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Universidad del Cauca
Calle 5 No 4–70, Popayán, Colombia

E-mail: jbravo@unicauca.edu.co

Carlos Alexis Gómez Ruiz
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The k−generalized Fibonacci sequence {F (k)
n }n starts with the

value 0, . . . , 0, 1 (a total of k terms) and each term afterwards is the
sum of the k preceding terms. In the present paper, we study on
members of k–generalized Fibonacci sequence which are sum of two
repdigts, extending a result of Dı́az and Luca [5] regarding Fibonacci
numbers with the above property.

1 Introduction

Given an integer k ≥ 2, we consider the k–generalized Fibonacci sequence

or, for simplicity, the k–Fibonacci sequence F (k) := {F (k)
n }n≥2−k given by the

recurrence

(1.1) F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for all n ≥ 2,

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We shall refer to F
(k)
n as the nth k−Fibonacci number. We note that in fact

each choice of k produces a distinct sequence which is a generalization of the

usual Fibonacci sequence {Fn}n≥0, obtained for k = 2.

Cooper and Howard [4] proved the following formula. For k ≥ 2 and

n ≥ k + 2,

F (k)
n = 2n−2 +

bn+k
k+1
c−1∑

j=1

Cn,j 2n−(k+1)j−2,(1.2)

where

Cn,j = (−1)j
[(
n− jk
j

)
−
(
n− jk − 2

j − 2

)]
.

In the above, we used the convention that
(
a
b

)
= 0 if either a < b or if one of a

or b is negative and we denoted by bxc the greatest integer less than or equal

to x. We have F
(k)
n < 2n−2 for all n ≥ k + 2 (see [2]). Furthermore, the first

k+ 1 non–zero terms in F (k) are powers of two, namely F
(k)
n = 2min{0,n−2} for

all 1 ≤ n ≤ k + 1.

We next recall some facts and properties of the k−Fibonacci sequence

which will be used later. First, it is known that the characteristic polynomial

of F (k), namely

Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one zero outside the unit circle. Through-

out this paper, α := α(k) denotes that single zero, which is a Pisot number

of degree k since the other zeros of the characteristic polynomial Ψk(x) are
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strictly inside the unit circle (see, for example, [14], [15] and [16]). Moreover,

it is known from Lemma 2.3 in [11] that

(1.3) 2(1− 2−k) < α(k) < 2, holds for all k ≥ 2,

a fact rediscovered by Wolfram [16]. To simplify notation, we will omit the

dependence on k of α. It was proved in [2] that

(1.4) αn−2 ≤ F (k)
n ≤ αn−1 holds for all n ≥ 1.

We now consider the function fk(z) := (z−1)/ (2 + (k + 1)(z − 2)) for k ≥ 2.

Dresden and Du remarked in [6] that

(1.5) F (k)
n =

k∑
i=1

fk(α
(i))α(i)n−1,

∣∣F (k)
n − fk(α)αn−1

∣∣ < 1

2
,

where α := α(1), . . . , α(k) are the zeros of Ψk(x). The expression on the left

hand side is known as Binet–like formula for F
(k)
n . Furthermore, the inequality

on the right–hand side in (1.5), shows that the contribution of the zeros which

are inside the unit circle to F
(k)
n is very small.

From the formula of fk(z), is easy see that if z ∈ (2(1 − 2−k), 2), then

∂zfk(z) < 0. Thus, from inequality (1.3), we conclude that

1/2 = fk(2) ≤ fk(α) ≤ fk
(
2(1− 2−k)

)
≤ 3/4, for all k ≥ 3.

Also, f2((1 +
√

5)/2) = 0.72360 . . . < 3/4. Further, if z = α(i) with i =

2, . . . , k, then |fk(α(i))| < 1 for all k ≥ 2. Indeed, this follows for k ≥ 3 from

the fact that |α(i)| < 1, so |α(i) − 1| < 2, and |2 + (k + 1)(α(i) − 2)| > k − 1.

Also, f2((1 −
√

5)/2) = 0.2763 . . .. Thus, we conclude that for all k ≥ 2 we

have both

(1.6) 1/2 ≤ fk(α) ≤ 3/4

and

(1.7)
∣∣fk(α(i))

∣∣ < 1 for all i = 2, . . . , k.

In this paper, we study a problem regarding the representation of k–

Fibonacci numbers as sums of repdigits. Recall that a positive integer is

called a repdigit if it has only one distinct digit in its decimal expansion.

In particular, such number has the form a(10m − 1)/9 for some m ≥ 1 and

1 ≤ a ≤ 9. In 2000, Luca [10] showed that 55 is the largest repdigit Fibonacci

number. Marques [12] proved in 2013 that 44 is the largest repdigit in the
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Tribonacci sequence (k = 3). The same year, Bravo and Luca [5] showed that

there are no repdigits having at least 2 digits in any k–generalized Fibonacci

sequence for any k > 3, confirming a conjecture of Marques. In 2011, Dı́az

y Luca [5] found all Fibonacci numbers as sum of two repdigts. Here, we

study an analogue of the problem of Dı́az and Luca when the sequence of

Fibonacci numbers is replaced by the sequence of k–generalized Fibonacci

numbers. More precisely, we have the following result.

Main Theorem. For k ≥ 3 and n ≥ k + 2, the Diophantine equation

(1.8) F (k)
n = a

(
10m − 1

9

)
+ b

(
10l − 1

9

)
, 1 ≤ a, b ≤ 9,

has only 17 positive integer solutions (n, k,m, l, a, b) with m ≥ max{l, 2}:

F
(3)
6 = 13 = 11 + 2 F

(3)
7 = 24 = 22 + 2 F

(3)
9 = 81 = 77 + 4

F
(4)
6 = 15 = 11 + 4 F

(4)
7 = 29 = 22 + 7 F

(4)
8 = 56 = 55 + 1

F
(4)
9 = 108 = 99 + 9 F

(5)
7 = 31 = 22 + 9 F

(5)
8 = 61 = 55 + 6

F
(5)
9 = 120 = 111 + 9 F

(6)
8 = 63 = 55 + 8 F

(7)
12 = 1004 = 999 + 5

F
(3)
8 = 44 = 11 + 33 F

(3)
8 = 44 = 22 + 22 F

(6)
12 = 976 = 888 + 88

F
(8)
10 = 255 = 222 + 33 F

(9)
12 = 1021 = 999 + 22

On the other hand, for n < k + 2, F
(k)
n is the power of two 2n−2 and the

only solutions of (1.8) with m ≥ max{l, 2}, are

F
(k)
6 = 16 = 11 + 5 (k ≥ 5) and F

(k)
8 = 64 = 55 + 9 (k ≥ 7).

We clarify that the condition m ≥ max{l, 2} ≥ 2, in the above theorem,

is only meant to insure that F
(k)
n has at least 2 digits, and so to avoid small

numbers which are the sums of two one-digit numbers.

2 Upper bounds for the solutions of (1.8)

We begin our work with the case n ≥ k+2. Assume throughout that equation

(1.8) holds. Combining the fact that

10m−1 < a

(
10m − 1

9

)
+ b

(
10l − 1

9

)
= F (k)

n

with inequality (1.4), we have

(2.1) l ≤ m < (n− 1)
logα

log 10
+ 1.

We need to bound k and n.
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2.1 A polynomial upper bound on n in terms of k

Using (1.5), we obtain from (1.8) that

(2.2)

∣∣∣∣fk(α)αn−1 −
(
a+ b10l−m

9

)
10m

∣∣∣∣ < 1

2
+
a+ b

9
≤ 5

2
.

Dividing both sides of the above inequality by fk(α)αn−1, we obtain

(2.3)

∣∣∣∣fk(α)−1
(
a+ b10l−m

9

)
α−(n−1)10m − 1

∣∣∣∣ < 5

αn−1
,

where we used the fact that fk(α) > 1/2. We put

γ1 := fk(α)−1(a+ b10l−m)/9, γ2 := α, γ3 := 10,

b1 := 1, b2 := −(n− 1), b3 := m,

Λ1 := γb11 · γb22 · γb33 − 1.

(2.4)

So, by (2.3),

(2.5) |Λ1| <
5

αn−1
.

Our next step will be to find a lower bound for |Λ1|. For this purpose we use

the following result of Matveev (see [13] or Theorem 9.4 in [3]).

Lemma 1. Let K be a number field of degree D over Q, γ1, . . . , γt be positive

real numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb11 · · · γbtt − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then,

assuming that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

In the above and in what follows, for an algebraic number η of degree d

over Q and minimal primitive polynomial over the integers

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

with positive leading coefficient a0, we write h(η) for its logarithmic height,

given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
.
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In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0,

then h(η) = log max{|p|, q}. The following properties of the function loga-

rithmic height h(·), which will be used in the next sections without special

reference, are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηs) = |s|h(η) (s ∈ Z).

We now use linear forms in logarithms (Lemma 1) with t = 3 and the pa-

rameters given in (2.4). We begin noting that the algebraic number field

containing γ1, γ2, γ3 is K := Q(α), so we can take D := k. By the previous

properties of the logarithmic height, we conclude that

h(η1) ≤ h(fk(α)) + h

(
a+ b10l−m

9

)
+ log 2

≤ 2 log k + (m− l) log 11 + 2 log 3 + log 2

≤ 2 log k + 2.4(m− l) + 3

≤ 3(m− l + log k + 1).

In the above, we have used that h(fk(α)) < 2 log k for all k ≥ 3. This

inequality was proved in [8]. Thus, we can take A1 := 3k(m− l + log k + 1).

Further, since h(γ2) = (logα)/k < 0.7/k and h(γ3) = log 10, we can take

A2 := 0.7 and A3 := 3k. Due to inequality (2.1), we take B := n − 1. In

order to apply Lemma 1, we prove that Λ1 6= 0. Observe that imposing that

Λ1 = 0 we get
a

9
10m +

b

9
10l = fk(α)αn−1.

Let G = Gal(Ψk(x)/Q) be the Galois group of the decomposition field of

Ψk(x) over Q. Conjugating the above relation by an automorphism σ ∈ G
such that σ(α) = α(i), with i ≥ 2 and taking absolute values, we conclude

that

(2.6) 1 <
a

9
10m +

b

9
10l = |fk(α(i))||α(i)|n−1.

However the last inequality above is not possible because |α(i)| < 1 and

|fk(α(i))| < 1 (by (1.7)). Thus, Λ1 6= 0. Lemma 1 gives the following lower

bound for |Λ1|:

exp(−1.4× 306 × 34.5k2(1 + log k)(1 + log(n− 1))

× (3k(m− l + log k + 1)) (0.7)(3k)),
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which is smaller than 5/αn−1 by inequality (2.5). Taking logarithms, we have

that

(n− 1) logα− log 5 < 6× 1012 k4 log k (m− l + log k + 1) log(n− 1),

which leads to

(2.7) n− 1 < 2× 1013 k4 log k (m− l + log k + 1) log(n− 1).

In order to find a bound on n in terms of k, we return to inequality (2.2) and

rewrite this as∣∣∣∣∣fk(α)αn−1 −
a

9
10m

∣∣∣∣∣ ≤ 1

2
+
a+ b

9
+
b

9
10l ≤ 5

2
+ 10l < 2 · 10l,

which leads to ∣∣(9/a) fk(α)αn−110−m − 1
∣∣ < 2

10m−l−1
.(2.8)

This time, we put

γ1 := (9/a)fk(α), γ2 := α, γ3 := 10,

b1 := 1, b2 := −(n− 1), b3 := −m,
Λ2 := γb11 · γb22 · γb33 − 1.

(2.9)

By (2.8),

(2.10) |Λ2| <
2

10m−l−1
.

By the same arguments used before for Λ1, we conclude that Λ2 6= 0.

A new application of Lemma 1 with t = 3, the parameters in (2.9), and

K := Q(α), D := k, B := n − 1, A1 := 4k log k, A2 := 0.7, A3 := k log 10,

allows us to obtain a lower bound for |Λ2| that combined with inequality

(2.10) leads to

m− l − 1 < 1.2× 1012k4(log k)2 log(n− 1).

Hence,

m− l + log k + 1 < 1.2× 1012k4(log k)2 log(n− 1) + log k + 2

< 2× 1012k4(log k)2 log(n− 1).

Incorporating the above bound in inequality (2.7), we conclude that

(2.11) n− 1 < 4× 1025k8(log k)3(log(n− 1))2.

Next, we use an analytical argument which leads to an upper bound n

polynomially in k. The following result is Lemma 7 in [9].
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Lemma 2. If m ≥ 1 is an integer and x and T are real numbers such that

T > (4m2)m and

x

(log x)m
< T, then x < 2mT (log T )m.

Taking T := 4×1025 k8 (log k)4 and m = 2, and applying the above lemma

in inequality (2.11), we obtain

n− 1 < 4
(
4× 1025 k8 (log k)3

) (
log
(
4× 1025 k8 (log k)3

))2
< (1.6× 1026k8(log k)3) (59 + 8 log k + 3 log log k)2

< 6.76× 1029k8(log k)5.

In the above, we have used that 59 + 8 log k + 3 log log k < 65 log k holds for

all k ≥ 3.

Let us record this calculation for future use.

Theorem 1. If (n, k,m, l, a, b) is a solution in positive integers of equation

(1.8) with k ≥ 3, n ≥ k + 2 and m ≥ l ≥ 1, then inequality

n < 6.8× 1029k8(log k)5

hold.

In the rest of this section, we show that k is bounded and therefore also

n.

2.2 An absolute bound on k

We will use the following lemma.

Lemma 3. If n < 2k/2, then the following estimates hold:

F (k)
n = 2n−2 (1 + ζ(n, k)) , where |ζ(n, k)| < 2

2k/2
.

Proof. By Cooper and Howard’s formula given in (1.2), we can write

F (k)
n = 2n−2 (1 + ζ(n, k)) ,

where

|ζ(n, k)| ≤
bn+k
k+1
c−1∑

j=1

|Cn,j|
2(k+1)j

<
∑
j≥1

2nj

2(k+1)jj!

<
2n

2k+1

∑
j≥1

(n/2k+1)j−1

(j − 1)!
<

n

2k
en/2

k+1

.

Since n < 2k/2 < 2k, then en/2
k+1

< e1/2 < 2. Thus,

|ζ(n, k)| < 2n

2k
<

2

2k/2
.
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Suppose k > 370. It is easy see that

n < 6.8× 1029k8(log k)5 < 2k/2.

Hence, by Lemma 3 and equality (1.8), we conclude that

|2n−2 − F (k)
n | < 2n−1/2k/2 and |F (k)

n − (a/9)10m| < 2 · 10l,

respectively. Combining these inequalities we arrive at inequality

|2n−2 − (a/9)10m| <
2n−1

2k/2
+ 2 · 10l.

Dividing by (a/9)10m, we get:

|2n−2(9/a)10−m − 1| <
2

2k/2
·

2n−2

(a/9)10m
+

2

10m−l−1
.(2.12)

Below we will give an upper estimate for 2n−2/(a10m/9). By replacing F
(k)
n ,

according to Lemma 3, in equality (1.8), we obtain

2n−2

(a/9)10m
· 0.99 <

2n−2

(a/9)10m
· (1 + ζ(n, k)) = 1 +

b

a 10m−l
−
a+ b

a 10m
< 10.

Thus,
2n−2

(a/9)10m
< 11.

Therefore, returning to the inequality (2.12), we get

|2n−2(9/a)10−m − 1| <
22

2k/2
+

2

10m−l−1
<

1

2λ−5
,(2.13)

where λ := min{k/2, m− l}.
It is easy see that the left–hand side in the above inequality (2.13) is

nonzero. Indeed, otherwise 2n−29 = 10ma, which is not possible. We apply

again Matveev’s linear forms in logarithms with t = 3 and the parameters:

γ1 := 2, γ2 := 9/a, γ3 := 10, b1 := n− 2, b2 := 1, b3 := −m,
Λ3 := γb11 · γb22 · γb33 − 1, K := Q, D := 1,

A1 := log 2, A2 := 2 log 3, A3 := log 10, B := n.

By the conclusion of Lemma 1 and inequality (2.13), we have

exp(−1.1× 1012 log n) < |2n−2(9/a)10−m − 1| < 2−(λ−5).

We conclude that

λ < 1.6× 1012 log n

< 1.6× 1012 log
(
6.8× 1029k8(log k)5

)
< 1.3× 1014 log k.

(2.14)
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In the above chain of inequalities, we used Theorem 1 to deduce that

log n < log
(
6.8× 1029k8(log k)5

)
= log(6.8× 1029) + 8 log(k) + 5 log log k

< 76 log k.

We now consider two cases on λ.

Case λ = k/2.

Then, by inequality (2.14), one has to k < 2.6× 1014 log k which leads to

k < 1016.

Case λ = m− l.

Again, by (2.14), we get

m− l < 2.6× 1014 log k.(2.15)

As in the deduction of inequality (2.12), we have by Lemma 3 and equality

(1.8), that

|2n−2 − F (k)
n | < 2n−1/2k/2 and |F (k)

n − (a/9)10m − (b/9)10l| < 2.

Hence, ∣∣∣∣2n−2 − (a+ b10l−m

9

)
10m

∣∣∣∣ < 2n−1

2k/2
+ 2.

In order to use one last time the linear forms in logarithms, we divide both

sides of the above inequality by 2n−2:

(2.16)

∣∣∣∣(a+ b10l−m

9

)
10m2−(n−2) − 1

∣∣∣∣ < 2

2k/2
+

1

2n−3
<

3

2k/2
.

As in the previous application of Lemma 1, we note that the left–hand side

is nonzero and that the numbers

γ1 :=
a+ b10l−m

9
, γ2 := 10, γ3 := 2,

are in K := Q, and so D := 1. We put

A1 := 3(m− l + 1), A2 := log 10, A3 := log 2.

On the other hand,

b1 := n− 2, b2 := 1, b3 := −m and B := n.
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By comparing the upper bound to Λ4 := γb11 γ
b2
1 γ

b3
1 − 1 given in inequality

(2.16) with the lower bound obtained after the application of Lemma 1, we

conclude that

((log 2)/2)k − log 3 < 1.5× 1028(log k)2.

Thus, k < 2.5× 1032.

We summarize our findings in the following theorem.

Theorem 2. If (n, k,m, l, a, b) is a solution in positive integers of equation

(1.8) with k ≥ 3, n ≥ k + 2 and m ≥ l ≥ 1, then inequalities

k < 2.5× 1032 and n < 2.4× 10298

hold.

3 Reducing the bound on k and n

We note that the upper bounds given in Theorem 2 are too large to allow com-

puting. Therefore, we transform inequalities (2.13) and (2.16) in inequalities

for linear forms in logarithms and use continued fractions, to reduce the up-

per bound on k. In the same way we deal with the inequalities (2.3) and (2.8)

to reduce n. Due to technical reasons, we assume that min{n,m− l, k} ≥ 15.

3.1 Reduction on k

Let

z3 := −m log 10 + (n− 2) log 2− log(a/9).

From estimate (2.13), we conclude that ez3 − 1 = Λ3 and that

|ez3 − 1| < 1

2λ−5
, λ := min{k/2,m− l}.

We have |ez3 − 1| < 1/2. If z3 < 0, then e|z3| < 2 and

0 < |z3| ≤ e|z3| − 1 = e|z3||ez3 − 1| < 2/2λ−5.(3.1)

It is easy see that for z3 > 0 the above inequality is also true. We note that

γ := log 10/ log 2 is transcendental by the Gelfond–Schneider theorem, so γ

is irrational and z3 6= 0.

Case a = 9.
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Thus, log(a/9) = 0 and z3 = −m log 10 + (n − 2) log 2. Hence, from in-

equality (3.1) one can conclude

(3.2) 0 <

∣∣∣∣γ − n− 2

m

∣∣∣∣ < 6

2λ−5m
.

The following result, well–known in the theory of Diophantine approxima-

tion, will be used for the treatment of the above homogeneous linear form.

Lemma 4. Let M be a positive integer, let p1/q1, . . . , pn/qn, . . . be conver-

gents of the continued fraction of the irrational γ, such that M < qN+1 for

some N . We put aM = max{at : t = 0, 1, . . . , N + 1}. Then∣∣∣γ − n

m

∣∣∣ > 1

(aM + 2)m2
,

for all pairs (n,m) of integers with 1 ≤ m < M .

We put M := 2.4 × 10298, which is a upper bound to m < n, according

to inequality (2.1) and Theorem 2. For γ = log 10/ log 2, we compute with

Mathematica its continued fraction [a0, a1, a2, a3, . . .] = [3, 3, 9, 2, . . .] and its

convergents p1/q1, p2/q2, . . .. We obtained that q601 > 2.4× 10298 > m and

aM := max{ai : 0 ≤ i ≤ 601} = 5393.

Combining inequality (3.2) and the conclusion of Lemma 4, we have that

1

5395m2
<

∣∣∣∣γ − n− 2

m

∣∣∣∣ < 6

2λ−5m
.

The above inequalities lead to

2λ−5 < 6× 5395m < 7.7× 10302.

Thus, λ ≤ 1011.

Case a 6= 9.

Thus, log(a/9) 6= 0 and from inequality (3.1), we obtain that

(3.3) 0 < |mγ − (n− 2) + µa| <
6

2λ−5
,

where µa := log(a/9)/ log 2.

The following lemma is a slight variation of a result due to Dujella and

Pethő [7], which itself is a generalization of a result of Baker and Davenport

[1]. We will use this lemma for the treatment of the above non–homogeneous

linear form. For a real number x, we put ||x|| = min{|x − n| : n ∈ Z} for

the distance from x to the nearest integer.
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Lemma 5. Let M be a positive integer, let p/q be a convergent of the con-

tinued fraction of the irrational γ such that q > 6M , and let A,B, µ be some

real numbers with A > 0 and B > 1. Let further ε = ||µq||−M ||γq||. If ε > 0,

then there is no solution to the inequality

(3.4) 0 < |uγ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

In order to use the above lemma in inequality (3.3), we put

u := m, v := n− 2, w := λ− 5,

γ = log 10/ log 2, µ := µa, A := 6, B := 2.

Furthermore, as in the case a = 9, we take M := 2.4 × 10298. For each

a ∈ {1, 2, 3, 4, 5, 6, 7, 8}, we found a convergent p(a)/q(a) of γ such that q(a) >

6M and considered ε(a) = ||µq(a)|| − M ||γq(a)||. A quick inspection using

Mathematica reveals that

0.0872356 < ||µ · q(7)605|| −M ||γ · q
(7)
605|| = ε(7) ≤ min

1≤a≤8
ε(a).

Hence, from Lemma 5, we conclude that inequality (3.3) has no solution (nor

the equation 1.8) with

λ− 5 ≥
⌊
(log(Aq605/ε

(7)))/ logB
⌋

= 999 and a ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

Thus, λ ≤ 1004.

From now on, we continue on the assumption that λ ∈ [0, 1011]. If λ = k/2,

then k ≤ 2022. Now, if λ = m− l we take

z4 := m log 10− (n− 2) log 2 + log((a+ b10−λ)/9).

By estimate (2.16), we have that Λ4 = ez4 − 1 and |ez4 − 1| < 3/2k/2. In

particular, z4 6= 0 because Λ4 6= 0. Assuming that k > 7, we have |ez4 − 1| <
1/2. Using similar arguments to those used to derive the inequality (3.1),

allow us to obtain

0 < |m log 10− (n− 2) log 2 + log((a+ b10−λ)/9)| < 6/2k/2.

Dividing by log 2, we get:

0 < |m(log 10/ log 2)− (n− 2) + µλ,a,b| < 9 · 2−k/2,(3.5)
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where µλ,a,b := log((a+ b10−λ)/9)/ log 2.

Before continuing, we need to determine the type argument that we should

use to reduce k. If the linear form z4 can be written as a homogeneous linear

form, then we use Lemma 4, as in the Case a = 9. Otherwise, we use Lemma

5, as in the Case a 6= 9. Note that the non–homogeneous linear form uγ−v+µ

in Lemma 5, can be rewritten as a linear form homogeneous if µ or γ ± µ is

an integer:

if µ = s ∈ Z, uγ − v + µ = uγ − (v − s),
if γ + µ = s ∈ Z, uγ − v + µ = (u− 1)γ − (v − s),
if γ − µ = s ∈ Z, uγ − v + µ = (u+ 1)γ − (v + s),

in which cases Lemma 5 cannot be used because ε = ||µq|| −M ||γq|| < 0.

The following result is easy to prove and its proof is omitted.

Lemma 6. Let γ = log 10/ log 2 and µλ,a,b = log((a+b10−λ)/9)/ log 2 with

λ ≥ 0 and 1 ≤ a, b ≤ 9 integers. Then

1. µλ,a,b is an integer if and only if λ = 0 and a+ b ≡ 0 (mod 9) or λ = 1

and (a, b) = (4, 5).

2. γ + µλ,a,b is an integer if and only if

(λ, a, b) ∈ {(1, 1, 8), (1, 3, 6), (1, 7, 2)}.

3. γ − µλ,a,b is not integer for any λ ≥ 0 and 1 ≤ a, b ≤ 9.

Case µλ,a,b ∈ Z.

According to Lemma 6, λ = 0 and a + b ≡ 0 (mod 9), from which we

obtain µλ,a,b ∈ {0, 1} or λ = 1 and (a, b) = (4, 5), and so µλ,a,b = −1. Then,

from inequality (3.5), we get

(3.6) 0 <

∣∣∣∣ log 10

log 2
− n− s

m

∣∣∣∣ < 9

2k/2m
, with s = 1, 2, 3.

The same calculations performed for the Case a = 9 allow us to conclude

that

2k/2 < 9× 5395m < 1.7× 10303.

So, k ≤ 2014.

Case γ + µλ,a,b ∈ Z.
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By Lemma 6, we can see that γ + µλ,a,b := s ∈ {1, 2, 3}. So, we conclude

that

(3.7) 0 <

∣∣∣∣ log 10

log 2
− n− s− 2

m− 1

∣∣∣∣ < 9

2k/2(m− 1)
, with s = 1, 2, 3.

As in the previous case, we obtain k ≤ 2014.

Case µλ,a,b and γ + µλ,a,b are not integers.

Putting

u := m, v := n− 2, w := k,

γ := log 10/ log 2, µ := µλ,a,b, A := 9 and B :=
√

2,

we apply Lemma 5 to inequality (3.5) with M := 2.4 × 10298 as an upper

bound on m. Following the calculations of the continued fraction of γ and its

convergents performed in the above cases, and doing a computer search with

Mathematica, we showed that if µλ,a,b and γ+µλ,a,b are not integers and put

ελ,a,b := ||µλ,a,b · qλ,a,b|| −M ||γ · qλ,a,b||, then

min
µλ,a,b /∈Z

γ+µλ,a,b /∈Z

ελ,a,b > 1.6× 10−357.(3.8)

Thus, the maximum value of log(Aqλ,a,b/ελ,a,b)/ logB is at most 4365, which

is an upper bound to k according to Lemma 5. Returning to Theorem 1, we

can modify the conclusion of Theorem 2 to

k ≤ 4365, n < 3.8× 1063.

With this new upper bound for k and n, we repeat the reduction cycle

that begins with inequality (3.1) and ends with inequality (3.8).

We take M := 3.8 × 1063 for all applications of Lemmas 4 and 5. A new

round of reduction cycle, leads to obtain:

a = 9, aM = 119 and λ ≤ 225.

a 6= 9, min ε(a) > 0.139 and λ ≤ 229.

µλ,a,b, γ + µλ,a,b ∈ Z, aM = 119 and k ≤ 445.

µλ,a,b, γ + µλ,a,b /∈ Z, min > 2.37× 10−85 and k ≤ 991.

Thus, we can conclude that k ≤ 991 and n < 9.8 × 1057. A last round of

reduction cycle with M := n < 9.8× 1057, leads to

k ≤ 880, n < 3.6× 1057.(3.9)
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3.2 Reduction on n

We now put

(3.10) z2 := (n− 1) logα−m log 10 + log(9fk(α)/a),

Then, ez2 − 1 = Λ2, where Λ2 is given by inequality (2.8). Thus, inequality

(2.10) can be rewritten as

(3.11) |ez2 − 1| < 2

10m−l−1
.

As in the deduction of inequality (3.1), we get

0 < |z2| <
4

10m−l−1
,

Replacing z2 in the above inequality by its formula (3.10) and dividing both

sides of the resulting inequality by log 10, we get

(3.12) 0 < |(n− 1)γk −m+ µk, a| < 1.8 · 10m−l−1.

We take

γk :=
logα

log 10
, µk, a :=

log(9fk(α)/a)

log 10
, A := 1.8, and B := 10.

For all k ≥ 3, it is clear that γk is an irrational number because α > 1 is a

unit in OK, the ring of integers of K = Q(α), so α and 10 are multiplicatively

independent. We also note that µk, a and γk ± µk, a are not integers. Indeed,

we conclude that if µk, a is integer, then fk(α) ∈ Q. However, it is easy see

that Q(fk(α)) = Q(α) and [Q(α) : Q] = k ≥ 3. In the same way, if γ±µk, a is

integer, then α±1fk(α) ∈ Q, but this leads to the conclusion that the degree

of α over Q is at most two, which is not the case. Hence, we can use Lemma

5, to reduce n.

For each k ∈ [3, 880], we use a good approximation of α and a con-

vergent pk/qk of the continued fraction of γk such that qk > 6M , where

M := 3.6× 1057 (note that n < M by inequalities (3.9)). A computer search

with Mathematica revealed that for εk, a = ||µk, a · qk|| −M ||γk · qk||,

min
3≤k≤880
1≤a≤9

εk, a > 1.36× 10−103,

so the maximum value of log(Aqk/εk)/ logB, is 321.35. . . , which, according

to Lemma 5 applied to inequality (3.12), is an upper bound on m − l − 1.

Hence, we deduce that m− l ∈ [0, 322].
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We now turn to inequalities (2.3) and (2.5), and take

(3.13) z1 := −(n− 1) logα +m log 10 + log

(
a+ b10−(m−l)

9fk(α)

)
.

Thus, 0 < |ez1 − 1| = |Λ1| < 5/αn−1. As on previous occasions, we get

0 < |z1| <
10

αn−1
.

In a way similar to the above cases, we obtain

(3.14) 0 < |(n− 1)γk −m+ µ
(k)
λ, a, b| < 10 · α−(n−1),

where now

γk :=
logα

log 10
, and µ

(k)
λ, a, b := log

(
9fk(α)

a+ b10−(m−l)

)
(log 10)−1.

As before, we note that µ
(k)
λ, a, b and γk ± µ(k)

λ, a, b are not integers.

Below, for each k ∈ [3, 880] and λ = m − l ∈ [0, 322], we apply Lemma

5 on inequality (3.14), with M := 3.6 × 1057. In this case, with the help of

Mathematica, we find that

ε
(k)
λ, a, b := ||µ(k)

λ, a, b · qk|| −M ||γk · qk|| > 1.36× 10−103

and

log(Aqk/ε
(k)
λ, a, b)/ logB ≤ 779.

The above value determines a new upper bound on n− 1.

With this new reduced bound on n, we restart our reduction (from Sub-

section 3.1) on the integer variable λ = min{k/2,m− l}, after that on k and

m − l, and finally on n. We put M := 780, for each reduction step. In the

Case a = 9, we obtained from Lemma 4 that

q7 > 780 and aM = max{ai : 0 ≤ i ≤ 7} = 9, so λ ≤ 25.

For the Case a 6= 9, by Lemma 5:

min
1≤a≤8

ε(a) > 0.369, and then λ ≤ 17.

Hence, we continue with the assumption that λ ≤ 25. If λ = k/2, then

k ≤ 50. Otherwise, λ = m− l. In the case when one of µλ,a,b or γ + µλ,a,b is

an integer, we concluded by using Lemma 4 that k ≤ 35. In the case when

none of µλ,a,b, γ + µλ,a,b is an integer, we found that

min
µλ,a,b /∈Z

γ+µλ,a,b /∈Z

ελ,a,b > 1.08× 10−12, and so k ≤ 110.
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Thus, we continued our work with k ∈ [3, 110]. Finally, we reduced the upper

bound to m− l via Lemma 5 by getting:

min
3≤k≤880
1≤a≤9

εk, a > 1.58× 10−16, and so m− l ≤ 40.

We used Lemma 5 to find first that:

ε
(k)
λ, a, b > 1.99× 10−17,

and later we concluded that n ≤ 100.

In summary, the solutions (n, k,m, l, a, b) of the equation (1.8) must satisfy

that

(3.15) k ∈ [3, 98] max{n,m, l} ≤ 100, and 1 ≤ a, b ≤ 9.

4 Proof of main Theorem

4.1 Case n ≥ k + 2.

The search for solutions to the Diophantine equation (1.8) reduces to the

range given in (3.15). Hence, for 3 ≤ k ≤ 98, 1 ≤ max{m, k + 1} < n ≤ 100

and 1 ≤ a ≤ 9, we use Mathematica to display the last 10 digits (modulo

1010) of the positive values:

(4.1) F (k)
n − a

(
10m − 1

9

)
,

obtainig that for all k ∈ [10, 98], the last 10 digits of the numbers presented

in (4.1) are not repdigits. Thus, the Diophantine equation (1.8) only has

solutions to k ∈ [3, 9]. We use the following notation:

R(m, a) := a

(
10m − 1

9

)
, with m ≥ 1 and 1 ≤ a ≤ 9.

To make our problem interesting, we assume that in the Diophantine equation

(1.8) m and l are not simultaneously 1. The solutions to (1.8) are classified

as follows.

When the difference (4.1) is a digit (l = 1).

F
(3)
6 = R(2, 1)+R(1, 2), F

(3)
7 = R(2, 2)+R(1, 2), F

(3)
9 = R(2, 7)+R(1, 4),

F
(4)
6 = R(2, 1) +R(1, 4), F

(4)
7 = R(2, 2) +R(1, 7),

F
(4)
8 = R(2, 5) +R(1, 1), F

(4)
9 = R(2, 9) +R(1, 9),
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F
(5)
7 = R(2, 2)+R(1, 9), F

(5)
8 = R(2, 5)+R(1, 6), F

(5)
9 = R(3, 1)+R(1, 9),

F
(6)
8 = R(2, 5) +R(1, 8), F

(7)
12 = R(3, 9) +R(1, 5).

When the difference (4.1) is a repdigit (l > 1).

F
(3)
8 = R(2, 1) +R(2, 3) = R(2, 2) +R(2, 2),

F
(6)
12 = R(3, 8)+R(2, 8), F

(8)
10 = R(3, 2)+R(2, 3), F

(9)
12 = R(3, 9)+R(2, 2).

4.2 Case n ≤ k + 1.

From Cooper and Howard’s identity (1.2), we have that F
(k)
n = 2n−2. Thus,

the Diophantine equation (1.8) can be rewriten as

(4.2) a10m + b10l − 9× 2n−2 = a+ b.

Since l ≤ m ≤ n− 2 (see 2.1), we conclude that 2l divides the expression on

the left hand–side of the above equality. Then, 2l divides to a + b ≤ 18 and

so l ∈ {1, 2, 3, 4}. Now, rewriting equality (4.2) as

(4.3) 9× 2n−2 − a10m = b(10l − 1)− a,

we obtain that 2m divides to b(10l − 1)− a. But

0 ≤ 9b− a ≤ b(10l − 1)− a ≤ 9(104 − 1)− 1 < 105.

However, if b(10l − 1) − a = 0, then l = 1, b = 1, a = 9 and we would

obtain by (4.3) that 10m is a power of two, which is not possible. Thus,

b(10l − 1) − a 6= 0 and m ≤ 16 (given that 2m < 105). With l ≤ 4 and

m ≤ 16 , we get from (4.2) or (4.3) that n ≤ 53. A quick inspection with

Mathematica shows that the solutions to (4.2), with 1 ≤ l ≤ 4, l ≤ m ≤ 16,

m < n ≤ 53 and m ≥ max{l, 2}, are

F
(k)
6 = 16 = R(2, 1) +R(1, 5), for all k ≥ 5

and

F
(k)
8 = 64 = R(2, 5) +R(1, 9), for all k ≥ 7.
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