
Lecture notes on infinity-properads

Philip Hackney and Marcy Robertson

The main goal of this lecture series is to provide a brief introduction to the
theory of higher operads and properads. As these informal lecture notes stay
very close to our presentations, which occupied only three hours in total, we
were necessarily extremely selective in what is included. It is important to
reiterate that this is not a survey paper on this area, and the reader will
necessarily have to use other sources to get a ‘big picture’ overview.

Various models of infinity-operads have been developed in work of C. Barwick,
D.-C. Cisinski, J. Lurie, I. Moerdijk, I. Weiss and others [1, 8, 9, 10, 18, 20, 21].
In these lectures we focus on the combinatorial models which arise when one
extends the simplicial category ∆ by a category of trees Ω. This ‘dendroidal
category’ leads immediately to the category of dendroidal sets [20], namely

the presheaf category SetΩop

. A dendroidal set X ∈ SetΩop

which satisfies an
inner horn-filling condition is called a quasi-operad (see Definition 1.14). We
briefly review these objects in section 1.

Properads are a generalization of operads introduced by B. Vallette [23]
which parametrize algebraic structures with several inputs and several out-
puts. These types of algebraic structures include Hopf algebras, Frobenius
algebras and Lie bialgebras. In our monograph [12] with D. Yau and in sub-
sequent papers, we work to generalize the theory of infinity-operads to the
properad setting. In section 2 we explain the appropriate replacement of the
dendroidal category Ω the graphical category Γ and define quasi-properads
as graphical sets which satisfy an inner horn-filling condition. This material
(and much more) can be found in the monograph [12]. It is worth mentioning
that J. Kock, while reading the manuscript of [12], realized that one can give
an alternative definition of the category Γ. The interested reader can find
more details of this construction in [17].
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In the final section, we propose a Segal-type model for infinity properads.
There are clear antecedents for models of this form in several other settings
[16, 4, 9, 6]. We recall the C. Berger and I. Moerdijk theory of generalized
Reedy categories from [3]. The graphical category Γ is such a category, so the

category of graphical spaces sSetΓop

possesses a cofibrantly generated model
structure with levelwise weak equivalences and relatively few fibrant objects.
Finally, we discuss the Segal condition in the context of graphical sets and
spaces.
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1 Colored operads, dendroidal sets, and quasi-operads

This section is a brief overview of dendroidal sets, introduced by Moerdijk
and Weiss [20], which allow us to discuss the ‘quasi-operad’ model for infinity
categories [20, 8]. Throughout this section, we are using the formal language
that we will need to extend to the more subtle case of properads. For those
who are unfamiliar with dendroidal sets we recommend the original paper
[20] and the lecture notes by Moerdijk [19] as references.

Definition 1.1. A graph is a connected, directed graph G which admits legs
and does not admit directed cycles. A leg is an edge attached to a vertex at
only one end. We also want our graphs to have an ordering given by bijections

ordinG : {1, ...,m} −→ in(G)

ordoutG : {1, ..., n} −→ out(G)

as well as bijections
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ordinv : {1, ..., k} −→ in(v)

and
ordoutv : {1, ..., j} −→ out(v)

for each v in Vt(G).
If we say that G is a C-colored graph then we are including the extra data

of an edge coloring function η : Edge(G) −→ C.

When we draw pictures of graphs, we will omit the arrows, and always assume
the direction in the direction of gravity.

Definition 1.2. A tree is a simply connected graph with a unique output
(the root).

For any vertex v in a C-colored tree T in(v) is written as a list c = c1, . . . , ck
of colors ci ∈ C. A list of colors like c is called a profile of the vertex v.
Similarly, out(v) = d identifies the element d ∈ C which colors the output of
the vertex v. The complete input-output data of a vertex v is given by the
biprofile (c; d).

Example 1.3. In the following picture the tree has legs labeled 3, 4, 5, 6 and
0. The leg 0 is the single output of this graph. Internal edges are labeled 1, 2
and 7. The edges at each vertex all come equipped with an ordering, and if
we wish to list the inputs to the vertex v we would write in(v) = (1, 2).

q

w

v

y

2

1

3 4 5

0

6

7

If we wanted to consider T as a C-colored tree, we would add the data of a
coloring function Edge(T )→ C which would result in our picture looking like



4 Philip Hackney and Marcy Robertson

q

w

v

y

c2

c1

c3 c4 c5

d

c6
c7

where d and each of the ci are elements of C. The profile of v is in(v) =
(c1, c2) = c and the biprofile of v is written as (c; d), where the semi-colon
differentiates between inputs and outputs.

1.1 Colored operads

A colored operad is a generalization of a category in which we have a set of
objects (or colors) but where we allow for morphisms which have a finite list
of inputs and a single output. When we visualize these morphisms we write

them as colored trees, so that the morphism (x1, x2)
f // y looks like

f

y

x1 x2

Notice that in this depiction the edges of the tree are colored by the ob-
jects (hence the name colors). A modern comprehensive treatment of colored
operads appears in the book of D. Yau [24].

Definition 1.4. A colored operad P consists of the following data:

1. A set of colors C = col(P );
2. for all n ≥ 0 and all biprofiles (c; d) = (c1, ..., cn; d) in C, a set P (c; d);
3. for σ ∈ Σn, maps σ∗ : P (c; d) → P (cσ; d) = P (cσ(1), . . . , cσ(n); d) so that

(στ)∗ = τ∗σ∗;
4. for each c ∈ C a unit element idc ∈ P (c; c);
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5. associative, equivariant and unital compositions

P (c; d) ◦i P (d; ci)→ P (c1, ..., ci−1, (d1..., dk), ci+1, ..., cm; d)

where d = (d1, ..., dk) and 1 ≤ i ≤ m.

A morphism f : P → Q consists of:

1. a map of color sets f : col(P )→ col(Q);
2. for all n ≥ 0 and all biprofiles (c; d), a map of sets

f : P (c, d)→ Q(fc, fd)

which commutes with symmetric group actions, composition and units.

The category of colored operads is denoted by Operad.

Examples of colored operads include:

• The 2-colored operad O[1], whose algebras are morphisms of O-algebras
for a specified uncolored operad O [2, 1.5.3]

• The N-colored operad whose algebras are all one colored operads [2, 1.5.6],
[25, §14.1], [24].

We now focus on operads which are generated by uncolored trees. Explic-
itly, given any uncolored tree T , one can generate a colored operad Ω(T ) so
that

• the set of colors of Ω(T ) is taken to be the set of edges of T ;
• the operations of Ω(T ) are freely generated by vertices in the tree.

Example 1.5. Consider the uncolored tree T

q

w

v

y

a
b

c d e

r

f
g

where we have labeled the edges by letters, but do not mean there is a col-
oring.

The associated colored operad Ω(T ) will have color set
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C = {a, b, c, d, e, f, g, r} = Edge(T )

and operations freely generated by the vertices. In this example, generating
operations are v ∈ Ω(T )(a, b; r), y ∈ Ω(T )(f, g; a), w ∈ Ω(T )(c, d, e; b) and
q ∈ Ω(T )(−; g). Composition of operations are given by formal graph substi-
tutions (see Definition 1.10) into appropriate partially grafted corollas (Defi-
nition 1.8). To give a specific example, the operation v ◦a y ∈ Ω(T )(b, f, g; r)
is a composition of v and y which we visualize as being the result of collapsing
along the edge marked a.

Definition 1.6. [20] The dendroidal category Ω is the full subcategory of
Operad whose objects are colored operads of the form Ω(T ). When no confu-
sion can arise, we often write T for Ω(T ).

Definition 1.7. [20, Definition 4.1] A dendroidal set is a functor X : Ωop →
Set. Collectively these form a category SetΩop

of dendroidal sets.

An element of x ∈ XT is called a dendrex of shape T . We also have the
representable functors Ω[T ] = Ω(−, T ).

1.2 Coface maps and graph substitution

Quasi-operads are similar in spirit to quasi-categories. In particular, they are
dendroidal (rather than simplicial) sets which satisfy an inner Kan condition.
This requires that we define coface and codegeneracy maps in Ω which we
will make precise by using formal graph substitution.

Definition 1.8. [12, 2.16] A partially grafted corolla P is a graph with two
vertices u and v in which a nonempty finite list of outputs of u are inputs of
v.

Example 1.9. The following graph P is a partially grafted corolla.

u

v

Partially grafted corollas play a key role in describing operadic and prop-
eradic composition as it arises from graph substitution. Graph substitution
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is a formal language for saying something very intuitive, namely that in a
given graph G, you can drill a little hole at any vertex and plug in a graph
H and assemble to get a new graph.

Definition 1.10. [12, 2.4] We can substitute a graph H into a graph G at
vertex v if:

1. there is a specified bijection in(H)
∼=−→ in(v),

2. a specified bijection out(H)
∼=−→ out(v), and

3. the coloring of inputs and outputs of H matches the local coloring of G at
the vertex v.

The resulting graph is denoted as G(Hv) and we say that G(Hv) was ob-
tained from G via graph substitution. The subscript on Hv indicates that we
substituted H into vertex v. If S ⊆ Vt(G), we will write G{Hv}v∈S when we
perform graph substitution at several vertices simultaneously.

Graph substitution induces maps in Ω. For example consider T

T =

q

w

x

y

and the partially grafted corolla P

uP =

v

.

Since the total number of inputs of P matches the total number of inputs of
the vertex w ∈ Vt(G) and the number of outputs of P matches the number
of outputs of w we can preform graph substitution.
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q

v

u

T (Pw) =

x

y

Graph substitution induces a map T → T (Pw) in Ω which sends the w
to u ◦ v, x to x, y to y, and q to q. This example generalizes, in that if we
take any tree S we can expand a vertex to create an additional internal edge
by substitution of the proper partially grafted corolla. The expansion of an
internal edge can be written as an internal graph substitution, and we have
an induced Ω-map duv : S → T = S(P ) where P is the appropriate partially
grafted corolla. Maps of the type duv are called inner coface maps ([20, pg.
6], [12, 6.1.1]).

Let’s look at another example of graph substitution. Consider the partially
grafted corolla P

P = u

v

and the tree S

S = z

x

y

.

We can substitute S into the vertex v in the partial grafted corolla P since
S has the same number of inputs and outputs as v. The resulting picture is
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the tree P (Sv)

z

u

x

y

and there is a natural map du : S → P (Sv) which is an inclusion of S
as a subtree in P (Sv). For any tree T we can write all subtree inclusions
by (possibly iterated) substitution of the subtree into a partially grafted
corolla and maybe relabeling ([12, Definition 6.32]). Maps like these which
are induced by graph substitution where the partially grafted corolla is on
the “outside” are called outer coface maps ([20, pg. 6], [12, 6.1.2]). The third
class of maps we will concern ourselves with are called codegeneracies and
are given by the substitution of a graph with no vertices ↓ into a bivalent
vertex v, i.e. the maps σv : H → H(↓) ([20, pg. 6], [12, 6.1.3]). The cofaces
and codegeneracies satisfy identities reminiscent of the simplicial identities.

Lemma 1.11. [20, Lemma 3.1] The category Ω is generated by the inner and
outer coface maps, codegeneracies and isomorphisms.

In other words, any every map in Ω can be factored as a composition
of inner and outer coface maps, codegeneracies and isomorphisms. These
factorizations will be more carefully discussed in §3.

1.3 Boundaries and horns

Now that we have defined inner and outer coface maps, we can describe faces
and boundaries of dendroidal sets.

Definition 1.12. [20, pg 16] Let α : T → S be an (inner or outer) coface
map in Ω. Then the α-face of Ω[T ] is the image of the induced map α∗ :
Ω[S]→ Ω[T ]. We will write ∂α[T ] for the α-face of Ω[T ].

Definition 1.13. The boundary of Ω[T ] is the union over all the faces ∂[T ] =⋃
α ∂α[T ]. If we omit the β-face, we have the β-horn Λβ [T ] =

⋃
α6=β ∂α[T ].

If, moreover, β is the image of an inner coface map then Λβ [T ] is called an
inner horn.



10 Philip Hackney and Marcy Robertson

A quasi-operad is now defined as a dendroidal set satisfying an inner Kan
lifting property.

Definition 1.14. [21, pg 352] A dendroidal set X is a quasi-operad if for
every diagram given by the solid arrows admits a lift

Λβ [T ] //

��

X

Ω[T ]

==

where T ranges over all trees and β ranges over all inner coface maps.

Definition 1.15. [8, Proposition 1.5] A monomorphism of dendroidal sets
X → Y is said to be normal if and only if for any tree T , the action of
Aut(T ) on YT \XT is free.

In analogy to the Joyal model structure on sSet for quasi-categories (see
[5] for references), we have the following.

Theorem 1.16. [8, Theorem 2.4] There is a model category structure on

SetΩop

such that the quasi-operads are the fibrant objects and the normal
monomorphisms are the cofibrations.

2 Colored properads, graphical sets, and
quasi-properads

In the previous section we gave a very quick introduction to the dendroidal
category using some of the formal language of graph substitution. We will
now extend this language to a larger class of graphs to describe properads.

Isomorphisms between graphs preserve all the structure (including order-
ings) and weak isomorphisms between graphs preserve all the structure except
the ordering. We denote the category of graphs up to strict isomorphism as
Graph. The category Graph(m,n) is a subcategory of Graph whose objects
are graphs G where |in(G)| = m and |out(G)| = n. The category Graph(c, d)
similarly consists of all C-colored graphs with in(G) = c = (c1, .., cm) and
out(G) = d = (d1, ..., dm).

2.1 Properads

Like an operad, a colored properad is a generalization of a category. We
have a set of objects, called colors, and now we allow our morphisms to have
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finite lists of inputs and finite lists of outputs. When we write down a visual

representation of a morphism (x1, x2)
f // (y1, y2, y3) in a properad we

usually write a colored graph

f

y1 y2 y3

x1 x2

but it really could be any graph with 2 inputs and 3 outputs that is
colored by the objects of the properad P . In other words, a morphism

(x1, x2)
g // (y1, y2, y3) in P is a graph g ∈ Graph(x1, x2; y1, y2, y3). Com-

position of morphisms follows the same basic principle of operad composition.
In an operad you think of the ◦i composition as plugging the root of a tree
into the ith leaf of another tree. For properads we want to be able to take
any sub-list of outputs of a graph and glue them to appropriately matched
sub-list of inputs in another graph.

Definition 2.1. [12, Definition 3.5] An C-colored properad P consists of

• a set C = col(P ) of colors;
• for each biprofile (c; d) = (c1, ..., cm; d1, ..., dn), a set P (c; d);
• for σ ∈ Σm and τ ∈ Σn, maps

P (c; d)→ P (cσ; τd) = P (cσ(1), ..., cσ(m); dτ−1(1), ..., dτ−1(n))

which assemble into a Σopm×Σn action on the collection
∐
|c|=m,|d|=n P (c; d);

• for all c ∈ C, a unit idc ∈ P (c; c);
• an associative, until and equivariant composition

�c
′

b′ : P (c; d)⊗ P (a; b)→ P (a ◦a′ c; b ◦b′ d)

where a′ and b′ denote some non-empty finite sublist of a and b, respec-
tively. The notation a ◦a′ c denotes identifying some sublist of a with the
appropriate sublist of c.

A map of colored properads f : P → Q consists of

• f0 : Col(P )→ Col(Q);
• f1 : P (c; d)→ Q(f0c; f0d) for all biprofiles (c, d) in C.
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We denote the category of all colored properads and properad maps be-
tween them as Properad.

Properadic composition is easiest to write down in terms of graph sub-
stitution. In the previous talk we described a formal process called graph
substitution, which now repeat in the case of graphs.

Definition 2.2. [12, 2.4] Given a graph G ∈ Graph(c; d), and a graph Hv ∈
Graph(in(v); out(v)) so that each Hv is equipped with bijections

• in(Hv)→ in(v) and
• out(Hv)→ out(v)

one constructs a new new graph G(Hv) ∈ Graph(c; d) by formally identifying
Hv with v ∈ G. In this case we say that G(Hv) is obtained from G by
substitution.

The following is an example of (uncolored) graph substitution. Let G and
P be the graphs below.

Graph(5, 6) 3 G = w

x

= P ∈ Graph(4, 4)u

v

.

The graph G(Px) is still a member in the category Graph(5, 6), but now has
a additional three internal edges.

u

w

v

To see how this might encode composition, notice that if we squish down the
3 internal edges between the vertex u and v we would have something that
captures our description of composition.
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Following this discussion, one would say that a C-colored properad P is the
object you get if you consider the set C as objects (or colors) and morphisms
between objects P (c; d) are a set of (possibly decorated) C-colored graphs in
Graph(c, d). Composition of a G-configuration of morphisms is given by graph
substitution

γGP : P [G] =
∏

Vt(G)

P (in(v); out(v))→ P (inG; outG)

where we are ranging over all maps that arise from graph substitution and
look like G(Px)→ G in the example above. Properadic composition defined in
this way is associative and unital because graph substitution is associative and
unital [12, 2.2.4]. Symmetric group actions come from weak isomorphisms of
graphs and properadic composition is equivariant because graph substitution
is an operation which is defined up to weak isomorphism class of graphs.

Remark 2.3. Because graph substitution is associative, we observe that it is
possible to define properadic composition one operation at a time. In fact,
properadic composition is completely determined by the operations described
by partially grafted corollas, γGP , the graph with just an edge (for identities),
and the one vertex graphs (for symmetric group actions).

2.2 The graphical category Γ

It should by now be unsurprising to hear that given an uncolored graph G
we can freely generate a properad Γ(G).

Definition 2.4. [12, Section 5.1] Given an uncolored graph G, the properad
Γ(G) is a colored properad which has the set Edge(G) as colors and mor-
phisms are generated by the vertices.

More explicitly, an operation in Γ(G)(c; d) is a Ĝ-decorated graph, meaning:

• a graph H in Graph(c; d) whose edges are colored by edges of G;
• a function from the vertices of H to the vertices of G which is compatible

with the coloring of H.

Example 2.5. [12, Lemma 5.13] Given the following graph G,
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G = u

v

1

23

4

the Ĝ-decorated graphH below is an example of a morphism in Γ(G)(1, 1; 4, 4).

H = u

v

u

v

1 1

3

3

2 2

4 4

Notice that there are many, many more operations in the properads Γ(G)
than there were in the operads Ω(T ) that we discussed in the first lecture.
This isn’t because we forgot to mention operations in Ω(T ) but rather because
of the following lemma.

Lemma 2.6. [12, Lemma 5.10] If G is a simply connected graph, then each
vertex in G can appear in a morphism in the properad Γ(G) at most once.

As we mentioned in Remark 2.3, properadic composition is generated by
the composites of partially grafted corollas, the graph with one edge, and one
vertex graphs. To see that our definition of Γ(G) actually is a properad, it
then suffices to check the following lemma.

Lemma 2.7. All Ĝ-decorated graphs can be built iteratively using partially
grafted corollas.

The naive guess, based on what we expect from understanding ∆ and Ω,
would be to define a category Γ which has as objects the graphical properads
Γ(G) and morphisms all properad maps between them. This is, unfortunately,
not the appropriate definition of Γ as there maps between graphical properads
that exhibit idiosyncratic behavior.
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Definition 2.8. A properad morphism f : Γ(G)→ Γ(H) consists of:

• a function f0 : Edge(G)→ Edge(H) together with
• a map f1 : Vt(G) → {Vt(H)-decorated graphs} such that for every v ∈

Vt(G), f1(v) is an Ĥ-decorated graph in Graph(f0 in v; f0 out v).

Definition 2.9. The image of f : Γ(G)→ Γ(H) is f0G{f1(v)}v∈Vt(G) which
is naturally Vt(H)-decorated. The notation G{f1(v)}v∈Vt(G) stands for per-
forming iterated graph substitution of Vt(H)-decorated graphs at each vertex
v in G.

Morphisms between graphical properads are very strange, so we will pause
here and give an explicit description of the image of a map f : Γ(G)→ Γ(H).

Example 2.10. Suppose that G = ↓ is the graph with no vertices and let Q
be a C-colored properad. Then a properad map f : Γ( ↓ ) → Q is a choice of
color c ∈ C.

Example 2.11. An example of a morphism of graphical properads that be-
haves poorly is the following. Suppose G is the graph

G = u

v

21

let f : Γ(G) → Γ(G) be the morphism where f0 is the identity on edge sets
and

• f1(v) is the Ĝ decorated graph

f1(v) =

v

21

and
• f1(u) is the Ĝ decorated graph
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f1(u) = u

v

u

2
1

2
1

.

The image of f in Γ(G) is then the Ĝ-decorated graph

im(G) = u

v

v

u

2
1

2
1

.

As we saw in Example 2.11, properad maps f : Γ(H) → Γ(G) need not
have the the property that the image of H is a subgraph of G. This kind of
behavior does not show up in dendroidal sets. In fact, for maps into simply
connected graphical properads behaves exactly as we would expect from the
dendroidal case.

Proposition 2.12. [12, Proposition 5.32] If the target of f : Γ(H) → Γ(G)
is simply connected (eg any object of Ω), then f is uniquely determined by
what it does on edges.

As we will explain in section 3, in order for our graphical category to have
the proper sense of homotopy theory, we will want to force a property of this
kind on the category Γ.

Proposition 2.13. If the image of H under f : Γ(H)→ Γ(G) is a subgraph
of G, then f is uniquely determined by what it does on edges.

Definition 2.14. The graphical category Γ is the category with objects
graphical properads and morphisms the subset of properad maps f : Γ(H)→
Γ(G) consisting of those f with the property that imf is a subgraph of G.

Definition 2.15. The category of graphical sets is the category of presheaves
on Γ, that is SetΓop

.
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For every graph G an element in the set XG is called a graphex with
shape G. The plural form of graphex is graphices. The representable objects
of shape G are Γ[G] = Γ(−, G).

2.3 The properadic nerve

The obvious question to ask at this point is how do we know that by throwing
out badly behaved properad maps that we are still looking at a reasonable
definition of graphical sets? The properadic nerve [12, Definition 7.5] is the
functor

N : Properad −→ SetΓop

defined by
(NP )G = Properad(Γ(G), P )

for P a properad. A graphex in (NP )G is really a P -decoration of G, which
consists of a coloring of the edges in G by the colors of P and a decoration
of each vertex in G by an element in P with the corresponding profiles.

Proposition 2.16. [12, Proposition 7.39] The properadic nerve

N : Properad −→ SetΓop

is fully faithful.

This proposition implies that while we have lost some maps in Γ we have
still enough information so that the entire category Properad sits inside of
SetΓop

.

2.4 Cofaces and codegeneracies

As in our first lecture, the coface and codegeneracy maps are given by graph
substitutions of various kinds. A codegeneracy map σv : H → H(↓) is a
map induced by substitution of the graph with one edge ↓ into (1, 1)-vertex
v ∈ Vt(H). This has the effect of deleting a vertex. Like in Ω, an inner coface
map will have the effect of “blowing up” the graph between two vertices by
an inner substitution of a partially grafted corolla duv : G→ G(P ).

Example 2.17. As an example of an inner coface map consider the graph
substitution we have already seen,
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G = w

x

u

w = G(P )

v

.

where the partially grafted corolla P ∈ Graph(4, 4) is pictured below.

P = u

v

Example 2.18. When restricted to linear graphs, an inner coface map as above
is the same as an inner coface map in the simplicial category ∆. [12, Example
6.4]

An outer coface map dv : G → P (G) is an outer substitution of a graph
G into a partially grafted corolla. In the next section, we will discuss how
these maps generate the whole category Γ in the sense that all morphisms
in Γ are compositions of (inner or outer) coface maps, codegeneracies and
isomorphisms.

Definition 2.19. A face of a representable Γ[H] is given by considering the
image of an inner or outer coface map. The boundary of Γ[H] is defined as
∂[H] =

⋃
α ∂α[H] ⊂ Γ[H] where α ranges over all inner and outer coface

maps. The β-horn is then defined as Λβ [H] ⊂ Γ[H] =
⋃
β 6=α ∂α[H] where β

is a coface map.

Definition 2.20. A graphical set X is a quasi-properad if, for all inner coface
maps α and all H in Γ, the diagram

Λα[H] X

Γ[H]

admits a lift.
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A model category structure on SetΓop

in which quasi-properads are the
fibrant objects is work in progress between the authors and D. Yau.

3 Generalized Reedy structures and a Segal model

In the previous section we described the graphical category Γ and quasi-
properads. For more details on why this is precisely a properad “up to ho-
motopy” see the description in [12, 7.2]. In this section we will describe the
Reedy structure of Γ and use it as a starting point to construct one model
category structure for infinity properads.

3.1 Generalized Reedy categories

Definition 3.1. [3, Definition 1.1] A dualizable generalized Reedy structure
on a small category R consists of two subcategories R+ and R− which each
contain all objects of R, together with a degree function Ob(R)→ N satisfy-
ing:

1. non-invertible morphisms in R+ (respectively R−) raise (respectively lower
degree). Isomorphisms preserve degree.

2. R+ ∩ R− = Iso(R)
3. Every morphism f factors as f = gh such that g ∈ R+ and h ∈ R− and

this factorization is unique up to isomorphism.
4. If θf = f for θ ∈ Iso(R) and f ∈ R− then θ is an identity.
5. fθ = f for θ ∈ Iso(R) and f ∈ R+ then θ is an identity.

Remark 3.2. A category R that satisfies axioms (1) − (4) is a generalized
Reedy category. If, in addition, R satisfies axiom (5) then R is said to be
dualizable, which implies that Rop is also a generalized Reedy category.

A (classical) Reedy category is a generalized Reedy category R in which
every element of Iso(R) is an identity. Examples of classical Reedy categories
include ∆ and ∆op. Examples of generalized Reedy categories include the
dendroidal category Ω, finite sets, pointed finite sets, and the cyclic category
Λ.

The main idea of Reedy categories is that we can think about lifting mor-
phisms from R toMR by induction on the degree of our objects. To formalize
this idea we introduce the notion of latching and matching objects.

For any r ∈ R, the category R+(r) is defined to be a full subcategory
of R+ ↓ r consisting of those maps with target r which are not invertible.
Similarly, the category R−(r) is the full subcategory of r ↓ R− consisting of
maps α : r → s which are non-invertible. One can now define the latching
object
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Lr(X) = colim
α∈R+(r)

Xs,

for each X inMR which comes equipped with a map Lr(X)→ Xr. Similarly,
for each X ∈MR we define the matching object

lim
α∈R−(r)

Xs = Mr(X)

which comes equipped with a map Xr →Mr(X).

Definition 3.3. If M is a cofibrantly generated model category, and R is
generalized Reedy, we say that a morphism f : X → Y in MR is:

• a Reedy cofibration if Xr ∪LrX LrY → Yr is a cofibration in MAut(r) for
all r ∈ R;

• a Reedy weak equivalence if Xr → Yr is a weak equivalence in MAut(r)

for all r ∈ R ;
• a Reedy fibration if Xr →MrX ×MrY Yr is a fibration in MAut(r) for all
r ∈ R.

Theorem 3.4. [3, Theorem 1.6] If M is a cofibrantly generated model cat-
egory and R is a generalized Reedy category then the diagram category MR

is a model category with the Reedy fibrations, Reedy cofibrations, and Reedy
weak equivalences defined above.

3.2 The graphical category is generalized Reedy

Theorem 3.5. [12, 6.4] The graphical category Γ is a dualizable generalized
Reedy category.

The degree function d : Ob(Γ) → N is defined as d(G) = |Vt(G)|. The
positive maps are then those morphisms in Γ which are injective on edge
sets. The negative maps are those H → G which are surjective on edge sets
and which, for every vertex v ∈ Vt(G), there is a vertex ṽ ∈ Vt(H) so that
f1(ṽ) is a corolla containing v. An alternate, more illuminating, description
is given by the following proposition.

Lemma 3.6. [12, 6.65]

• A map f : H → G is in Γ+ if we can write it as a composition of isomor-
phisms and coface maps.

• A map f : H → G is in Γ− if we can write it as a composition of isomor-
phisms and codegeneracy maps.

The proof of this lemma isn’t entirely trivial, but the general idea is that
codegeneracy maps decrease degree and satisfy the extra condition; coface
maps increase degree and are injective on edges.
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We will not fully prove here that Γ is Reedy. However, we can show where
the decompositions in the third axiom of definition 3.1 come from.

Proposition 3.7. [12, 6.68] Every map in f ∈ Γ factors as f = g ◦ h, where
h ∈ Γ− and g ∈ Γ+ and this factorization is unique up to isomorphism.

Proof (sketch of existence). Given a morphism f : G→ K in Γ we know that
for all v ∈ Vt(G), f1(v) is a subgraph of K.

Let us consider T ⊂ Vt(G), the subset of vertices of G such that f1(v) =↓.
We can define a graph G1 = G{↓w}w∈Vt(G) which is the graph obtained by
substitution of an edge into each w ∈ T and a corolla substituted into each
additional vertex. There is then a map G → G1 which is a composition of
codegeneracy maps, one for each w ∈ T . Next, define a a subgraph G2 of K
as G2 = f0(G1). In other words, G2 is the subgraph obtained by applying f0

to the edges of G1, which makes sense because for each w ∈ T the incoming
edge and outgoing edge of w will have the same image under f0. There is
an isomorphism G1 → G2 which is just the changing the names of edges via
the assignment given by f0. The vertices of G2 are in bijection with the set
Vt(G1) \ T .

It is now the case that the image of f , im(f) = G2{f1(u)}u∈Vt(G)\T where
each f1(u) has at least one vertex. Summarizing, (ignoring coloring) there
exists a factorization:

G K

G1 G2 im(f).

f

This shows the existence of the decomposition.

Example 3.8. Let us turn to an example of how we generate G1 for the ex-
ample of f below.

G = v

u

x

= Kw

z

t
1
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Notice that the vertex v is the only vertex in G which has exactly one input
and one output, and is mapped by f to the edge in K we have labeled 1. It
follows then that G1 = G(↓v) and looks like

G1 = u

x

The subgraph G2 is now a relabeling and im(f) = G2(f1(u), f1(x)) where
f1(u) is a corolla and f1(x) is the appropriate partially grafted corolla.

3.3 A Segal model structure for infinity-properads

In this section, we attempt to describe a model structure for infinity-
properads. In preparing these notes, we realized the model structure is more
complicated than what we presented in the original lectures, for reasons we
outline in remarks 3.10 and 3.11.

We begin with a description of the Segal condition for a graphical set
X ∈ SetΓop

. For G ∈ Γ, there is a natural map

XG →
∏

v∈Vt(G)

XCv (1)

by using all of the (iterated outer coface) maps Cv → G. Of course if there is

an edge e between two vertices v and w, then the two composites ↓e ie→ Cv →
G and ↓e ie→ Cw → G are equal, so (1) factors through a subspace1

X1
G = lim

Cv←↓e→Cw
e an internal

edge of G

 XCv XCw

X↓


consisting of those sequences (xv) so that i∗e(xv) = i∗e(xw) whenever e is an
edge between v and w. The Segal map is

1 This is not a condition when X↓ = ∗ is a one-point set; in that case, X1
G is just the

product from (1).
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XG
χG−−→ X1

G ⊆
∏

v∈Vt(G)

XCv
.

If X = N(P ) is the nerve of a properad P , then χG is an isomorphism [12,
Lemma 7.38]. In fact, this property characterizes those graphical sets which
are isomorphic to the nerve of a properad [12, Theorem 7.42].

If we allow ourselves to work with graphical spaces instead of just graphical
sets, then we can replace the isomorphism condition on the Segal maps by a
homotopy condition (this type of idea goes all the way back to Segal [22]).

Definition 3.9. A graphical space X ∈ sSetΓop

is said to satisfy the Segal
condition if the Segal map

XG
χG−−→ X1

G ⊆
∏

v∈Vt(G)

XCv

is a weak homotopy equivalence of simplicial sets between XG and X1
G for

each graph G.

As in the classical cases, the Segal condition is not categorically well-
behaved. To study the homotopy theory of graphical spaces satisfying the
Segal condition, we will build a model structure which allows us to identify
such graphical spaces (or, at least those which possess an additional fibrancy
condition).

Since Γ is a dualizable Reedy category [12, Theorem 6.70], we know that
Γop is also generalized Reedy. Hence, by Berger and Moerdijk [3, Theorem

1.6], the diagram category sSetΓop

admits a generalized Reedy model struc-
ture.

Remark 3.10. During the lecture, we stated that we could modify this so that
the diagram category sSetΓop

disc admits a Reedy-type model structure, where
the subscript disc means that X↓ is discrete as a simplicial set. Indeed, there

is such a model structure: the inclusion functor sSetΓop

disc ↪→ sSetΓop

admits a
left adjoint given by sending X to the pushout of π0(sk0(X))← sk0(X)→ X,
where the skeleton is taken in the Γ direction. One can then lift the model
structure from sSetΓop

using [15, 11.3.2]. Unfortunately, one of the generating

cofibrations is not a monomorphism, hence this model structure on sSetΓop

disc

is not cellular.

The following remark is essentially adapted from the end of [4, §3.12].

Remark 3.11. There is no model structure on sSetΓop

disc where weak equiva-
lences are levelwise and cofibrations are monomorphisms, as one can see by
attempting to factor Γ[ ↓ ] q Γ[ ↓ ] → Γ[ ↓ ] as a cofibration followed by an
acyclic fibration:

Γ[ ↓ ]q Γ[ ↓ ] � X
∼
� Γ[ ↓ ].
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Since Γ[ ↓ ]↓ is a set of cardinality one, the object X ∈ sSetΓop

disc would satisfy
2 ≤ |X↓| = 1.

Definition 3.12 (Segal core inclusions). [12, Definition 7.35] Given a
graph G with at least one vertex let Cv denote the corolla at each v ∈ Vt(G)
and let Γ[Cv] denote the representable graphical set on Cv. Define the Segal
core Sc[G] as the graphical subset

Sc[G] =
⋃

v∈Vt(G)

Im

(
Γ[Cv]

iv // Γ[G]

)
⊆ Γ[G]

where iv is an iterated outer coface map. Denote by Sc[G]
c // Γ[G] the

Segal core inclusion.

The reader should compare this definition with [9, Definition 2.2]. Notice
how suggestive this is in light of definition 3.9: the map χG is exactly c∗ :
map(Γ[G],−) → map(Sc[G],−) when X is fibrant. As we saw above, we
cannot guarantee the existence of a left Bousfield localization of the non-
cellular category sSetΓop

disc at the set of Segal core inclusions. Despite that, we
still expect that the following holds.

Conjecture 3.13. There is a model structure on sSetΓop

disc analogous to those
given in [9, 8.13] and [4, 5.1].

In [13], D. Yau and the authors gave a model structure on the category
sProperad of simplicially-enriched properads. The properadic nerve functor
that we discussed earlier extends to a functor

N : sProperad→ sSetΓop

disc

since N(P )↓ is the set of colors of the simplicially-enriched properad P . One

should compare the conjectural model structure on sSetΓop

disc with the model
structure on sProperad.

Conjecture 3.14. The properadic nerve functor from simplicial properads to
graphical spaces,

N : sProperad→ sSetΓop

disc

is the right adjoint in a Quillen equivalence.

3.4 A diagrammatic overview

We conclude with a diagram which was provided as a handout at our lectures.
It indicates some interconnectedness of many models of categories, operads,
properads, and props.
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The vertical uncolored adjunctions are Quillen adjunctions. The horizontal
adjunctions are Quillen equivalences;

• precise references for the top row may be found in [6], and
• the middle row is contained in [9, 10, 11].

In addition, the model structure for quasi-operads is equivalent to a model
structure for Lurie’s infinity operads [16, 8]. The existence of the model struc-
tures in the bottom two slots on the right are [12, 15].

The vertical uncolored adjunctions are Quillen adjunctions. The horizontal
adjunctions are Quillen equivalences;

• precise references for the top row may be found in [5], and
• the middle row is contained in [8, 9, 10].

In addition, the model structure for quasi-operads is equivalent to a model
structure for Lurie’s infinity operads [14, 7, 1]. The existence of the model
structures in the bottom two slots on the right are [11, 13].
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