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Abstract

Inspired by the work of Silverman on the geometry and the arithmetic of monomial
maps and also on the translated maps on Abelian varieties, we generalize his results to
the case of the translated monomial maps.
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1 Introduction
Let ϕ : PN 99K PN be a dominant rational map. The dynamical degree of ϕ is defined by

δϕ = lim
n→∞

(deg(ϕn))
1
n .

It is conjectured that δϕ is an algebraic integer. Let Z(ϕ) be the indeterminacy locus of ϕ.
For x ∈ PN (Q), Oϕ(x) denotes the orbit of x under ϕ. We set the notation

PN (Q)ϕ = {x ∈ PN (Q)| Oϕ(x) ∩ Z(ϕ) = ∅}.

Let
h : PN (Q)→ [0,∞)

denote the usual Weil height.

We denote by Mat+N (Z) the set of N ×N matrices with integer coefficients and non-zero
determinant. To A = (aij) ∈ Mat+N (Z) and α = (α1, . . . , αN ) ∈ GNm(Q), we associate a
dominant map on GNm(Q) denoted by ϕA,α and called the translated monomial map, that is
the map

ϕA,α(x1, . . . , xN ) = (α1x
a1 , . . . , αNx

aN ) = (α1

N∏
i=1

xa1ii , . . . , αN

N∏
i=1

xaNii ).
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By induction, we have for any n ≥ 2 and any x = (x1, . . . , xN ) ∈ GNm(Q)

ϕ
(n)
A,α(x) = (α1α

∑n−1
k=1 a

(k)
1 xa

(n)
1 , . . . , αNα

∑n−1
k=1 a

(k)
N xa

(n)
N ) = ϕ∑n−1

j=0 A
j (α) ∗ ϕAn(x)a . (1)

with ϕ(n)
A,α = ϕA,α ◦ · · · ◦ ϕA,α is the composition of ϕA,α n times and a(n)i is the i-th row of

An. The associated rational map ϕA,α : PN 99K PN is dominant. We can easily see that

deg(ϕnA,α) = deg(ϕnA), and then δϕA,α = δϕA . (2)

Definition 1.1. Let ϕ : PN 99K PN be a dominant rational map defined over Q, and let
x ∈ PN (Q)ϕ. The arithmetic degree of ϕ at x is the quantity

αϕ(x) = lim sup
n→∞

h(ϕn(x))
1
n .

By [2, Proposition 12], we know that

αϕ(x) ≤ δϕ, x ∈ PN (Q)ϕ. (3)

In the following conjecture, Silverman gives a sufficient condition for equality in 3.

Conjecture 1.2. [2, Conjecture 1] Let ϕ : PN 99K PN be a dominant rational map.

(a) The set
{αϕ(x)|x ∈ PN (Q)}

is a finite set of algebraic numbers.

(b) Let x ∈ PN (Q) be a point such that Oϕ(x) is Zariski dense in PN (Q). Then αϕ(x) =
δϕ.

The second conjecture is a necessary step toward the definition of a good notion of
canonical height associated to ϕ.

Conjecture 1.3. [2, Conjecture 2] Let ϕ : PN 99K PN be a dominant rational map. Then
the infimum

lϕ = inf
{
l ≥ 0| sup

n≥1

deg(ϕn)

nlδnϕ
<∞

}
,

exists and is an integer satisfying 0 ≤ lϕ ≤ N .

When ϕ is a monomial map, Favre and Wulcan [1] proved Conjecture 1.3.
Conjecture 1.2 is proved in the case of monomial maps by Silverman in [2, §7].

Under Conjecture 1.3, the canonical height of x ∈ PN (Q)ϕ with respect to ϕ is given as
follows

ĥϕ(x) = lim sup
n→∞

1

nlϕδnϕ
h(ϕn(x)).

We have (see [2, Proposition 19]),

ĥϕ(ϕ(x)) = δϕĥϕ(x).

In [2, p. 649], it is suspected that ĥϕ(x) is finite when δϕ > 1. This holds for monomial
maps as shown in [2, Proposition 25]. In the following theorem, we generalize this result to
translated monomial maps.

a For α = (α1, . . . , αN ), β = (β1, . . . , βN ) ∈ GN
m(Q), and c = (c1, . . . , cN ) ∈ ZN we denote αc =

∏N
i=1 α

ci
i .

We denote α ∗ β = (α1β1, . . . , αNβN ).
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Theorem 1.4 (see Theorem 2.8). Let A ∈ Mat+N (Z) with ρ(A) > 1. Let FA ∈ Z[X] be
the characteristic polynomial of A. We write FA(X) = F1(X)F2(X) with F1 and F2 are
two polynomials in Z[X] such that F1(X) = (X − 1)r and F2(1) 6= 0. We have, for any
x ∈ GNm(Q), ĥϕA,α(x) is finite and αϕA,α(x) is an algebraic integer.

This theorem confirms (b) of Conjecture 1.2 in the case of translated monomial maps. If
δϕ = 1, then it is possible to have lϕ ≥ 1 and ĥϕ(x) = ∞ as shown in [2, Example 17]. In
Theorem 2.4, we produce more examples of rational maps ϕ with δϕ = 1 and lϕ ≥ 1 but
ĥϕ(x) =∞ for any x ∈ GNm(Q).

A fundamental property of the canonical height for morphisms is that height zero char-
acterizes points with finite orbits. For any dominant rational maps ϕ with δϕ > 1 or lϕ > 0,
we have

x ∈ PrePer(ϕ) =⇒ ĥϕ(x) = 0,

but the converse is not true in general, as noted by Silverman. This leads him to the following
conjecture.

Conjecture 1.5. Let ϕ : PN 99K PN be a dominant rational map with dynamical degree
δϕ > 1, let x ∈ PN (Q)ϕ be a point whose orbit Oϕ(x) is Zariski dense in PN (Q). Then
ĥϕ(x) > 0.

When ϕ is a monomial map, then Conjecture 1.5 is true (see [2, Corollary 29]). We
generalize [2, Corollary 29] to the case of translated monomial maps (see Corollary 2.10).

2 The arithmetic of translated monomial maps.
The following lemma can be seen as an analogue of [3, Lemma 5].

Lemma 2.1. Let GNm(Q) the torus of dimension N over Q, let ϕA : GNm(Q) → GNm(Q)
be a monomial map with A ∈ Mat+N (Z). Let F (X) ∈ Z[X] be a polynomial such that
ϕF (A)(x) = (1, . . . , 1),∀x ∈ GNm(Q). Suppose that F factors as

F (X) = F1(X)F2(X) withF1, F2 ∈ Z[X] and gcd(F1, F2) = 1,

where the gcd is computed in Q[X]. Let

G1 = ϕ
F1(A)

GNm(Q) and G2 = ϕF2(A)GNm(Q),

so G1 and G2 are subgroups of GNm(Q). Then we have:

(a) GNm(Q) = G1 ·G2.

(b) G1 ∩ G2 is finite. More precisely, if we let ρ = Res(F1, F2), then G1 ∩ G2 ⊂ GNm[ρ],
where [ρ] := ϕρIN and IN is the unit matrix.

The following map is an isogeny

λ : G1 ×G2 → GNm(Q), λ(x, y) = x ∗ y.

Proof. We have
ϕA(G1) ⊂ G1 and ϕA(G2) ⊂ G2. (4)
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These inclusions follow from the following identities ϕA ◦ ϕB = ϕAB and ϕA · ϕB = ϕA+B

for A and B two matrices in Mat+N (Z) (see [2, p. 659 (9)]).

G1(X)F1(X) +G2(X)F2(X) = ρ = res(F1, F2).

We have ϕρIN = ϕF1G1
· ϕF2G2

. This implies

GNm(Q) = ϕρIN (GNm) ⊂ G1 ·G2. (5)

Let x ∈ G1 ∩G2, then x = ϕFi(A)(xi) for some xi ∈ Gi with i = 1, 2. We have

ϕρIN (x) = ϕG1(A)(ϕF1(A)(x)) · ϕG2(A)(ϕF2(A)(x))

= ϕG1(A)(ϕF1(A)F2(A)(y)) · ϕG2(A)(ϕF2(A)F1(A)(x))

= ϕG1(A)(ϕ0(x))ϕG2(A)(ϕ0(x))

= 1.

Then G1 ∩ G2 ⊂ GNm[ρ]. We use (5) to deduce that the map λ is onto, and then to
conclude that λ is an isogeny.

We can find a pair (α1, α2) ∈ G1 × G2 satisfying λ(α1, α2) = α, i.e α1 ∗ α2 = α. Since
ϕA commutes with F1(ϕA) and F2(ϕA), we write φ1 and φ2 for the restrictions of ϕA to G1

and to G2 respectively, and we define maps ϕ1 and ϕ2 as follows

ϕ1 : G1 → G1 ϕ1(x) = φ1(x) ∗ α1, (6)

ϕ2 : G2 → G2 ϕ2(y) = φ2(y) ∗ α2. (7)

We have, for any x ∈ G1 and y ∈ G2

λ ◦ (ϕ1 × ϕ2)(x, y) = λ
(
φ1(x) ∗ α1, φ2(y) ∗ α2

)
= φ1(x) ∗ α1 ∗ φ2(y) ∗ α2

= ϕA(x ∗ y) ∗ α
= ϕA,α ◦ λ(x, y).

This shows that the following diagram is commutative

G1 ×G2
λ //

ϕ1×ϕ2

��

GNm
ϕA,α

��
G1 ×G2

λ // GNm
Then,

ϕnA,α ◦ λ(α1, α2) = λ ◦ (ϕn1 × ϕn2 )(x, y) ∀n ∈ N. (8)

Lemma 2.2. Let A ∈ Mat+N (Z) and α ∈ GNm(Q). We consider the map ϕA,α. We have for
any x ∈ GNm(Q)

ĥϕA,α(1) ≤ ĥϕA,α(x) + ĥϕA(x
−1) and ĥϕA,α(x) ≤ ĥϕA,α(1) + ĥϕA(x). (9)

In particular, ĥϕA,α(x) is finite if and only if ĥϕA,α(1) is finite.

αϕA,α(1) ≤ αϕA,α(x) + αϕA(x
−1) and αϕA,α(x) ≤ αϕA,α(1) + αϕA(x). (10)
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Proof. Recall that ϕ(n)
A,α(x) = ϕ∑n−1

j=0 A
j (α) ∗ ϕAn(x), so ϕ(n)

A,α(1) = ϕ∑n−1
j=0 A

j (α). By the
definition of Weil height, it is easy to get the following

h(ϕnA,α(1)) ≤ h(ϕnA,α(x)) + h(ϕAn(x
−1)). (11)

and
h(ϕnA,α(x)) ≤ h(ϕnA,α(1)) + h(ϕAn(x)). (12)

So the inequalities of the lemma follow easily. We know that ĥϕA is finite by [2, Proposition
25]. Then, ĥϕA,α(x) is finite if and only if ĥϕA,α(1) is finite.

Claim 2.3. Fix r ≥ 1, we have

n−1∑
k=0

Xk ≡
(
n

r

)
(X − 1)r−1 + Pn,r(X) [mod (X − 1)r]. (13)

with Pn,r(X) =
∑r−2
k=0 dr,j(n)X

k is a polynomial in Z[X] with dr,j(n) = O(nr−1) for n� 1.

Proof. We have

n−1∑
k=0

Xk ≡ Xn − 1

X − 1

≡
r−1∑
k=0

(
n

k + 1

)
(X − 1)k [mod (X − 1)r]

≡
r−1∑
k=0

k∑
j=0

(
n

k + 1

)(
k

j

)
(−1)k−jXj [mod (X − 1)r]

≡
r−1∑
j=0

(
n

r

)(
r − 1

j

)
(−1)r−1−jXj +

r−2∑
k=0

k∑
j=0

(
n

k + 1

)(
k

j

)
(−1)k−jXj [mod (X − 1)r].

In [2, Example 17], an example of a rational map on P3 is given, satisfying δϕ = 1

and lϕ > 0 but ĥϕ takes an infinite value at a point in P3(Q)ϕ. The following result gives
examples of rational maps ϕ with δϕ = 1 and lϕ > 0 but the canonical height ĥϕ takes
infinite values.

Theorem 2.4. Let A ∈ Mat+N (Z) and FA its characteristic polynomial. We suppose that
FA(X) = (X − I)r with r ∈ N≥2. Let α ∈ GNm(Q). We have for x ∈ GNm(Q), the canonical
height ĥϕA,α(x) is finite if and only if ϕ(A−I)r−1(α) ∈ GNm(Q)tors (equivalently, log |α| ∈
kerC(A− I)r−1).

Proof. Using Claim 2.3, we have for any v ∈MK ,
∑n−1
k=0 A

k log ‖α‖vb =
(
n
r

)
(A−I)r−1 log ‖α‖v+

Pn,r(A) log ‖α‖v. If there exists v0 ∈ MK such that (A− I)r−1 log ‖α‖v0 has a positive co-
ordinate, then we can find a positive constant c such that

h(ϕnA,α(1)) =
∑

v∈MK

max
1≤i≤N

(0, (

n−1∑
k=0

Ak log ‖α‖v)i) ≥ cnr ∀n� 1.

bBy definition, log ‖α‖v is the transpose of (log ‖α1‖v , . . . , log ‖αN‖v).
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But lϕA,α = lϕA = lA which is less than r − 1. Then, by the definition of the canonical
height, we get

ĥϕA,α(1) =∞. (14)

Since ĥϕA is finite ([2, Proposition 25]), and by 9 we conclude that

ĥϕA,α(x) =∞ ∀x ∈ GNm(Q). (15)

If (A− I)r−1 log ‖α‖v ≤ 0 for any v ∈ MK . This implies that ϕ(A−I)r−1(α) is a torsion
point in GNm(Q). We deduce that the limit

lim sup
n→∞

h(ϕnA,α(1))

nr−1
, (16)

is finite. Then, ĥϕA,α(x) is finite for any x ∈ GNm(Q).

Remark 2.5. A similar formula can be obtained for an A ∈ Mat+N (Z) satisfying (As−I)r =
0 with s ∈ N≥2.

Proposition 2.6. Let A ∈ Mat+N (Z) and FA its characteristic polynomial. We suppose that
FA(1) 6= 0. We have

ĥϕA,α(x) =
1

det(A− I)
ĥϕA(β ∗ xdet(A−I)) ∀x ∈ GNm(Q), (17)

where β = ϕtCom(A−I)
(α). In particular, the canonical height ĥϕA,α(x) is finite. We have,

αϕA,α(x) = αϕA(β ∗ xdet(A−I)).

and
{
αϕA,α(x)|x ∈ PN (Q)ϕA,α

}
is a finite set of algebraic integers.

Proof. By assumption, we can find β ∈ GNm(Q) such that ϕA−I(β) = αdet(A−I). In fact
we can take β = ϕtCom(A−I)

(α). Then
(
ϕ
(n)
A,α(x)

)det(A−I)
= ϕAn−I(β) ∗ ϕAn(xdet(A−I)) =

ϕAn(β ∗ xdet(A−I)) ∗ ϕ−I(β). From this, we get two inequalities

det(A− I)h(ϕ(n)
A,α(x)) ≤ h(ϕ

(n)
A (β ∗ xdet(A−I))) + h(β−1), (18)

and
h(ϕ

(n)
A (β ∗ xdet(A−I))) ≤ det(A− I)h(ϕ(n)

A,α(x)) + h(β). (19)

We conclude that
ĥϕA,α(x) =

1

det(A− I)
ĥϕA(β ∗ xdet(A−I)). (20)

Using 18 and 19, we deduce

αϕA,α(x) = lim sup
n→∞

h(ϕ
(n)
A,α(x))

1
n = lim sup

n→∞
h(ϕ

(n)
A (β ∗ xdet(A−I))) 1

n = αϕA(β ∗ xdet(A−I)).

(21)
By [2, Corollary 32], we conclude the proof of the proposition.
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Corollary 2.7. Let α ∈ GNm(Q). Let A ∈ Mat+N (Z) whose characteristic polynomial is
irreducible over Q. Let x ∈ GNm(Q). Then

ĥϕA,α(x) = 0⇐⇒ x ∈ PrePer(ϕA,α).

Proof. Let FA be the characteristic polynomial of A. By assumption, FA is irreducible over
Q. In particular, FA(1) 6= 0. The proof of the corollary follows from Proposition 2.6 and [2,
Corollary 31].

The following theorem gives examples of rational maps satisfying [2, Question 18. p.658]

Theorem 2.8. Let A ∈ Mat+N (Z) with ρ(A) > 1. Let FA ∈ Z[X] be the characteristic
polynomial of A. We write FA(X) = F1(X)F2(X) with F1 and F2 are two polynomials in
Z[X] such that F1(X) = (X − 1)r and F2(1) 6= 0. We have, for any x ∈ GNm(Q), ĥϕA,α(x)
is finite and αϕA,α(x) is an algebraic integer.

Proof. If r = 0, this is Proposition 2.6. We assume that r ≥ 1. Recall the definitions of ϕ1

and ϕ2 (see 6 and 7).
We can show that lϕ1 , lϕ2 ≤ lϕA,α . Since ϕF1(A)(φ2) = 1 and ϕF2(A)(φ1) = 1, we have

G1 and G2 are tori, φ1 and φ2 are monomial maps on G1 and G2 respectively. If we denote
by A1 (resp. A2) the associated matrix of φ1 (resp. φ2) then F2(A1) = 0 and F1(A2) = 0.
By Lemma 2.1, we have

h(ϕnA,α(x ∗ y)) = h(ϕn1 (x)) + h(ϕn2 (y)) +O(1), ∀n ∈ N. (22)

Which gives

lim sup
n→∞

1

nlAρ(A)n
h(ϕnA,α(x ∗ y)) ≤ lim sup

n→∞

1

nlAρ(A)n
h(ϕn1 (x)) + lim sup

n→∞

1

nlAρ(A)n
h(ϕn2 (y))

= lim
n→∞

nlϕ1

nlA
lim sup
n→∞

h(ϕn1 (x))

ρ(A)nnlϕ1

+ lim
n→∞

nlϕ2

nlA
lim sup
n→∞

h(ϕn2 (y))

ρ(A)nnlϕ2

By Theorem 2.4 and 12, we have

h(ϕn2 (y)) = O(nlϕ2+1) for n� 1, (23)

Recall that ρ(A) > 1, then the second term of previous inequality is zero. For the first
term, this limit is finite by Proposition 2.6. A simple argument shows that, in fact, we have

ĥϕA,α(x ∗ y) = lim
n→∞

nlϕ1 δnϕ1

nlAρ(A)n
ĥϕ1

(x). (24)

In particular,

lim
n→∞

nlϕ1 δnϕ1

nlAρ(A)n
= 1. (25)

Then
ĥϕA,α(x ∗ y) = ĥϕ1(x) <∞.

We have

h(ϕnA,α(x ∗ y))
1
n = h(ϕn1 (x))

1
n

(
1 +

h(ϕn2 (y))

h(ϕn1 (x))
+ o(1)

) 1
n

. (26)
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By 23 and 25, we obtain

lim sup
n→∞

h(ϕnA,α(x ∗ y))
1
n = lim sup

n→∞
h(ϕn1 (x))

1
n . (27)

That is,

αϕA,α(x ∗ y) = αϕ1
(x). (28)

Since αϕ1
(x) is an algebraic integer (see Proposition 2.6), we conclude that αϕA,α(z) is

an algebraic integer for any z ∈ GNm(Q).

Proposition 2.9. Let α ∈ GNm(Q). Let A ∈ Mat+N (Z) and ϕA,α the associated monomial
map. We assume that δϕA,α > 1. There exist r(A) a positive integer and an algebraic
subgroup G ⊂ GNm(Q), with dimension dimG ≥ N − r(A) such that{

x ∈ GNm(Q)| ĥϕA,α(x) = 0
}
⊂ G(Q)div ∗ (ϕtCom(A−I)

(α))−
1

det(A−I) . (29)

Proof. The proof of the proposition follows easily from [2, Theorem 27] combined with
Proposition 2.6.

This proposition has the following corollary,

Corollary 2.10. Let α ∈ GNm(Q). Let A ∈ Mat+N (Z) and ϕA,α the associated monomial
map. We assume that δϕA,α > 1. If ĥϕA,α(x) = 0 then the orbit OϕA,α(x) is not Zariski
dense in GNm(Q).
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