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ON RIBET’S ISOGENY FOR J0(65)

KRZYSZTOF KLOSIN AND MIHRAN PAPIKIAN

Abstract. Let J65 be the Jacobian of the Shimura curve attached to the indefinite quater-
nion algebra over Q of discriminant 65. We study the isogenies J0(65) → J65 defined over Q,
whose existence was proved by Ribet. We prove that there is an isogeny whose kernel is sup-
ported on the Eisenstein maximal ideals of the Hecke algebra acting on J0(65), and moreover
the odd part of the kernel is generated by a cuspidal divisor of order 7, as is predicted by a
conjecture of Ogg.

1. Introduction

Let N be a product of an even number of distinct primes. Let J0(N) be the Jacobian of the
modular curveX0(N). In [23], Ribet proved the existence of an isogeny defined overQ between
the “new” part J0(N)new of J0(N) and the Jacobian JN of the Shimura curve XN attached to
a maximal order in the indefinite quaternion algebra over Q of discriminant N . In his proof,
Ribet showed that the Qℓ-adic Tate modules of J0(N)new and JN are isomorphic as Gal(Q/Q)-
modules, where ℓ is an arbitrary prime number; this is a consequence of a correspondence
between automorphic forms on GL(2) and automorphic forms on the multiplicative group of a
quaternion algebra. The existence of the isogeny J0(N)new → JN defined over Q then follows
from a special case of Tate’s isogeny conjecture for abelian varieties over number fields, also
proved in [23] (the general case of Tate’s conjecture was proved a few years later by Faltings).
Unfortunately, Ribet’s argument provides no information about the isogenies J0(N)new → JN

beyond their existence.
In [17], Ogg made an explicit conjecture about the kernel of Ribet’s isogeny when N = pq

is a product of two distinct primes and p = 2, 3, 5, 7, 13: the conjecture predicts that there is
an isogeny J0(N)new → JN of minimal degree whose kernel is a specific group arising from
the cuspidal divisor subgroup of J0(N). Note that p = 2, 3, 5, 7, 13 are exactly the primes for
which J0(pq) has purely toric reduction at q. This fact is crucial for the calculations used by
Ogg to come up with his conjecture; the underlying idea is that the knowledge of the group
of connected components of the Néron models of J0(N)new and JN at q yields restrictions on
the isogenies between them. Ogg’s conjecture remains open except for the special cases when
JN has dimension ≤ 3.
When dim(JN) = 1, equiv. N = 2 · 7, 3 · 5, 3 · 7, 3 · 11, 2 · 17, JN is an elliptic curve over Q

which is uniquely determined by its component groups at p and q, and J0(N)new is the optimal
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2 KRZYSZTOF KLOSIN AND MIHRAN PAPIKIAN

elliptic curve of conductor N . Then one easily checks Ogg’s conjecture using Cremona’s tables
[5]. In general, the orders of component groups of JN can be computed using Brandt matrices
[11], which is relatively easy to do with the help of a computer program such as Magma.
When dim(JN ) = 2, equiv. N = 2 · 13, 2 · 19, 2 · 29, Ogg’s conjecture is verified in [7]. In

this case, the proof is based on the fact that XN is bielliptic and the lattices of J0(N)new and
JN can be computed through their elliptic quotients.
When dim(JN) = 3, equiv. N = 2 · 31, 2 · 41, 2 · 47, 3 · 13, 3 · 17, 3 · 19, 3 · 23, 5 · 7, 5 · 11, Ogg’s

conjecture is verified in [6]. In this case, XN is always hyperelliptic. By utilizing this fact,
González and Molina explicitly compute the equation for each XN . Then they obtain a basis
of regular differentials for XN from these equations to produce a period matrix for JN . The
period matrix of J0(N)new can be computed using cusp forms with rational q-expansions. The
problem then reduces to comparing the period matrices of appropriate quotients of J0(N)new

with the period matrix of JN .
The main goal of this paper is to study Ribet’s isogeny for N = 5 · 13 = 65. In this case,

dim(JN ) = 5 and XN is not hyperelliptic; cf. [15]. Our approach to the study of Ribet
isogenies is completely different from that in [7] and [6], and crucially relies on the Hecke
equivariance of such isogenies. In this approach we need to know very little about XN or JN ;
we only need to know the orders of component groups of JN , which, as we mentioned, are
easy to compute, and in fact were already computed in [17]. The difficulty shifts to the study
of the structure of the Hecke algebra and its action on J0(N).
Let T(N) := Z[T2, T3, . . . ] be the Z-algebra generated by the Hecke operators Tn acting

on be the space S2(N) of weight 2 cups forms on Γ0(N). This algebra is isomorphic to
the subalgebra of End(J0(N)) generated by Tn acting as correspondences on X0(N). When
N = 65, we have J0(N)new = J0(N), so there is a Ribet isogeny

π : J0(N) → JN .

T(N) also naturally acts on JN and π is T(N)-equivariant. This equivariance is implicit in
Ribet’s proof [23]; see also [10, Cor. 2.4].
From now on we assume N = 65. To simplify the notation, we denote T := T(N), J :=

J0(N), J ′ := JN , GQ := Gal(Q/Q). Given a finite abelian group H , we denote by Hp its
p-primary component (p is a prime number), and by Hodd its maximal subgroup of odd order,
so that H ∼= H2 × Hodd. Since the endomorphisms of J induced by Hecke operators are
defined over Q, the actions of T and GQ on J commute with each other. Thus, ker(π) is a
T[GQ]-submodule of J . We show that if the kernel of an isogeny from J to another abelian
variety is a T[GQ]-module, then, up to endomorphisms of J , the kernel is supported on the
Eisenstein maximal ideals of T. We then classify all T[GQ]-submodules of J of odd order
supported on the Eisenstein maximal ideals. This leads to the following theorem, which is
the main result of the paper:

Theorem 1.1. There is a Ribet isogeny π : J → J ′ such that ker(π)odd ∼= Z/7Z is the
7-primary component of the cuspidal divisor group of J .

Ogg’s conjecture in this case predicts that in fact ker(π) = Z/7Z. There is a unique
Eisenstein maximal ideal m2✁T of residue characteristic 2. In principle, it should be possible to
extend our analysis to finite T[GQ]-submodules of J supported onm2 to show that ker(π)2 = 0.
But there are several technical difficulties which at present we are not able to overcome: these
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stem from the fact that m2 is a prime of fusion, Tm2
is not Gorenstein, and the groups of

rational points of reductions of J usually have large 2-primary components.
Our strategy can be applied also to cases when dim(JN) = 3, which leads to results similar

to Theorem 1.1, at least when J0(N)new = J0(N) (equiv. N = 3 · 13, 5 · 7); see Remarks 4.9
and 4.10.

2. Néron models

In this section we recall some terminology and facts from the theory of Néron models. Let
R be a complete discrete valuation ring, with fraction field K and residue field k. Let A be an
abelian variety over K. Denote by A its Néron model over R and denote by A0

k the connected
component of the identity of the special fiber Ak of A. There is an exact sequence

0 → A0
k → Ak → ΦA → 0,

where ΦA is a finite (abelian) group called the component group of A. We say that A has
semi-abelian reduction if A0

k is an extension of an abelian variety A′k by an affine algebraic
torus TA over k (cf. [1, p. 181]):

0 → TA → A0
k → A′k → 0.

We say that A has good reduction, if A0
k = A′k (in this case, we also have Ak = A0

k); we say
that A has (purely) toric reduction if A0

k = TA. The character group

(2.1) MA := Hom((TA)k̄,Gm,k̄)

is a free abelian group contravariantly associated to A.
Let K ′ be a finite unramified extension ofK, with ring of integers R′ and residue field k′. By

the fundamental property of Néron models, we have an isomorphism of groups A(K ′) ∼= A(R′),
which defines a canonical reduction map

(2.2) A(K ′) → Ak(k
′).

Composing (2.2) with Ak → ΦA, we get a homomorphism

(2.3) A(K ′) → ΦA.

Proposition 2.1. Let K ′ be a finite unramified extension of K. Let H ⊂ A(K ′) be a finite
subgroup. Assume that either #H is coprime to the characteristic p of k, or that K has
characteristic 0 and its absolute ramification index is < p−1. Then (2.2) defines an injection
H →֒ Ak(k

′).

Proof. See [12, p. 502]. �

Let ϕ : A → B be an isogeny defined over K. By the Néron mapping property, ϕ extends to
a morphism ϕ : A → B of the Néron models. On the special fibers we get a homomorphism
ϕk : Ak → Bk, which induces an isogeny ϕ0

k : A0
k → B0

k; [1, Cor. 7.3/7]. This implies
that B has semi-abelian (resp. toric) reduction if A has semi-abelian (resp. toric) reduction.
The isogeny ϕ0

k restricts to an isogeny ϕt : TA → TB, which corresponds to an injective
homomorphisms of character groups ϕ∗ : MB → MA with finite cokernel. We also get a
natural homomorphism ϕΦ : ΦA → ΦB.
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Denote by Â the dual abelian variety of A. Let ϕ̂ : B̂ → Â be the isogeny dual to ϕ.
Assume A has semi-abelian reduction. In [9], Grothendieck defined a non-degenerate pairing
uA : MA×MÂ → Z (called monodromy pairing) with nice functorial properties, which induces
an exact sequence

(2.4) 0 → MÂ

uA−→ Hom(MA,Z) → ΦA → 0.

Using (2.4), one obtains a commutative diagram with exact rows (cf. [24, p. 8]):

0 // MÂ
//

ϕ̂∗

��

Hom(MA,Z)

Hom(ϕ∗,Z)

��

// ΦA

ϕΦ

��

// 0

0 // MB̂
// Hom(MB,Z) // ΦB

// 0.

From this diagram we get the exact sequence

(2.5) 0 → ker(ϕΦ) → MB̂/ϕ̂
∗(MÂ) → Ext1Z(MA/ϕ

∗(MB),Z) → coker(ϕΦ) → 0.

Since

Ext1Z(MA/ϕ
∗(MB),Z) ∼= Hom(MA/ϕ

∗(MB),Q/Z) =: (MA/ϕ
∗(MB))

∨,

we can rewrite (2.5) as

(2.6) 0 → ker(ϕΦ) → MB̂/ϕ̂
∗(MÂ) → (MA/ϕ

∗(MB))
∨ → coker(ϕΦ) → 0.

Note that MA/ϕ
∗(MB) ∼= Hom(ker(ϕt),Gm,k). On the other hand, ker(ϕt) can be canon-

ically identified with a subgroup scheme of H := ker(ϕ); cf. [3, p. 762]. Therefore,
#MA/ϕ

∗(MB) divides #H . Similarly, #MB̂/ϕ̂
∗(MÂ) divides #ker(ϕ̂). Since ker(ϕ̂) ∼=

Hom(ker(φ),Gm,K) (see [16, Thm.1, p. 143]), we conclude that #MB̂/ϕ̂
∗(MÂ) also divides

#H . Now one easily deduces from (2.6) the following:

Lemma 2.2. Assume A has semi-abelian reduction, and ϕ : A → B is an isogeny defined over
K. If ℓ is a prime number which does not divide #ker(ϕ), then ϕΦ induces an isomorphism
(ΦA)ℓ ∼= (ΦB)ℓ.

Lemma 2.3. Let K ′ be a finite unramified extension of K. Let ϕ : A → B be an isogeny
defined over K such that H = ker(ϕ) ⊂ A(K ′), i.e., H becomes a constant group-scheme over
K ′. Let H0 (resp. H1) be the kernel (resp. image) of the homomorphism H → ΦA defined by
(2.3). Assume A has toric reduction. Assume that either #H is coprime to the characteristic
p of k, or that K has characteristic 0 and its absolute ramification index is < p − 1. Then
there is an exact sequence

0 → H1 → ΦA
ϕΦ−→ ΦB → H0 → 0.

Proof. Under these assumptions, we have H →֒ Ak(k
′) and H0 = ker(ϕt). This implies

(MA/ϕ
∗(MB))

∨ ∼= H0. Next, [3, Thm. 8.6] implies that MB̂/ϕ̂
∗(MÂ)

∼= H1. Thus, we can
rewrite (2.6) as

0 → ker(ϕΦ) → H1 → H0 → coker(ϕΦ) → 0.

Since ker(ϕΦ) = H1, we conclude from this exact sequence that coker(ϕΦ) ∼= H0. �
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3. Hecke Algebra

Since the Z-algebra T is free of finite rank as a Z-module, we can define the discriminant
disc(T) of T with respect to the trace pairing; cf. [21, p. 66]. An algorithm for computing
the discriminants of Hecke algebras is implemented in Magma; it gives disc(T) = 211 · 3. We
then obtain

T = ZT1 + ZT2 + ZT3 + ZT5 + ZT11

as a Z-module by comparing the discriminants. We have T⊗Z Q ∼= Q×Q(
√
2)×Q(

√
3). Let

T̃ = Z× Z[
√
2]× Z[

√
3]

be the integral closure of T in T⊗Q. Viewing T as an order in T̃, we have

T1 = (1, 1, 1)

T2 = (−1,−1 +
√
2,
√
3)

T3 = (−2,
√
2, 1−

√
3)(3.1)

T5 = (−1, 1,−1)

T11 = (2, 2−
√
2,−3 +

√
3).

One then observes that T = Zv1 + Zv2 + Zv3 + Zv4 + Zv5, where

v1 = (1, 1, 1), v2 = (0, 2, 0), v3 = (0, 0, 2), v4 = (0, 2
√
2, 0),

v5 = (−1,−1 +
√
2, 2−

√
3),

which implies

(3.2) T ∼=



(a, b1 + b2

√
2, c1 + c2

√
3)

∣∣∣∣
a, b1, b2, c1, c2 ∈ Z,

a ≡ b1 ≡ (c1 + c2) mod 2,
b2 ≡ c2 mod 2



 .

Given a maximal ideal m✁ T, let Tm = lim
←−
n

T/mn denote the completion of T at m.

Proposition 3.1. Every maximal ideal in T of odd residue characteristic is principal. In
particular, Tm is Gorenstein for any maximal ideal m ✁ T of odd residue characteristic; cf.
[26, p. 329].

Proof. Since

disc(T) = [T̃ : T]2 · disc(T̃) = [T̃ : T]2 · 25 · 3,
we get [T̃ : T] = 23. Let IT̃,2′ be the set of ideals I ✁ T̃ such that T̃/I is a finite ring of

odd order. Let IT,2′ be the set of ideals I ✁ T such that T/I is a finite ring of odd order.
The argument of the proof of Proposition 7.20 in [4] shows that the map I 7→ I ∩ T gives a

bijection from IT̃,2′ to IT,2′ , with the inverse given by I 7→ IT̃. Moreover, the proof of that

proposition shows that for I ∈ IT̃,2′ we have T̃/I ∼= T/I ∩T, so that this bijection restricts to

a bijection between the maximal ideals of T̃ and T of odd residue characteristic.

Since T̃ is a direct product of Euclidean domains, every ideal I ∈ IT̃,2′ is principal. Write

I = θT̃. If θ ∈ T, then I ∩ T = θT is also principal, since (θT)T̃ = θT̃. Therefore, to prove
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the proposition it is enough to show that for every maximal ideal m ∈ IT̃,2′ we can choose

a generator which lies in T. Let p > 2 be the residue characteristic of m = θT̃. If we write
m = m

′×m
′′×m

′′′, where m′✁Z, m′′✁Z[
√
2], m′′′✁Z[

√
3], then one of these ideals is maximal

of residue characteristic p, and the other two are equal to the corresponding ring. We consider
three cases depending on which of the three ideals is proper.
Case 1: m′ = pZ. Then θ = (p, 1, 1) ∈ T.
Case 2: m

′′ is proper. If (p) is inert in Z[
√
2], then we can take θ = (1, p, 1) ∈ T. Now

suppose p = (α + β
√
2)(α − β

√
2) splits, where α, β ∈ Z. Note that α must be odd. If β is

even, then θ = (1, α± β
√
2, 1) ∈ T. If β is odd, then θ = (1, α± β

√
2, 2+

√
3) ∈ T, as 2+

√
3

is a unit in Z[
√
3].

Case 3: m
′′′ is proper. If (p) is inert in Z[

√
3], then we can take θ = (1, 1, p) ∈ T. If

p = 3, then θ = (1, 1 +
√
2,
√
3) ∈ T, since 1 +

√
2 is a unit in Z[

√
2]. Finally, suppose

p = (α + β
√
3)(α − β

√
3), where α, β ∈ Z. Considering p = α2 − 3β2 modulo 2, we get

1 ≡ (α + β)2 mod 2, so that α and β have different parity. If α is odd and β is even, then
θ = (1, 1, α± β

√
3) ∈ T. If α is even and β is odd, then θ = (1, 1 +

√
2, α± β

√
3) ∈ T. �

Remark 3.2. Let O = Z[i] be the Gaussian integers. Let O′ = Z+ 3O = Z+ 3iZ be an order
in O. We have [O : O′] = 3. The ideal m = (2 + i)O is maximal: O/m ∼= F5. On the other
hand, m ∩O′ = (5, 1 + 3i)O′ is not principal, although (5, 1 + 3i)O = m. This indicates that
Proposition 3.1 is not a special case of a general fact about orders.

Definition 3.3. The Eisenstein ideal of T is the ideal E ✁ T generated by Tℓ − (ℓ + 1) for
all primes ℓ ∤ 65. A maximal ideal m ✁ T in the support of the Eisenstein ideal is called an
Eisenstein maximal ideal.

Proposition 3.4. We have

T/E ∼= Z/84Z ∼= Z/4Z× Z/3Z× Z/7Z.

Proof. First, we explain how to compute the expansion of an arbitrary Hecke operator Tm ∈ T
in terms of the Z-basis {T1, T2, T3, T5, T11} of T. Up to Galois conjugacy, there are three
normalized T-eigenforms in S2(65). The three coordinates of Tm in the ring on the right hand-
side of (3.2) are the eigenvalues with which Tm acts on these eigenforms (these eigenvalues
can be computed using Magma). Once we have this representation of Tm, thanks to (3.1),
finding the expansion of Tm in terms of our basis amounts to solving a system of five linear
equations in five variables. This strategy yields

T7 = 2T1 − T2 − 6T3 + 9T5 − 5T11,

T19 = 2T1 + 2T2 − 4T3 + 8T5 − 3T11,

T29 = −4T1 + T2 + 12T3 − 13T5 + 9T11.

The Hecke operators Tℓ for primes ℓ ∤ 65 are all congruent to integers modulo E . Since
T5 = (T7 − T19) + 3T2 + 2T3 + 2T11, we conclude that all Hecke operators are congruent to
integers. Hence the natural map Z → T/E is surjective. We cannot have T/E = Z, for then
there would exist a cusp form f ∈ S2(65) such that Tℓf = (ℓ + 1)f , which would contradict
the Ramanujan-Petersson bound; cf. proof of [14, Prop. 9.7]. Therefore, T/E ∼= Z/nZ
for some integer n. Note that T5 ≡ 29 (mod E). From the expansion of T7, we obtain
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168 = 23 ·3 ·7 ≡ 0 (mod E); from the expansion of T29, we obtain 252 = 22 ·32 ·7 ≡ 0 (mod E);
thus, n divides 4 · 3 · 7 = 84.
On the other hand, the Eichler-Shimura congruence [14, p. 89] implies that E annihilates

J(Q)tor ∼= Z/2Z × Z/4Z × Z/3Z × Z/7Z; see Proposition 4.2. Hence n is divisible by the
exponent of this group, which is 84. �

Lemma 3.5. The Hecke operators T5 and T13 act on T/E ∼= Z/4Z×Z/3Z×Z/7Z as (1,−1, 1)
and (1, 1,−1), respectively.

Proof. In the proof of Proposition 3.4 we computed that T5 ≡ 29 (mod E). Similarly, T13 =
−T3 + T5 − T11 ≡ 13 (mod E). From this the claim of the lemma immediately follows since,
for example, 29 ≡ 1 (mod 4), 29 ≡ −1 (mod 3), and 29 ≡ 1 (mod 7). �

Remark 3.6. We note that T5 and T13 are actually equal to the negatives of the Atkin-Lehner
involutions W5 and W13 acting on S2(65). The conclusion (T/E)odd ∼= Z/3Z×Z/7Z then can
be deduced from Theorem 3.1.3 in [18].

Proposition 3.4 implies that there are three Eisenstein maximal ideals in T:

m2 := (E , 2) = (E , 2, T5 − 1, T13 − 1),

m3 := (E , 3) = (E , 3, T5 + 1, T13 − 1),

m7 := (E , 7) = (E , 7, T5 − 1, T13 + 1).

Proposition 3.7. We have:

(i) The ideal m2 ✁ T is equal to the ideal
(
(2, 1, 1)T̃

)
∩ T =

{
(a, b1 + b2

√
2, c1 + c2

√
3) ∈ T

∣∣ a ∈ 2Z
}
,

which is the unique maximal ideal of T of residue characteristic 2.
(ii) m

n
2 is not principal for any n ≥ 1.

(iii) Tm2
is not Gorenstein.

Proof. (i) The uniqueness of the maximal ideal of residue characteristic 2 implies that it must
be the Eisenstein maximal ideal m2. To prove the uniqueness, note that each of the rings Z,
Z[
√
2], Z[

√
3] has a unique maximal ideal of residue characteristic 2; these are generated by

2,
√
2, and 1 +

√
3, respectively. One easily checks that

m := ((2, 1, 1)T̃) ∩ T = ((1,
√
2, 1)T̃) ∩ T = ((1, 1, 1 +

√
3)T̃) ∩ T,

and T/m ∼= F2.
(ii) Suppose m

n
2 is principal, generated by θ = (a, b1 + b2

√
2, c1 + c2

√
3). Clearly we must

have a = ±2n. Since (1, 0, 0) 6∈ T, to obtain (2n, 0, 0) ∈ m
n
2 as a multiple of θ, we must

have either b1 + b2
√
2 = 0 or c1 + c2

√
3 = 0. But then we cannot obtain (0, 2n, 0) ∈ m

n
2 or

(0, 0, 2n) ∈ m
n
2 as a multiple of θ. This leads to a contradiction.

(iii) We apply [26, Prop. 1.4 (iii)]: Let m2 denote the image of m2 in T/2T. Then Tm2
is

Gorenstein if and only if dimF2
(T/2T)[m2] = 1. Note that (2, 0, 0) and (0, 2, 0) have distinct

non-zero images in T/2T, since otherwise (2, 2, 0) ∈ 2T, which would imply (1, 1, 0) ∈ T.
On the other hand, for any θ ∈ m2 we have θ(2, 0, 0) = (4a, 0, 0) = 2(2a, 0, 0) ∈ 2T for
some a ∈ Z. Therefore, m2 annihilates (2, 0, 0), and similarly m2 annihilates (0, 2, 0); thus,
dimF2

(T/2T)[m2] ≥ 2. �



8 KRZYSZTOF KLOSIN AND MIHRAN PAPIKIAN

m3

m7m2

Z[
√
3]

Z[
√
2]

Z

Figure 1. Spec(T)

Spec(T) can be sketched as in Figure 1. It has three irreducible components intersecting at
m2. The irreducible components containing the closed points m3 and m7 are determined by
observing that T5 + 1 = (0, 2, 0) and T5 − 1 = (−2, 0,−2), so T5 acts as −1 (resp. 1) on the
component Spec(Z[

√
3]) (resp. Spec(Z[

√
2])). Finally, note that Tm7

∼= Z7 and Tm3

∼= Z3[
√
3].

4. Modular Jacobian

There are exactly four cusps, denoted [1], [p], [q] and [pq], on X0(pq), where p and q are
two distinct prime numbers. Let C(pq) be the subgroup of J0(pq) generated by all cuspidal
divisors. Since all cusps are Q-rational, we have C(pq) ⊂ J0(pq)(Q). Let Φ(p) and Φ(q)
denote the component groups of J0(pq) at p and q, and ℘p, ℘q : C(pq) → Φ(p),Φ(q) be the
homomorphisms induced by (2.3).

Proposition 4.1. Let p = 5 and q = 13. Let cp and cq be the divisor classes of [1]− [p] and
[1]− [q] in J0(pq). Denote C := C(pq).

(i) C is generated by cp and cq. The order of cp is 28; the order of cq is 12; the only
relation between cp and cq in C is 14cp = 6cq. This implies

C ∼= Z/2Z× Z/4Z× Z/3Z× Z/7Z.

(ii) Φ(p) ∼= Z/42Z and Φ(q) ∼= Z/6Z.
(iii) The order of ℘p(cp) is 14, and ℘p(cq) = 0; this implies that there is an exact sequence

0 → 〈cq〉 → C ℘p−→ Φ(p) → Z/3Z → 0.

The order of ℘q(cq) is 6, and ℘q(cp) = 0; this implies that there is an exact sequence

0 → 〈cp〉 → C ℘q−→ Φ(q) → 0.

Proof. (i) follows from [2]. The groups Φ(p) and Φ(q) can be computed from the structure
of special fibres of X0(pq) using a well-known method of Raynaud; see [17, p. 214] or the
appendix in [14]. Finally, by considering the reductions of the cusps in the special fibre of the
minimal regular model of X0(pq) over Zp, one can determine the homomorphism ℘p and ℘q;
cf. [19, p. 1161]. �

Proposition 4.2. We have C = J(Q)tor.

Proof. Obviously C ⊆ J(Q)tor. On the other hand, J has good reduction at any odd prime
p ∤ 65, so by Proposition 2.1 we have an injective homomorphism J(Q)tor →֒ J(Fp), where
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J(Fp) denotes the group of Fp-rational points on the reduction of J at p. The order of J(Fp)
can be computed using Magma. We have #J(F3) = 23 · 32 · 7 and #J(F11) = 23 · 3 · 5 · 72 · 37.
Since the greatest common divisor of these numbers is 23 · 3 · 7 = #C, the claim follows. �

The Hecke ring T is isomorphic to a subring of endomorphisms of J generated by the Hecke
operators Tn acting as correspondences on X . In fact, T is the full ring of endomorphisms of
J ; see Proposition 5.2. For a maximal ideal m✁ T, we denote

J [m] =
⋂

α∈m

ker(J
α−→ J)

Then J [m] ⊂ J [p], where p is the characteristic of T/m. By a theorem of Mazur [26, p. 341],
Tm is Gorenstein if and only if dimT/m J [m] = 2. Therefore, using Proposition 3.1, we conclude
that dimT/m J [m] = 2 for any maximal ideal m of odd residue characteristic.
Let p = 3, 7 and mp be the corresponding Eisenstein maximal ideal. The Eichler-Shimura

congruence relation implies that E annihilates J(Q)tor = C. Hence Z/pZ ∼= Cp ⊂ J [mp]. We
have

(4.1) 0 −→ Z/pZ −→ J [mp] −→ µp → 0,

since GQ acts on ∧2J [mp] by the mod p cyclotomic character; cf. [25, p. 465]. By [13], the
Shimura subgroup Σ (= kernel of the functorial homomorphims J0(65) → J1(65)) is

(4.2) Σ ∼= µ2 × µ3,

and the Eisenstein ideal E annihilates Σ. Therefore, (4.1) splits for p = 3:

J [m3] = C3 × Σ3
∼= Z/3Z× µ3.

Lemma 4.3. The sequence (4.1) does not split for p = 7.

Proof. If (4.1) splits then µ7 ⊂ J . Now a theorem of Vatsal [27] implies that µ7 ⊂ Σ, which
contradicts (4.2). In a more elementary fashion one can reach a contadiction as follows. If
(4.1) splits then Z/7Z × Z/7Z ⊂ J(Q(µ7))tor. Since ℓ = 29 splits completely in Q(µ7), by
Proposition 2.1 we must have 72 | #J(Fℓ) = 23 · 32 · 7 · 13 · 232. �

Remark 4.4. Let E be the elliptic curve defined by y2 + xy = x3 − x. It is easy to check that
E has a rational 2-torsion point and E[2] as a Galois module is a non-split extension

0 → Z/2Z → E[2] → Z/2Z → 0.

By Table 1 in [5], E is isomorphic to a subvariety of J . We claim that E[2] ⊂ J [m2]. To see
this, consider a Hecke operator Tp = (ap, bp+

√
2cp, dp+

√
3ep) for prime p ∤ 65, given as in (3.2).

Tp acts on E by multiplication by ap. The fact that m2 is Eisenstein implies that ap − (p+1)
is even; thus, Tp − (p + 1) annihilates E[2]; thus m2 = (2, E) annihilates E[2]. On the other
hand, clearly E[2] 6⊂ C[2], as C[2] is constant. Therefore, dimT/m2

J [m2] ≥ dimF2
C[2] + 1 = 3.

This gives a geometric proof of the fact that Tm2
is not Gorenstein. Note that Proposition

4.2 implies that Σ[2] ⊂ C[2], since µ2
∼= Z/2Z is constant over Q.

Proposition 4.5. Let m✁ T be an Eisenstein maximal ideal of odd residue characteristic p.
Let H ⊂ J [ms], s ≥ 1, be a T[GQ]-module. If J [m] 6⊂ H, then H ( J [m].
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Proof. We will assume that J [m] 6⊂ H and H 6⊂ J [m], and reach a contradiction. First,
we make some simplifications. Since H [m2] ⊂ J [m2] is a T[GQ]-module satisfying the same
assumptions, if we want to show that H does not exist, it is enough to prove the non-existence
under the additional assumption that H ⊂ J [m2].

Lemma 4.6. We have H ∼= T/m2.

Proof. We can consider H as a finite Tm-module. Since Tm is a DVR, we have

H ∼= Tm/m
s1 × · · · × Tm/m

sr ∼= T/ms1 × · · · × T/msr

for some 1 ≤ s1 ≤ s2 ≤ · · · ≤ sr ≤ 2. Since dimT/m J [m] = 2, and H [m] ∼= (T/m)r ( J [m], we
must have r = 1, i.e., H ∼= T/ms for s = 1 or s = 2. If s = 1, then H ⊂ J [m], contrary to our
assumption, so s = 2. �

Note that

T/m2 ∼=
{
Z/p2Z if p = 7;

Fp[x]/(x
2) if p = 3.

Let K := Q(H). If K = Q, then p2 = #H divides #J(Q)tor. This contradicts Proposition
4.2, so we will assume from now on that K 6= Q. Let η be a generator of m. Note that
ηH = H [η] ⊂ J [m] is a proper non-trivial Galois invariant subgroup. On the other hand, the
GQ-invariant subgroups of J [m] are Z/pZ and µp, so either

(4.3) 0 → Z/pZ → H
η−→ Z/pZ → 0,

or

(4.4) 0 → µp → H
η−→ µp → 0.

Moreover, the second possibility does not occur for p = 7, since (4.1) does not split.

Lemma 4.7. Let Kp denote the unique degree p extension of Q contained in Q(µp2).

(1) If p = 7, then K = Kp.
(2) Assume p = 3. In case of (4.3), we have [K : Q] = p and K ⊂ KpQ(µ13). In case of

(4.4), we have Q(µp) ⊆ K ⊂ Q(µp2, µ13).

Proof. Since the actions of T and GQ on H commute, we have

Gal(K/Q) ⊂ AutT(T/m
2) ∼= (T/m2)× ∼= Z/(p− 1)pZ.

Hence K/Q is an abelian extension. Since J has good reduction away from 5 and 13, the
extension K/Q is unramified away from p, 5, 13. By class field theory, K is a subfield of a
cyclotomic extension Q(µpn1 , µ5n2 , µ13n3 ), for some n1, n2, n3 ≥ 1. We have

Gal(Q(µpn1 , µ5n2 , µ13n3 )/Q)
∼= Gal(Q(µpn1/Q)×Gal(Q(µ5n2/Q)×Gal(Q(µ13n3/Q)

∼= Z/pn1−1(p− 1)Z× Z/5n2−1(5− 1)Z× Z/13n3−1(13− 1)Z.

Assume p = 7. Since in this case H is as in (4.3), GQ acts trivially on pH , so Gal(K/Q) is in
the subgroup of units (Z/p2Z)× which satisfy ap ≡ p (mod p2), or equivalently, a ≡ 1 (mod p).
The units with this property form the cyclic subgroup of order p in (Z/p2Z)×. Hence K/Q
is an abelian extension of degree p. Since p does not divide (5 − 1)5n2−1 or (13 − 1)13n3−1,
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the field K is fixed by Gal(Q(µ5n2 )/Q) × Gal(Q(µ13n3 )/Q). Therefore, K ⊂ Q(µpn1 ) is a
subfield of degree p over Q. There is a unique such field (as Gal(Q(µpn1/Q) is cyclic), and it
is contained in Q(µp2).
Assume p = 3 and H fits into an exact sequence (4.3). By the argument in the previous

paragraph, [K : Q] = p. Let F := Q(µ13) and K ′ = F (H). We know that [K ′ : F ] = 1 or p.
Note that Gal(Q(µpn1 , µ5n2 , µ13n3 )/F ) ∼= Z/(p − 1)pn1−1 × Z(5 − 1)5n2−1 × Z/13n3−1Z, so as
in the case of p = 7, we get F (H) ⊂ KpF .
Finally, assume p = 3 and H fits into an exact sequence (4.4). Then obviously Q(µp) ⊂ K.

Over L := Q(µp), the group scheme H fits into an exact sequence (4.3), so, as in the earlier
cases, L(H)/L is cyclic of order 1 or p. If H is not constant over FL, then [FL(H) : FL] = p.
On the other hand, Gal(Q(µpn1 , µ5n2 , µ13n3 )/FL) ∼= Z/pn1−1×Z(5−1)5n2−1×Z/13n3−1Z. As
in the earlier cases, this implies that FL(H) ⊂ KpFL = Q(µp2, µ13). Overall, we see that K
is always a subfield of Q(µp2 , µ13). �

Assume p = 7. By Lemma 4.7, we have K = Kp. Let ℓ be a prime which splits completely
in Kp. Then H is constant over Qℓ, so H ⊂ J(Qℓ)tor. On the other hand, under the canonical
reduction map, we have an injection J(Qℓ)tor →֒ J(Fℓ); see Proposition 2.1. Therefore, we
must have p2 | #J(Fℓ). It is easy to show that a prime ℓ splits completely in Kp if and only
if its order in (Z/p2Z)× is coprime to p. We can take 3 as a generator of (Z/p2Z)×. The
elements of orders coprime to p are the powers of 37 ≡ 31. These are {31, 30, 48, 18, 19, 1}.
Thus, the smallest prime that splits completely in K7 is 19, and #J(F19) = 23 · 32 · 7 · 13 · 232.
As 72 does not divide this number, we get a contradiction.
Assume p = 3. By Lemma 4.7, we have Q(H) ⊂ Q(µ13, µp2). Since µp is constant over K ′,

we have Z/pZ × Z/pZ ∼= J [m](K ′) ⊂ J(K ′)tor ⊂ J(Qℓ). Since H is also constant over K ′,
we also have Z/pZ × Z/pZ ∼= H ⊂ J(Qℓ). Since J [m] 6⊂ H , we see that J(Qℓ) contains a
subgroup isomorphic to (Z/pZ)3. As earlier, this implies that p3 | #J(Fℓ). A prime ℓ splits
completely in K ′ := Q(µ13, µp2) if and only if ℓ ≡ 1 (mod 9) and ℓ ≡ 1 (mod 13). The smallest
such prime is ℓ = 937, and #J(F937) = 213 · 32 · 7 · 112 · 41 · 97 · 2963. As 33 does not divide
this number, we get a contradiction. This concludes the proof of Proposition 4.5. �

Let A be an abelian variety over Q and π : J → A an isogeny defined over Q. Assume
ker(π) is invariant under the action of T, i.e., ker(π) is a finite T[GQ]-module. We can
decompose ker(π) = ker(π)2 × ker(π)odd; each of these subgroups is also a T[GQ]-module.
Let the maximal ideal m ✁ T be in the support of H := ker(π)odd. Since m has odd residue
characteristic, m = ηT is principal by Proposition 3.1. If ker(η) = J [m] ⊂ H , then we can
decompose π = π′ ◦ η, where π′ : J → A is another isogeny whose kernel is a T[GQ]-module
but with smaller odd component than π. We can apply the same argument to π′ and continue
this process until we obtain an isogeny whose kernel does not contain any J [m] with m having
odd residue characteristic. From now on we assume that π itself has this property.
Since m has odd residue characteristic, the T[GQ]-module J [m] is 2-dimensional over T/m.

By [14, Prop. 14.2] and [25, Thm. 5.2], if m is not Eisenstein, then J [m] is irreducible. Since
J [m] ∩H 6= 0, we must have J [m] ⊂ H , which contradicts our assumption on π. Hence H is
supported on the Eisenstein maximal ideals m3 and m7. We decompose H = H3 ×H7 into 3-
primary and 7-primary components, which themselves are T[GQ]-modules. Now Hp ⊂ J [ms

p]
for some s ≥ 1, p = 3, 7, and J [mp] 6⊂ Hp. Applying Proposition 4.5, we conclude that
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Hp ( J [mp]. Thus H7 = 0 or C7, and H3 = 0 or Σ3 or C3. Overall, H can be one of the
following subgroups of J :

(4.5) 0, C3, Σ3, C7, C3 × C7, Σ3 × C7.
Theorem 4.8. If A = J ′, then for π : J → J ′ chosen with the minimality condition discussed
above, we must have H = C7.
Proof. The reductions of J and J ′ at p = 5 or 13 are purely toric, cf. [17], [25]. Let Φ(5)′ and
Φ(13)′ be the component groups of J ′ at 5 and 13. We have (see [17, p. 214]):

Φ(5)′ ∼= Z/6Z, Φ(13)′ ∼= Z/42Z.

We decompose π : J → J ′ as J → J/H
π′

−→ J ′, where ker(π′) is isomorphic to the 2-
primary part of ker(π). Let Φ(p)′′ be the component group of J/H at p. By Lemma 2.2 we
must have (Φ(p)′′)odd ∼= (Φ(p)′)odd. On the other hand, since we know the image and kernel
of ℘p : C → Φ(p), we can compute #(Φ(p)′′)odd for each possible H from the list (4.5) using
Lemma 2.3. This simple calculation shows that the only possible H is C7. (Note that the
group scheme Σ3 becomes constant over an unramified extension of Qp, but it is not important
to know whether ℘p : Σ3 → Φ(p) is injective or trivial; neither of these possibilities gives the
correct Φ(p)′′ if Σ3 ⊂ H .) �

Remark 4.9. Let N = 5 · 7. In this case,

T = Z[T3] ∼= Z[x]/(x− 1)(x2 + x− 4)

∼= {(a, b+ cα) ∈ Z× Z[α]
∣∣ a, b, c ∈ Z, a ≡ b+ c (mod 2)},

where α := −1+
√
17

2
. Note that Z[α] is the ring of integers in Q(

√
17), and Z[α] is a Euclidean

domain with respect to the usual norm. We have

C ∼= Z/2Z× Z/8Z× Z/3Z, Σ ∼= µ4 × µ3.

There is a unique Eisenstein maximal ideal m3 ✁ T of odd residue characteristic. There is a
unique Q-isogeny class of elliptic curves of level 35. The optimal curve is [5, p. 112]

E : y2 + y = x3 + x2 + 9x+ 1.

We have E[3] ∼= µ3 × Z/3Z. Since Tm is Gorenstein for any maximal ideal m ✁ T (as T is
monogenic), J [m] is two dimensional over T/m, so J [m3] = E[3] = C3 ×Σ3. Now it is easy to
analyze all T[GQ]-submodules of J supported on m3. An argument similar to the argument
of the proof of Theorem 4.8 then implies that there is a Ribet isogeny π : J → J ′ with
ker(π)odd = 0. Ogg’s conjecture in this case predicts that ker(π) ∼= Z/2Z ⊂ C2.
Remark 4.10. Let N = 3 · 13. In this case,

T = Z[T2] ∼= Z[x]/(x− 1)(x2 + 2x− 1)

∼= {(a, b+ c
√
2) ∈ Z× Z[

√
2]

∣∣ a, b, c ∈ Z, a ≡ b (mod 2)},
We have

C ∼= Z/2Z× Z/4Z× Z/7Z, Σ ∼= µ4.

There is a unique Eisenstein maximal ideal m7✁T of odd residue characteristic. J [m] fits into
the exact sequence (4.1), which is non-split in this case. One can classify T[GQ]-submodules
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of J supported on m7 using an argument similar to the argument we used in Proposition
4.5. Finally, one deduces as in Theorem 4.8 that there is a Ribet isogeny π : J → J ′ with
ker(π)odd = C7 ∼= Z/7Z. Ogg’s conjecture in this case predicts that ker(π) = C7.

5. Character groups as T-modules

This section is of auxiliary nature. Most of the calculations in this section were carried out
by Fu-Tsun Wei; in particular, the main result (Corollary 5.4) is due to Wei.
Let J be the Néron model of J over Z. We study the character group M of J 0

F5
as a

T-module; see (2.1) for the definition. Since J has purely toric reduction at 5, the Z-module
M is free of rank dim(J) = 5. The action of T on J extends canonically to an action on J .
Moreover, T acts faithfully on J 0

F5
, and hence also on M . The algebra T⊗Q is semi-simple of

dimension 5 over Q. Since T⊗Q acts faithfully on M ⊗Q, which is also 5-dimensional over
Q, one easily concludes that M⊗Q is free over T⊗Q of rank 1, i.e., in the terminology of [14,
(6.4)], the T-module M is of rank 1. We are interested in comparing M to S := S2(65,Z),
the lattice in S2(65) formed by the cusp forms whose Fourier expansions at the cusp ∞ have
integer coefficients, which is also a T-module of rank 1. These type of questions naturally
arose in [20], where it is shown that the existence of a perfect T-equivariant pairing between
T and certain character groups has interesting arithmetic consequences.
The action of T on M can be explicitly described using Brandt matrices. Let Q5 be the

quaternion algebra over Q which is ramified precisely at 5 and ∞. We can write Q5 =
Q+Qi+Qj +Qk, where

i2 = −2, j2 = −5, ij = k = −ji.

Let

O5,13 := Z

(
1

2
+

1

2
j +

7

2
k

)
+ Z

(
1

4
i+

1

2
j +

41

4
k

)
+ Z(j + 7k) + Z(13k).

Then O5,13 is an Eichler order in Q5 of level 13. The class number of the invertible right
ideals of O5,13 is 6. Let e1, . . . , e6 be the classes of the invertible right ideals of O5,13, and let

B =
⊕6

i=1 Zei is the associated Brandt module. Let B0 :=
⊕5

i=1 Zci ⊂ B, where ci := e1−ei+1

for i = 1, . . . , 5. Let B(m) be the mth Brandt matrix acting on B; cf. [8]. It is known that
B(m) preserves B0, and that we can identify M with B0 so that the action of a Hecke operator
Tm on M corresponds to the action of B(m) on B0. The Brandt matrices can be computed
on Magma; with respect to the basis {c1, . . . , c5} we get

T1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, T2 =




−1 −1 −1 0 0
−1 −1 0 1 0
−1 0 −1 1 0
−1 0 0 0 1
−1 −1 −1 3 0




, T3 =




1 −1 −1 3 −1
0 −1 1 1 −1
0 1 −1 1 −1
1 0 0 1 −1
0 −1 −1 0 0




,

T5 =




0 0 0 −1 1
0 0 1 −1 0
0 1 0 −1 0
0 0 0 −1 0
1 0 0 −1 0




, T11 =




−1 1 1 −5 3
0 2 0 −3 1
0 0 2 −3 1
−1 0 0 −3 1
2 1 1 −2 0




.
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Let M∗ := Hom(M,Z). For 1 ≤ i ≤ 5, take c∗i ∈ M∗ so that c∗i (cj) = 1 and 0 otherwise.
The Hecke action on M induces a T-module structure on M∗. The action of Tm on M∗ with
respect to the basis {c∗1, . . . , c∗5} is given by the transpose of the matrix with which Tm acts
on M with respect to the basis {c1, . . . , c5}.
Let c∗0 := −c∗1 − c∗2 and T ′2 := 1/2(T2 − T3 − T11) ∈ TQ. We observe that T ′2c

∗
0 is in M∗, and

(5.1) M∗ = Z(T1c
∗
0) + Z(T ′2c

∗
0) + Z(T3c

∗
0) + Z(T5c

∗
0) + Z(T11c

∗
0).

More precisely, we have

(5.2)




T11c
∗
0

T5c
∗
0

T3c
∗
0

T1c
∗
0

T ′2c
∗
0




=




0 −2 0 1 −3
0 0 −1 0 −1
0 1 −1 −1 1
−1 −1 0 0 0
1 2 1 0 3







c∗1
c∗2
c∗3
c∗4
c∗5




Lemma 5.1. EndT(M
∗) = T.

Proof. Let f ∈ EndT(M
∗). Suppose

f(c∗0) = a1T11c
∗
0 + a2T5c

∗
0 + a3T3c

∗
0 + a4T1c

∗
0 + a5T

′
2c
∗
0

for a1, . . . , a5 ∈ Z. Then

f(T ′2c
∗
0) =

1

2
(T2 − T3 − T11)f(c

∗
0)

=
1

2
(a1, a2, a3, a4, a5) · (B′(2)− B′(5)−B′(11)) ·




T11c
∗
0

T5c
∗
0

T3c
∗
0

T1c
∗
0

T ′2c
∗
0




,

where B′(n), n ≥ 1, is the matrix representation of Tn on M∗ with respect to the basis
{T11c

∗
0, T5c

∗
0, T3c

∗
0, T1c

∗
0, T

′
2c
∗
0}. Using (5.2), we get

B′(2)−B′(5)− B′(11) =




16 −10 12 −10 12
6 −8 6 −4 2
−6 −2 −2 2 −8
0 0 0 0 2

−15 16 −15 10 −8




.

Since the entries of
1

2
(a1, a2, a3, a4, a5) · (B′(2)−B′(5)−B′(11))

are all in Z, this implies that a5 must be even. Therefore

f = a1T11 + a2T5 + a3T3 + a4T1 +
a5
2
(T2 − T5 − T11) ∈ T.

�

Proposition 5.2. The Hecke ring T is the full ring of endomorphisms of JC.
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Proof. We slightly modify the argument of Mazur [14, Prop. 9.5]. Let T′ = End(JC). We
obviously have T ⊆ T′. By [22, Prop. 3.1], any element of T′ is defined over Q. Therefore T′

acts faithfully on M∗. Next, by [22, Prop. 3.2], T′ is a subring of T⊗Q and hence its action
commutes with the action of T. Thus we get an injective homomorphism T′ → EndT(M

∗).
By Lemma 5.1, EndT(M

∗) = T, so we conclude that T′ = T. �

Lemma 5.3. M∗ is not isomorphic to T as a T-module.

Proof. From (5.1) we have isomorphisms of T-modules

M∗ ∼= T+ TT ′2
∼= 2 · (T+ TT ′2) = Z2T11 + Z2T5 + Z2T3 + Z2T1 + Z(T2 − T5 − T11) =: U.

Suppose M∗ ∼= T, which means that U is a principal ideal of T. Using (3.1) one computes
that [T : U ] = 16. By Proposition 3.1, U = m

4
2, which is not principal. This leads to a

contradiction. �

Corollary 5.4. M is not isomorphic to S as a T-module.

Proof. It is well-known that the pairing S×T → Z, which maps f ∈ S and T ∈ T to the first
coefficient of the q-expansion of Tf , is perfect and T-equivariant; thus gives an isomorphism
T ∼= Hom(S,Z) of T-modules. Now we can use Lemma 5.3 to reach the desired conclusion. �
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10. D. Helm, On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math. 160

(2007), 61–117.
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A121–A123.

24. , On the component groups and the Shimura subgroup of J0(N), Séminaire de Théorie des Nombres,
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