for a cofibrantly generated monoidal model category C, the category of
left modules over any monoid in C inherits a cofibrantly generated model structure if C satisfies the monoid

axiom (Definition 3.3 in [MonAx]).
As explained in §3.2 of Pavlov and Scholbach [HTSP], it is convenient to split the monoid axiom into

simpler properties that are easier to establish separately. We recall relevant definitions and results from that
paper. An h-cofibration is a map X → Y such that the pushout functor X/A → Y/A on undercategories
preserves weak equivalences. For the case of left proper model categories considered below, h-cofibrations
can also be characterized as those maps for which cobase changes (pushouts) are also homotopy cobase
changes. In these terms, left properness then demands that cofibrations are h-cofibrations. A monoidal
model category is h-monoidal if the monoidal product of any object with a cofibration is an h-cofibration.
Lemma 3.2.6 of [HTSP] implies that a h-monoidal, compactly generated model category satisfies the monoid
axiom. A monoidal model category is flat if the pushout product of a cofibration and a weak equivalence is
a weak equivalence. The general idea behind these definitions is that h-monoidality ensures the existence of
a model structure, whereas flatness gives rise to Quillen equivalences between model structures constructed
using weakly equivalent data.

Flatness and h-monoidality have symmetric analogs, as explained in Definition 4.2.2 and Definition 4.2.7
of [HTSP]. These properties play the same role for symmetric structures, such as commutative monoids and
algebras over symmetric operads, as their nonsymmetric analogs for nonsymmetric structures, such as left
modules over monoids and algebras over nonsymmetric operads.

Proposition 3.57. If A is a (symmetric) flat, (symmetric) h-monoidal, symmetric monoidal, left proper,
compactly generated, combinatorial stable model category, then so are Seq(A) and Fil(A). Used in 6.5*, 6.8*.

Proof. We have already established that Seq(A) exists and is a symmetric monoidal combinatorial stable
model category. It is compactly generated because cofibrations do not change under left Bousfield localiza-
tions, whereas weak equivalences increase. It is left proper because projective cofibrations are in particular
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componentwise cofibrations. Flatness and h-monoidality of Seq(A) follow from the same properties of A
because they can be established for generating (acyclic) cofibrations (see Theorem 3.2.8 in [HTSP] in the
nonsymmetric case and Theorem 4.3.9 there in the symmetric case), and the latter are monoidal products of
representables and generating (acyclic) cofibrations of A. Finally, by Proposition 6.2.1 of [HTSP] the same
set of properties holds for the left Bousfield localization Fil(A) of the projective structure on Seq(A).

Examples 3.58. Simplicial sets, simplicial modules, chain complexes of modules, simplicial presheaves all
satisfy the conditions of the proposition, as explained in §7 of [HTSP]. Topological spaces can also be used
if one replaces compact generatedness with strong admissible generatedness, as explained there.

The arguments of Schwede and Shipley in [MonAx] then imply the following.

Corollary 3.59. Let A satisfy the hypotheses in the preceding proposition. If R is a monoid in Fil(A), then
the category ModR of left R-modules in (Fil(A),⊗s) inherits a model category structure via the forgetful
functor Fil(A): weak equivalences and fibrations are checked in Fil(A). Used in 7.4*.

There is a modest generalization. A symmetric monoidal category (C,⊗, 1) is a commutative monoid
in the (large) bicategory of categories, functors, and natural transformations. A left C-module D is a left
module over C in this bicategory. Given a monoid R in C, one can then study left modules in D over R.
Lemma 3.2.6 of [HTSP] gives conditions under which the monoid axiom holds in such a left module category,
and hence when the category of left R-modules in D admits a compatible model structure.

Corollary 3.60. Let A be a left module over a monoidal category C such that A is a left proper compactly
generated combinatorial stable model category. Let R be a monoid in Fil(C), and let fModR(A) denote
the category of left R-modules in Fil(A). If for all n the functor Rn ⊗−:A→ A sends acyclic cofibrations
to acyclic h-cofibrations, then category fModR(A) admits a model structure whose weak equivalences and
fibrations are inherited via the forgetful functor to Fil(A).

4 Comparison of the quasicategorical and the model categorical constructions

In this section, we compare our constructions in the quasicategorical and model categorical settings.
We start by showing that every stable model category has an “underlying” stable quasicategory, and then
show that this construction intertwines with forming the filtered category. In consequence, we deduce the
folk theorem, Theorem 4.4. We show next that, conversely, every presentable stable quasicategory lifts to
the stable model category setting. Finally, we verify the compatibility of t-structures in both settings.

4.1. Comparing versions of filtered categories

Let us begin by describing the “underlying quasicategory” of a combinatorial model category, following
Lurie’s treatment in §1.3.4 of [HA]. Recall Definition 1.3.4.15 of [HA]: the underlying quasicategory U(A) of a
model category A is any quasicategory C equipped with a functor N(Ac)→ C that realizes C as N(Ac)[W−1],
i.e., a quasicategory obtained from the nerve N(Ac) of the category Ac of cofibrant objects in A by inverting
the weak equivalences W up to homotopy. (For example, take the marked simplicial set (N(Ac),W c) and
fibrantly replace.) Lurie produces such an underlying quasicategory of a combinatorial model category in
three steps. First, by Theorem 1.1 in Dugger [Pres], every combinatorial model category A is Quillen equiv-

alent to a simplicial left proper combinatorial model category Â. Second, Lemma 1.3.4.21 in [HA] shows

that a left Quillen equivalence Â→ A between combinatorial model categories induces a weak equivalence
N(Âc)[W−1

Â
]→ N(Ac)[W−1

A
] of the corresponding marked simplicial sets, which present inverting morphisms

up to homotopy. Third, Theorem 1.3.4.20 in [HA] constructs an equivalence Âc[W−1]→ N(Â◦) of quasicat-

egories for any simplicial model category Â, where Â◦ is the full simplicial subcategory of bifibrant objects
in Â. Finally, Proposition A.3.7.6 in [HTT] shows that N(Â◦) is presentable for any combinatorial simplicial

model category Â.

Lemma 4.2. Given a combinatorial stable model category A, the underlying quasicategory U(A) is a pre-
sentable stable quasicategory. Used in 4.7*.

Proof. Presentability was established above. Stability amounts to being pointed and the suspension functor
being an equivalence of quasicategories. By Theorem 4.2.4.1 in [HTT], the homotopy coherent nerve functor
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sends homotopy (co)limit diagrams in Â◦ to (co)limit diagrams in N(Â◦). Thus bicartesian squares are
mapped to bicartesian squares, and similarly for the zero object.

We now verify that our constructions of the filtered category intertwine via U .

Proposition 4.3. For any left proper combinatorial stable model category A, the canonical functor of
quasicategories

U(Fil(A))→ Fil (U(A))

is an equivalence, where the functor U takes the underlying quasicategory of a model category. Furthermore,
the above equivalence of categories is compatible with the associated graded functor: the square

U(Fil(A)) −−−→ Fil (U(A))
yU(GrA)

yGrU(A)

U(
∏

Z
A) −−−→

∏
Z
U(A)

commutes up to a homotopy. Used in 2.6*, 5.33*.

Proof. Proposition 1.3.4.25 in Lurie [HA] establishes the result for sequences: the canonical functor

U(Seq(A))→ Seq(U(A))

is an equivalence of quasicategories. This proposition also implies that the bottom arrow of the square is an
equivalence. Proposition A.3.7.8 in Lurie [HTT] verifies that the localizations intertwine: it thus promotes
the equivalence for sequences to the desired equivalence of completed sequences.

It remains to verify the commutativity of the square. Using the description of the associated graded
functor after Definition 2.1 (and its obvious model categorical counterpart), we present the square as the
vertical composition of two squares, where the middle row is

U

(∏

Z

Fun(0→ 1,A)

)
→
∏

Z

Fun(0→ 1,U(A)),

which is an equivalence of quasicategories by Proposition 1.3.4.25 in [HA]. The vertical maps in the top square
are the restriction functors along

∐
Z
(0→ 1)→ Z, where the mth index goes to the arrow m→ m+1 in Z.

The vertical maps in the bottom square are given by taking cofibers; they are the left adjoints of the left
adjoints of the restriction functors along Z →

∐
Z
(0 → 1). (In other words, we are just decomposing the

associated graded functors in the natural way.)
It now suffices to show the commutativity of the top and bottom square separately. These claims follow

once we show the general fact that for any functor I → J , the square

U(Fun(J,A)) −−−→ Fun(N(J),U(A))
y

y

U(Fun(I,A)) −−−→ Fun(N(I),U(A))

is commutative up to a homotopy, where Fun(−,A) is equipped with the injective structure so that the
functor Fun(J,A) → Fun(I,A) is a left Quillen functor. The horizontal arrows are equivalences, by the
arguments above, and the vertical arrows are cocontinuous functors. Observe that the following diagram
commutes strictly:

N(Fun(J,A)c) −−−→ Fun(N(J),U(A))
y

y

N(Fun(I,A)c) −−−→ Fun(N(I),U(A)),

where the superscript c denotes the class of cofibrant objects. Therefore, the diagram obtained by localiz-
ing the left column commutes up to a homotopy because the space of factorizations of a functor F :C → D
through a localization functor C → C[W−1] (of quasicategories) is either empty or contractible (i.e., either F
inverts the elements of W or it does not, and in our case it does).
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Theorem 4.4. For A a Grothendieck abelian category, let A = Ch(A) be the stable model category given
by the injective model structure. The homotopy category of the filtered stable model category Fil(A) is
equivalent to the classical filtered derived category Dfil(A). Used in 2.6*, 4.0*.

Remark 4.5. In [HA] Lurie constructs the derived ∞-category D(A) by taking the dg nerve of the full dg
subcategory of fibrant-cofibrant objects of A with the injective model structure. Our result here thus implies
Theorem 2.6, the ∞-categorical assertion we made earlier.

Proof. Let us begin with Seq(A) equipped with the projective model structure. Consider the subcategory
of classically filtered objects in Seq(A): the sequences of chain complexes in which each structure map is
a monomorphism. The subcategory of cofibrant objects Seq(A)c is also a subcategory of these classically
filtered objects. The cofibrant replacement functor on Seq(A), restricted to the classically filtered objects,
exhibits a natural weak equivalence between these categories with weak equivalences. In particular, their
homotopy categories are equivalent.

Left Bousfield localization does not change the cofibrant objects and so one can work with the same
cofibrant replacement functor. Thus, even after localization of Seq(A) at the graded weak equivalences, the
cofibrant replacement functor produces a weak equivalence between sequences and cofibrant sequences, and
hence a weak equivalence between the subcategory of classically filtered objects and the cofibrant sequences.
(Using the intermediate model structure constructed in Remark 3.2, the cofibrant objects are precisely the
filtered chain complexes in the usual sense. Thus it is manifest that the homotopy categories are equivalent,
because this model structure has the same weak equivalences as Fil(A).)

We now show that the stable quasicategory setting can be lifted to the stable model category setting.

Proposition 4.6. Every presentable stable∞-category is presented by a simplicial left proper combinatorial
stable model category A.

Proof. By Proposition 1.4.4.9.(3) in Lurie [HA], we observe that a presentable stable∞-category is presented
by an accessible left exact localization of the ∞-category of presheaves of spectra on a small ∞-category.
The latter small ∞-category can be rectified to a small simplicial category, and the above localization can
be presented by a left exact accessible left Bousfield localization of the category of presheaves of simpli-
cial spectra. The resulting model category is simplicial, left proper, combinatorial, and stable. (Simplicial
spectra are stable and stability is preserved under taking presheaf categories and left exact left Bousfield
localizations.)

4.7. Comparing t-structures Used in 3.36*.

Lemma 4.2 showed that a combinatorial stable model category has an associated presentable stable
quasicategory. We now that this construction respects t-structures.

Proposition 4.8. An accessible t-structure on a combinatorial stable model category A produces an ac-
cessible t-structure on the quasicategory U(A).

Remark 4.9. The notion of an accessible t-structure is Definition 1.4.4.12 in Lurie [HA]. Our definition of
accessible t-structure was motivated to ensure the compatibility encoded in this proposition.

Proof. The proof is an assembly of several results.
(1) A homotopy factorization system on A (Bousfield, Definition 6.2 in [Fact]) induces a factorization sys-

tem on U(A) (Lurie, Definition 5.2.8.8 in [HTT], or Fiorenza and Loregiàn, Definition 8 in [NTT]) by
taking the image of the elements of E and M with bifibrant domains and codomains.

(2) The normality property of a homotopy factorization system descends to the quasicategorical normality
property as in Definition 17 in Fiorenza and Loregiàn [NTT], which follows from the fact that the com-
parison functor maps homotopy exact sequences to exact quasicategorical sequences, see Propositions
1.3.4.23 and 1.3.4.24 in [HTT].

(3) The accessibility property of a homotopy factorization system descends to the small generation property,
as in Remark 5.5.5.2 in Lurie [HTT]. Indeed, we can take the image under the comparison functor of
some generating set for E, which we can assume to have bifibrant (co)domains, without loss of generality.
Proposition 1.3.4.24 in [HTT] then implies that the image is still a generating set for the quasicategorical
factorization system.

30



In consequence, we can invoke Theorem 2 in Fiorenza and Loregiàn [NTT] to see that we obtain a t-structure
on the triangulated category Ho(A) given by the homotopy category of A.

Conversely, we can rigidify quasicategorical accessible t-structures to our situation.

Proposition 4.10. Any presentable stable quasicategory C with an accessible t-structure can be presented
by a combinatorial stable model category with an accessible t-structure.

Proof. Let C≥0 denote the full subquasicategory of C consisting of all objects X with τ<0X ≃ 0. The inclu-
sion ι: C≥0 → C of quasicategories is a cocontinuous functor between presentable quasicategories. Choose a
cardinal κ such that both C≥0 and C are locally κ-presentable and the functor τ≥0: C → C≥0 is κ-accessible.
Denote by S, respectively T , the full subquasicategory of κ-compact objects in C≥0, respectively C. By
construction, S and T are essentially small quasicategories and the inclusion ι: C≥0 → C sends S to T . The
functor τ≥0 can now be presented as the composition C → P(S) → C≥0, where the first functor is the re-
stricted Yoneda embedding and the second functor is induced by the inclusion S → C≥0 using the universal
cocompletion property of P(S).

Recall Theorem 5.5.1.1.(5) in Lurie [HTT]: a κ-presentable quasicategory can be presented as an ac-
cessible localization of the quasicategory of presheaves on the (essentially small) full subquasicategory of
κ-compact objects. We have the following commutative square of quasicategorical right adjoint functors:

C
τ≥0
−−−→ C≥0y

y

P(T )
ι∗

−−−→ P(S),

where the vertical functors are the (restricted) Yoneda embeddings into presheaf quasicategories and the
bottom functor is restriction along the inclusion ι:S → T .

Using the left adjoint of the homotopy coherent nerve functor, rigidify ι to a fully faithful inclusion
ῑ: S̄ → T̄ of simplicial categories. (First rectify the codomain of ι, then take the full subcategory consisting
of objects weakly equivalent to an object in the domain of ι.) Take the induced adjunction of combinato-
rial model categories of simplicial presheaves and perform a left Bousfield localization with respect to the
maps that are inverted by the corresponding quasicategorical localizations. (As usual, it suffices to take a
generating set of such maps, which exists by accessibility.)

Now use the above theorem to construct a t-structure generated by a set of cofibrations IE obtained by
tensoring a generating cofibration of simplicial sets and the representable functor of an object in the image
of ῑ. The domain of ι corresponds to C≥0, so for any element f of the resulting class E the morphism τ<0f
is an equivalence.

Vice versa, any morphism g with τ<0f an equivalence is weakly equivalent to a cofibration in E. In-
deed, the homotopy factorization system constructed above factors g as an element q of the saturation (in
the sense explained above) of the set IE (hence a cofibration in E), and a morphism h that is right homotopy
orthogonal to IE . As explained above, τ<0q is an equivalence, hence so is τ<0h. Using the definition of IE ,
we immediately show that h is a weak equivalence when evaluated on any element of S̄, and by definition
of S this means that τ≥0h is an equivalence. Thus τ<0h and τ≥0h are equivalences, which means that h is
an equivalence and the morphism g can be presented as q, which has the form we need.
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5 Filtered objects in the language of differential graded categories

Differential graded (dg) categories—i.e., categories enriched over the category of chain complexes over
a ring—are a particularly important class of higher categories due to their wide use. Here we will describe
a construction of the filtered objects in a pretriangulated, idempotent-complete dg category and verify that
it agrees with the constructions in the quasicategorical and model-categorical settings. We do not discuss,
however, spectral sequences, symmetric monoidal structures, or dualizability in this dg setting. Indeed, our
comparison result here relies on embedding the dg construction into a model categorical context, and hence
it seems natural to refer to that context for further results.

5.1. First definitions

Throughout this section we fix a commutative ring R. (Most constructions go through with R a com-
mutative dg ring.)

Definition 5.2. A differential graded category over a ring R is a category enriched over the symmetric
monoidal category of (unbounded) chain complexes over R equipped with the usual tensor product. A dg
functor between dg categories is an enriched functor. The underlying category Z0(C) of a dg category C has
the same objects and 0-cycles in the hom-complexes as morphisms.

The motivating example of a dg category is Ch(R)dg, where one enriches the ordinary category Ch(R)
of chain complexes of R-modules and chain maps over itself. That is, given two objects M,N ∈ Ch(R), the
morphisms from M to N in Chdg(R) form a chain complex of R-modules whose zero cycles are the chain
maps from M to N . Another class of examples is given by sheaves of chain complexes on a space, which
can be naturally enriched to a dg category. Such examples arise in topology (e.g., constructible sheaves) and
geometry (e.g., dg enhancements of D(Coh(X))).

There is a category of dg categories dgCatR, and many familiar constructions from category theory
admit analogs. For instance, there is a common generalization of presheaves in ordinary category theory
and modules in algebra. A dg presheaf or module on a dg category C is a dg functor Cop → Chdg(R). The
collection of all modules on C naturally forms a dg category that we denote C-Mod.

5.3. Homotopy limits and a special class of dg categories

We will need homotopy limits in a dg category, in particular to talk about complete filtered objects.
There are several possible approaches, but we will give the bare minimum needed to realize the construction
of the filtered dg category. Our approach exploits the enriched Yoneda embedding for dg categories, which
preserves limits, allowing us to use model category techniques to talk about homotopy limits of dg modules.

Definition 5.4. Given a small dg category C, let C-Mod denote the dg category of dg functors from Cop

to Chdg(R). We equip it with objectwise weak equivalences and fibrations, so that a natural transformation
is a weak equivalence if on each object in C, it determines a quasi-isomorphism or fibration in Ch(R). Thus
C-Mod becomes an enriched model category over Ch(R) by Theorem 4.31 in Guillou and May [Enrich],
whose acyclicity condition is satisfied by Remark 4.34 there: all functors C(b, a)⊗R −: Ch(R)→ Ch(R) are
left Quillen functors. By construction, C-Mod is a tractable left proper stable model category, because it
inherits these properties from Ch(R). Used in 5.18*, 5.30*.

Remark 5.5. An astute reader will notice that the above definition involves mapping complexes whose
source is not necessarily cofibrant. One is lead to wonder whether such a notion is homotopically correct.
Proposition 3.2 in Toën [HoDG] shows that Dwyer–Kan equivalences of source categories induce Dwyer–Kan
equivalences of dg modules. One can also show that the quasicategory (NdgC-Mod)[W−1] is equivalent to
Fun(NdgC,U Ch(R)) by generalizing the proof of Proposition 1.3.4.25 in [HA].

Definition 5.6. A dg module on a small dg category C is weakly representable if it is weakly equivalent to
a representable dg module.

Notation 5.7. Let C-Mod◦
wr denote the full subcategory of weakly representable bifibrant dg modules.

Now we turn to defining homotopy limits.
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Definition 5.8. A dg category C admits D-indexed homotopy limits if the (objectwise) homotopy limit of
a D-indexed diagram of representable dg modules is weakly representable. Used in 5.30*.

This definition says that we view a diagram in C as a diagram in C-Mod, where we can compute its
homotopy limit using model categories. If that homotopy limit in dg modules is representable up to weak
equivalence, then we know what the homotopy limit should be in C itself.

Remark 5.9. Other approaches to homotopy limits use weighted colimits (i.e., replicate a dg analog of the
Bousfield–Kan approach to simplicially enriched categories) or exploit the dg nerve construction, discussed
below, which produces a quasicategory from a dg category.

With these definitions in hand, we introduce the class of well-behaved dg categories relevant to stable
phenomena, which are the natural analogs of stable quasicategories or stable model categories. (A useful
reference for these notions and for comparisons with ∞-categories is [DGstable].)

Definition 5.10. A dg category is pretriangulated if it admits finite homotopy limits (in the sense of the
above definition) and the suspension of any representable module is weakly representable.

Our definition is equivalent to the usual one by the following observations. First, there is a terminal
object in the sense that the zero module, which assigns the zero chain complex to every object of C, is weakly
representable. In fact, the existence of a terminal object and of homotopy fibers (computed as objectwise
mapping cocones) implies the existence of equalizers (constructed as the homotopy fiber of the difference)
and therefore arbitrary finite homotopy limits, constructed as the equalizer of two maps

∏

O∈Ob

O →
∏

f∈Mor

codom(f).

The name “pretriangulated” is justified by the fact that the homotopy category (i.e., H0(C)) of a pre-
triangulated category C is a triangulated category; see, for example, Proposition 1 in Bondal and Kapra-
nov [Enhanced]. Additionally, the dg nerve of a pretriangulated dg category is a stable ∞-category; see, for
example, Theorem 4.3.1 in Faonte [SNIC]. Thus one can see dg categories as a particular strict model for
stable ∞-categories that have generalized Eilenberg–MacLane spectra as spectral mapping complexes.

Definition 5.11. A dg category C is idempotent-complete (alias Karoubi complete) if retracts of repre-
sentable dg modules on C are weakly representable.

Examples of idempotent-complete pretriangulated dg categories include all the classical ones: chain
complexes of R-modules, modules of chain complexes on a site, chain complexes of quasicoherent sheaves
in algebraic geometry, among many others. (See Toën [LecDG] or simply follow references to Bondal and
Kapranov [Enhanced] and Keller [KelDG] for more examples.)

Remark 5.12. Two types of limits will show up in our constructions below: homotopy fibers (i.e., derived
kernels) and homotopy sequential limits. We recall two concrete models for these notions in the world of
chain complexes.

The mapping cocone of a chain map f :X → Y in Ch(R) is given by the complex

C(f) = (X ⊕ Y [−1], dX + dY [−1] + f).

That is, the differential sends (x, y) to (dx, dy + f(x)). A cocycle (x, y) is precisely a cocycle x for X with
the property that f(x) is exact in Y , i.e., f(x) is homologous to zero. There is a chain map C(f) → X by
projection.

Given a functor F :Z → Z0(Ch(R)), the product
∏

n F (n) admits two natural endomorphisms: the
identity id and the “shift” sF , which is the product of the maps F (n− 1)→ F (n). The mapping cotelescope

of a functor F :Z→ Z0(Ch(R)) is the mapping cocone of the endomorphism id− sF of the object
∏

n F (n).

5.13. Relationship with model and ∞-categories

To work in a homotopically correct fashion with dg categories (and to compare with other approaches
in this paper), it will be useful to relate them with quasicategories and model categories.
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5.14. The differential graded nerves Used in 5.19.

There are several ways to convert a dg category into a quasicategory. On the one hand, one can pig-
gyback on the Dold–Kan correspondence: construct a simplicially enriched category by keeping the same
objects but applying the Dold–Kan correspondence to (the appropriate truncation of) the hom-complexes,
and then take the homotopy-coherent nerve to obtain a quasicategory. This big dg nerve is defined as the
(homotopy coherent) nerve of the simplicial category of Construction 1.3.1.13 in [HA]. On the other hand,
Lurie constructs a small dg nerve functor Ndg in §1.3.1 of [HA], which will be our preferred construction and
which below we will simply call the dg nerve, following Lurie. Although the two nerves are not isomorphic,
Proposition 1.3.1.17 establishes a quasicategorical equivalence between them. (Additional details can be
found in [SNIC]. Faonte introduced the terminology of big/small dg nerve.)

In practice, one must take care when thinking about a dg category as presenting an ∞-category, for
exactly the same reasons that one works with projective or injective resolutions in ordinary homological
algebra. For example, it is often the case that the dg category is equipped with a model structure enriched
over Ch(R). In such setting, where C is a dg model category, Proposition 1.3.1.17 in Lurie [HA] shows that
the underlying quasicategory of C is equivalent to the dg nerve of the category of bifibrant objects in C.

It is important to recognize that the dg nerve functors discard a substantial amount of information:
they only see the connective part of each chain complex of maps in a dg category. Recall that for an un-
bounded chain complex X , its connective cover τ≥0X → X is obtained by setting (τ≥0X)n = Xn for n > 0,
(τ≥0X)n = 0 for n < 0, and (τ≥0X)0 = ker(X0 → X−1). (This construction is often called the “smart
truncation”.) The connective cover functor is symmetric lax monoidal, so applying it to each hom-complex
in a dg category C produces another dg category τ≥0C. The dg nerve functors send the canonical functor
τ≥0C→ C to an isomorphism, and hence lose data about an arbitrary dg category.

For us, however, the dg categories of interest are pretriangulated, and a pretriangulated dg category can
be canonically reconstructed from its connective cover. This feature is analogous to how stable∞-categories
can be defined as ordinary∞-categories with certain properties (so that the homotopy groups of its mapping
spaces are concentrated in nonnegative degrees), even though every stable∞-category is canonically enriched
over the ∞-category of spectra and its mapping spectra naturally have homotopy groups in both positive
and negative degrees.

5.15. Comparison results

With these tools in place, we can introduce an analogy that may be helpful for the reader coming from
higher categories or algebraic topology: dg categories are to stable model categories as chain complexes are
to spectra. Indeed, this analogy can be made precise, as follows. First, every combinatorial stable model
category is Quillen equivalent to the category of enriched presheaves of spectra on a small category enriched
in spectra. Furthermore, if we restrict to those combinatorial stable model categories whose mapping spectra
are Eilenberg–MacLane spectra, then every such model category is Quillen equivalent to the model category
of dg modules on a small dg category. Thus, the underlying quasicategory of such a combinatorial stable
model category is equivalent to the dg nerve of the bifibrant objects in the associated dg model category.

This analogy can be pushed further. The category of dg categories dgCatR has an obvious notion of
weak equivalence: a dg functor is a quasi-equivalence if it is always a quasi-isomorphism on hom-complexes
and it induces a categorical equivalence of homotopy categories. But one can enlarge this class of weak
equivalences of dg categories to Morita equivalences : these are the dg functors that induce a Dwyer–Kan
equivalence of the associated categories of dg modules. There is a model category structure on the category
of small dg categories, using Morita equivalences and Dwyer–Kan cofibrations, and the fibrant objects are
precisely small idempotent-complete pretriangulated dg categories. Furthermore, the underlying∞-category
of this “Morita” model category is equivalent to the ∞-category of small idempotent-complete R-linear sta-
ble ∞-categories and exact functors (Corollary 5.5 in Cohn [DGstable]). In short, we know how to translate
between a nice class of stable ∞-categories and their dg counterparts.

5.16. A useful technical proposition

The following proposition says something quite useful: for a dg category C, the ∞-category obtained by
inverting chain homotopy equivalences on the underlying category Z0C knows all the same higher data as C
itself. This fact will play a role in proving Theorem 5.33, our main comparison theorem for dg categories.
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Proposition 5.17. Suppose C is a small dg category. Denote by W the set of chain homotopy equivalences
in C. The canonical functor NZ0(C)[W−1]→ NdgC is an equivalence of quasicategories provided that C can
be realized as a full dg subcategory of some dg model category C′ such that the objects in C are cofibrant
as objects of C′ and are closed under chain homotopy equivalences between cofibrant objects in C′. Used in

5.32, 5.33*, 5.33*.

Remark 5.18. Our result is a modest generalization of Proposition 1.3.4.5 of [HA], which applies to a
subcategory of a category Ch(A) of chain complexes. To prove that proposition, Lurie proves a statement
similar to ours for simplicially-enriched categories in Proposition 1.3.4.7 of [HA].

Proof. The proof consists of producing a zigzag of (weak) equivalences between the relevant relative cate-
gories, using several intermediate relative categories. We will also make manifest exactly where the hypoth-
esis on C appears.

Consider the model category C-Mod (Definition 5.4). The dg Yoneda embedding identifies C with the
full dg subcategory C-Mod◦

repr of representable dg presheaves in C-Mod◦, the bifibrant objects of C-Mod.
Thus, the induced functor NdgC→ Ndg(C-Mod◦) is fully faithful, so our goal will be to identify the category
NZ0(C)[W−1] with this full subcategory. By Lemma 5.19 below, the functor

(NZ0(C-Mod◦))[W−1]→ Ndg(C-Mod◦)

is an equivalence of quasicategories. This allows us to get rid of the dg nerves and work exclusively with
relative categories.

To show that Z0C → Z0(C-Mod◦) is a homotopically fully faithful functor of relative categories, we
recall that such functors satisfy the 2-out-of-3 property. First, we postcompose with the inclusion

Z0(C-Mod◦)→ Z0(C-Mod),

which is a homotopy equivalence of relative categories; a bifibrant replacement functor determines an inverse.
Next, we factor Z0C → Z0C-Mod through the inclusion Z0(C-Modwr) → Z0C-Mod, which is homo-

topically fully faithful by Lemma 5.20 below. We then further factor Z0C → Z0(C-Modwr) through the
inclusion Z0(C-Mod◦

wr) → Z0(C-Modwr), which is a homotopy equivalence of relative categories by virtue
of a bifibrant replacement functor.

We now deploy some tools from §3.34 to show that the inclusion Z0C→ Z0(C-Mod◦
wr) is a Dwyer–Kan

equivalence of relative categories. Let IE denote all the cofibrations obtained as a tensor product of a rep-
resentable dg presheaf with a generating cofibration Z[n − 1] → (Z[n − 1] ← Z[n]), for all n ≥ 0, in the
category of chain complexes of abelian groups. The induced homotopy factorization system determines a
t-structure on C-Mod with a truncation functor τ≥0. As usual, this functor fits into an adjunction

ι≥0: τ≥0C-Mod−→←− C-Mod: τ≥0,

as explained in §3.34.
Consider the inclusion

τ≥0Z
0(C-Mod◦

wr)→ Z0(C-Mod◦
wr),

where the left category is the image of Z0(C-Mod◦
wr) under τ≥0 (which differs from dg presheaves with

vanishing negative chain degrees because hom-complexes in C need not be concentrated in degree 0). The
bifibrancy condition is preserved by τ≥0: all objects are fibrant, whereas cofibrancy is preserved by the very
definition of τ≥0: we factor 0 → X into 0 → τ≥0X → X , where the first morphism belongs to E, which
is a subclass of cofibrations. The weak representability condition is preserved by τ≥0 because τ≥0 preserves
weak equivalences and sends representable dg presheaves to themselves. The unit of the second adjunction
is the identity map and the counit of the second adjunction is the natural transformation τ≥0X → X , which
is a weak equivalence by assumption. Thus the second adjunction is a homotopy equivalence of relative
categories. Hence the right inclusion

τ≥0Z
0(C-Mod◦

wr)→ Z0(C-Mod◦
wr)
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is a Dwyer–Kan equivalence of relative categories.
To show that the inclusion Z0C→ τ≥0Z

0C-Mod◦
wr is a homotopy equivalence of relative categories, we

construct an inverse relative functor τ≥0Z
0C-Mod◦

wr → C. It is at this point that the special assumptions
of the dg category C become important; the previous discussion applies to any small dg category. The dg
category C-Mod is the free dg cocompletion of C, which means that there is a canonical dg cocontinuous (i.e.,
preserving colimits and tensorings) dg functor V :C-Mod→ C′. The functor Z0V sends generating (acyclic)
cofibrations to (acyclic) cofibrations (since all objects in C ⊂ C′ are cofibrant and C′ is a dg model category)
and therefore is a left Quillen functor. In particular, it preserves weak equivalences between cofibrant ob-
jects. We restrict the domain of Z0V to τ≥0Z

0C-Mod◦
wr and claim that the resulting functor preserves weak

equivalences and factors through C ⊂ C′. Weak equivalences between bifibrant objects are chain homotopy
equivalences, and any dg functor preserves chain homotopy equivalences. Any object X in τ≥0Z

0C-Mod◦
wr

is chain homotopy equivalent to a representable dg presheaf X ′ (itself a bifibrant object), which implies
that the images of both X and X ′ under Z0V are also cofibrant and chain homotopy equivalent. Therefore
Z0V (X) is in C.

Thus we have constructed functors C → τ≥0Z
0C-Mod◦

wr and τ≥0Z
0C-Mod◦

wr → C that preserve weak
equivalences. The composition C → C is the identity functor. The other composition is not the identity
functor, but becomes the identity if we restrict its domain and codomain to representable dg presheaves.
This shows that C→ τ≥0Z

0C-Mod◦
wr is a homotopically fully faithful functor. This functor is homotopy es-

sentially surjective by definition of weakly representable dg presheaves. Thus it is a Dwyer–Kan equivalence
of relative categories.

Our zigzag of fully faithful functors of∞-categories between NdgC and Z0C[W−1] shows that the functor
Z0C[W−1]→ NdgC is fully faithful. It is also essentially surjective because both ∞-categories have the same
set of objects. Therefore it is an equivalence of ∞-categories.

The proof of the proposition relied on two lemmas that we now prove. The first lemma uses the Dold–
Kan correspondence, and we denote the Dold–Kan functor by Γ:Ch≥0 → sSet.

Lemma 5.19. Suppose C is a model category enriched over the model category of unbounded chain com-
plexes of abelian groups with its projective model structure. Given a cofibrant object X and a fibrant
object Y in C, the derived mapping space Map(X,Y ) can be computed as Γτ≥0C(X,Y ), the Dold–Kan
functor of the connective cover (§5.14) of the hom-complex C(X,Y ). Used in 5.18*.

Proof. Let MorC denote the set of morphisms in the category C. The derived mapping space Map(X,Y )
can be computed as the simplicial set n 7→ MorC(Wn, Y ), where W• is a Reedy cofibrant replacement of
the constant cosimplicial object with value X . For instance, we can take W• = Z[∆•] ⊗ X , with induced
cosimplicial maps, which are all weak equivalences, soW is indeed a replacement. Furthermore,W• is Reedy
cofibrant because the latching maps Z[∂∆n]⊗X → Z[∆n]⊗X are cofibrations. We now compute

Map(X,Y ) = (n 7→ MorC(Wn, Y ))

= (n 7→ MorC(Z[∆
n]⊗X,Y ))

= (n 7→ MorCh(Z[∆
n],C(X,Y )))

= (n 7→ MorCh≥0
(Z[∆n], τ≥0C(X,Y )))

= (n 7→ MorsSet(∆
n,Γτ≥0C(X,Y )))

= Γτ≥0C(X,Y ),

which completes the proof.

Lemma 5.20. Suppose C is a model category and D ⊂ C is a full subcategory of C closed under weak
equivalences. Then the inclusion D→ C is a homotopically fully faithful functor of relative categories, i.e.,
the induced functor of quasicategories UD→ UC is fully faithful. Used in 5.18*.

Proof. Proposition 6.2(i) of [Calc] gives a simple construction of the mapping space in a relative category
that admits a homotopy calculus of fractions (Definition 6.1(i) in [Calc]). Specifically, the simplicial set
Map(X,Y ) in such a relative category can be computed as the nerve of the category W−1CW−1 as defined
in §5.1 of [Calc]. (Take m = W−1CW−1 there.) Its objects are zigzags X ←̃ A → B ←̃ Y and morphisms
are pair of weak equivalences A →̃ A′, B →̃B′ that make the corresponding diagram commute.
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We verify below that D and C admit a homotopy calculus of fractions. This allows us to conclude
that the inclusion D → C induces a fully faithful functor of the associated simplicial categories, i.e., a
homotopically fully faithful functor of the associated hammock localizations.

The existence of a homotopy calculus of fractions is granted by Proposition 8.2 in [Calc], whose con-
ditions are satisfied for C by Proposition 8.4 there. The same holds for D, for which it suffices to observe
that all constructions in Proposition 8.4 produce new objects in C that are weakly equivalent to one of the
objects of the given diagram in D and hence are in D themselves.

5.21. The filtered category of a dg category

We now turn to our main purpose: describing the filtered dg category of a well-behaved dg category,
namely an idempotent-complete pretriangulated dg category. In effect, we mimic our constructions with
quasicategories and model categories, with minor modifications. Unfortunately, a technical issue prevents
mindless mimicry: although the category of dg categories dgCatR has a closed monoidal structure given
by the pointwise tensor product, this monoidal product is not compatible with Dwyer–Kan equivalences.
In particular, the correct (derived) tensor product or hom of dg categories cannot be computed using this
monoidal structure. Hence we cannot simply define the dg category of sequences Seq(C) of C as the hom of dg
categories HomdgCatR(ZR,C) where ZR is the dg category whose objects are integers and whose morphisms
m→ n (m ≤ n) form the chain complex R[0]. Instead, we take a bare-handed approach.

Remark 5.22. Another construction of the derived internal hom of dg categories is given by Toën [HoDG]:
if A and B are two dg categories, their derived internal hom can be computed as the dg category of bifibrant
right quasi-representable dg modules on Aop⊗̂B, where ⊗̂ denotes the derived tensor product. Here a dg
module F :A⊗̂Bop → Ch(R) is right quasi-representable if for any a ∈ A the functor F (a,−):Bop → Ch(R)
is weakly equivalent to a representable dg module on B. The model structure can be taken to be the projec-
tive model structure, so bifibrancy reduces to projective cofibrancy. We choose not to use this construction
because it is not very explicit.

Definition 5.23. A sequence in a dg category C is a functor F :Z→ Z0(C).

The obvious, non-dg notion of a map of sequences F → G is a collection of maps F (n) → G(n) that
intertwine with the structure maps F (n) → F (n + 1) of the sequences. Using this definition, we have an
ordinary category of sequences, which should be the underlying category of any reasonable dg category of
sequences. That is, to have a dg category of sequences, we need a hom-complex between any pair of se-
quences, with the property that its zero cycles recover this obvious notion. To do that, we need to unpack
the obvious notion just discussed.

Given a sequence F in C, let sF denote the shift, which is the map

sF :
∏

n∈Z

F (n)→
∏

n∈Z

F (n)

that sends an element (an)n∈Z to the family whose nth element is F (n − 1)(an−1). That is, it applies the
defining structure maps of F . Thus the obvious notion of map of sequences φ:F → G is that sG ◦φ = φ◦sF .
We can weaken this condition in a natural way to get the hom-complex.

Definition 5.24. Given sequences F , G in C, let Seq(F,G) denote the mapping cocone of the map

[−, s]FG:
∏

n∈Z

C(F (n), G(n))→
∏

m∈Z

C(F (m), G(m+ 1))

sending a family (φn) of maps to the family (φn ◦ sF − sG ◦ φn−1). In other words, it is the homotopy
equalizer for precomposition by the shift for F and postcomposition by the shift for G. (Here [−, s] is meant
to suggest a commutator with s.)

Remark 5.25. If one replaces mapping cocone with the kernel (equivalently, the homotopy equalizer with
an ordinary equalizer) in the definition above, one recovers the notion of a (strict) natural transformation
between two functors Z→ C. In our case, natural transformation commute up to a given homotopy.
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We want Seq(F,G) to be the morphisms in a dg category, so we need to describe composition as a chain
map and verify the associativity of composition. Explicitly, we define

◦Seq: Seq(G,H)⊗ Seq(F,G)→ Seq(F,H)

as follows. An element of Seq(F,G) is a pair

(φ, ψ) ∈
∏

n∈Z

C(F (n), G(n)) ⊕
∏

m∈Z

C(F (m), G(m + 1))[−1],

and the differential acts as
d(φ, ψ) = (dφ,−dψ + [φ, s]),

where on the left side d means the differential in Seq(F,G), but on the right side dφ means the differential
in
∏

n∈Z
C(F (n), G(n)) and dψ means the differential in

∏
n∈Z

C(F (n), G(n + 1)). We verify that d2 = 0:

d2(φ, ψ) = d(dφ,−dψ + [φ, s]) = (d2φ, d2ψ − d[φ, s] + [dφ, s]) = (0, 0).

Then we define the composition by

(φ′, ψ′) ◦Seq (φ, ψ) = (φ′ ◦ φ, ψ′ ◦ φ+ φ′ ◦ ψ).

Direct computation shows that this composition is a chain map and also associative.

Definition/Lemma 5.26. There is a dg category of sequences Seq(C) in a dg category C whose objects
are functors F :Z→ Z0(C) and whose hom-complexes are Seq(F,G), with composition as just defined. Used

in 5.30.

Remark 5.27. Our construction Seq actually defines an endofunctor on the category dgCatR of dg cat-
egories. Indeed, it is a functor that preserves Dwyer–Kan equivalences and hence is a functor of relative
categories. To see that Seq induces a quasi-isomorphism on each mapping complex, note that the construc-
tion of Seq uses homotopy limits of mapping complexes and therefore preserves quasi-isomorphisms. To see
that Seq preserves quasi-equivalences, we argue as follows. The cofibrant replacement functor Q on dg cate-
gories preserves the set of objects and produces a cofibrant dg category. If we apply it to a quasi-equivalence
C → D, then the QC → QD is not only a quasi-equivalence but is in fact a chain homotopy equivalence
(a functor that admits an inverse functor, up to a chain homotopy), because any quasi-equivalence between
cofibrant dg categories is one. Moreover, any chain homotopy equivalence of dg categories is a Dwyer–Kan
equivalence. By functoriality, Seq preserves chain homotopy equivalences. Hence, we have a commuta-
tive square using the functors C → D, QC → QD, QC → C, and QD → D; these last two functors are
quasi-equivalences that induce identities on objects. If we apply Seq to this square, we see that all four
functors induce quasi-isomorphisms on hom-complexes and the functor SeqQC→ SeqQD is a chain homo-
topy equivalence. Thus, it suffices to show that the functors SeqQC → SeqC and SeqQD → SeqD are
homotopy essentially surjective. Concretely, an object X of Seq E (where E is any dg category) is a sequence
of objects X(n) of E together with elements f(n) ∈ Z0E(X(n), X(n + 1)). The dg functor QE → E is an
acyclic fibration of dg categories, in particular, every map QE(X(n), X(n+ 1)) → E(X(n), X(n+ 1)) is an
acyclic fibration of chain complexes, so every element f(n) can be lifted to QE(X(n), X(n + 1)). By the
2-out-of-3 property for Dwyer–Kan equivalences of dg categories, we thus deduce that Seq(C)→ Seq(D) is
a Dwyer–Kan equivalence.

We now turn to complete filtered sequences. We choose to identify these as a dg subcategory of se-
quences.

Definition 5.28. A sequence F in a dg category C is complete if its homotopy limit is weakly equivalent
to the zero module on C.

This definition says, in essence, that a sequence X is complete if the “initial” term X(−∞) = limX(n)
is 0, where limit means the homotopy limit over Z. Motivation for this definition can be found in §2.7, where
we explain how the classical notion of completeness relates to this version. If C has a zero object, then a
bounded below sequence (i.e., F for which F (n) = 0 for sufficiently small n) is complete.

Thus we come to our key definition.
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Definition 5.29. The filtered dg category Fil(C) is the full dg subcategory of Seq(C) consisting of complete
sequences. Used in 5.30.

To justify this definition, we now turn to showing that it agrees with our stable∞-category constructions
when we work with well-behaved dg categories.

A technical proposition plays a key role. Recall that in a model category C, we denote the full subcat-
egory of bifibrant objects by C◦.

Proposition 5.30. Let A be a tractable, left proper, stable Ch(R)-enriched model category. Then the dg
category Seq(A)◦ is quasi-equivalent to the dg category Seq(A◦) constructed in Definition/Lemma 5.26.
Likewise, the dg category Fil(A)◦ is quasi-equivalent to the dg category Fil(A◦) constructed in Defini-
tion 5.29. Used in 3.48, 5.30*, 5.32*, 5.35*, 5.35*.

Proof. We have a dg functor Seq(A)◦ → Seq(A◦), which is an inclusion on objects. (Recall that a bifibrant
functor Z→ A has bifibrant levels.) For the mapping complexes, we use the following map in Ch(R):

Seq(F,G) =

∫

n∈Z

A(F (n), G(n))→ Seq(F,G),

where the chain homotopy given by the second summand in Seq(F,G) is set to zero, which also ensures that
the composition is preserved. Recall that Seq was defined as a homotopy end of the same type. Due to
the fact that F and G are projectively bifibrant, the end also computes the homotopy end, so the map is a
weak equivalence. Homotopy essential surjectivity is shown by applying the projective cofibrant and fibrant
replacement functors.

By Proposition 3.31, the dg category Fil(A)◦ is the full subcategory of Seq(A)◦ consisting of derived
complete sequences. Homotopy limits of sequences computed in the model category Seq(A)◦ map to homo-
topy limits of sequences in the dg category Seq(A◦) (Definition 5.8), thus Fil(A)◦) maps to the full subcat-
egory Fil(A◦) of Seq(A◦) consisting of derived complete sequences. Thus the dg functor Fil(A)◦ → Fil(A◦)
is a quasi-equivalence.

The dg model category C-Mod is a tractable, left proper, stable Ch(R)-enriched model category, as
noted in Definition 5.4, so we can apply Proposition 5.30. This leads to another useful description of the
relevant categories, in the following corollary.

Recall that C-Mod◦
wr denotes the full subcategory of weakly representable bifibrant dg modules. Simi-

larly, let Seq(C-Modwr)
◦ denote the full subcategory of Seq(C-Mod) consisting of bifibrant sequences whose

entries are weakly representable dg modules. Let Fil(C-Modwr)
◦ denote the corresponding full subcategory

of Fil(C-Mod).

Corollary 5.31. For any small idempotent-complete pretriangulated dg category C, the dg category Seq(C)
is quasi-equivalent to Seq(C-Modwr)

◦. Similarly, Fil(C) is quasi-equivalent to Fil(C-Modwr)
◦. Used in 5.33*.

Remark 5.32. Below we require all these categories to be small in order to apply Proposition 5.17. This size
condition is achieved via a standard trick: we work only with those dg modules M such that for each X ∈ C,
the underlying set of the chain complex M(X) is a subset of a set of sufficiently large cardinality. (Suffi-
ciently large here means that the inclusion of such restricted objects into all objects is homotopy essentially
surjective, i.e., any object is weakly equivalent to a restricted object.) We use this convention till the end of
this subsection.

Proof. The Yoneda embedding C → C-Mod◦
wr is a quasi-equivalence of dg categories, where the target

consists of bifibrant weakly representable dg modules. Therefore, the induced dg functor

Seq(C)→ Seq(C-Mod◦
wr)

is also a quasi-equivalence.
The dg functor constructed in Proposition 5.30 restricts to a dg functor

Seq(C-Modwr)
◦ → Seq(C-Mod◦

wr),

which induces quasi-isomorphisms on hom-complexes—as shown there—and is homotopy essentially surjec-
tive by applying the (projective) bifibrant replacement functor. For the filtered case we further restrict the
functor to Fil(C-Modwr)

◦ → Fil(C-Mod◦
wr).

Finally, we obtain our main comparison result for dg categories.
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Theorem 5.33. For any small idempotent-complete pretriangulated dg category C, the dg nerve of Fil(C)
is equivalent to the filtered ∞-category of the dg nerve of C. Similarly the dg nerve of Seq(C) is equivalent
to the ∞-category of sequences in the dg nerve of C. Used in 5.16*.

Proof. We establish the statement for sequences first. We have

Ndg Seq(C) ≃ Ndg Seq(C-Modwr)
◦

≃ U(Seq(C-Modwr)
◦)

≃ U(Seq(C-Modwr))

≃ Seq(U(C-Mod)wr)

≃ Seq(U(C-Modwr))

≃ Seq(Ndg(C)).

Here Modwr denotes the full dg subcategory of dg modules weakly equivalent to representable dg mod-
ules. The first step was established in Corollary 5.31. The second step follows from Proposition 5.17: take
Seq(C-Modwr)

◦ as C and Seq(C-Mod) as C′. Then we have an equivalence of quasicategories

U(Seq(C-Modwr)
◦) ≃ Ndg(Seq(C-Modwr)

◦).

The third step is induced by the inclusion Seq(C-Modwr)
◦ → Seq(C-Modwr), which has an inverse

given by the bifibrant replacement.
The third to the last step follows from Proposition 4.3 combined with the fact that the equivalence

between U(Seq(C-Mod)) and Seq(U(C-Mod)) respects the full subcategories of sequences of representables.
The second to the last step is a simple consequence of the fact that C-Modwr → C-Mod is a full dg

subcategory, hence so is U(C-Modwr)→ U(C-Mod).
For the last step we must establish an equivalence of quasicategories U(C-Mod◦

wr) → Ndg(C). Ob-
serve that C → C-Mod◦

wr is a quasi-equivalence of dg categories. Now Proposition 5.17 shows the de-
sired equivalence: take C-Mod◦

wr as C and C-Mod as C′. Then we have an equivalence of quasicategories
U(C-Mod◦

wr) ≃ Ndg(C-Mod◦
wr) ≃ Ndg(C).

We extend the statement from sequences to filtered objects by observing that the full subcategories of
complete sequences in Seq(C) and Seq(Ndg(C)) correspond to each other under the above chain.

5.34. Uniqueness of the dg enhancement of the filtered derived category

Let A be a Grothendieck abelian category. Our work above shows that its filtered derived category Dfil(A)
(see Definition 1.7) admits a dg enhancement, i.e., a pretriangulated dg category whose homotopy category
is equivalent to Dfil(A) as a triangulated category. We now turn to showing that this enhancement is unique
in the sense of Orlov and Lunts (see [Uniq, EnhGroth]), meaning that any other pretriangulated dg category
whose homotopy category is equivalent to Dfil(A) is quasi-equivalent (via a zigzag of quasi-equivalences) to
the dg category Fil(Ch(A)◦).

One convenient way to ensure that one makes homotopically meaningful constructions with Chdg(A) is
to equip it with a combinatorial dg model structure whose weak equivalences are quasi-isomorphisms and
fibrations are degreewise epimorphisms. Then we work with the full dg subcategory Chdg(A)

◦ of bifibrant
objects.

Proposition 5.35. The homotopy categories of the dg categories Seq(Ch(A)◦) and Fil(Ch(A)◦)) admit
unique enhancements (as triangulated categories) to pretriangulated dg categories.

Proof. Our approach will exploit the connection with model categories. As noted, Ch(A) admits a natural
combinatorial model structure. Further, the model category Seq(Ch(A)) is the same as the model category
Ch(Seq(A)), where Seq(A) := Fun(Z, A) is again a Grothendieck abelian category, so Ch(Seq(A)) provides a
model category, as just described.

By Proposition 5.30, we know that the dg category Seq(Ch(A)◦) has the same underlying homotopy
category as the model category Seq(Ch(A)). But the homotopy category of Seq(Ch(A)) is precisely the
derived category of the Grothendieck abelian category Seq(A): chain complexes of sequences in A are the
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same as sequences of chain complexes in A, and quasi-isomorphisms of chain complexes of sequences in A are
the same as sequences of quasi-isomorphisms of chain complexes in A. Theorem A in Canonaco and Stellari
[EnhGroth] then tells us that the derived category of any Grothendieck abelian category (including Seq(A))
admits a unique dg enhancement.

The case of Fil(Ch(A)◦)) is more subtle, as we cannot directly apply Theorem A. Instead, note that
Fil(Ch(A)◦) has the same underlying homotopy category as Fil(Ch(A)) by Proposition 5.30. We then apply
Theorem C of [EnhGroth] to Fil(Ch(A)), as follows. In the notation of that theorem, let the category A be
the full subcategory of Seq(A) on some set of generators of Seq(A), and let D(A) be the derived category of
A viewed as a dg category. Let the localizing subcategory L0 of D(A) be such that the (Verdier) localization
of D(A) at L0 is equivalent to D(Seq(A)) as a triangulated category (and the left Bousfield localization of
Fun(Aop,Ch(Z)) at L0 is Quillen equivalent to Seq(Ch(A)) as a model category). Now construct a new local-
izing subcategory L by adding to L0 all the homotopy constant sequences and then taking the closure under
shifts and small homotopy colimits. Hence, the new localization is the homotopy category of Fil(Ch(A)) and
is well generated because Fil(Ch(A)) is a combinatorial model category.

Condition (b) in the cited work requires that in the homotopy category of Fil(Ch(A)), there is only one
morphism from A[0] to

∐
I Ai[ki], where A and Ai are objects in A, I is a set, and ki < 0. This condition

is satisfied because the objects involved are complete and for degree reasons every map must be the zero
map (for instance, the projective resolution will replace A[0] with something concentrated in degrees 0 and
below, so clearly there are no maps to Ai[ki] if ki < 0, since this lives in a positive degree).

6 Application: filtered operads and algebras over them

In this section we very briefly indicate how to obtain a homotopy theory of filtered operads, and (filtered)
algebras, by combining the abstract machinery of this paper with that in Pavlov and Scholbach [Operads].

Given a monoidal model category C and a set W of colors, let OperW (C) denote the category of W -
colored symmetric operads with values in C. (See Kelly [OpMay] for a definition in the single-colored case.)
Given an operad P ∈ Oper(C), and M a left module category over C, let AlgP (M) denote the category of
P -algebras in M. (Often we take M = C.)

Definition 6.1. Let A be a symmetric monoidal stable model category. The category of W -colored (sym-
metric) filtered operads in A is the category of W -colored (symmetric) operads in the symmetric monoidal
category Fil(A) of filtered objects in A.

Definition 6.2. Let M be a stable model category that is a left module over A. The category of filtered
algebras in M over a filtered operad O is AlgO(Fil(M)).

Remark 6.3. We emphasize that a filtered operad is not the same as a sequence of operads, and we will not
develop here the notion of a filtered object in operads. In a sequence {Ok} of operads, one can only compose
operations at a fixed index k, whereas in a filtered operad, composition mixes stages of the filtration. A sim-
ilar issue is visible at the level of associative algebras. In a filtered associative algebra, the product of an
element from the mth stage and nth stage lives in the (m+n)th stage. In a sequence of associative algebras,
by contrast, supposing m ≤ n, an element in the mth algebra maps to an element of the nth algebra, but
any products then remain in the nth algebra.

Remark 6.4. When A is the category of chain complexes, the notion of a filtered operad considered here
recovers that defined by Kimura, Stasheff, and Voronov in §5 of [HMC] by requiring the n-ary operations of
an operad to be a cofibrant sequence.

Theorem 6.5. Let A be a (symmetric) flat, (symmetric) h-monoidal, symmetric monoidal, compactly gen-
erated, combinatorial stable model category. For a fixed set of colors W the category of filtered W -colored
(symmetric) operads in A has a compactly generated combinatorial model structure, as does the category
of filtered algebras over any fixed filtered colored (symmetric) operad. Furthermore, weak equivalences of
operads induce Quillen equivalences of model categories of algebras.

Proof. Apply Theorem 5.10 and Theorem 7.10 of [Operads] to the symmetric monoidal model category
Fil(A), which satisfies the assumptions of these theorems by Proposition 3.57.
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Example 6.6. If A is the category of rational chain complexes (or over any characteristic zero field k),
then the conditions of the above theorem are satisfied in the symmetric case. Hence filtered algebras over
filtered operads in chain complexes over k admit a model structure, and quasi-isomorphisms of operads
induce Quillen equivalences.

Nonexample 6.7. The conditions of the above theorem are satisfied only in the nonsymmetric case when
A is the category of chain complexes of abelian groups, vector spaces over a field of characteristic p, or,
more generally, modules over a ring. For such categories, the symmetric case does not apply. Recall, for
instance, that the transferred model structure does not exist on commutative differential graded algebras in
characteristic p.

For symmetric operads one needs the rather strong condition of symmetric flatness, which is not satis-
fied, for instance, by simplicial sets or chain complexes of abelian groups. However, for the case when A is
the category of symmetric spectra, one can obtain much easier criteria to verify, as explained in the work of
the second author and Scholbach [Spectra].

Theorem 6.8. LetC be a flat, h-monoidal, symmetric monoidal, compactly generated, combinatorial model
category, R be a commutative monoid in symmetric sequences in C, andW be a fixed set of colors. The cat-
egory of filtered W -colored (symmetric) operads in symmetric R-spectra in C admits a compactly generated
combinatorial model structure, as does the category of filtered algebras over a fixed such operad. Further-
more, weak equivalences of filtered operads induce Quillen equivalences of categories of filtered algebras.

Proof. This follows from Theorem 3.4.1 and Theorem 3.4.4 in [Spectra] and Proposition 3.57.

Often, we are interested in the case where R is a free commutative monoid on a symmetric sequence
concentrated in degree 1, where it is given by an object R1 ∈ C.

Example 6.9. If C is pointed simplicial sets and R1 = S1
∗ , the pointed simplicial circle, then symmetric

R-spectra are symmetric simplicial spectra. We thus obtain a model structure on filtered algebras in simpli-
cial symmetric spectra over filtered operads in simplicial symmetric spectra, in particular, filtered simplicial
operads.

Example 6.10. For natural sequences of Lie groups, such as the orthogonal groups O(n), the Thom spec-
trum MO is filtered by the sequence MO(n). Similarly, MU is filtered by the sequence MU(n). These are
important examples of filtered E∞ ring spectra. The (symmetric) Thom spectrum MO(m) has as its kth

spectral level the simplicial set BO(m)R
k⊕Vm , where Vm → BO(m) is the universal rank m vector bun-

dle over BO(m) and the superscript denotes the Thom space of a vector bundle. We have inclusion maps
MO(m) → MO(m + 1) and multiplication maps MO(m) ∧MO(n) → MO(m + n). The latter are induced

on individual spectral levels k and l by the maps BO(m)R
k⊕Vm ∧ BO(n)R

l⊕Vn → BO(m + n)R
k+l⊕Vm+n

constructed using the universal property of BO(m + n). Combined together, this data gives us a filtered
E∞-ring spectrum MO.

Example 6.11. The Adams–Novikov spectral sequence of an E∞-algebra spectrum E over an E∞-ring
spectrum S is obtained from the filtered object given by applying the quasicategorical Dold–Kan correspon-
dence to the bar construction of E over S, a cosimplicial spectrum (the nth term is E ∧S · · · ∧S E, where E
repeats n+ 1 times).

Example 6.12. Consider the category of pointed motivic spaces, i.e., simplicial presheaves on the Nisnevich
site localized at Nisnevich covers and the maps A1 × X → X . If R1 = P1

∗, then symmetric R-spectra are
motivic symmetric spectra and we obtain a model structure on filtered algebras over filtered motivic operads.

Remark 6.13. As an example of a situation involving more complicated ambient categories than chain
complexes or spectra, one can cite the slice filtration in motivic homotopy theory, which gives rise to the
slice spectral sequence.

It can be convenient to consider the associated graded operad of a filtered operad (similarly, the asso-
ciated graded algebra of a filtered algebra). For the case of chain complexes, these notions were considered
by Dotsenko [DQPB] and Griffin [OpCom], for example.
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Proposition 6.14. For any symmetric monoidal stable model category C such that the categories of fil-
tered and graded (symmetric) operads admit a transferred model structure, the associated graded functor
Gr induces a left Quillen functor from filtered operads to graded operads. For a fixed filtered operad O
such that filtered algebras over O and graded algebras over Gr(O) admit a transferred model structure, the
associated graded functor induces a left Quillen functor from filtered algebras over O to graded algebras
over Gr(O).

Proof. As established in Proposition 3.55, the associated graded functor Gr is strong monoidal. In partic-
ular, it induces functors from filtered operads to graded operads and from algebras over a filtered operad
to algebras over the associated graded operad. We treat both cases simultaneously; recall that operads are
themselves algebras over a certain colored operad. Recall that Gr, on the level of C, has a right adjoint R,
which inserts zeros as transition maps. For trivial reasons, this right adjoint is also strong monoidal. Then R
induces a functor on the level of algebras (or operads), and it is a right Quillen functor because both model
structures are transferred. The functor Gr, on the level of algebras, is left adjoint to this functor and is thus
a left Quillen functor.

7 Application: filtered D-modules

In this section we apply the abstract theory above to construct a model structure on filtered D-modules.
First, though, we need to introduce some machinery for sheaves. Throughout, X will denote a complex
manifold.

Remark 7.1. We could also take X to be a smooth variety (with the Zariski topology) over C, though in
such a situation one typically also wants log poles, which would make the exposition here considerably more
involved. See Pavlov and Scholbach [MdR] for an account of this situation.

Denote by PSh(X,Ch(C)) the category of presheaves on X of chain complexes of complex vector spaces
equipped with the opens-wise monoidal product, which we denote ⊗C. There is always the projective model
structure on this category, where a map of presheaves is a weak equivalence if it is a quasi-isomorphism on
every open and a map of presheaves is a fibration if it is a fibration on every open. This model structure does
not care about the topology on X , however, for which we need the following definitions. A map f :F → G
of presheaves is a local weak equivalence if every map on stalks fx:Fx → Gx is a quasi-isomorphism. In fact,
every presheaf is actually locally weakly equivalent to a sheaf.

Proposition 7.2. The left Bousfield localization at the local weak equivalences of (PSh(X,Ch(C)),⊗C)
with the projective model structure is a symmetric flat, symmetric h-monoidal, symmetric monoidal, left
proper, compactly generated, combinatorial stable model category ModC(X).

Proof. The relevant machinery on Bousfield localizations in this context can be found around Definition 6.1.1
in [HTSP]. The projective model structure is itself transferred along the forgetful functor given by the evalu-
ation on all objects, and the projective model structure on unbounded chain complexes has all the properties
in the statement, as explained in §7.4 of [HTSP]. As established in §5 and §6 of [HTSP], all these properties
survive the constructions mentioned above.

Remark 7.3. Because we work with presheaves localized along local weak equivalences, many constructions
become simpler. For instance, we will never apply sheafification in defining some functor: as an example, we
work directly with the tensor product of presheaves, which is formed open by open, and do not sheafify.

We now turn our attention to D-modules. Let O denote the structure sheaf of X : for instance, if X
is a complex manifold, then O denotes the sheaf of holomorphic functions. The sheaf EndC(O) of C-linear
endomorphisms admits a filtration, defined as follows: for n < 0, Dn = 0 and for n ≥ 0,

Dn = {P ∈ EndC(O) | [P,O] ∈ Dn−1}.

Then D = colimn Dn is the sheaf known as the sheaf of differential operators on X . The resulting filtered
object admits a monoid structure given by composition of endomorphisms, which amounts to saying that
the composition map Dm ⊗ Dn → Dm+n satisfies the associativity and unitality conditions. Thus D is a
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monoid in (Fil(ModC(X)),⊗C). (We have to use complex vector spaces instead of O-modules because D
has two different actions of O.)

Let fModD(X)) denote the category of filtered left D-modules over X , i.e., the category of left modules
over the monoid D in filtered presheaves of chain complexes.

Proposition 7.4. The category fModD(X) admits a left proper, compactly generated, combinatorial stable
model structure transferred from filtered presheaves of chain complexes of complex vector spaces.

Proof. Apply Corollary 3.59.

This stable model category is a useful enhancement of the classical approaches to working with filtered
D-modules, such as that developed by Laumon in [DmodF]. Historically, people have worked with filtrations
that are eventually bounded below. This category is a full subcategory of the category defined here. More-
over, filtered weak equivalences among such filtered D-modules are weak equivalences in our category. Our
stable model category then provides functorial homotopy limits and colimits for arbitrary diagrams, which
enlarges the class of manipulations beyond those available in the derived category itself.

Remark 7.5. In [MdR], filtered D-modules are equipped with a more pliable model structure, known as
the flat model structure, which enlarges the cofibrations so as to produce a monoidal model category. The
subtle Koszul duality between D-modules and Ω-modules can then be concretely realized as a Quillen equiva-
lence of combinatorial stable monoidal model categories between filtered D-modules and filtered Ω-modules.
In [MdR], this duality is used to develop the functoriality of filtered D-modules in an efficient and clean
way. In particular, given a map f :X → Y of varieties, a Quillen adjunction is constructed whose right
derived functor recovers Laumon’s derived direct image functor [DmodF], the key ingredient in his proof of a
Riemann–Roch theorem for D-modules. The approach chosen in [MdR] essentially constructs the pullback-
pushforward adjunction for filtered D-modules using the pullback-pushforward Quillen adjunction for Ω-
modules (defined in a straightforward way), pre- and postcomposed with the Quillen equivalences between D-
modules and Ω-modules. This highly structured approach does not impose any conditions (such as smooth-
ness) on f and allows one to define pullback and pushforwards of arbitrary D-modules, without additional
restrictions such as holonomicity or boundedness of the filtration. Moreover, this formalism provides a
powerful, efficient toolkit for mixed Hodge modules, a key aim of [MdR], by allowing log poles.
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[AccCat] Michael Makkai, Robert Paré. Accessible categories: the foundations of categorical model
theory. Contemporary Mathematics 104 (1989). MR1031717, Zbl:0703.03042,
doi:10.1090/conm/104,
http://libgen.io/get.php?md5=B942999D06BE8D844CE4755DA2CCAF0D. 3.9*.

[HMC] Takashi Kimura, Jim Stasheff, Alexander Voronov. Homology of moduli of curves and
commutative homotopy algebras. The Gelfand Mathematical Seminars, 1993–1995 (1996),
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