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THE EULER TOP AND CANONICAL LIFTS

Alexandru Buium and Emma Previato

Abstract. In this note, we prove a finiteness result for fibers that are canon-
ical lifts in a given elliptic fibration. The question was motivated by the au-
thors’ construction of an arithmetic Euler top, and it highlights an interesting
discrepancy between the arithmetic and the classical case: in the former, it is
impossible to extend the flows to a compactification of the phase space, viewed
as an elliptic fibration over the space of action variables.

1. Introduction

In this note, we present an analogue, for the multiplicative group Gm, of one
of the main finiteness results for elliptic curves proved in [4]. This is then applied
to a question left open in [3, Remark 6.6], namely whether the main theorem, [3,
Th. 6.1] could be improved by showing that a certain extension property (saying,
roughly, that an arithmetic flow on an affine elliptic fibration can be “compacti-
fied”) holds for the arithmetic Euler top, which was there introduced. As we shall
see in Corollary 2.4 below the answer to this question is negative: no such ex-
tension property holds and, hence, no such improvement of Theorem 6.1 in [3] is
possible. Note, on the other hand, that the corresponding extension property does
hold in the case of the classical Euler top, which is an algebraically completetly in-
tegrable Hamiltonian system (ACI). This discrepancy between the arithmetic and
the classical case adds a somewhat intriguing feature to the construction effected
in [3].

Although the motivation of the present paper arose from [3], the paper is written
so as to be logically independent.

In section 2 we discuss terminology and conventions and we state two theorems.
The first, Theorem 2.1, is the aforementioned analogue, for the multiplicative group
Gm, of a finiteness result for elliptic curves proved in [4]. The second, Theorem
2.2, is an application of the first theorem to the geometric setting of the Euler top.
We then derive a corollary to Theorem 2.2, showing the relevance of our analysis
to the question raised in [3]. Section 3 contains the proofs of the two theorems and
a final remark on a variation on Theorem 2.2.

Acknowledgments. The authors are indebted to the IHES in Bures sur Yvette,
where their collaboration on this project started. The first author acknowledges
partial support from the Max Planck Institute for Mathematics in Bonn, from the
Simons Foundation (award 311773), and from NSF grant DMS-1606334 that funded
the DART VII conference. The second author expresses her sincerest gratitude to
the Boston University College of Arts and Sciences Associate Dean Stan Sclaroff

2010 Mathematics Subject Classification. Primary: 14K15, Secondary: 14H70.

1

http://arxiv.org/abs/1708.02558v1


2 CANONICAL LIFTS

and Assistant Dean Richard Wright, for the travel support that made this research
possible.

2. Main results

First, some terminology. In what follows varieties over C will be identified with
their sets of C-points. By an elliptic fibration over C we understand a surjective
morphism f : E → B from a non-singular projective surface to a non-singular
projective curve, whose general fiber is a connected curve of genus 1. If B0 ⊂ B is
the set of all points with smooth fiber then one has the J-function J : B0 → C that
attaches to each P ∈ B0 the j-invariant j(EP ) of the fiber EP = f−1(P ). The theory
of J is usually presented for Jacobian fibrations, i.e., for elliptic fibrations possessing
a section. On the other hand, to any elliptic fibration f : E → B one can attach its
Jacobian fibration f ′ : E ′ → B which is a compactification of Pic0

E0/B0 → B0 where

E0 := f−1(B0); cf. [1], p. 260. Then the fibers of f and f ′ above each P ∈ B0 are
isomorphic so f and f ′ have the same J-function B0 → C. This J-function induces
a morphism J : B → P1 = C ∪ {∞} which we still refer to as the J-function, cf.
[5].

We also make, in what follows, the following convention. If finitely many varieties
and morphisms over C are given, which are defined over Q, then we will implicitly
choose a number field L over which they are defined and we will choose models of
our objects overOL[1/M ] for some integerM . Then, for any sufficiently big rational
prime p >> 0, we will choose an unramified prime P in OL, not containing M ,
and we will base change these models to R = RP, the completion of the maximum
unramified extension of the P-adic completion of OL, which is isomorphic to the
completion Rp of the maximum unramified extension of Zp. These new schemes and
morphisms over Rp will be denoted by the same letters as our original varieties and
morphisms over C. We will denote by kp = Rp/pRp the residue field of Rp = RP,
which is therefore an algebraic closure of the field Fp = Z/pZ. Also we denote by
̂ the p-adic completion of rings or schemes.

Further, we denote by Gm = Spec Z[t, t−1] the multiplicative group scheme over
the integers; so for any ring A we have Gm(A) = A×. According to our conventions,
over C, we continue to write Gm in place of Gm(C) = C× and we have C = Gm∪{0}
and P1 = Gm ∪ {0,∞}.

Finally recall that a Frobenius lift on a scheme (respectively on a p-adic formal
scheme) is an endomorphism whose reduction mod p is the absolute Frobenius.
Trivially, Spec Rp has a unique Frobenius lift. An elliptic curve over Rp is said
to be a canonical lift (or to be CL) if it has a Frobenius lift which is compatible
with the Frobenius lift on Spec Rp. If an elliptic curve is CL then it has complex
multiplication (or is CM); cf. [4] for a review of the relationship between CL and
CM.

Our first result will be the following:

Theorem 2.1. Let f : E → P1 = Gm ∪ {0,∞} be an elliptic fibration defined
over Q, with J-function J : P1 → P1. Assume there exists P0 ∈ Gm such that
J(P0) = ∞. Then for all sufficiently big primes p >> 0 there exists a constant cp
such that for any integer r and any subgroup Γ ⊂ Gm(Rp) = R×

p of rank r < ∞
the set

{P ∈ Γ; EP is CL}
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is finite of cardinality at most cpp
r.

Here the rank of Γ is defined, as usual, as the maximum number of multiplica-
tively independent elements in Γ; in particular, the torsion group Tp of R

×
p has rank

0. Also, according to our conventions, EP in the above theorem is the fiber f−1(P )
of P ∈ P1(Rp), where f : E → P1 is the induced morphism over Rp.

What we will need in the application of Theorem 2.1 to the next result will be
the finiteness statement, not an actual estimate for the cardinality.

To state our next result recall from [3] the geometric setting of the Euler equa-
tions. Let a1, a2, a3 ∈ C be distinct complex numbers and consider the functions

(2.1) H1 =

3∑

i=1

aix
2
i , H2 =

3∑

i=1

x2
i ,

in the polynomial ring C[x1, x2, x3]. Also we consider the affine spaces

(2.2) A2 = Spec C[z1, z2], A3 = Spec C[x1, x2, x3]

and the morphism

(2.3) H : A3 → A2

defined by

(2.4) z1 7→ H1, z2 7→ H2.

For any C-point c = (c1, c2) ∈ C2 = A2(C) we denote by

(2.5) Ec = Spec C[x1, x2, x3]/(H1 − c1, H2 − c2)

the fiber of H at c. Consider the polynomial

(2.6) N(z1, z2) =

3∏

i=1

(z1 − aiz2) ∈ C[z1, z2].

For c ∈ A2 with N(c) 6= 0, Ec is smooth over C. If we consider the projective
closure Ec of Ec in the projective space

P3 = Proj C[t0, t1, t2, t3], xi = ti/t0,

then for c ∈ A2 with N(c) 6= 0 the curve Ec is still smooth. (In [3], the curves Ec
were denoted by E∗

c .)

Recall that for a rational prime p we denoted by Tp the torsion subgroup of R×
p ;

it is the set of all roots of unity of order prime to p in an algebraically closed field
containing Rp. In the notation above we will prove the following:

Theorem 2.2. Let a1, a2, a3 ∈ Q and c2 ∈ C a root of unity. For all sufficiently
big primes p >> 0 the set

{c1 ∈ Tp; N(c1, c2) ∈ R×

p , E(c1,c2) is CL}
is finite.

To explain the relevance of Theorem 2.2 for the Euler equations considered in
[3], we first recall the classical picture. The classical Euler top is a rotating solid
body attached to a fixed point in (three-dimensional) space, subject to no external
force. Its motion is described by a system of three ordinary (non-linear) differential
equations in 3 variables (the Euler equations); these equations correspond to a
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polynomial vector field on the affine complex 3-space and hence to a derivation δ
on the polynomial ring C[x1, x2, x3]. The derivation is given by the expression

(2.7) δ := (a2 − a3)x2x3
∂

∂x1
+ (a3 − a1)x3x1

∂

∂x2
+ (a1 − a2)x1x2

∂

∂x3
,

where a1, a2, a3 ∈ C are distinct complex numbers. This vector field is trivially
seen to have H1 and H2 in 2.1 as prime integrals in the sense that

(2.8) δH1 = δH2 = 0.

For c = (c1, c2) ∈ C2 with N(c) 6= 0 the curves Ec given by 2.5 are tangent to
the vector field so the derivation δ induces derivations δc on the rings O(Ec). The
remarkable fact about the situation is that δc on O(Ec) are linearized in the sense
that for all c ∈ A2 with N(c) 6= 0,

(2.9) δc extends to a vector field on the compactification Ec of Ec.

This makes the Euler equations “solvable by elliptic functions.” Condition 2.9 is
equivalent to the condition that

(2.10) δcωc = 0,

where we continue to denote by δc the action of δc as Lie derivative on the 1-forms
on Ec and ωc is the restriction to Ec of some (equivalently any) non-zero 1-form on
Ec; the equivalence of 2.9 and 2.10 is, of course, a consequence of Henri Cartan’s
formula for the Lie derivative.

In [3], we developed an arithmetic analogue of the classical Euler equations. To
explain this, it is convenient to introduce some ad hoc terminology. Let us define
a p-triple as being a triple (K,X, φ) where

• K ∈ O(Â2) = ̂Rp[z1, z2], K 6≡ 0 mod p,
• X ⊂ A3 an open set over Rp,

• φ a Frobenius lift on X̂.

such that the reduction mod p of K is a homogeneous polynomial in kp[z1, z2],

Theorem 6.1 in [3] implies the following:

Corollary 2.3. Let a1, a2, a3 ∈ Q. Then, if p >> 0 is any sufficiently big prime,
there exists a p-triple (K,X, φ) satisfying the following two conditions:

1) one has equalities

(2.11) φ(H1) = Hp
1 , φ(H2) = Hp

2 ;

2) for all c ∈ T 2
p with N(c)K(c) ∈ R×

p , one has Êc ∩ X̂ 6= ∅ and

(2.12)
φ∗
c

p
ωc ≡ K(c)−1 · ωc mod p,

where

φc is the Frobenius lift on Êc ∩ X̂ induced by φ;
ωc is an Rp-basis for the 1-forms on the compactification Ec of Ec over Rp.

Here φ induces a Frobenius lift on Êc∩ X̂ because, for c = (c1, c2) ∈ T 2
p , we have

φ(Hi − ci) = Hp
i − cpi ∈ (Hi − ci), i = 1, 2.



CANONICAL LIFTS 5

We proved Corollary 2.3 in [3] by choosing K in the p-triple to be the Hasse
invariant Ap−1 of an appropriate associated plane quartic, cf. [3]; note that Ap−1

itself is a homogeneous polynomial of degree p− 1 and for c1, c2 ∈ Zp we have that
Ap−1(c1, c2) ∈ Z×

p if and only if E(c1,c2) has ordinary reduction.
Conditions 2.11 and 2.12 above are of course to be viewed as arithmetic analogues

of conditions 2.8 and 2.10 respectively. Now, in view of the equivalence between
2.9 and 2.10, it is natural to ask for an arithmetic analogue of the condition 2.9.
An arithmetic analogue of 2.9 could be the condition that

(2.13) φc extends to an endomorphism of the compactification Ec of Ec.

Note that condition 2.13 implies, of course, the condition that

(2.14)
φ∗
c

p
ωp = κc · ωc

for some κc ∈ Rp where ωc is a basis for the space of 1-forms on Ec; in its turn
condition 2.14 is a strengthening of the congruence 2.12 (at least if the “eigenvalue”
K(c)−1 in 2.12 is not being specified).

One is then tempted to ask the following question; cf. Remark 6.6 of [3]:

(2.15) Does Corollary 2.3 hold with condition 2.12 replaced by condition 2.13?

The answer to this question is no; indeed we have the following consequence of
Theorem 2.2:

Corollary 2.4. Let a1, a2, a3 ∈ Q. Then, if p >> 0 is any sufficiently big prime,
there is no p-triple (K,X, φ) satisfying the following two conditions:

1) one has equalities

(2.16) φ(H1) = Hp
1 , φ(H2) = Hp

2 ;

2) for all c ∈ T 2
p with N(c)K(c) ∈ R×

p , one has Êc ∩ X̂ 6= ∅ and
(2.17) φc extends to an endomorphism of the compactification Ec of Ec,

where φc is the Frobenius lift on Êc ∩ X̂ induced by φ.

Proof. Assume that there is an infinite set S of primes p such that for each
p ∈ S there is a p-triple (K,X, φ) satisfying 2.16 and 2.17. Let us fix a root of unity
c2 ∈ C. By Theorem 2.2 for all p >> 0 the set

{c1 ∈ Tp; N(c1, c2) ∈ R×

p , E(c1,c2) is CL}
is finite. Now, for any p ∈ S, since the image of K in kp[z1, z2] is homogeneous and
not ≡ 0 mod p, the zero locus of K mod p in the plane A2(kp) = k2p is a union of
lines passing through the origin hence the intersection of this locus with the line
z2 = c2 must be finite. So, for all p ∈ S, the set

{c1 ∈ Tp; K(c1, c2) 6∈ R×

p }
is finite. Similarly, since N is homogeneous, the set

{c1 ∈ Tp; N(c1, c2) 6∈ R×

p }
is finite for all p >> 0. It follows that for all except finitely many p ∈ S the set

{c1 ∈ Tp; N(c1, c2)K(c1, c2) ∈ R×

p , E(c1,c2) is not CL}
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has a finite complement in Tp, in particular it is non-empty. This violates the
condition 2) in the statement of the corollary. We obtained a contradiction which
ends our proof. �

Remark 2.5. As we saw, Corollary 2.3 fails if one replaces congruence 2.12 by
condition 2.13. One can ask, however, whether Corollary 2.3 continues to hold if
one replaces congruence 2.12 by the equality,

(2.18)
φ∗
c

p
ωc = K(c)−1 · ωc,

or, at least, by condition 2.14. Indeed, 2.18 (an equality) is stronger than 2.12 (the
corresponding congruence), and also stronger than condition 2.14; on the other
hand, as already noticed, condition 2.14 is weaker than condition 2.13.

3. Proof of the Theorems

Proof of Theorem 2.1. Consider the restriction J : Gm → X(1) = P1 of the map
J : P1 → P1 in the statement of the Theorem and consider the cartesian diagram

Gm
J−→ X(1)

↑ ↑
Z −→ X1(N)

where we are using the standard notation X(1) and X1(N) for the modular curves,
N ≥ 4; cf. [4]. Note that since the right arrow is finite we have that the left arrow
is finite so Z is an affine curve. Recall that X1(N) possesses a distinguished cusp
∞ lying over the point ∞ ∈ X(1) = P1. So Z contains a point z∞ mapping to
P0 ∈ Gm and also to∞ ∈ X1(N). Denote by X the normalization of an irreducible
component of Zred that contains z∞, let x∞ ∈ X be a point lying over z∞, and
consider the induced maps

Π : X → Z → X1(N)

and

Φ : X → Z → Gm

L−1

P0−→ Gm,

where LP0
is the translation by P0 in the group Gm. So we have at our disposal a

diagram (a correspondence)

(3.1) X1(N)
Π←− X

Φ−→ Gm, Π(x∞) =∞, Φ(x∞) = 1.

Also Φ is a finite morphism. Note that for p >> 0 we have that any point P in

{P ∈ Γ; EP is CL}
which is not a ramification point for Φ is the image of a point in

(3.2) Φ−1(Γ′) ∩ Π−1(CL)

where Γ′ := 〈Γ, P0〉 is the subgroup of Gm(Rp) = R×
p generated by Γ and P0,

while CL ⊂ X1(N)(Rp) is the set of CL points (points corresponding to CL elliptic
curves). Since rank(Γ′) ≤ rank(Γ) + 1 it is sufficient to prove that the intersec-
tion 3.2 has cardinality bounded by a constant that does not depend on Γ′ times
prank(Γ

′). This is a statement analogous to that of Theorem 1.6 in [4] and can be
given a proof entirely analogous to the proof in [4]. �
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Remark 3.1. Some comments on the proof of Theorem 1.6 of [4] and its relation to
our situation here are in order. That theorem has two cases.

One case refers to correspondences

(3.3) X1(N)
Π←− X

Φ−→ A, Π(x∞) =∞, Φ(x∞) = 0,

with A an elliptic curve. The proof in [4] for this case is based on Fourier expansions
and is divided into two subcases: one subcase corresponds to the situation when A
itself is CL while another subcase corresponds to the situation when A is not CL.
The proof of the subcase in which A is CL goes through, essentially word for word,
when one replaces 3.3 by 3.1 ; all one has to do is replace the canonical δ-character
of A in section 4.3 of [4], cf. also [2], with the canonical δ-character of Gm in [2].

Another case of Theorem 1.6 in [4] refers to correspondences

(3.4) S
Π←− X

Φ−→ A, Φ(x∞) = 0,

with A an elliptic curve and S a Shimura curve. The proof in [4], in this case,
uses Serre-Tate expansions (rather than Fourier expansions) and, interestingly, the
Serre-Tate expansion method does not seem to go through for correspondences 3.1.
Indeed the Serre-Tate expansion method in [4] only applied to primes that were not
anomalous for our elliptic curve A (in the sense of Mazur [6]; cf. also [4], Definition
3.2). On the other hand, if one attempts to apply the Serre-Tate expansion method
in [4] to the case of Gm instead of A one immediately discovers that “all primes
behave as if they were anomalous;” hence the method is not applicable.

We next consider the proof of Theorem 2.2. We need to review some notation
from [3] first. We may and will assume a1 6= 0. Consider two more indeterminates
x, y, and consider the polynomial

F = F (z1, z2, x) ∈ C[z1, z2][x]

defined by

(3.5) F := ((a2 − a3)x
2 + z1 − a2z2)((a3 − a1)x

2 − z1 + a1z2).

For any c = (c1, c2) ∈ C2 set

(3.6) E′

c := Spec C[x, y]/(y2 − F (c1, c2, x)).

Then we have a morphism

(3.7) π : Ec → E′

c,

given by
x 7→ x3, y 7→ (a1 − a2)x1x2.

Note that, under the assumption that N(c1, c2) 6= 0, the discriminant of F is in
C× so E′

c is a smooth plane curve whose smooth projective model E ′c is an elliptic
curve and hence 3.7 is induced by a degree-two isogeny of elliptic curves,

(3.8) Ec → E ′c.
We also need some well-known formulas relating quartic to cubic equations. We
recall that the complex plane cubic

y2 = Ax4 + Cx2 + E

is birational to the Weierstrass equation

v2 = u3 +A2u
2 +A4u+A6
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where
A2 = C,

A4 = −4AE,

A6 = −4ACE;

the coordinates are related by

x =
2
√
E(u + C)

v
, y = −

√
E +

x2u

2
√
E
.

On the other hand recall that the discriminant ∆ of the above elliptic curves is
given by

(3.9)
1728∆ = (16A2

2 − 48A4)
3 − (64A3

2 − 288A2A4 + 864A6)
2

= (16C2 + 192AE)3 − (64C3 − 2304ACE)2,

and the j-invariant is given by

(3.10) j =
(16C2 + 192AE)3

∆
.

So the j-invariant of E ′c is given by 3.10 with ∆ as in 3.9 and

(3.11)

A = (a2 − a3)(a3 − a1),

C = (a2 − a3)(a1c2 − c1) + (a3 − a1)(c1 − a2c2),

E = (c1 − a2c2)(a1c2 − c1).

Proof of Theorem 2.2. Recall that we assumed a1 6= 0. In view of Theorem 2.1 it
is enough to show that, in the notation of Theorem 2.2 and with notation as in the
discussion preceding this proof, the following holds: for any root of unity c2 ∈ C

we have

(3.12) j(E(c1,c2))→∞ as c1 → a1c2.

Indeed if this is the case, with the root of unity c2 ∈ C fixed, we can apply
Theorem 2.1 to the elliptic fibration obtained by compactifying the family of smooth
elliptic curves,

(E(t,c2))t, t ∈ C\{a1c2, a2c2, a3c2};
we get that if p >> 0 then there are only finitely many pairs (c1, c2), with c1 ∈ Tp,
such that E(c1,c2) is CL.

To conclude the proof fix a fundamental domain F for SL2(Z) in the complex
upper half plane that contains all complex numbers with real part in (−1, 1) and
imaginary part in (1,∞), say. If τ ∈ F corresponds to E ′c then Ec (which admits an
isogeny of degree 2 to E ′c) corresponds to one of the numbers 2τ, 2τ + 1, τ/2. So it
is enough to prove that

(3.13) j(E ′(c1,c2))→∞ as c1 → a1c2.

Now, using 3.9, 3.10, 3.11, one gets that, as c1 → a1c2, we have

E → 0, C → (a3 − a1)(a1 − a2)c2 6= 0, ∆→ 0,

so j →∞ and we are done. �
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Remark 3.2. Theorem 2.2 states that for any choice of (a1, a2, a3) there exists a
bound such that for any prime larger than that bound one can find “many” pairs
(c1, c2) such that a certain property holds. One can turn the tables and show that
there exists a pair (c1, c2) for which one can find “many” triples (a1, a2, a3) and
“many” primes such that that same property holds. The latter is easier and does
not require an input from Theorem 2.1. Here is an example of such a statement.

Let m ∈ Z and set a1 = 2, a2 = 0, a3 = m.

Claim. For all but finitely many m the following holds: there are infinitely many
primes p such that

1) N(1, 1) 6∈ R×
p ;

2) E(1,1) has ordinary reduction but is not CL.

To check the Claim note that

F (1, 1, x) = m(2−m)x4 − 2x2 + 1,

so the affine elliptic curve defined by

(3.14) y2 = F (1, 1, x)

is birationally equivalent over C to the affine elliptic curve defined by

(3.15) y2 = x3 − 2x2 − 4m(2−m)x+ 8m(2−m).

The latter has j-invariant given by

j(m) =
P6(m)

P6(m)− P4(m)

where P6, P4 ∈ Z[t] are polynomials of degree 6 and 4 respectively. Since there are
only finitely many numbers in Q that appear as j-invariants of CM elliptic curves
there is a cofinite set of integers m such the curve defined by 3.15 is not a CM
curve. Fix such an m. Then the curve defined by 3.14, and hence the curve Ec, is
not a CM curve. Now there are infinitely many primes p such that Ec has ordinary
reduction, i.e., for Ap−1 the Hasse invariant as in [3],

Ap−1(1, 1) ∈ Z×

p .

Finally there are infinitely many primes p such that, in addition,

N(1, 1) =

3∏

i=1

(1 − ai) = m− 1 ∈ Z×

p .

For such primes Ec is not a CL curve. This ends the proof of our Claim.
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