Max-Planck-Institut für Mathematik Bonn

On the arithmetic of translated monomial maps
by

Mounir Hajli

On the arithmetic of translated monomial maps

Mounir Hajli

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

School of Mathematical Sciences
Shanghai Jiao Tong University
China

On the arithmetic of translated monomial maps

Mounir Hajli*

Friday $26^{\text {th }}$ May, 2017, 21:29

Abstract

Inspired by the work of Silverman on the geometry and the arithmetic of monomial maps and also on the translated maps on Abelian varieties, we generalize his results to the case of the translated monomial maps.

Contents

1 Introduction

Let $\varphi: \mathbb{P}^{N} \longrightarrow \mathbb{P}^{N}$ be a dominant rational map. The dynamical degree of φ is defined by

$$
\delta_{\varphi}=\lim _{n \rightarrow \infty}\left(\operatorname{deg}\left(\varphi^{n}\right)\right)^{\frac{1}{n}} .
$$

It is conjectured that δ_{φ} is an algebraic integer. Let $Z(\varphi)$ be the indeterminacy locus of φ. For $x \in \mathbb{P}^{N}(\overline{\mathbb{Q}}), \mathcal{O}_{\varphi}(x)$ denotes the orbit of x under φ. We set the notation

$$
\mathbb{P}^{N}(\overline{\mathbb{Q}})_{\varphi}=\left\{x \in \mathbb{P}^{N}(\overline{\mathbb{Q}}) \mid \mathcal{O}_{\varphi}(x) \cap Z(\varphi)=\emptyset\right\} .
$$

Let

$$
h: \mathbb{P}^{N}(\overline{\mathbb{Q}}) \rightarrow[0, \infty)
$$

denote the usual Weil height.
We denote by $\operatorname{Mat}_{N}^{+}(\mathbb{Z})$ the set of $N \times N$ matrices with integer coefficients and non-zero determinant. To $A=\left(a_{i j}\right) \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, we associate a dominant map on $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ denoted by $\varphi_{A, \alpha}$ and called the translated monomial map, that is the map

$$
\varphi_{A, \alpha}\left(x_{1}, \ldots, x_{N}\right)=\left(\alpha_{1} x^{a_{1}}, \ldots, \alpha_{N} x^{a_{N}}\right)=\left(\alpha_{1} \prod_{i=1}^{N} x_{i}^{a_{1 i}}, \ldots, \alpha_{N} \prod_{i=1}^{N} x_{i}^{a_{N i}}\right) .
$$

[^0]By induction, we have for any $n \geq 2$ and any $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$

$$
\begin{equation*}
\varphi_{A, \alpha}^{(n)}(x)=\left(\alpha_{1} \alpha^{\sum_{k=1}^{n-1} a_{1}^{(k)}} x^{a_{1}^{(n)}}, \ldots, \alpha_{N} \alpha^{\sum_{k=1}^{n-1} a_{N}^{(k)}} x^{a_{N}^{(n)}}\right)=\varphi_{\sum_{j=0}^{n-1} A^{j}}(\alpha) * \varphi_{A^{n}}(x)^{a} . \tag{1}
\end{equation*}
$$

with $\varphi_{A, \alpha}^{(n)}=\varphi_{A, \alpha} \circ \cdots \circ \varphi_{A, \alpha}$ is the composition of $\varphi_{A, \alpha} n$ times and $a_{i}^{(n)}$ is the i-th row of A^{n}. The associated rational map $\varphi_{A, \alpha}: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N}$ is dominant. We can easily see that

$$
\begin{equation*}
\operatorname{deg}\left(\varphi_{A, \alpha}^{n}\right)=\operatorname{deg}\left(\varphi_{A}^{n}\right), \quad \text { and then } \quad \delta_{\varphi_{A, \alpha}}=\delta_{\varphi_{A}} \tag{2}
\end{equation*}
$$

Definition 1.1. Let $\varphi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N}$ be a dominant rational map defined over $\overline{\mathbb{Q}}$, and let $x \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{\varphi}$. The arithmetic degree of φ at x is the quantity

$$
\alpha_{\varphi}(x)=\limsup _{n \rightarrow \infty} h\left(\varphi^{n}(x)\right)^{\frac{1}{n}} .
$$

By [2, Proposition 12], we know that

$$
\begin{equation*}
\alpha_{\varphi}(x) \leq \delta_{\varphi}, \quad x \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{\varphi} \tag{3}
\end{equation*}
$$

In the following conjecture, Silverman gives a sufficient condition for equality in 3 .
Conjecture 1.2. [2, Conjecture 1] Let $\varphi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N}$ be a dominant rational map.
(a) The set

$$
\left\{\alpha_{\varphi}(x) \mid x \in \mathbb{P}^{N}(\mathbb{Q})\right\}
$$

is a finite set of algebraic numbers.
(b) Let $x \in \mathbb{P}^{N}(\overline{\mathbb{Q}})$ be a point such that $\mathcal{O}_{\varphi}(x)$ is Zariski dense in $\mathbb{P}^{N}(\overline{\mathbb{Q}})$. Then $\alpha_{\varphi}(x)=$ δ_{φ}.

The second conjecture is a necessary step toward the definition of a good notion of canonical height associated to φ.
Conjecture 1.3. [2, Conjecture 2] Let $\varphi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N}$ be a dominant rational map. Then the infimum

$$
l_{\varphi}=\inf \left\{l \geq 0 \left\lvert\, \sup _{n \geq 1} \frac{\operatorname{deg}\left(\varphi^{n}\right)}{n^{l} \delta_{\varphi}^{n}}<\infty\right.\right\}
$$

exists and is an integer satisfying $0 \leq l_{\varphi} \leq N$.
When φ is a monomial map, Favre and Wulcan [1] proved Conjecture 1.3 Conjecture 1.2 is proved in the case of monomial maps by Silverman in [2, §7].

Under Conjecture 1.3, the canonical height of $x \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{\varphi}$ with respect to φ is given as follows

$$
\widehat{h}_{\varphi}(x)=\limsup _{n \rightarrow \infty} \frac{1}{n^{l_{\varphi} \delta_{\varphi}^{n}}} h\left(\varphi^{n}(x)\right) .
$$

We have (see [2, Proposition 19]),

$$
\widehat{h}_{\varphi}(\varphi(x))=\delta_{\varphi} \widehat{h}_{\varphi}(x)
$$

In [2, p. 649], it is suspected that $\widehat{h}_{\varphi}(x)$ is finite when $\delta_{\varphi}>1$. This holds for monomial maps as shown in [2, Proposition 25]. In the following theorem, we generalize this result to translated monomial maps.

[^1]Theorem 1.4 (see Theorem 2.8). Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ with $\rho(A)>1$. Let $F_{A} \in \mathbb{Z}[X]$ be the characteristic polynomial of A. We write $F_{A}(X)=F_{1}(X) F_{2}(X)$ with F_{1} and F_{2} are two polynomials in $\mathbb{Z}[X]$ such that $F_{1}(X)=(X-1)^{r}$ and $F_{2}(1) \neq 0$. We have, for any $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}), \widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite and $\alpha_{\varphi_{A, \alpha}}(x)$ is an algebraic integer.

This theorem confirms (b) of Conjecture 1.2 in the case of translated monomial maps. If $\delta_{\varphi}=1$, then it is possible to have $l_{\varphi} \geq 1$ and $h_{\varphi}(x)=\infty$ as shown in [2, Example 17]. In Theorem 2.4 , we produce more examples of rational maps φ with $\delta_{\varphi}=1$ and $l_{\varphi} \geq 1$ but $\widehat{h}_{\varphi}(x)=\infty$ for any $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$.

A fundamental property of the canonical height for morphisms is that height zero characterizes points with finite orbits. For any dominant rational maps φ with $\delta_{\varphi}>1$ or $l_{\varphi}>0$, we have

$$
x \in \operatorname{PrePer}(\varphi) \Longrightarrow \widehat{h}_{\varphi}(x)=0
$$

but the converse is not true in general, as noted by Silverman. This leads him to the following conjecture.

Conjecture 1.5. Let $\varphi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N}$ be a dominant rational map with dynamical degree $\delta_{\varphi}>1$, let $x \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{\varphi}$ be a point whose orbit $\mathcal{O}_{\varphi}(x)$ is Zariski dense in $\mathbb{P}^{N}(\overline{\mathbb{Q}})$. Then $\widehat{h}_{\varphi}(x)>0$.

When φ is a monomial map, then Conjecture 1.5 is true (see [2, Corollary 29]). We generalize [2, Corollary 29] to the case of translated monomial maps (see Corollary 2.10.

2 The arithmetic of translated monomial maps.

The following lemma can be seen as an analogue of [3, Lemma 5].
Lemma 2.1. Let $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ the torus of dimension N over $\overline{\mathbb{Q}}$, let $\varphi_{A}: \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}) \rightarrow \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ be a monomial map with $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$. Let $F(X) \in \mathbb{Z}[X]$ be a polynomial such that $\varphi_{F(A)}(x)=(1, \ldots, 1), \forall x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. Suppose that F factors as

$$
F(X)=F_{1}(X) F_{2}(X) \quad \text { with } F_{1}, F_{2} \in \mathbb{Z}[X] \text { and } \operatorname{gcd}\left(F_{1}, F_{2}\right)=1
$$

where the gcd is computed in $\mathbb{Q}[X]$. Let

$$
G_{1}=\varphi_{F_{1}(A)} \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}) \quad \text { and } \quad G_{2}=\varphi_{F_{2}(A)} \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})
$$

so G_{1} and G_{2} are subgroups of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. Then we have:
(a) $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})=G_{1} \cdot G_{2}$.
(b) $G_{1} \cap G_{2}$ is finite. More precisely, if we let $\rho=\operatorname{Res}\left(F_{1}, F_{2}\right)$, then $G_{1} \cap G_{2} \subset \mathbb{G}_{m}^{N}[\rho]$, where $[\rho]:=\varphi_{\rho I_{N}}$ and I_{N} is the unit matrix.

The following map is an isogeny

$$
\lambda: G_{1} \times G_{2} \rightarrow \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}), \quad \lambda(x, y)=x * y
$$

Proof. We have

$$
\begin{equation*}
\varphi_{A}\left(G_{1}\right) \subset G_{1} \quad \text { and } \quad \varphi_{A}\left(G_{2}\right) \subset G_{2} \tag{4}
\end{equation*}
$$

These inclusions follow from the following identities $\varphi_{A} \circ \varphi_{B}=\varphi_{A B}$ and $\varphi_{A} \cdot \varphi_{B}=\varphi_{A+B}$ for A and B two matrices in $\operatorname{Mat}_{N}^{+}(\mathbb{Z})$ (see [2, p. 659 (9)]).

$$
G_{1}(X) F_{1}(X)+G_{2}(X) F_{2}(X)=\rho=\operatorname{res}\left(F_{1}, F_{2}\right)
$$

We have $\varphi_{\rho I_{N}}=\varphi_{F_{1} G_{1}} \cdot \varphi_{F_{2} G_{2}}$. This implies

$$
\begin{equation*}
\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})=\varphi_{\rho I_{N}}\left(\mathbb{G}_{m}^{N}\right) \subset G_{1} \cdot G_{2} . \tag{5}
\end{equation*}
$$

Let $x \in G_{1} \cap G_{2}$, then $x=\varphi_{F_{i}(A)}\left(x_{i}\right)$ for some $x_{i} \in G_{i}$ with $i=1,2$. We have

$$
\begin{aligned}
\varphi_{\rho I_{N}}(x) & =\varphi_{G_{1}(A)}\left(\varphi_{F_{1}(A)}(x)\right) \cdot \varphi_{G_{2}(A)}\left(\varphi_{F_{2}(A)}(x)\right) \\
& =\varphi_{G_{1}(A)}\left(\varphi_{F_{1}(A) F_{2}(A)}(y)\right) \cdot \varphi_{G_{2}(A)}\left(\varphi_{F_{2}(A) F_{1}(A)}(x)\right) \\
& =\varphi_{G_{1}(A)}\left(\varphi_{0}(x)\right) \varphi_{G_{2}(A)}\left(\varphi_{0}(x)\right) \\
& =1
\end{aligned}
$$

Then $G_{1} \cap G_{2} \subset \mathbb{G}_{m}^{N}[\rho]$. We use (5) to deduce that the map λ is onto, and then to conclude that λ is an isogeny.

We can find a pair $\left(\alpha_{1}, \alpha_{2}\right) \in G_{1} \times G_{2}$ satisfying $\lambda\left(\alpha_{1}, \alpha_{2}\right)=\alpha$, i.e $\alpha_{1} * \alpha_{2}=\alpha$. Since φ_{A} commutes with $F_{1}\left(\varphi_{A}\right)$ and $F_{2}\left(\varphi_{A}\right)$, we write ϕ_{1} and ϕ_{2} for the restrictions of φ_{A} to G_{1} and to G_{2} respectively, and we define maps φ_{1} and φ_{2} as follows

$$
\begin{array}{ll}
\varphi_{1}: G_{1} \rightarrow G_{1} & \varphi_{1}(x)=\phi_{1}(x) * \alpha_{1} \\
\varphi_{2}: G_{2} \rightarrow G_{2} & \varphi_{2}(y)=\phi_{2}(y) * \alpha_{2} \tag{7}
\end{array}
$$

We have, for any $x \in G_{1}$ and $y \in G_{2}$

$$
\begin{aligned}
\lambda \circ\left(\varphi_{1} \times \varphi_{2}\right)(x, y) & =\lambda\left(\phi_{1}(x) * \alpha_{1}, \phi_{2}(y) * \alpha_{2}\right) \\
& =\phi_{1}(x) * \alpha_{1} * \phi_{2}(y) * \alpha_{2} \\
& =\varphi_{A}(x * y) * \alpha \\
& =\varphi_{A, \alpha} \circ \lambda(x, y) .
\end{aligned}
$$

This shows that the following diagram is commutative

Then,

$$
\begin{equation*}
\varphi_{A, \alpha}^{n} \circ \lambda\left(\alpha_{1}, \alpha_{2}\right)=\lambda \circ\left(\varphi_{1}^{n} \times \varphi_{2}^{n}\right)(x, y) \quad \forall n \in \mathbb{N} . \tag{8}
\end{equation*}
$$

Lemma 2.2. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ and $\alpha \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. We consider the map $\varphi_{A, \alpha}$. We have for any $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$

$$
\begin{equation*}
\widehat{h}_{\varphi_{A, \alpha}}(1) \leq \widehat{h}_{\varphi_{A, \alpha}}(x)+\widehat{h}_{\varphi_{A}}\left(x^{-1}\right) \quad \text { and } \quad \widehat{h}_{\varphi_{A, \alpha}}(x) \leq \widehat{h}_{\varphi_{A, \alpha}}(1)+\widehat{h}_{\varphi_{A}}(x) . \tag{9}
\end{equation*}
$$

In particular, $\widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite if and only if $\widehat{h}_{\varphi_{A, \alpha}}(1)$ is finite.

$$
\begin{equation*}
\alpha_{\varphi_{A, \alpha}}(1) \leq \alpha_{\varphi_{A, \alpha}}(x)+\alpha_{\varphi_{A}}\left(x^{-1}\right) \quad \text { and } \quad \alpha_{\varphi_{A, \alpha}}(x) \leq \alpha_{\varphi_{A, \alpha}}(1)+\alpha_{\varphi_{A}}(x) . \tag{10}
\end{equation*}
$$

Proof. Recall that $\varphi_{A, \alpha}^{(n)}(x)=\varphi_{\sum_{j=0}^{n-1} A^{j}}(\alpha) * \varphi_{A^{n}}(x)$, so $\varphi_{A, \alpha}^{(n)}(1)=\varphi_{\sum_{j=0}^{n-1} A^{j}}(\alpha)$. By the definition of Weil height, it is easy to get the following

$$
\begin{equation*}
h\left(\varphi_{A, \alpha}^{n}(1)\right) \leq h\left(\varphi_{A, \alpha}^{n}(x)\right)+h\left(\varphi_{A^{n}}\left(x^{-1}\right)\right) . \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(\varphi_{A, \alpha}^{n}(x)\right) \leq h\left(\varphi_{A, \alpha}^{n}(1)\right)+h\left(\varphi_{A^{n}}(x)\right) . \tag{12}
\end{equation*}
$$

So the inequalities of the lemma follow easily. We know that $\widehat{h}_{\varphi_{A}}$ is finite by [2] Proposition 25]. Then, $\widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite if and only if $\widehat{h}_{\varphi_{A, \alpha}}(1)$ is finite.

Claim 2.3. Fix $r \geq 1$, we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} X^{k} \equiv\binom{n}{r}(X-1)^{r-1}+P_{n, r}(X)\left[\bmod (X-1)^{r}\right] \tag{13}
\end{equation*}
$$

with $P_{n, r}(X)=\sum_{k=0}^{r-2} d_{r, j}(n) X^{k}$ is a polynomial in $\mathbb{Z}[X]$ with $d_{r, j}(n)=O\left(n^{r-1}\right)$ for $n \gg 1$.
Proof. We have

$$
\begin{aligned}
\sum_{k=0}^{n-1} X^{k} & \equiv \frac{X^{n}-1}{X-1} \\
& \equiv \sum_{k=0}^{r-1}\binom{n}{k+1}(X-1)^{k}\left[\bmod (X-1)^{r}\right] \\
& \equiv \sum_{k=0}^{r-1} \sum_{j=0}^{k}\binom{n}{k+1}\binom{k}{j}(-1)^{k-j} X^{j}\left[\bmod (X-1)^{r}\right] \\
& \equiv \sum_{j=0}^{r-1}\binom{n}{r}\binom{r-1}{j}(-1)^{r-1-j} X^{j}+\sum_{k=0}^{r-2} \sum_{j=0}^{k}\binom{n}{k+1}\binom{k}{j}(-1)^{k-j} X^{j}\left[\bmod (X-1)^{r}\right]
\end{aligned}
$$

In [2, Example 17], an example of a rational map on \mathbb{P}^{3} is given, satisfying $\delta_{\varphi}=1$ and $l_{\varphi}>0$ but \widehat{h}_{φ} takes an infinite value at a point in $\mathbb{P}^{3}(\overline{\mathbb{Q}})_{\varphi}$. The following result gives examples of rational maps φ with $\delta_{\varphi}=1$ and $l_{\varphi}>0$ but the canonical height \widehat{h}_{φ} takes infinite values.

Theorem 2.4. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ and F_{A} its characteristic polynomial. We suppose that $F_{A}(X)=(X-I)^{r}$ with $r \in \mathbb{N}_{\geq 2}$. Let $\alpha \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. We have for $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, the canonical height $\widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite if and only if $\varphi_{(A-I)^{r-1}}(\alpha) \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})_{\text {tors }}$ (equivalently, $\log |\alpha| \in$ $\left.\operatorname{ker}_{\mathbb{C}}(A-I)^{r-1}\right)$.

Proof. Using Claim 2.3. we have for any $v \in \mathcal{M}_{K}, \sum_{k=0}^{n-1} A^{k} \log \|\alpha\|_{2}{ }^{b}=\binom{n}{r}(A-I)^{r-1} \log \|\alpha\|_{v}+$ $P_{n, r}(A) \log \|\alpha\|_{v}$. If there exists $v_{0} \in \mathcal{M}_{K}$ such that $(A-I)^{r-1} \log \|\alpha\|_{v_{0}}$ has a positive coordinate, then we can find a positive constant c such that

$$
h\left(\varphi_{A, \alpha}^{n}(1)\right)=\sum_{v \in \mathcal{M}_{K}} \max _{1 \leq i \leq N}\left(0,\left(\sum_{k=0}^{n-1} A^{k} \log \|\alpha\|_{v}\right)_{i}\right) \geq c n^{r} \quad \forall n \gg 1 .
$$

[^2]But $l_{\varphi_{A, \alpha}}=l_{\varphi_{A}}=l_{A}$ which is less than $r-1$. Then, by the definition of the canonical height, we get

$$
\begin{equation*}
\widehat{h}_{\varphi_{A, \alpha}}(1)=\infty . \tag{14}
\end{equation*}
$$

Since $\widehat{h}_{\varphi_{A}}$ is finite ([2, Proposition 25]), and by 9 we conclude that

$$
\begin{equation*}
\widehat{h}_{\varphi_{A, \alpha}}(x)=\infty \quad \forall x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}) . \tag{15}
\end{equation*}
$$

If $(A-I)^{r-1} \log \|\alpha\|_{v} \leq 0$ for any $v \in \mathcal{M}_{K}$. This implies that $\varphi_{(A-I)^{r-1}}(\alpha)$ is a torsion point in $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. We deduce that the limit

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{h\left(\varphi_{A, \alpha}^{n}(1)\right)}{n^{r-1}} \tag{16}
\end{equation*}
$$

is finite. Then, $\widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite for any $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$.

Remark 2.5. A similar formula can be obtained for an $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ satisfying $\left(A^{s}-I\right)^{r}=$ 0 with $s \in \mathbb{N}_{\geq 2}$.

Proposition 2.6. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ and F_{A} its characteristic polynomial. We suppose that $F_{A}(1) \neq 0$. We have

$$
\begin{equation*}
\widehat{h}_{\varphi_{A, \alpha}}(x)=\frac{1}{\operatorname{det}(A-I)} \widehat{h}_{\varphi_{A}}\left(\beta * x^{\operatorname{det}(A-I)}\right) \quad \forall x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}) \tag{17}
\end{equation*}
$$

where $\beta=\varphi_{t_{\operatorname{Com}(A-I)}}(\alpha)$. In particular, the canonical height $\widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite. We have,

$$
\alpha_{\varphi_{A, \alpha}}(x)=\alpha_{\varphi_{A}}\left(\beta * x^{\operatorname{det}(A-I)}\right)
$$

and $\left\{\alpha_{\varphi_{A, \alpha}}(x) \mid x \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{\varphi_{A, \alpha}}\right\}$ is a finite set of algebraic integers.
Proof. By assumption, we can find $\beta \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ such that $\varphi_{A-I}(\beta)=\alpha^{\operatorname{det}(A-I)}$. In fact we can take $\beta=\varphi_{t_{\operatorname{Com}(A-I)}}(\alpha)$. Then $\left(\varphi_{A, \alpha}^{(n)}(x)\right)^{\operatorname{det}(A-I)}=\varphi_{A^{n}-I}(\beta) * \varphi_{A^{n}}\left(x^{\operatorname{det}(A-I)}\right)=$ $\varphi_{A^{n}}\left(\beta * x^{\operatorname{det}(A-I)}\right) * \varphi_{-I}(\beta)$. From this, we get two inequalities

$$
\begin{equation*}
\operatorname{det}(A-I) h\left(\varphi_{A, \alpha}^{(n)}(x)\right) \leq h\left(\varphi_{A}^{(n)}\left(\beta * x^{\operatorname{det}(A-I)}\right)\right)+h\left(\beta^{-1}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(\varphi_{A}^{(n)}\left(\beta * x^{\operatorname{det}(A-I)}\right)\right) \leq \operatorname{det}(A-I) h\left(\varphi_{A, \alpha}^{(n)}(x)\right)+h(\beta) . \tag{19}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\widehat{h}_{\varphi_{A, \alpha}}(x)=\frac{1}{\operatorname{det}(A-I)} \widehat{h}_{\varphi_{A}}\left(\beta * x^{\operatorname{det}(A-I)}\right) \tag{20}
\end{equation*}
$$

Using 18 and 19 we deduce

$$
\begin{equation*}
\alpha_{\varphi_{A, \alpha}}(x)=\limsup _{n \rightarrow \infty} h\left(\varphi_{A, \alpha}^{(n)}(x)\right)^{\frac{1}{n}}=\limsup _{n \rightarrow \infty} h\left(\varphi_{A}^{(n)}\left(\beta * x^{\operatorname{det}(A-I)}\right)\right)^{\frac{1}{n}}=\alpha_{\varphi_{A}}\left(\beta * x^{\operatorname{det}(A-I)}\right) \tag{21}
\end{equation*}
$$

By [2, Corollary 32], we conclude the proof of the proposition.

Corollary 2.7. Let $\alpha \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ whose characteristic polynomial is irreducible over \mathbb{Q}. Let $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. Then

$$
\widehat{h}_{\varphi_{A, \alpha}}(x)=0 \Longleftrightarrow x \in \operatorname{PrePer}\left(\varphi_{A, \alpha}\right) .
$$

Proof. Let F_{A} be the characteristic polynomial of A. By assumption, F_{A} is irreducible over \mathbb{Q}. In particular, $F_{A}(1) \neq 0$. The proof of the corollary follows from Proposition 2.6 and 2, Corollary 31].

The following theorem gives examples of rational maps satisfying [2, Question 18. p.658]
Theorem 2.8. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ with $\rho(A)>1$. Let $F_{A} \in \mathbb{Z}[X]$ be the characteristic polynomial of A. We write $F_{A}(X)=F_{1}(X) F_{2}(X)$ with F_{1} and F_{2} are two polynomials in $\mathbb{Z}[X]$ such that $F_{1}(X)=(X-1)^{r}$ and $F_{2}(1) \neq 0$. We have, for any $x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}), \widehat{h}_{\varphi_{A, \alpha}}(x)$ is finite and $\alpha_{\varphi_{A, \alpha}}(x)$ is an algebraic integer.
Proof. If $r=0$, this is Proposition 2.6. We assume that $r \geq 1$. Recall the definitions of φ_{1} and $\varphi_{2}($ see 6 and 7).

We can show that $l_{\varphi_{1}}, l_{\varphi_{2}} \leq l_{\varphi_{A, \alpha}}$. Since $\varphi_{F_{1}(A)}\left(\phi_{2}\right)=1$ and $\varphi_{F_{2}(A)}\left(\phi_{1}\right)=1$, we have G_{1} and G_{2} are tori, ϕ_{1} and ϕ_{2} are monomial maps on G_{1} and G_{2} respectively. If we denote by $A_{1}\left(\right.$ resp. $\left.A_{2}\right)$ the associated matrix of ϕ_{1} (resp. ϕ_{2}) then $F_{2}\left(A_{1}\right)=0$ and $F_{1}\left(A_{2}\right)=0$. By Lemma 2.1, we have

$$
\begin{equation*}
h\left(\varphi_{A, \alpha}^{n}(x * y)\right)=h\left(\varphi_{1}^{n}(x)\right)+h\left(\varphi_{2}^{n}(y)\right)+O(1), \quad \forall n \in \mathbb{N} . \tag{22}
\end{equation*}
$$

Which gives

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{1}{n^{l_{A}} \rho(A)^{n}} h\left(\varphi_{A, \alpha}^{n}(x * y)\right) & \leq \limsup _{n \rightarrow \infty} \frac{1}{n^{l_{A}} \rho(A)^{n}} h\left(\varphi_{1}^{n}(x)\right)+\limsup _{n \rightarrow \infty} \frac{1}{n^{l_{A}} \rho(A)^{n}} h\left(\varphi_{2}^{n}(y)\right) \\
& =\lim _{n \rightarrow \infty} \frac{n^{l_{\varphi_{1}}}}{n^{l_{A}}} \limsup _{n \rightarrow \infty} \frac{h\left(\varphi_{1}^{n}(x)\right)}{\rho(A)^{n} n^{l_{\varphi_{1}}}}+\lim _{n \rightarrow \infty} \frac{n^{l_{\varphi}}}{n^{l_{A}}} \limsup _{n \rightarrow \infty} \frac{h\left(\varphi_{2}^{n}(y)\right)}{\rho(A)^{n} n^{l_{\varphi_{2}}}}
\end{aligned}
$$

By Theorem 2.4 and 12 we have

$$
\begin{equation*}
h\left(\varphi_{2}^{n}(y)\right)=O\left(n^{l_{\varphi_{2}}+1}\right) \quad \text { for } n \gg 1, \tag{23}
\end{equation*}
$$

Recall that $\rho(A)>1$, then the second term of previous inequality is zero. For the first term, this limit is finite by Proposition 2.6. A simple argument shows that, in fact, we have

$$
\begin{equation*}
\widehat{h}_{\varphi_{A, \alpha}}(x * y)=\lim _{n \rightarrow \infty} \frac{n^{l_{\varphi_{1}}} \delta_{\varphi_{1}}^{n}}{n^{l_{A}} \rho(A)^{n}} \widehat{h}_{\varphi_{1}}(x) \tag{24}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n^{l_{\varphi_{1}}} \delta_{\varphi_{1}}^{n}}{n^{l_{A}} \rho(A)^{n}}=1 \tag{25}
\end{equation*}
$$

Then

$$
\widehat{h}_{\varphi_{A, \alpha}}(x * y)=\widehat{h}_{\varphi_{1}}(x)<\infty .
$$

We have

$$
\begin{equation*}
h\left(\varphi_{A, \alpha}^{n}(x * y)\right)^{\frac{1}{n}}=h\left(\varphi_{1}^{n}(x)\right)^{\frac{1}{n}}\left(1+\frac{h\left(\varphi_{2}^{n}(y)\right)}{h\left(\varphi_{1}^{n}(x)\right)}+o(1)\right)^{\frac{1}{n}} . \tag{26}
\end{equation*}
$$

By 23 and 25, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} h\left(\varphi_{A, \alpha}^{n}(x * y)\right)^{\frac{1}{n}}=\limsup _{n \rightarrow \infty} h\left(\varphi_{1}^{n}(x)\right)^{\frac{1}{n}} . \tag{27}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\alpha_{\varphi_{A, \alpha}}(x * y)=\alpha_{\varphi_{1}}(x) . \tag{28}
\end{equation*}
$$

Since $\alpha_{\varphi_{1}}(x)$ is an algebraic integer (see Proposition 2.6), we conclude that $\alpha_{\varphi_{A, \alpha}}(z)$ is an algebraic integer for any $z \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$.

Proposition 2.9. Let $\alpha \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ and $\varphi_{A, \alpha}$ the associated monomial map. We assume that $\delta_{\varphi_{A, \alpha}}>1$. There exist $\bar{r}(A)$ a positive integer and an algebraic subgroup $G \subset \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, with dimension $\operatorname{dim} G \geq N-\bar{r}(A)$ such that

$$
\begin{equation*}
\left\{x \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}) \mid \widehat{h}_{\varphi_{A, \alpha}}(x)=0\right\} \subset G(\overline{\mathbb{Q}})^{\operatorname{div}} *\left(\varphi_{t_{\operatorname{Com}(A-I)}}(\alpha)\right)^{-\frac{1}{\operatorname{det}(A-I)}} . \tag{29}
\end{equation*}
$$

Proof. The proof of the proposition follows easily from [2, Theorem 27] combined with Proposition 2.6 .

This proposition has the following corollary,
Corollary 2.10. Let $\alpha \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$. Let $A \in \operatorname{Mat}_{N}^{+}(\mathbb{Z})$ and $\varphi_{A, \alpha}$ the associated monomial map. We assume that $\delta_{\varphi_{A, \alpha}}>1$. If $\widehat{h}_{\varphi_{A, \alpha}}(x)=0$ then the orbit $\mathcal{O}_{\varphi_{A, \alpha}}(x)$ is not Zariski dense in $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$.

Acknowledgments

I very grateful to the Max Planck Institute for Mathematics for its hospitality, excellent working conditions and the financial support.

References

[1] Charles Favre and Elizabeth Wulcan. Degree growth of monomial maps and McMullen's polytope algebra. Indiana Univ. Math. J., 61(2):493-524, 2012.
[2] Joseph H. Silverman. Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space. Ergodic Theory Dynam. Systems, $34(2): 647-678,2014$.
[3] Joseph H. Silverman. Arithmetic and dynamical degrees on abelian varieties. arXiv:1501.04205, (2015).

[^0]: *School of Mathematical Sciences, Shanghai Jiao Tong University, China. Email:hajlimounir@gmail.com

[^1]: ${ }^{a}$ For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right), \beta=\left(\beta_{1}, \ldots, \beta_{N}\right) \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, and $c=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}^{N}$ we denote $\alpha^{c}=\prod_{i=1}^{N} \alpha_{i}^{c_{i}}$. We denote $\alpha * \beta=\left(\alpha_{1} \beta_{1}, \ldots, \alpha_{N} \beta_{N}\right)$.

[^2]: ${ }^{b}$ By definition, $\log \|\alpha\|_{v}$ is the transpose of $\left(\log \left\|\alpha_{1}\right\|_{v}, \ldots, \log \left\|\alpha_{N}\right\|_{v}\right)$.

