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Abstract We compute the image of Enriquez’ elliptic KZB associator in the (maxi-
mal) meta-abelian quotient of the fundamental Lie algebra of a once-punctured elliptic
curve. Ourmain result is an explicit formula for this image in terms of Eichler integrals
of Eisenstein series, and is analogous to Deligne’s computation of the depth one quo-
tient of the Drinfeld associator. We also show how to retrieve Zagier’s extended period
polynomials of Eisenstein series, as well as the values at zero of Beilinson–Levin’s
elliptic polylogarithms from the meta-abelian elliptic KZB associator.
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1 Introduction

This paper deals with the computation of some of the coefficients of the elliptic KZB
associator defined by Enriquez [14]. In order to put things into context, we first recall
the analogous picture in genus zero, due to Deligne, Drinfeld and Ihara.

Let p(U ) := L(x0, x1)∧ be the lower central series completion of the free Lie
algebra in variables x0, x1, and denote by exp p(U ) the associated pro-unipotent
algebraic group. The Drinfeld associator �(x0, x1) is an element of exp p(U )R :=
exp(p(U )̂⊗R), which is constructed from the monodromy of the universal Knizhnik–
Zamolodchikov (KZ) connection on P

1
C

\ {0, 1,∞} (for this reason, � is sometimes
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called KZ-associator). First introduced in [13], the Drinfeld associator plays a pivotal
role in the context of quantum groups and Grothendieck–Teichmüller theory.

We are interested in arithmetic properties of �(x0, x1). The following two aspects,
which are in fact closely related to each other, are of particular relevance.

(i) The coefficients of�(x0, x1) are expressible asQ-linear combinations ofmultiple
zeta values

ζ(k1, . . . , kn) =
∑

m1>···>mn>0

1

mk1
1 · · · mkn

n

, k1 ≥ 2, k2, . . . , kn ≥ 1,

which are generalizations of the special values of the Riemann zeta function at
positive integers. These numbers have (at least conjecturally) a rich algebraic
structure [16,20].

(ii) The Lie algebra p(U ) is the de Rham realization of an element of the category
MTM of mixed Tate motives over Z ([12], §5). As a consequence, the unipotent
fundamental group UMTM ofMTM acts on exp p(U ) (Ihara action), and in partic-
ular on�(x0, x1).1 The Deligne–Ihara conjecture (proved by Brown in [3]) states
that this action is faithful, thus elements of UMTM are completely determined by
their action on �(x0, x1), which can be computed very explicitly [4].

For both (i) and (ii), the archetypal result is due to Deligne ([11], §19), who inspired
by unpublished work of Wojtkowiak essentially showed that

log(�(x0, x1)) ≡ −
∞
∑

k=2

ζ(k) adk−1(x0)(x1) mod [D1p(U ), D1p(U )], (1.1)

where D1p(U ) ⊂ p(U ) denotes the ideal generated by x1. On the one hand, this
exhibits the Riemann zeta values ζ(k) as coefficients of log(�(x0, x1)). On the other
hand, since ζ(k) �= 0, one deduces from (1.1) that the generators exp(σ2n+1) of UMTM
act non-trivially on exp p(U ) ([12], §6.8), which was a first step towards establishing
the Deligne–Ihara conjecture.

In this paper, we consider an elliptic analog of the above situation. Let H be the
Poincaré upper half-plane, and consider for τ ∈ H the once-punctured, complex ellip-
tic curve E×

τ := C/(Z+Zτ)\{0}. Following Hain–Matsumoto [19], we denote its de
Rham fundamental group by p(E×

τ ) ∼= L(a,b)∧. In [14], Enriquez constructs the ellip-
tic KZB associator (A(τ ), B(τ )) ∈ exp p(E×

τ )C × exp p(E×
τ )C from the monodromy

of the universal elliptic Knizhnik–Zamolodchikov–Bernard (KZB) connection [9,23].
It is an elliptic version of the Drinfeld associator, and the analogs of (i) and (ii) above
are the following.

(i) The coefficients of the elliptic KZB associator are the elliptic multiple zeta values,
first introduced in [15] and studied inmore detail in [2,24,26,27]. They are closely
related to both multiple zeta values and to iterated integrals of Eisenstein series
[6,25].

1 In this context, �(x0, x1) is usually denoted dch (for ‘droit chemin’).
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(ii) The Lie algebra p(E×
τ ), viewed as a local system over the moduli space M

1,
−→
1

of elliptic curves with a non-zero tangent vector at the origin, is the de Rham
realization of an element of the category MEM−→

1
of universal mixed elliptic

motives (over M
1,

−→
1
). This category can be seen as an elliptic enhancement of

the category of mixed Tate motives over Z. The corresponding Galois group
GMEM−→

1
acts on p(E×

τ ) [19], and therefore also on the elliptic KZB associator. In
analogy to the Deligne–Ihara conjecture, it is asked in [19], §24.2 whether the
action of GMEM−→

1
on p(E×

τ ) is faithful.

The main goal of this article is to establish an analog of (1.1) for the elliptic KZB
associator, i.e. the explicit computation of the images of the formal logarithmsA(τ ) :=
log(A(τ )) and B(τ ) := log(B(τ )) in a certain quotient of p(E×

τ )C. More precisely,
let D1p(E×

τ ) ⊂ p(E×
τ ) ∼= L(a,b)∧ be the commutator. Taking its lower central series

defines a filtration D•p(E×
τ ), the elliptic depth filtration ([19], §27). In particular,

D2p(E×
τ ) is the double commutator, and our goal is to compute the imagesA(τ )met−ab

and B(τ )met−ab of the elliptic KZB associator in the meta-abelian quotient

p(E×
τ )met−ab

C
:= p(E×

τ )C/D2p(E×
τ )C ∼= (C · a ⊕ C · b) ⊕ C[[U, V ]],

where U k V l := adk(a) adl(b)([a,b]). Our main result can then be stated as follows.

Theorem (Theorem 5.6 below) Let U := U
2π i and W := U + τV. We have

A(τ )met−ab = 2π ib + exp

(

τ
∂

∂U
V

)

A(1)∞ − 2π iV
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k,

and

B(τ )met−ab = a + 2π iτb + exp

(

τ
∂

∂U
V

)

B(1)∞ − 2π iW
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k .

Here,
∫

−→
1 ∞

τ
G2k := (2π i)2k−1

∫
−→
1 ∞

τ
G2k(z)(W−zV)2k−2dz is the regularized Eichler

integral of G2k ([6], §4), and the series A(1)∞ , B(1)∞ are given by

A(1)∞ = 2π i

⎛

⎝c(U) − (2π i)

4
V +

∑

n≥3,odd

ζ(n)Vn

⎞

⎠ ,

B(1)∞ = −2π i (c(2π iV) − Uc(U)c(2π iV)) +
∑

n≥3, odd

ζ(n)UVn−1,

where c(x) = 1
ex −1 + 1

2 − 1
x = ∑∞

k=2
Bk
k! xk−1.

Similar considerations have been made by Hain to prove that the generators exp(e2k)

of the geometric fundamental group Ggeom
MEM−→

1
act non-trivially on p(E×

τ ) ([18], Theo-

rem 15.7). Moreover, our theorem gives a closed expression of elliptic multiple zeta
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values of depth one explicitly in terms of Riemann zeta values and Eichler integrals
of Eisenstein series.

The proof of Theorem 5.6 uses a result of Enriquez [14] to the effect that

A(τ ) = g(τ )(A∞), B(τ ) = g(τ )(B∞),

for certain explicit elements A∞,B∞ ∈ p(E×
τ )C and an automorphism g(τ ) ∈

Aut(exp(p(E×
τ )C)). Then, we separately compute the images of A∞ and B∞ in

p(E×
τ )met−ab

C
and of g(τ ) in Aut(exp(p(E×

τ )met−ab
C

)), and from this, we are able to
deduce Theorem 5.6.

The seriesA∞ andB∞ are arithmetic: they can be expressed in terms of theDrinfeld
associator and therefore come from genus zero. On the other hand, the automorphism
g(τ ) is geometric: it describes the action of Ggeom

MEM−→
1
on exp p(E×

τ ). As a byproduct of

our proof, we see that already their images in the meta-abelian quotient are interesting
objects in their own right. Namely, the automorphism g(τ )met−ab is essentially the
generating series of the special values of elliptic polylogarithms at the zero section of
the elliptic curve [1,22] (cf. Theorem 5.4 and Corollary 5.5), while Amet−ab∞ ,Bmet−ab∞
turn out to be generating series of the extended period polynomials of Eisenstein series
[33] (cf. Theorem 5.2 and Corollary 5.3).

Finally, we note that Nakamura [28,29] has studied an �-adic analog of the meta-
abelian image of the elliptic KZB associator (called “universal power series for
Dedekind sums”), which is a genus one analog of Ihara’s universal power series for
Jacobi sums [21]. It would be very interesting to compare his results to ours.

The plan of the paper is as follows. In Sects. 2 and 3, we collect some background
in order to make the paper self-contained. Then, in Sect. 4, we recall the definition
of the elliptic KZB associator [14], but from the point of view of the mixed Hodge
structure on the unipotent fundamental group of E×

τ [8]. Finally, in Sect. 5, the main
results of this paper are proved.

2 Preliminaries

2.1 Notation and conventions

We start by introducing some general notation, to be used throughout the text.
We denote by H := {z ∈ C | Im(z) > 0} the upper half-plane, with canonical

coordinate τ . For τ ∈ H, we let E×
τ := C/(Z + Zτ) \ {0} be the associated once-

punctured complex elliptic curve.
For any finite set {x1, . . . , xn} and a field K , we denote by L(x1, . . . , xn)K the

free Lie algebra on X over K (we omit K if K = Q), and by L(x1, . . . , xn)∧K the
completion for its lower central series. It is a topological Lie algebra over K , whose
topology is induced from the lower central series. Its topological universal enveloping
algebra is given by K 〈〈x1, . . . , xn〉〉, the K -algebra of formal power series in the non-
commuting variables x1, . . . , xn , and the exponential map exp : L(x1, . . . , xn)∧K →
K 〈〈x1, . . . , xn〉〉defines an isomorphismonto the subspace of K 〈〈x1, . . . , xn〉〉of group-
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like elements, denoted by expL(x1, . . . , xn)∧K . For more background, we refer to
[30,31].

2.2 Derivations on the fundamental Lie algebra of a once-punctured elliptic
curve

Following [19], we will denote by p(E×
τ ) the (de Rham) fundamental Lie algebra of

the once-punctured elliptic curve E×
τ . With notation as above, one has

p(E×
τ ) ∼= L(a,b)∧

where the generators a,b correspond to the natural homology cycles on E×
τ .

We will need to consider a special family of derivations on p(E×
τ ). Denote by

Der0(p(E×
τ )) theLie algebra of continuous derivations D, which satisfy D([a,b]) = 0

and such that D(b) has no linear term in a. From these two conditions, it follows easily
that every D ∈ Der0(p(E×

τ )) is uniquely determined by its value on a.

Definition 2.1 (Tsunogai) For every k ≥ 0, define ε2k ∈ Der0(p(E×
τ )) by its value

on a:

ε2k(a) =
{

−b k = 0
2

(2k−2)! ad
2k(a)(b) k > 0.

We also let u ⊂ Der0(p(E×
τ )) be the Lie subalgebra generated by the ε2k .

The derivations ε2k have first been introduced by Tsunogai ([32], §3) in the context
of Galois actions on fundamental groups of punctured elliptic curves. They also play
an important role in the theory of universal mixed elliptic motives, as the relative
unipotent completion of SL2(Z) acts on p(E×

τ ) through them ([19], §20).

Remark 2.2 The value of ε2k on b is given by

ε2k(b) = 2

(2k − 2)!
∑

0≤ j<k

(−1) j [ad j (a)(b), ad2k−1− j (a)(b)].

In particular, ε0(b) = 0.

2.3 Eichler integrals of Eisenstein series

Consider the Hecke-normalized Eisenstein series for SL2(Z) of weight 2k:

G2k(q) :=
{

− B2k
4k + ∑∞

n=1

(

∑

d|n d2k−1
)

qn k ≥ 1

−1 k = 0,
(2.1)

where B2k denotes the 2k-th Bernoulli number and q = e2π iτ . Extending earlier
work of Manin [25], Brown [6] introduced (regularized) iterated integrals of (2.1) (or
iterated Eisenstein integrals for short)
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G(2k1, . . . , 2kn; τ) :=
∫

−→
1 ∞

τ

G2k1(τ1) . . . G2kn (τn)dτ1 . . . dτn,

where
−→
1 ∞ denotes the tangential base point 1 at i∞. We refer to [6], §4, for the

general definition, and only note the special case

G({0}n, 2k; τ) = (−1)n
∫

· · ·
∫

τ≤τ1≤...τn+1≤i∞
G2k(τn+1) − a0(G2k)dτ1 . . . dτn+1

− a0(G2k)
τ n+1

(n + 1)! , (2.2)

where {0}n denotes an n-tuple of zeros, and a0(G2k) = − B2k
4k is the constant term in

the Fourier expansion (2.1) of G2k . From the shuffle product formula for (regularized)
iterated integrals ([6], Proposition 4.7), we further deduce

G({0}n−1, 2k, 0; τ) = G(0; τ)G({0}n−1, 2k; τ) − nG({0}n, 2k; τ). (2.3)

Both G({0}n, 2k; τ) and G({0}n−1, 2k, 0; τ) can be expressed in terms of generalized
Eichler integrals

In(G2k; τ) :=
∫ i∞

τ

[

G2k(z) − a0(G2k)
]

(τ − z)ndz −
∫ τ

0
a0(G2k)(τ − z)ndz,

with the classical Eichler integral of G2k being the special case n = 2k − 2 and k ≥ 2
(cf. e.g. [34], §1).

Proposition 2.3 We have

G({0}n; τ) = τ n

n! (2.4)

G({0}n, 2k; τ) = 1

n! In(G2k; τ), (2.5)

and for k, n ≥ 1:

G({0}n−1, 2k, 0; τ) = 1

(n − 1)! (τ In−1(G2k; τ) − In(G2k; τ)) . (2.6)

Proof The first equality is immediate from the definition (2.2). The second equality
(2.5) is trivial for n = 0, and the general case is easy to prove from (2.4) by induction
on n. Finally, (2.6) follows directly from (2.4), (2.5) and the definition (2.3). ��
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2.4 The elliptic KZB connection and the associated transport map

We recall the definition of the elliptic KZB (Knizhnik–Zamolodchikov–Bernard) con-
nection ∇KZB on E×

τ , whose monodromy will give rise to the elliptic KZB associator.
Originally,∇KZB was defined as ameromorphic connection onC (cf. [9,17,23]). Here,
we will instead follow [8], which consider a certain C∞-trivialization of ∇KZB, which
is defined on the quotient C/(Z + Zτ) \ {0}.

Let ξ = rτ + s be the canonical coordinate on E×
τ , with (r, s) ∈ R

2 \ Z
2. Also, let

θτ (ξ) =
∑

n∈Z
(−1)nq

1
2 (n+ 1

2 )2e(n+ 1
2 )ξ , q = e2π iτ ,

be the classical Jacobi theta function.

Definition 2.4 (Brown–Levin, Calaque–Enriquez–Etingof, Levin–Racinet) Define a
connection ∇KZB on the trivial bundle2

E×
τ × C〈〈a,b〉〉 → E×

τ

by setting ∇KZB( f ) := d f − ωKZB · f for a local section f , where

ωKZB = dr · a + 2π i ad(a)er ad(a)Fτ (2π iξ, ad(a))(b)dξ,

where

Fτ (ξ, η) := θ ′
τ (0)θτ (ξ + η)

θτ (ξ)θτ (η)
.

Proposition 2.5 The connection ∇KZB satisfies the following properties.

(i) We have ∇2
KZB = 0; in other words, ∇KZB is integrable.

(ii) The connection ∇KZB has a simple pole at ξ = 0 with residue

Res0(∇KZB) = [a,b].

Proof (i) The condition ∇2
KZB = 0 is equivalent to

dωKZB − ωKZB ∧ ωKZB = 0,

which in turn follows from a direct computation:

dωKZB = 2π idr · ad(a) ∧ ad(a)er ad(a)Fτ (2π iξ, ad(a))(b)dξ

= ωKZB ∧ ωKZB.

2 Note that the normalization of the variables a, b differs from [8], Example 5.3.1, by a = −2π ix0 and
b = −(2π i)−1x1. Our conventions are compatible with [17], §11.1.
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(ii) The residue of the connection ∇KZB is just the residue of the one-form ωKZB. But
the computation of the latter is easy from the definition, using the fact that the
residue of 2π i Fτ (2π iξ, η) at ξ = 0 is equal to one (cf. [17], eqn.(8)). ��

Now for any two base points ρ1, ρ2, let π1(E×
τ ; ρ2, ρ1) be the fundamental torsor of

paths from ρ1 to ρ2. The integrability of ∇KZB implies that the transport function

TKZB
ρ2,ρ1

: π1(E×
τ ; ρ2, ρ1) → C〈〈a,b〉〉

γ �→
∞
∑

k=0

∫

γ

ωk
KZB,

is well-defined, where
∫

γ
ωk
KZB denotes the iterated integral in the sense of Chen [10]

∫

γ

ωk
KZB :=

∫

1≥t1≥...≥tk≥1

γ ∗(ωKZB)(t1) . . . γ ∗(ωKZB)(tk).

In other words,
∫

γ
ωk
KZB depends only on the homotopy class of γ .

Rather than choosing points ρ1, ρ2 ∈ E×
τ , which is not canonical, we work with

tangential base points, in the sense of [11], §15, at the puncture 0. Since ∇KZB has
only a simple pole at ξ = 0, one can extend the definition of the transport function to
the case of tangential base points as in [11], Proposition 15.45. More precisely, for any
two non-zero tangent vectors −→v 0 = λ ∂

∂ξ
and −→w 0 = μ ∂

∂ξ
at 0, there is a well-defined

function

TKZB−→w 0,
−→v 0

: π1(E×
τ ;−→w 0,

−→v 0) → C〈〈a,b〉〉,

given by

TKZB−→w 0,
−→v 0

(γ ) = lim
t→0

elog(μ
−1t)Res0(∇KZB)

[ ∞
∑

k=0

∫

γ 1−t
t

ωk
KZB

]

e− log(λ−1t)Res0(∇KZB),

where Res0(∇KZB) = [a,b] is the residue of the connection at ξ = 0 (cf. Proposition
2.5.(i)), γ 1−t

t denotes the restriction of γ to the interval [t, 1−t] (for 0 < t < 1
2 ) and the

branches of the logarithms are determined by the path γ . For arithmetic applications,
it will be important that the tangent vectors are integral on the Tate curve C

×/qZ and
moreover non-zero modulo every prime number p, which fixes them uniquely (up to
a sign): −→v 0 = ± ∂

∂z = ±(2π i)−1 ∂
∂ξ
, where z = e2π iξ .

3 The elliptic depth filtration

We recall the definition of the elliptic depth filtration on the fundamental Lie algebra
of E×

τ (cf. [19], §27). This filtration is the elliptic analog of the depth filtration on the
fundamental Lie algebra of P

1 \ {0, 1,∞} ([12], §6 or [5], §4).
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3.1 The elliptic depth filtration

Consider the canonical embedding

E×
τ ↪→ Eτ

of the once-punctured elliptic curve E×
τ into the (complete) elliptic curve Eτ . On

fundamental Lie algebras, it induces the abelianization map

π : p(E×
τ ) → p(E×

τ )ab ∼= p(Eτ ).

Definition 3.1 (Hain–Matsumoto) The elliptic depth filtration D•p(E×
τ ) is the

descending filtration on p(E×
τ ), defined by

Dnp(E×
τ ) =

⎧

⎪

⎨

⎪

⎩

p(E×
τ ) n = 0

ker(π) n = 1

[D1p(E×
τ ), Dn−1p(E×

τ )] n ≥ 2

.

Also, let gr•D p(E×
τ ) be the associated graded Lie algebra.

It is clear from the definition that the elliptic depth filtration is the lower central series
on the commutator of p(E×

τ ). Therefore, the quotient Lie algebra

p(E×
τ )met−ab := p(E×

τ )/D2p(E×
τ )

is the (maximal) meta-abelian quotient of p(E×
τ ).

The following proposition is well-known.

Proposition 3.2 We have isomorphisms of (abelian) Lie algebras

gr0D p(E×
τ ) ∼= Qa ⊕ Qb (3.1)

and

gr1D p(E×
τ )

∼=−→ Q[[U,V]]
adk(a) adl(b)([a,b]) �→ UkVl . (3.2)

Moreover,
p(E×

τ )met−ab ∼= gr0D p(E×
τ ) � gr1D p(E×

τ )

as Lie algebras, where Qa⊕Qb acts on gr1D p(E×
τ ) ∼= Q[[U,V]] by the adjoint action.

Proof The first isomorphism is clear, since the right hand side of (3.1) is just the
abelianization of p(E×

τ ). It follows from the Jacobi identity that every element of
gr1D p(E×

τ ) is a series in the elements adk(a) adl(b)([a,b]), and then the isomorphism
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(3.2) is a consequence of the universal property of free Lie algebras. Finally, the last
statement of the proposition follows from the fact that the adjoint action splits the
short exact sequence of Lie algebras

0 −→ gr1D p(E×
τ ) −→ p(E×

τ )/D2p(E×
τ ) −→ gr0D p(E×

τ ) −→ 0.

��
Remark 3.3 The relation between the elliptic depth filtration and the depth filtration on
the fundamental Lie algebra of P

1 \{0, 1,∞} can be explained as follows. First, recall
(cf. [12], §5) that the (de Rham) fundamental Lie algebra p(U ) ofU := P

1 \{0, 1,∞}
is isomorphic to L(x0, x1)∧. The depth filtration Dnp(U ) on p(U ) is then the lower
central series on the kernel of the natural map between fundamental Lie algebras

p(U ) → L(x0)∧ ∼= Qx0
xi �→ δi,0x0,

which is induced from the embedding P
1 \ {0, 1,∞} ↪→ P

1 \ {0,∞} (cf. [5,12]).
Interpreting P

1 \ {0, 1,∞} as the fiber over q = 0 of the universal once-punctured
Tate curve (C×/qZ) \ {1}, one obtains a morphism of Lie algebras [7,14,17]

ι : p(U ) → p(E×
τ )

x0 �→ ad(a)

ead(a) − 1
(b) =

∞
∑

k=0

Bk

k! adk(a)(b)

x1 �→ [a,b],

which clearly respects the depth filtrations on both sides, i.e.

ι(Dnp(U )) = ι(p(U )) ∩ Dnp(E×
τ ), for all n ≥ 0.

For more details, see [19], §27.

3.2 Action of special derivations in depths zero and one

We now compute the action of the derivations ε2k on the meta-abelian quotient
p(E×

τ )met−ab.

Proposition 3.4 (i) The derivation ε0 acts on gr0D p(E×
τ ) ∼= Qa⊕ Qb as the linear

map
(

0 −1
0 0

)

, and on gr1D p(E×
τ ) ∼= Q[[U,V]] as the derivation −V ∂

∂U .

(ii) The derivations ε2k , for k > 0, act trivially on griD p(E×
τ ), for every i ≥ 0.

(iii) Let 2k = (2k1, . . . , 2kn) be a multi-index, where ki ≥ 0. Then ε2k = ε2k1 ◦ · · · ◦
ε2kn acts non-trivially on p(E×

τ )met−ab ∼= gr0D p(E×
τ )�gr1D p(E×

τ ), only if either
2k = (0, . . . , 0, 2kn) or 2k = (0, . . . , 0, 2kn−1, 0).
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Proof The action of ε0 on gr0D p(E×
τ ) is clear from the definition (cf. Definition 2.1).

For the action on gr1D p(E×
τ ), by the Jacobi identity, the linear operators ad(a), ad(b) ∈

End(gr1D p(E×
τ )) commute with each other. Consequently, we have

ε0(ad
k(a) adl(b)([a,b])) ≡

k−1
∑

i=0

− adi (a) ad(b) adk−1−i (a) adl(b)([a,b])

≡ −k adk−1(a) adl+1(b)([a,b]) mod D2p(E×
τ ).

Therefore, under the isomorphism gr1D p(E×
τ ) ∼= Q[[U,V]] of Proposition 3.2, the

derivation ε0 corresponds to −V ∂
∂U . As for (ii), the triviality of ε2k , for k > 0, on

gr0D p(E×
τ ) is clear from Definition 2.1, and triviality on griD p(E×

τ ) follows by induc-
tion on i . Finally, (iii) follows easily from (i) and (ii). ��

4 The elliptic KZB associator

In this section, we define Enriquez’s elliptic KZB associator [14], which is an elliptic
analogue of the Drinfeld associator [13]. Our approach differs slightly from [14] in
that we define the elliptic KZB associator using the “elliptic transport isomorphism” of
Brown–Levin. This definition is analogous to the definition of the Drinfeld associator
using parallel transport along the KZ-connection [12]. We also recall an important
result of Enriquez (cf. [14], §6) which describes the variation of the elliptic KZB
associator in the modulus of the once-punctured elliptic curve.

4.1 Definition via the transport function

In Sect. 2.4, we have defined a transport function TKZB
ρ2,ρ1

on a once-punctured elliptic
curve for any choice of base points ρ1, ρ2 (possibly tangential), using the elliptic KZB
connection. We now specialize these base points to be±−→v 0, where

−→v 0 is the tangent
vector −(2π i)−1 ∂

∂ξ
at 0 ∈ Eτ . Note that under the isomorphism Eτ

∼= C
×/qZ, we

have −→v 0 = − ∂
∂z , where z = e2π iξ . In particular, −→v 0 is defined over Z on the Tate

curve.
Consider now the paths α, β ∈ π1(E×

τ ;−−→v 0,
−→v 0) which are the images of,

respectively, the (open) straight-line paths (0, 1) and (0, τ ) under the projection
C\(Z+Zτ) → E×

τ , where the path (0, τ ) is additionally composed with a half-circle
in the positive direction around τ . Therefore (after ignoring the −(2π i)−1-prefactor),
the paths α, β look like in Fig. 1 below (cf. [14], p.550).

Definition 4.1 ([14], §6.2) The elliptic KZB associator is the tuple (A(τ ), B(τ )),
where

A(τ ) := TKZB
−−→v 0,

−→v 0
(α), B(τ ) := TKZB

−−→v 0,
−→v 0

(β)

are the images of the paths α and β under the transport map TKZB
−−→v 0,

−→v 0
.
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Fig. 1 The paths α and β

Remark 4.2 The definition of the elliptic KZB associator given here is not exactly
the same as the one given in [14], but equivalent. Using the elliptic transport map,
Enriquez definition is

AEnr(τ ) := TKZB−→v 0
(α), BEnr(τ ) := TKZB−→v 0

(β).

Explicitly, the relation between the two versions is given by

A(τ ) = e−π i[a,b] AEnr(τ ), B(τ ) = eπ i[a,b] BEnr(τ ).

4.2 Variation in the modulus

An important property of the elliptic KZB associator is that it satisfies a linear differen-
tial equation, which relates it to iterated Eisenstein integrals and the special derivations
ε2k reviewed in Sect. 2. The boundary condition of this differential equation estab-
lishes a relation between the series A(τ ), B(τ ) and the Drinfeld associator �. More
precisely, we have the following theorem, due to Enriquez.

Theorem 4.3 ([15], §5.2) We have

A(τ ) = g(τ )(A∞), B(τ ) = g(τ )(B∞),

where
g(τ ) =

∑

(−2π i)nG(2k1, . . . , 2kn; τ) · (ε2k1 ◦ . . . ◦ ε2kn ),

the sum being over all multi-indices (k1, . . . , kn) ∈ Z
n≥0, for n ≥ 0, and

A∞ = eπ i ι(x1)�(ι(x0)), ι(x1))e2π i ι(x0)�(ι(x0), ι(x1))−1,

B∞ = �(ι(x∞)), ι(x1))ea�(ι(x0), ι(x1))−1,

where ι : p(U ) → p(E×
τ ) is the morphism of Remark 3.3.
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The element g(τ ) defines an automorphism of exp p(E×
τ ). Letting

A(τ ) := log(A(τ )), B(τ ) := log(B(τ )),

A∞ := log(A∞), B∞ := log(B∞),

we also have
A(τ ) = g(τ )(A∞), B(τ ) = g(τ )(B∞),

since g(τ ) commutes with exponential and logarithm functions.
The next corollary follows immediately from Proposition 3.4.

Corollary 4.4 Let g(τ )met−ab be the image of g(τ ) in End(p(E×
τ )met−ab

C
). We have

g(τ )met−ab =
∑

n≥0

(−2π i)nG({0}n; τ) · εn
0

+
∑

n≥0, k≥1

(−2π i)n+1G({0}n, 2k; τ) ·
(

εn
0 ◦ ε2k

)

+
∑

k,n≥1

(−2π i)n+1G({0}n−1, 2k, 0; τ) ·
(

εn−1
0 ◦ ε2k ◦ ε0

)

.

Remark 4.5 The pair (A∞, B∞) is the image of the Drinfeld associator under the
natural map ([14], §4.5)

M(C) → Ell(C),

where M is the scheme of classical associators in the sense of [13], and Ell is its
elliptic counterpart [14]. A geometric way of interpreting this morphism is via the
degeneration of the once-punctured Tate curve to P

1 \ {0, 1,∞} (cf. Remark 3.3).

4.3 Elliptic KZB associator in depth zero

Let A(τ )0 be the image of A(τ ) in gr0D p(E×
τ )C = p(E×

τ )/[p(E×
τ ), p(E×

τ )], and
likewise let B(τ )(0) be the image of B(τ ) in gr0D p(E×

τ )C.
The following proposition shows that A(τ )0 andB(τ )0 precisely retrieve the peri-

ods of H1(E×
τ ).

Proposition 4.6 We have

A(τ )(0) = 2π ib, B(τ )(0) = a + 2π iτb.

Proof We only prove the result for A(τ )(0), the formula for B(τ )(0) is proved anal-
ogously. By Theorem 4.3, we know that A(τ ) = g(τ )(A∞), and since g(τ ) is an
automorphism, we also have

A(τ ) = log(A(τ )) = g(τ )(log(A∞)) = g(τ )(A∞).
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On the other hand, it follows directly from the explicit formula for A∞ given in
Theorem 4.3 that

A∞ ≡ 2π ib mod D1p(E×
τ ),

since ι(x0) ≡ b mod D1p(E×
τ ) and ι(x1) ≡ 0 mod D1p(E×

τ ). But as every deriva-
tion ε2k annihilates b, we finally get A(τ )(0) = g(τ )(2π ib) = 2π ib. ��
Remark 4.7 Proposition 4.6 could have also been proved directly without recourse to
Enriquez’ Theorem 4.3, using that ωKZB ≡ dr · a + 2π idξ · b mod D1p(E×

τ ).

5 The meta-abelian elliptic KZB associator

In this section, we compute the image of A(τ ) andB(τ ) in the meta-abelian quotient
p(E×

τ )met−ab
C

of p(E×
τ )C. The strategy is to use Theorem 4.3 which yields that

A(τ ) = g(τ )(A∞), B(τ ) = g(τ )(B∞)

and then to compute the images ofA∞ andB∞ in themeta-abelian quotient separately.
This is done in Sect. 5.1. In Sect. 5.2, we then compute the action of g(τ ) on the meta-
abelian quotient. The two computations are then combined in Sect. 5.3 to yield our
formula for A(τ )met−ab and B(τ )met−ab.

5.1 The arithmetic piece: periods of Eisenstein series

Let Amet−ab∞ (resp. Bmet−ab∞ ) be the image of A∞ (resp. the image of B∞) in the
meta-abelian quotient p(E×

τ )met−ab
C

∼= gr0D p(E×
τ )C � gr1D p(E×

τ )C, so that we can
write

Amet−ab∞ = A(0)∞ + A(1)∞ , Bmet−ab∞ = B(0)∞ + B(1)∞ .

The computation of the depth zero component was already carried out in Proposition
4.6 so that it remains to compute the depth one contribution. For this, we need a short
lemma about the Drinfeld associator.

Lemma 5.1 Let ϕ(x0, x1) := log(�(x0, x1)). Then

ϕ(ι(x0), ι(x1)) ≡ −
∑

n≥2

ζ(n) adn−1(b)([a,b]) mod D2p(E×
τ )C,

where ι(x0) = ad(a)

ead(a)−1
(b) and ι(x1) = [a,b] (cf. Remark 3.3). In particular, we have

ϕ(ι(x0), ι(x1)) ∈ D1p(E×
τ )C.

Proof It is well-known (cf. [12], §6.7) that

ϕ(x0, x1) ≡ −
∞
∑

n=2

ζ(n) adn−1(x0)(x1).

Applying ι to both sides, we get the result. ��
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Theorem 5.2 We have

A(1)∞ = 2π i

⎛

⎝c(U) − 2π i

4
V +

∑

n≥3,odd

ζ(n)Vn

⎞

⎠ , (5.1)

B(1)∞ = −2π i (c(2π iV) − Uc(U)c(2π iV)) +
∑

n≥3, odd

ζ(n)UVn−1, (5.2)

where c(x) = 1
ex −1 + 1

2 − 1
x = ∑∞

k=2
Bk
k! xk−1.

Proof By Theorem 4.3, we know that

A∞ = log(eπ i ι(x1)�(ι(x0), ι(x1))e2π i ι(x0)�(ι(x0), ι(x1))−1).

Using a “truncated” version of the Baker–Campbell–Hausdorff formula (cf. [30],
Corollary 3.24) and Lemma 5.1, we get

S := log(eπ i ι(x1)�(ι(x0), ι(x1)))

≡ ϕ(ι(x0), ι(x1)) +
∑

k≥0

Bk

k! adk(ϕ(ι(x0), ι(x1)))(π i ι(x1))

≡ ϕ(ι(x0), ι(x1)) + π i ι(x1) mod D2p(E×
τ )C. (5.3)

Similarly, since ι(x0) ≡ b mod D1p(E×
τ )C, we get

T := log(e2π i ι(x0)�(ι(x0), ι(x1))−1)

≡ − log(�(ι(x0), ι(x1))e−2π i ι(x0))

≡ 2π i ι(x0) −
∑

k≥0

Bk

k! adk(−b)(ϕ(ι(x0), ι(x1))) mod D2p(E×
τ )C. (5.4)

Combining (5.3) and (5.4) and again applying [30], Corollary 3.24, we get

A∞ ≡ T +
∑

n≥0

Bn

n! adn(T)(S)

≡ 2π i ι(x0) −
∑

k≥0

Bk

k! adk(−b)(ϕ(ι(x0), ι(x1))) + ϕ(ι(x0), ι(x1)) + π i ι(x1)

+
∑

n≥1

Bn

n! adn(2π i ι(x0))(ϕ(ι(x0), ι(x1)) + π i ι(x1))

≡ 2π i ι(x0) + π i ι(x1) −
∑

k≥1

Bk

k!
(

(−1)k − 1
)

adk(b)(ϕ(ι(x0), ι(x1)))

+
∑

n≥1

Bn

n! adn(b)(π i ι(x1))
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≡ 2π ib + 2π i
∑

k≥2

Bk

k! adk−1(a)([a,b]) − ad(b)(ϕ(ι(x0), ι(x1)))

+ 2π i

2

∑

n≥1

Bn(2π i)n

n! adn(b)([a,b]) mod D2p(E×
τ )C,

(5.5)

where in the last line, we have used that B1 = − 1
2 and that B2n+1 = 0 for all n ≥ 1.

Using Lemma 5.1 together with Euler’s formula − ζ(k)

(−2π i)k = Bk
2k! for k ≥ 2 even, it

follows that (5.5) equals

2π i

⎛

⎝b +
∑

k≥2

Bk

k! adk−1(a)([a,b]) − 2π i

4
ad(b)([a,b]) +

∑

n≥3,odd

ζ(n) adn(b)([a,b])
⎞

⎠ .

(5.6)
Under the substitution adk(a) adl(b)([a,b]) �→ UkVl (cf. (3.2)), (5.1) now follows
immediately from (5.6) (the 2π ib-term belongs to A

(0)∞ and does not contribute to
A

(1)∞ ). The calculation of B(1)∞ is very similar, so we will omit some details. First, by
definition

B∞ = log(�(ι(x∞), ι(x1))ea�(ι(x0), ι(x1))−1),

where x∞ := −x0 − x1. Furthermore,

T := log(ea�(ι(x0), ι(x1))−1)

≡ − log(�(ι(x0), ι(x1))e−a)

≡ a −
∑

k≥0

Bk

k! adk(−a)(ϕ(ι(x0), ι(x1))) mod D2p(E×
τ )C.

We obtain

B∞ ≡ log(�(ι(x∞), ι(x1))eT)

≡ T +
∑

k≥0

Bk

k! adk(a)(ϕ(ι(x∞), ι(x1))) mod D2p(E×
τ )C,

where the last equality follows from the fact that T ≡ a mod D1p(E×
τ )C. A short

calculation shows that

T +
∑

k≥0

Bk

k! adk(a)(ϕ(ι(x∞), ι(x1)))

≡ a −
∑

k≥0

Bk

k! (−1)k adk(a)(ϕ(ι(x0), ι(x1))) +
∑

k≥0

Bk

k! adk(a)(ϕ(ι(x∞), ι(x1)))
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≡ a +
∑

k≥0

Bk

k! adk(a)
(

ϕ(ι(x∞), ι(x1)) − (−1)kϕ(ι(x0), ι(x1))
)

mod D2p(E×
τ )C

(5.7)

The term in brackets is equal to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
∑

n≥2, even

ζ(n) adn−1(b)([a,b]) if k is even

−2
∑

n≥3 odd

ζ(n) adn−1(b)([a,b]) if k is odd.

Again using that ζ(k) = − Bk (2π i)k

2k! , if k ≥ 2 is even, we obtain that (5.7) equals

a −
∑

n≥2

Bn(2π i)n

n! adn−1(b)([a,b]) −
∑

k,n≥2

Bk Bn(2π i)n

k!n! adk(a) adn−1(b)([a,b])

+
∑

n≥3, odd

ζ(n) ad(a) adn−1(b)([a,b])

mod D2p(E×
τ )C.

(5.8)

The first term a belongs to B
(0)∞ , and does not contribute to B

(1)∞ . Applying the iso-
morphism (3.2) to the remaining terms in (5.8), we obtain the desired result (5.2).

��
The series A(1)∞ and B

(1)∞ are closely related to the extended period polynomials of
Eisenstein series rG2k (X,Y) [33]. Precisely, for k ≥ 2, one has

rG2k (X,Y) = ω+
G2k

PG2k (X,Y)+ + ω−
G2k

PG2k (X,Y)−, (5.9)

where

PG2k (X,Y)+ = X2k−2 − Y2k−2

PG2k (X,Y)− =
∑

−1≤n≤2k−1

Bn+1B2k−n−1

(n + 1)!(2k − 1 − n)!X
nY2k−2−n

and ω−
G2k

= − (2k−2)!
2 , ω+

G2k
= ζ(2k−1)

(2π i)2k−1 ω
−
G2k

(the “periods” of G2k). Now let

˜A(U,V) = 1

V
A(1)∞ (U,V), ˜B(U,V) = 1

U
B(1)∞ (U,V).

These are formal Laurent series in the variables U and V. In general, if f (U,V) is a
formal Laurent series, we denote by f (U,V)k its homogeneous component of degree
k and f (U,V)± := f (U,V)± f (−U,V)

2 . Comparing now (5.9) with Theorem 5.2, we get
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Corollary 5.3 We have

rG2k (U,V) = ω−
G2k

2π i

[

˜A(U,V)+2k−2 + ˜B(V,U)+2k−2 − ˜A(U,V)−2k−2 − ˜B(U,V)−2k−2

]

,

where U = U
2π i .

5.2 The geometric piece: special values of elliptic polylogarithms

Recall from Sect. 4.2 the definition of the automorphism g(τ ) : exp p(E×
τ )C →

exp p(E×
τ )C. It naturally extends to the topological enveloping algebra Q〈〈a,b〉〉 of

p(E×
τ )C.
In this section, we compute the images of g(τ )(a), g(τ )(b) in the meta-abelian

quotient p(E×
τ )met−ab

C
of p(E×

τ )C, and relate the result to special values of Beilinson–
Levin’s elliptic polylogarithms [1,22].

Theorem 5.4 Let W = U
2π i + τV. We have

g(τ )(a)met−ab = a + 2π iτb − 2π iW
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k, (5.10)

and

g(τ )(b)met−ab = 2π ib − 2π iV
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k, (5.11)

where G2k = (2π i)2k−1G2k(z)(W − zV)2k−2dz.

Proof By Corollary 4.4, we have

g(τ )(a)met−ab = a + 2π iτb +
∑

n≥0, k≥1

(−2π i)n+1G({0}n, 2k; τ)
(

εn
0 ◦ ε2k

)

(a)

+
∑

k,n≥1

(−2π i)n+1G({0}n−1, 2k, 0; τ)
(

εn−1
0 ◦ ε2k ◦ ε0

)

(a)

= a + 2π iτb +
∑

n≥0, k≥1

2(−2π i)n+1

(2k − 2)! G({0}n, 2k; τ)εn
0 (ad

2k−1(a)([a,b]))

−
∑

k,n≥1

2(−2π i)n+1

(2k − 2)! G({0}n−1, 2k, 0; τ)εn−1
0 (ad2k−2(a) ad(b)([a,b])),

(5.12)

Using the isomorphism of Proposition 3.2 together with Proposition 3.4 and Propo-
sition 2.3, we see that (5.12) equals

a + 2π iτb −
∑

n≥0, k≥1

2(2π i)n+1

(2k − 2)!n! In(G2k; τ)

(

V
∂

∂U

)n

U2k−1
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−
∑

k,n≥1

2(2π i)n+1

(2k − 2)!(n − 1)!
(

τ In−1(G2k; τ) − In(G2k; τ)
)

(

V
∂

∂U

)n−1

U2k−2V.

Now we apply the differential operator V ∂
∂U and split the first and the last sum to

obtain

g(τ )(a)met−ab = a + 2π iτb −
∑

k≥1

2(2π i)

(2k − 2)! I0(G2k; τ)U2k−1

−
∑

k,n≥1

2(2k − 1)(2π i)n+1

(2k − 1 − n)!n! In(G2k; τ)U2k−1−nVn

− 2π iτ
∑

k,n≥1

2(2π i)n

(2k − 1 − n)!(n − 1)! In−1(G2k; τ)U2k−1−nVn−1

+
∑

k,n≥1

2(2π i)n+1

(2k − 1 − n)!(n − 1)! In(G2k; τ)U2k−1−nVn−1.

From the definition of In(G2k; τ), it is easy to see that the third sum equals

−2π iτV
∞
∑

k=1

2(2π i)

(2k − 2)!
∫

−→
1 ∞

τ

G2k(z)
(

U + 2π i(τ − z)V
)2k−2

dz.

On the other hand, the first, second and fourth sum give

−U
∞
∑

k=1

2(2π i)

(2k − 2)!
∫

−→
1 ∞

τ

G2k(z)
(

U + 2π i(τ − z)V
)2k−2

dz.

Combining the two equations and setting W = U
2π i + τV, the first equality (5.10)

follows. Since g(τ ) is uniquely determined by its value on ea, the second statement
(5.11) follows from the first, but can also be proved directly along similar lines. ��

We now give the relation to special values of elliptic polylogarithms. Following the
notation of [22], we let �(ξ, τ ;X,Y) be the (modified) generating series of elliptic
polylogarithms�m,n(ξ, τ ). These are holomorphic functions on the universal covering
of the once-punctured elliptic curve E×

τ , which are obtained by averaging the (Debye)
polylogarithms along the spiral qZ. Let

�∗(0, τ ;X,Y) := (�(ξ, τ ;X,Y) − 1

2π i
log(2π iξ))|ξ=0
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be its (regularized) special value at the zero section of the elliptic curve. It has been
shown in [22], Theorem 4.1 that

�∗(0, τ ;X,Y) = −τ

X (X − τY )
+

∞
∑

k=2

(−1)k−1(k − 1)Ek, (5.13)

where for k ≥ 2, Ek is the indefinite integral of Ek(τ )(X − τY )k−2dτ with Ek(τ ) =
2(2π i)k

(k−1)! Gk(τ ) = ∑

(m,n)∈Z2\{(0,0)} 1
(mτ+n)k the classical Eisenstein series of weight k.

The constants of integration in the indefinite integrals can be retrieved uniformly as the
(regularized) special value of �∗(0, τ ; X, Y ) at τ = i∞, which is straightforwardly
computed from the definitions and is given explicitly by

�∗(0, i∞; X, Y ) = −
∑

n≥2

ζ(n)

(2π i)n
Y n−1 + 1

eX − 1

(

1

eY − 1
− 1

Y

)

. (5.14)

Now comparing (5.13) with Theorem 5.4, we obtain

Corollary 5.5 Let g(τ )(a)met−ab − a, and replace 2π ib by (W − τV)−1. Then

g(τ )(a)met−ab − a
−(2π i)2W

= �∗(0, τ ; 2π iW, 2π iV) − �∗(0, i∞; 2π iW, 2π iV),

where �∗(0, i∞; X, Y ) is given in (5.14) above.

5.3 Putting the pieces together

We can now complete the computation of A(τ )met−ab and B(τ )met−ab by combining
the results of the previous sections.

Theorem 5.6 We have

A(τ )met−ab = 2π ib + exp

(

τ
∂

∂U
V

)

A(1)∞ − 2π iV
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k,

and

B(τ )met−ab = a + 2π iτb + exp

(

τ
∂

∂U
V

)

B(1)∞ − 2π iW
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k .

where U = U
2π i , W = U + τV and A

(1)∞ and B
(1)∞ are as given in Theorem 5.2

Proof We only prove the first equality, the second one is shown analogously. By
Theorem 4.3, we have A(τ ) = g(τ )(A∞), hence

A(τ )met−ab ≡ g(τ )(A∞) mod D2p(E×
τ )C,
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and from Proposition 3.4, we get

A(τ )met−ab = g(τ )(A(1)∞ ) + 2π ig(τ )(b)met−ab.

The only derivation which acts non-trivially on gr1D p(E×
τ )C is ε0 which itself acts as

− ∂
∂UV = 1

2π i
∂

∂U
V. Combining this with Theorem 5.4, we get the result:

A(τ )met−ab = 2π ib + exp

(

τ
∂

∂U
V

)

A(1)∞ − 2π iV
∞
∑

k=1

2

(2k − 2)!
∫

−→
1 ∞

τ

G2k .

��
Remark 5.7 The value forA(τ )met−ab given in Theorem 5.6 can be further simplified.
To this end, recall from Theorem 5.2 that

A(1)∞ = 2π i

⎛

⎝

∞
∑

k=1

B2k

(2k)!U
2k−1 − 2π i

4
V +

∑

n=3, odd

ζ(n)Vn

⎞

⎠ .

Therefore

exp

(

τ
∂

∂U
V

)

A(1)∞ = A(1)∞ + 2π i
∑

k,n≥1

τ n

n!
B2k

(2k)!
(

∂

∂U
V

)n

U2k−1

= A(1)∞ + 2π iV
∑

k,n≥1

2(2π i)2k−1

(2k − 2)!
[

τ n

n!
B2k

4k

(

∂

∂U
V

)n−1

U
2k−2

]

= A(1)∞ + 2π iV
∑

k,n≥1

2(2π i)2k−1

(2k − 1 − n)!
[

τ n

n!
B2k

4k
U
2k−1−n

Vn−1
]

= A(1)∞ + 2π iV
∞
∑

k=1

2(2π i)2k−1

(2k − 2)!
B2k

4k

∫ τ

0
(U + (τ − z)V)2k−2dz.

Note that − B2k
4k = a0(G2k), the zeroth Fourier coefficient of G2k . Consequently, we

obtain

A(τ )met−ab = 2π ib + A(1)∞ − 2π iV
∞
∑

k=1

2

(2k − 2)!
∫ i∞

τ

G0
2k,

where G0
2k = G2k − a0(G2k) = G2k − (2π i)2k−1a0(G2k)(W − zV)2k−2, since

∫
−→
1 ∞

τ

G2k =
∫ i∞

τ

G0
2k −

∫ τ

0
a0(G2k).
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